阿成区第一中学校2018-2019学年高二上学期第一次月考试卷化学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿成区第一中学校2018-2019学年高二上学期第一次月考试卷化学
一、选择题
1. 函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )
A .f (x )=3﹣x
B .f (x )=x ﹣3
C .f (x )=1﹣x
D .f (x )=x+1
2.
+(a ﹣4)0有意义,则a 的取值范围是(
)
A .a ≥2
B .2≤a <4或a >4
C .a ≠2
D .a ≠4
3. 若圆心坐标为的圆在直线上截得的弦长为,则这个圆的方程是( )
()2,1-10x y --
=A . B . ()()2
2
210x y -++=()()22
214x y -++=C . D .()()2
2
218x y -++=()()2
2
2116
x y -++=4. 两个随机变量x ,y 的取值表为
x 0134y
2.2
4.3
4.8
6.7
若x ,y 具有线性相关关系,且=bx +2.6,则下列四个结论错误的是(
)
y ^
A .x 与y 是正相关
B .当y 的估计值为8.3时,x =6
C .随机误差e 的均值为
D .样本点(3,4.8)的残差为0.65
5. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm 3
A .π
B .2π
C .3π
D .4π
6. 设函数是定义在上的可导函数,其导函数为,且有,则不等式
)(x f )0,(-∞)('
x f 2
'
)()(2x x xf x f >+的解集为
0)2(4)2014()2014(2>--++f x f x A 、 B 、 C 、 D 、)2012,(--∞)0,2012(-)2016,(--∞)
0,2016(-7. 不等式组在坐标平面内表示的图形的面积等于( )
A .
B .
C .
D .
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
8. 如图,在棱长为1的正方体中,为棱中点,点在侧面内运动,若
1111ABCD A B C D -P 11A B Q 11DCC D ,则动点的轨迹所在曲线为( )
1PBQ PBD ∠=∠Q
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.
9. 设a >0,b >0,若是5a 与5b 的等比中项,则+的最小值为(
)
A .8
B .4
C .1
D .
10.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( )
A .4
B .5
C .6
D .7
11.已知实数x ,y 满足约束条件,若y ≥kx ﹣3恒成立,则实数k 的数值范围是( )
A .[﹣
,0]B .[0,
]C .(﹣∞,0]∪[
,+∞)D .(﹣∞,﹣
]∪[0,+∞)
12.给出下列函数:①f (x )=xsinx ;
②f (x )=e x +x ;③f (x )=ln (﹣x );
∃a >0,使f (x )dx=0的函数是( )A .①②
B .①③
C .②③
D .①②③
二、填空题
13.设S n 是数列{a n }的前n 项和,且a 1=﹣1,
=S n .则数列{a n }的通项公式a n = .
14.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .
15.设变量满足约束条件,则的最小值是,则实数y x ,220
22010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩
22
(1)3(1)z a x a y =+-+20-a =
______.
【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.16.1785与840的最大约数为 .
17.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1③f (x )=x 2+1
④f (x )
=
其中是“H 函数”的有 (填序号)
18.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是
.
三、解答题
19.设函数f (x )=kx 2+2x (k 为实常数)为奇函数,函数g (x )=a f (x )﹣1(a >0且a ≠1).(Ⅰ)求k 的值;
(Ⅱ)求g (x )在[﹣1,2]上的最大值;(Ⅲ)当
时,g (x )≤t 2﹣2mt+1对所有的x ∈[﹣1,1]及m ∈[﹣1,1]恒成立,求实数t 的取值范围.
20.已知双曲线C:与点P(1,2).
(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;
(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.
21.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.
22.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?
23.已知在等比数列{a n}中,a1=1,且a2是a1和a3﹣1的等差中项.
(1)求数列{a n}的通项公式;
(2)若数列{b n}满足b1+2b2+3b3+…+nb n=a n(n∈N*),求{b n}的通项公式b n.
24.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分,现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设∠BOC=θ,直四棱柱木梁的体积为V(单位:m3),侧面积为S(单位:m2).
(Ⅰ)分别求V与S关于θ的函数表达式;
(Ⅱ)求侧面积S的最大值;
(Ⅲ)求θ的值,使体积V最大.
阿成区第一中学校2018-2019学年高二上学期第一次月考试卷化学(参考答案)
一、选择题
1.【答案】A
【解析】解:∵x∈(0,1)时,f(x)=x+1,f(x)是以2为周期的偶函数,
∴x∈(1,2),(x﹣2)∈(﹣1,0),
f(x)=f(x﹣2)=f(2﹣x)=2﹣x+1=3﹣x,
故选A.
2.【答案】B
【解析】解:∵+(a﹣4)0有意义,
∴,
解得2≤a<4或a>4.
故选:B.
3.【答案】B
【解析】
考点:圆的方程.1111]
4.【答案】
^
【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入=bx+2.6得b=0.95,即=0.95x+
y^y
2.6,当=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差的均值为0,∴C正确.样
y^e
本点(3,4.8)的残差=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.
e^
5.【答案】B
【解析】解:由三视图可知:此几何体为圆锥的一半,
∴此几何体的体积==2π.
故选:B.
6.【答案】C.
【解析】由,得:,即,令,则当
时,
,即
在
是减函数, ,
,
,
在是减函数,所以由得,
,
即
,故选
7. 【答案】B
【解析】解:作出不等式组对应的平面区域,则对应的平面区域为矩形OABC ,则B (3,0),由
,解得
,即C (
,),
∴矩形OABC 的面积S=2S △0BC =2×=,
故选:B
【点评】本题主要考查二元一次不等式组表示平面区,利用数形结合是解决本题的关键.
8. 【答案】C.
【解析】易得平面,所有满足的所有点在以为轴线,以所在直//BP 11CC D D 1PBD PBX ∠=∠X BP 1BD 线为母线的圆锥面上,∴点的轨迹为该圆锥面与平面的交线,而已知平行于圆锥面轴线的平面截圆Q 11CC D D 锥面得到的图形是双曲线,∴点的轨迹是双曲线,故选C.Q 9. 【答案】B 【解析】解:∵是5a 与5b 的等比中项,∴5a •5b =()2=5,
即5a+b =5,
则a+b=1,
则+=(+)(a+b)=1+1++≥2+2=2+2=4,
当且仅当=,即a=b=时,取等号,
即+的最小值为4,
故选:B
【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换.
10.【答案】A
解析:模拟执行程序框图,可得
S=0,n=0
满足条,0≤k,S=3,n=1
满足条件1≤k,S=7,n=2
满足条件2≤k,S=13,n=3
满足条件3≤k,S=23,n=4
满足条件4≤k,S=41,n=5
满足条件5≤k,S=75,n=6
…
若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,
则输入的整数k的最大值为4.
故选:
11.【答案】A
【解析】解:由约束条件作可行域如图,
联立,解得B(3,﹣3).
联立,解得A().
由题意得:,解得:.
∴实数k的数值范围是.
故选:A.
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.
12.【答案】B
【解析】解:对于①,f(x)=xsinx,
∵(sinx﹣xcosx)′=xsinx,
∴xsinxdx=(sinx﹣xcosx)=2sina﹣2acosa,
令2sina﹣2acosa=0,
∴sina=acosa,
又cosa≠0,∴tana=a;
画出函数y=tanx与y=x的部分图象,如图所示;
在(0,)内,两函数的图象有交点,
即存在a>0,使f(x)dx=0成立,①满足条件;
对于②,f(x)=e x+x,(e x+x)dx=(e x+x2)=e a﹣e﹣a;
令e a﹣e﹣a=0,解得a=0,不满足条件;
对于③,f(x)=ln(﹣x)是定义域R上的奇函数,
且积分的上下限互为相反数,
所以定积分值为0,满足条件;
综上,∃a>0,使f(x)dx=0的函数是①③.
故选:B.
【点评】本题主要考查了定积分运算性质的应用问题,当被积函数为奇函数且积分区间对称时,积分值为0,是综合性题目.
二、填空题
13.【答案】 .
【解析】解:S n是数列{a n}的前n项和,且a1=﹣1,=S n,
∴S n+1﹣S n=S n+1S n,
∴=﹣1,=﹣1,
∴{}是首项为﹣1,公差为﹣1的等差数列,
∴=﹣1+(n﹣1)×(﹣1)=﹣n.
∴S n=﹣,
n=1时,a1=S1=﹣1,
n≥2时,a n=S n﹣S n﹣1=﹣+=.
∴a n=.
故答案为:.
14.【答案】 .
【解析】解:如图所示,
分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,
∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.
由直棱柱的性质可得:BO⊥侧面ACC1A1.
∴四边形BODE是矩形.
∴DE⊥侧面ACC1A1.
∴∠DAE是AD与平面AA1C1C所成的角,为α,
∴DE==OB.
AD==.
在Rt△ADE中,sinα==.
故答案为:.
【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.
15.【答案】2
【解析】
16.【答案】 105 .
【解析】解:1785=840×2+105,840=105×8+0.
∴840与1785的最大公约数是105.
故答案为105
17.【答案】 ①④
【解析】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]≥0恒成立,
即函数f(x)是定义在R上的不减函数(即无递减区间);
①f(x)在R递增,符合题意;
②f(x)在R递减,不合题意;
③f(x)在(﹣∞,0)递减,在(0,+∞)递增,不合题意;
④f(x)在R递增,符合题意;
故答案为:①④.
18.【答案】 .
【解析】解:已知∴∴为所求;
故答案为:
【点评】本题主要考查椭圆的标准方程.属基础题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由f(﹣x)=﹣f(x)得kx2﹣2x=﹣kx2﹣2x,
∴k=0.
(Ⅱ)∵g(x)=a f(x)﹣1=a2x﹣1=(a2)x﹣1
①当a2>1,即a>1时,g(x)=(a2)x﹣1在[﹣1,2]上为增函数,∴g(x)最大值为g(2)=a4﹣1.
②当a2<1,即0<a<1时,∴g(x)=(a2)x在[﹣1,2]上为减函数,
∴g(x)最大值为.
∴
(Ⅲ)由(Ⅱ)得g(x)在x∈[﹣1,1]上的最大值为,
∴1≤t2﹣2mt+1即t2﹣2mt≥0在[﹣1,1]上恒成立
令h(m)=﹣2mt+t2,∴
即
所以t∈(﹣∞,﹣2]∪{0}∪[2,+∞).
【点评】本题考查函数的奇偶性,考查函数的最值,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
20.【答案】
【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…
当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,
并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)
(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点
所以l的方程为…
(ⅱ)当2﹣k2≠0,即k≠±时
△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),
①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.
所以l的方程为3x﹣2y+1=0…
综上知:l的方程为x=1或或3x﹣2y+1=0…
(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),
则2x12﹣y12=2,2x22﹣y22=2,
两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…
又∵x1+x2=2,y1+y2=4,
∴2(x1﹣x2)=4(y1﹣y2)
即k AB==,…
∴直线AB的方程为y﹣2=(x﹣1),…
代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,
由于判别式为482﹣4×15×34>0,则该直线AB存在.…
【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.
21.【答案】
【解析】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29.
所以该班在这次数学测试中成绩合格的有29人.
(II)由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2,
设成绩为x、y
成绩在[90,100]的人数为50×10×0.006=3,设成绩为a、b、c,
若m,n∈[50,60)时,只有xy一种情况,
若m,n∈[90,100]时,有ab,bc,ac三种情况,
若m,n分别在[50,60)和[90,100]内时,有
a b c
x xa xb xc
y ya yb yc
共有6种情况,所以基本事件总数为10种,
事件“|m﹣n|>10”所包含的基本事件个数有6种
∴.
【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.
22.【答案】
【解析】解:(1)…
=…
定义域是(0,7]…
(2)∵,…
当且仅当即x=6时取=…
∴y≥80×12+1800=2760…
答:当侧面长度x=6时,总造价最低为2760元.…
23.【答案】
【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:
2a2=a1+a3﹣1,∴,
∴2q=q2,∵q≠0,∴q=2,
∴;
(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.
n≥2时,由b1+2b2+3b3+…+nb n=a n ①
b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②
①﹣②得:.
,
∴.
【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.
24.【答案】
【解析】解:(Ⅰ)木梁的侧面积S=10(AB+2BC+CD)
=10(2+4sin+2cosθ)=20(cosθ+2sin+1),θ∈(0,),
梯形ABCD的面积S ABCD=﹣sinθ=sinθcosθ+sinθ,θ∈(0,),体积V(θ)=10(sinθcosθ+sinθ),θ∈(0,);
(Ⅱ)木梁的侧面积S=10(AB+2BC+CD)=10(2+4sin+2cosθ)
=20(cos+1),θ∈(0,),
设g(θ)=cos+1,g(θ)=﹣2sin2+2sin+2,
∴当sin=,θ∈(0,),
即θ=时,木梁的侧面积s最大.
所以θ=时,木梁的侧面积s最大为40m2.
(Ⅲ)V′(θ)=10(2cos2θ+cosθ﹣1)=10(2cosθ﹣1)(cosθ+1)
令V′(θ)=0,得cosθ=,或cosθ=﹣1(舍)∵θ∈(0,),∴θ=.当θ∈(0,)时,<cosθ<1,V′(θ)>0,V(θ)为增函数;
当θ∈(,)时,0<cosθ<,V′(θ)>0,V(θ)为减函数.
∴当θ=时,体积V最大.。