云模型实现图形-MATLAB程序
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一维云模型 程序: clc clear
Ex=170;En=5;He=0.5;
n=5000;
for i=l:n
Enn=randn( 1 )*He+En;
x(i)=randn(l )*Enn+Ex;
y ⑴=exp(-(x(i)-Ex)A 2/(2*Enn A 2));
end
plot(x,y ;.r ,)
title('5000个男生身高的一维云图) ylabef 确定度);
xlabelC 身高值,);
axis([ 150」9001])
grid on
一维:
clear vars;clc;close all;
Exl 二-8; Enl 二0・ 7; Hel=0. 2;
nl 二200; Ex2二2.2; En2=2;
He2=0. 5; n2=800; Ex3=18; En3=4; He3=0. 7; n3=1500;
Enl_t = normrnd(Enl, Hel, nl, 1);
datal = normrnd(Exl, Enl t, nl, 1);
1
50 6 5 4 3 2 1 O1 o.o.o.o.o.o.
93 X — 5 8 di
如
T — 75 1—
拓 17亠咼 身
65 di 60 4— 5 5 1 5000个男主身高的一維云图
9 B 7 o.o.o.
mul = exp(-0. 5*((datal-Exl). /Enl_t). 2);
En2_t = normrnd (En2, He2, n2, 1);
data2 = normrnd (Ex2, En2_t, n2,1);
mu2 = exp(-0. 5*((data2-Ex2). /En2_t)・ ~2);
En3_t = normrnd (En3, He3, n3, 1);
data3 = normrnd(Ex3, En3_t, n3,1);
mu3 = exp(-0. 5*((data3-Ex3). /En3_t). 2);
figure(l);
plot (data!, mul, I b‘,data2, mu2,' *r‘, data3, mu3,' +k'); axis equal;
二维云模型
程序:
clc
clear
Ex l = 170;Enl=5;He 1=0.5;
Ex2=65 ;En2=3 ;He2=0.2; n=5000;
for i=I:n
Enn 1 =randn( 1 )*He 1 +En 1; x l(i)=randn( 1 )*Enn 1 +Ex 1;
Enn2=randn( 1 )*He2+En2; x2(i)=randn( 1 )*Enn2+Ex2;
y(i)=exp(-(x 1 (i)-Ex 1 )A2/(2*Enn 1 A2)-(x2(i)-Ex2)A2/(2*Enn2A2)); end plot3(xl,x2,y,'f)
title('5OOO个男生身高体jg的二维云图')
axis([ 148,190.50,80 A I])
grid on
结果:
5ooyi-男生身高体重的二维云图
50 160
多个一维
clear vars;clc;close all;
Exl二0; Enl=0.103; Hel二0.013; nl=5000;
Ex2二0.309; En2=0.064; He2=0.008; n2=5000;
Ex3二0・ 5; En3二0・ 039; He3=0. 005; n3=5000;
Ex4=0.691; En4=0.064; He4=0.008; n4=5000;
Ex5=l; En5二0.103; He5=0.013; n5=5000:
Enl_t = normrnd(Enl, Hel, nl, 1);
datal = normrnd(Exl, Enl_t, nl,1);
mul = exp(-0. 5*((datal-Exl). /Enl_t). 2);
En2_t = normrnd (En2, He2, n2, 1);
data2 = normrnd(Ex2, En2_t, n2, 1);
mu2 = exp(-0. 5*((data2-Ex2). /En2_t). *2);
En3_t = normrnd (En3, He3, n3, 1);
data3 = normrnd(Ex3, En3_t, n3,1);
mu3 = exp(-0. 5*((data3-Ex3). /En3_t). 2);
En4_t = normrnd(En4, He4, n4, 1);
data4 = normrnd(Ex4, En4_t, n4,1);
mu4 = exp(-0. 5*((data4-Ex4)・/En4_t)・ 2);
En5_t = normrnd (En5, He5, n5, 1);
data5 = normrnd (Ex5, En5_t, n5, 1);
mu5 = exp (一0・ 5* ((data5-Ex5)・/En5_t)・2);
figure(l);
plot (datal, mul,'・ r*, data2, mu2,'・r , data3, mu3,'・r , data4, mu4,'・ r*, data5, mu5,'・ r* ); titleC评价集')
ylabelC 隶属度');
axis([-0. 4, 1. 4, 0, 1])
grid on
评价集
04 02 0 0.2 0.4 0.6 0.8 1 1.2 1.4
一维
Ex二1100;
En二84. 926;
He 二0. 1;
n二1000;
X=zeros (1, n);
Y=zeros (1, n);
X(1 :n) =normrnd(En, He, 1, n):
for i=l:n
Enl二X(l, i);
X(l, i)=normrnd(Ex, Enl, 1):
Y(l, i)=exp((-(X(l, i)-Ex)"2)/(2*En「2));
plot(X, Y,'. ',' MarkerEdgeCo1or,‘ k', ' markersize*, 4); title C强等级','fontsize', 16);
grid on;
end
强等级
逆发生器代码
X1=X;
Y1=Y;
i=l;
while i<=(n-flag)
lfYl(l,i)>0.9999
Y1(:J)=[];
Xl(:,i)=[];
flag=flag+l;
End;
Ex=mean(Xl);
En2=zeros⑴m);
for i=l:m;
Enl(lJ)=abs(Xl(l/i).Ex)/sqrt(.2*log(Yl(l/i))); End;
En二mean(Enl);
He=O;
for i=l:m;
He=He+(Enl(lJ)-En)A2;
He=sqrt(He/(m-l));
End;
XI =X;
Y1=Y;
i=l;
while i<=(n-flag)
ifYl(lj)>0.9999
Y1(:J)=[J;
X1(:J)=[];
flag=flag+l;
else
i=i+l;
m=m +1;
end
end
Ex=mean(Xl)
En l=zeros(l z m);
for i= l:m
Enl(l,i)=abs(Xl(l/i)-Ex)/sqrt(-2*log(Yl(l/i))); end
En二mea n(Enl);
He=0;
for i=l:m
He=He+(Enl(l /i)-En)A 2; end
He=sqrt(He/(m-l))
Enl_t = normrnd(Enl, Hel, nl, 1); datal = normrnd(Exl, Enl_t, nl, 1); mul = exp(-0. 5*((datal-Exl). /Enl_t). 2);
En2_t = normrnd (En2, He2, n2, 1);
data2 = normrnd(Ex2, En2_t, n2, 1);
mu2 = exp(-0. 5*((data2-Ex2). /En2_t). *2);
En3_t = normrnd (En3, He3, n3, 1);
data3 = normrnd(Ex3, En3_t, n3,1);
mu3 = exp(-0. 5*((data3-Ex3)・/En3_t). 2);
En4_t = normrnd(En4, He4, n4, 1);
data4 = normrnd (Ex4, En4_t, n4, 1); mu4 = exp(-0. 5*((data4-Ex4). /En4_t)・
~2); En5_t = normrnd (En5, He5, n5, 1);
data5 = normrnd(Ex5, En5_t, n5,1);
mu5 = exp (一0・ 5*((data5~Ex5)・/En5_t)・ 2);
En6_t = normrnd (En6, He6, n6, 1);
data6 = normrnd(Ex6, En6_t, n6,1);
mu6 = exp(-0. 5*((data6-Ex6)・/En6_t). 2);
En7_t = normrnd (En7, He7, n7, 1);
data? = normrnd (Ex7, En7_t, n7, 1);
mu7 = exp(-0. 5*((data7-Ex7). /En7_t)・ ~2);
En8_t = normrnd (En8, He8, n8, 1); dataS = normrnd (Ex8, En8_t, n& 1);
clear vars;clc;close all;
Enl 二0.150; Hel=0. 050; Exl=0. 457; Ex2二0・454; Ex3二0・
435; Ex4二0. 415; Ex5=0. 414; Ex6 二
0.410;
Ex7 二
0.410; Ex8=0. 500;
En2=0. 156 En3=0. 229 En4=0. 177 En5=0. 298 En6=0. 242 En7=0. 188 En8=0. 039 He2=0. 056 He3=0. 067 He4=0. 071 He5=0. 099 He6=0.061 He7=0.061 He8=0.005 nl=4000; n2=4000;
n3=4000;
n4=4000;
n5=4000;
n6=4000;
n7=4000;
n8=5000;
mu8 = exp(-0. 5*((data8-Ex8). /En8_t). *2);
figure(l);
plot (datal, mul,'・ r*, data2, mu2,'・ r , data3, mu3,'・ r , data4, mu4,'・ r*, data5, mu5,'・ r* ,data6, mu6,'・:r' , data7, mu7,'・ r*, data8, mu8,'・ r ):
titleC 评价集')
ylabel ('隶属度');
axis([-0. 4, 1. 4, 0, 1])
grid on
clear vars;clc;close all;
Enl_t = normrnd(Enl, Hel, nl, 1); datal = normrnd(Exl, Enl_t, nl, 1); mul = exp(-0. 5*((datal-Exl). /Enl_t). 2);
En2_t = normrnd (En2, He2, n2, 1);
data2 = normrnd (Ex2, En2_t, n2,1); mu2 = exp(-0. 5*((data2-Ex2). /En2_t)・ 2);
En3_t = normrnd (En3, He3, n3, 1);
data3 = normrnd(Ex3, En3_t, n3,1); mu3 = exp (-0. 5* ((data3-Ex3). /En3_t). 2);
En4_t = normrnd(En4, He4, n4, 1);
data4 = normrnd (Ex4, En4_t, n4, 1); mu4 = exp(-0. 5*((data4-Ex4). /En4_t)・ ~2);
En5_t = normrnd (En5, He5, n5, 1);
data5 = normrnd (Ex5, En5_t, n5, 1);
mu5 = exp (一0. 5* ((data5-Ex5)・/En5_t)・ 2);
figure(l);
plot (datal, mul,'・ r , data2, mu2,'・ r , data3, mu3,'・ x , data4, mu4,'・
, data5, mu5,'・ r* );
titleC 评价集')
ylabel(,隶属度');
axis([-0. 4, 1. 4, 0, 1])
grid on Exl 二
0.716;
Ex2=0. 545;
Ex3二0・
534; Ex4二0.
Enl 二0.123; Hel=0. 045; nl=4000; En2=0. 140; He2=0. 052 En3=0. 233; He3=0. 085 En 仁0.202; He4=0. 063 En5=0. 064; n2=4000; n3=4000; n4=4000; He5=0. 008; n5二6000;。