中考数学经典总复习专题多解题完美
2025年中考数学总复习专题07 二元一次方程组(附答案解析)
数(除数不能为 0),
(1)若 a=b,则a/c=b/c. (×)
所得结果仍是等式.即若 a=b,则 ac=(2)若 a/c=b/c,则a=b.(√)
bc, a b (c≠0). cc
性质 3:(对称性)若 a=b,则 b=a. 性质 4:(传递性)若 a=b,b=c,则 a=c.
2.关于方程 的基本概念
2025 年中考数学总复习专题 07 二元一次方程组
知识点一:方程及其相关概念
关键点拨及对应举例
1.等式的基 本性质
性质 1:等式两边加或减同一个数或同
一个整式,所得结果仍是等式.即若 a=失分点警示:在等式的两边同除以一个数时,这
b,则 a±c=b±c .
个数必须不为 0.
性质 2:等式两边同乘(或除)同一个例:判断正误.
根据题意,列出的方程组是()
8y x 3 A. 7 y x 4
8y x 3 B. 7 y x 4
y 8x 3
C.
7
y
x
4
8y x 3
D.
7
y
x
4
【答案】B
【分析】
设该物品的价格是 x 钱,共同购买该商品的由 y 人,根据题意每人出 8 钱,则多 3 钱;每人出 7 钱,则差 4
钱列出二元一次方程组.
【详解】
设该物品的价格是 x 钱,共同购买该商品的由 y 人,
8y x 3 依题意可得 7 y x 4
故选:B
【点睛】
本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组.
二、解答题 3.某工厂计划生产 A、B 两种产品共 60 件,需购买甲、乙两种材料.生产一件 A 产品需甲种材料 4 千克, 乙种材料 1 千克;生产一件 B 产品需甲、乙两种材料各 3 千克.经测算,购买甲、乙两种材料各 1 千克共 需资金 60 元;购买甲种材料 2 千克和乙种材料 3 千克共需资金 155 元. (1)甲、乙两种材料每千克分别是多少元? (2)现工厂用于购买甲、乙两种材料的资金不能超过 10000 元,且生产 B 产品要超过 38 件,问有哪几种 符合条件的生产方案?
中考数学总复习教材过关(试卷版+解析版)十八 勾股定理(附答案)
教材过关十八 勾股定理一、填空题1.一个直角三角形的三边长是不大于10的三个连续偶数,则它的周长是________________.2.在△ABC 中,若AB=17,AC=8,BC=15,则根据______________可知∠ACB=_______________.3.一座垂直于两岸的桥长15米,一艘小船自桥北头出发,向正南方向驶去,因水流原因,到达南岸后,发现已偏离桥南头9米,则小船实际行驶了______________米.4.若三角形中相等的两边长为10 cm,第三边长为16 cm,则第三边上的高为_____________cm.5.如图8-41,矩形ABCD,AB=5 cm,AC=13 cm,则这个矩形的面积为______________cm 2.图8-416.等边三角形的边长为4,则其面积为_______________.7.如图8-42,在高3米,坡面线段距离AB 为5米的楼梯表面铺地毯,则地毯长度至少需____________米.图8-428.若13 c +|a-12|+(b-5)2=0,则以a 、b 、c 为三边的三角形是______________三角形. 二、选择题9.下列是勾股数的一组是A.4,5,6B.5,7,12C.12,13,15D.21,28,35 10.下列说法不正确的是A.三个角的度数之比为1∶3∶4的三角形是直角三角形B.三个角的度数之比为3∶4∶5的三角形是直角三角形C.三边长度之比为3∶4∶5的三角形是直角三角形D.三边长度之比为5∶12∶13的三角形是直角三角形11.一个圆桶底面直径为24 cm,高32 cm,则桶内所能容下的最长木棒为A.20 cmB.50 cmC.40 cmD.45 cm12.一职工下班后以50米/分的速度骑自行车沿着东西马路向东走了5.6分,又沿南北马路向南走了19.2分到家,则他的家离公司距离为______________米.A.100B.500C.1 240D.1 000 三、解答题13.如图8-43,在四边形ABCD 中,AB=12 cm,BC=3 cm,CD=4 cm,∠C=90°.图8-43(1)求BD的长;(2)当AD为多少时,∠ABD=90°?14.有一块土地形状如图8-44所示,∠B=∠D=90°,AB=20米,BC=15米,CD=7米,请计算这块地的面积.图8-4415.甲、乙两船上午11时同时从港口A出发,甲船以每小时20海里的速度向东北方向航行,乙船以每小时15海里的速度向东南方向航行,求下午1时两船之间的距离.图8-4516.已知:a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号: ______________;(2)错误的原因为_________________________________________________________________;(3)本题正确的解题过程:17.一辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图8-46所示的某工厂,问这辆卡车能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.图8-46教材过关十八 勾股定理 一、填空题1.一个直角三角形的三边长是不大于10的三个连续偶数,则它的周长是________________. 答案:24提示:根据勾股定理,两直角边的平方和等于斜边的平方,设其中一条直角边为x ,另两条分别为(x-2),(x+2),则有(x-2)2+x 2=(x+2)2,解得x=0或x=8,x=0不合题意舍去,所以三边长为6、8、10,周长为24.2.在△ABC 中,若AB=17,AC=8,BC=15,则根据______________可知∠ACB=_______________.答案:勾股定理逆定理 90°提示:勾股定理逆定理是判定一个角是直角的重要方法,AC 2+BC 2=82+152=289=172=AB 2,根据勾股定理的逆定理说明AB 的对角是90度.3.一座垂直于两岸的桥长15米,一艘小船自桥北头出发,向正南方向驶去,因水流原因,到达南岸后,发现已偏离桥南头9米,则小船实际行驶了______________米. 答案:334提示:桥长、偏离桥南头的距离、实际行驶的路程构成一个直角三角形,利用勾股定理,可得实际行驶的路程的平方=152+92=306,所以实际行驶了334米.4.若三角形中相等的两边长为10 cm,第三边长为16 cm,则第三边上的高为_____________cm. 答案:6提示:等腰三角形三线合一,底边上的高也是底边的中线,所以底边的一半为8,则高为22810-=36=6.5.如图8-41,矩形ABCD,AB=5 cm,AC=13 cm,则这个矩形的面积为______________cm 2.图8-41答案:60提示:根据勾股定理求出BC 的长,BC 2=132-52=144,则BC=12,面积为5×12=60. 6.等边三角形的边长为4,则其面积为_______________. 答案:43提示:根据勾股定理求出高为2224-=23,面积为底×高×21=4×232=43.7.如图8-42,在高3米,坡面线段距离AB 为5米的楼梯表面铺地毯,则地毯长度至少需____________米.图8-42答案:7提示:由勾股定理求出另一直角边为4,将楼梯表面向下和右平移,则地毯的总长=两直角边的和=3+4=7.8.若13-c +|a-12|+(b-5)2=0,则以a 、b 、c 为三边的三角形是______________三角形. 答案:直角提示:满足a 2+b 2=c 2. 二、选择题9.下列是勾股数的一组是A.4,5,6B.5,7,12C.12,13,15D.21,28,35 答案:D提示:满足a 2+b 2=c 2的正整数是勾股数,只有212+282=352,所以选D. 10.下列说法不正确的是A.三个角的度数之比为1∶3∶4的三角形是直角三角形B.三个角的度数之比为3∶4∶5的三角形是直角三角形C.三边长度之比为3∶4∶5的三角形是直角三角形D.三边长度之比为5∶12∶13的三角形是直角三角形 答案:B提示:三个角的度数之比中有两个之和等于另一个,可以判定是直角三角形,另外两边的平方和=第三边的平方,也可以判定是直角三角形,三个角的度数之比为3∶4∶5的三角形,三个角分别是45度、60度和75度,不是直角三角形.11.一个圆桶底面直径为24 cm,高32 cm,则桶内所能容下的最长木棒为A.20 cmB.50 cmC.40 cmD.45 cm 答案:C提示:根据勾股定理,最长木棒长的平方=242+322,解得40 cm.12.一职工下班后以50米/分的速度骑自行车沿着东西马路向东走了5.6分,又沿南北马路向南走了19.2分到家,则他的家离公司距离为______________米.A.100B.500C.1 240D.1 000 答案:D提示:由于东西方向与南北方向互相垂直,两段路程与家离公司距离形成直角三角形,根据勾股定理求得家离公司距离=22)502.19()506.5(⨯+⨯=1 000米.三、解答题13.如图8-43,在四边形ABCD 中,AB=12 cm,BC=3 cm,CD=4 cm,∠C=90°.图8-43(1)求BD 的长;(2)当AD 为多少时,∠ABD=90°? (1)答案:5.提示:在△BDC 中,∠C=90°,BC=3 cm ,CD=4 cm ,根据勾股定理,BD 2=BC 2+CD 2,求得BD=5 cm. (2)答案:13.提示:根据勾股定理的逆定理,三角形两边的平方和等于斜边的平方,则三角形是直角三角形,所以AD=13时,可满足AD 2=BD 2+AB 2,可说明∠ABD=90°,AD=22512+=13. 14.有一块土地形状如图8-44所示,∠B=∠D=90°,AB=20米,BC=15米,CD=7米,请计算这块地的面积.图8-44答案:234米2.提示:连结AC ,将四边形分割成两个三角形,其面积为两个三角形的面积之和,根据勾股定理求出AC ,进而求出AD.AC=221520+=25,AD=22725-=24,面积为21AB ×BC+21AD ×CD=234米2.15.甲、乙两船上午11时同时从港口A 出发,甲船以每小时20海里的速度向东北方向航行,乙船以每小时15海里的速度向东南方向航行,求下午1时两船之间的距离.图8-45答案:50海里.提示:东北方向航行,东南方向航行,则夹角为90度,根据勾股定理,相距=22)215()220(⨯+⨯=50.16.已知:a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状. 解:∵a 2c 2-b 2c 2=a 4-b 4,①∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).② ∴c 2=a 2+b 2.③∴△ABC 是直角三角形. 问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号: ______________; (2)错误的原因为_________________________________________________________________; (3)本题正确的解题过程:答案:(1)③ (2)除式可能为零 (3)∵a 2c 2-b 2c 2=a 4-b 4,∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2). ∴a 2-b 2=0或c 2=a 2+b 2. 当a 2-b 2=0时,a=b ;当c 2=a 2+b 2时,∠C=90度,∴△ABC 是等腰三角形或直角三角形.提示:(1)(2)两边都除以a 2-b 2,而a 2-b 2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.17.一辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图8-46所示的某工厂,问这辆卡车能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.图8-46提示:如图,作厂门的对称轴,求出PR 的长,只要PR >车高2.5,就说明卡车能通过厂门. 在Rt △OPQ 中,由勾股定理得PQ=228.01-=0.6米, ∴PR=0.6+2.3=2.9>2.5. ∴这辆卡车能通过厂门.。
2022-2023学年九年级下学期数学中考复习《轴对称最短路径问题》解答题专题训练
2022-2023学年九年级数学中考复习《轴对称最短路径问题》解答题专题训练(附答案)1.如图,在△ABC中,AB=AC,D是BC的中点,EF垂直平分AC,交AC于点E,交AB 于点F,M是直线EF上的动点.(1)当MD⊥BC时.①若ME=1,则点M到AB的距离为;②若∠CMD=30°,CD=3,求△BCM的周长;(2)若BC=8,且△ABC的面积为40,则△CDM的周长的最小值为.2.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,求∠BAC的大小.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小,若存在,标出点P的位置并求PB+CP的最小值,若不存在,说明理由.3.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点的坐标分别为;(2)△ABC的面积是;(3)在x轴上作一点P,使P A+PB的值最小.(保留作图痕迹,不写作法)4.在平面直角坐标系xOy中,已知点A(1,1),B(3,2).(1)如图1,在y轴上是否存在一点P,使P A+PB最小,若存在求出点P的坐标;若不存在,请说明理由.(2)如图2,点C坐标为(4,1),点D由原点O沿x轴正方向以每秒1个单位的速度运动,求点D运动几秒时,四边形ABCD是平行四边形.5.如图,在矩形ABCD中,AB=2,∠ABD=60°,G,H分别是AD,BC边上的点,且AG =CH,E,O,F分别是对角线BD上的四等分点,顺次连接G,E,H,F,G.(1)求证:四边形GEHF是平行四边形;(2)填空:①当AG=时,四边形GEHF是矩形;②当AG=时,四边形GEHF是菱形;(3)求四边形GEHF的周长的最小值.6.如图,C为线段BD上﹣动点,分别过点B、D作AB⊥BD于点B,ED⊥BD于点D,连接AC、EC,已知AB=3、DE=2、BD=12,设CD=x.(1)直接写出用含x的代数式表示的AC+CE的长(无需化简);(2)观察图形并说明在什么情况下AC+CE的值最小?最小值是多少?写出计算过程;(3)综上,直接写出代数式的最小值.7.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.(1)如图(1),点D在线段BC上移动时,①角α与β之间的数量关系是;②若线段BC=2,点A到直线BC的距离是3,则四边形ADCE周长的最小值是;(2)如图(2),点D在线段BC的延长线上移动时,①请问(1)中α与β之间的数量关系还成立吗?如果成立,请说明理由;②线段BC、DC、CE之间的数量是.8.问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小.例如:(1)对于任意两个代数式M,N的大小比较,有下面的方法:当M﹣N>0时,M>N;当M﹣N=0时,M=N;当M﹣N<0时,M<N.反过来也成立.因此,我们把这种比较两个代数式大小的方法叫做“作差法”.(2)对于比较两个正数a,b的大小,我们还可以用它们的平方进行比较:∵a2﹣b2=(a+b)(a﹣b),a+b>0,∴(a2﹣b2)与(a﹣b)的符号相同.当a2﹣b2>0时,a﹣b>0,得a>b;当a2﹣b2=0时,a﹣b=0,得a=b;当a2﹣b2<0时,a﹣b<0,得a<b.问题解决(3)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x >y,张丽同学的用纸总面积为S1,李明同学的用纸总面积为S2,回答下列问题:①S1=(用含x,y的代数式表示);S2=(用含x,y的代数式表示);②试比较谁的用纸总面积更大?(4)如图1所示,要在燃气管道l上修建一个泵站,向A,B两镇供气,已知A,B到l 的距离分别是3km,4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P 处,该方案中管道长度a2=AP+BP.①在方案一中,a1=km(用含x的代数式表示);②在方案二中,a2=km(用含x的代数式表示);③请分析说明哪种方案铺设的输气管道较短?(5)甲、乙两位采购员同去一家饲料公司购买两次饲料,两次购买的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000kg,乙每次用去1000元,而不管购买多少饲料.设两次购买的饲料单价分别为m元/kg和n元/kg(m,n是正数,且m≠n),试分析哪位采购员的购货方式合算?9.在平面直角坐标系xOy中,点A、B分别在y轴和x轴上,已知点A(0,4),以AB为直角边在AB左侧作等腰直角△ABC,∠CAB=90°.(1)当点B在x轴正半轴上,且AB=8时,①求AB解析式;②求C点坐标;(2)当点B在x轴上运动时,连接OC,求AC+OC的最小值及此时B点坐标.10.如图,已知∠ABC=∠ADC=90°,BC=CD,CA=CE.(1)求证:∠ACB=∠ACD;(2)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P.①连接PE,交AM于点N,证明AM垂直平分PE;②点O是直线AE上的动点,当MO+PO的值最小时,证明点O与点E重合.11.如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,C,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值.12.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当△P AB的周长最小时,求∠APB的度数.13.如图,四边形ABCD是菱形,对角线AC和BD相交于点O、点E是CD的中点,过点C 作AC的垂线,与OE的延长线交于点F,连接FD.(1)求证:四边形OCFD是矩形;(2)若四边形ABCD的周长为4,△AOB的周长为3+,求四边形OCFD的面积;(3)在(2)问的条件下,BD上有一动点Q,CD上有一动点P,求PQ+QE的最小值.14.如图1,在△ABC中,∠ABC的平分线与边AC的垂直平分线相交于点D,过点D作DF ⊥BC于点F,DG⊥BA交BA的延长线于点G.(1)求证:AG=CF;=5,求MN+AN (2)如图2,点M,N分别是线段AB,射线BD上的动点,若BC=5,S△ABC 的最小值.15.如图,在平面直角坐标系中,点A(﹣2,0),B(2,0),点C是y轴正半轴上一点,点P在BC的延长线上.(1)若点P的坐标为(﹣1,2),①求△P AB的面积;②已知点Q是y轴上任意一点,当△P AQ周长取最小值时,求点Q的坐标;(2)连接AC,若∠APC=∠ACP,∠APC比∠P AB大20°,求∠ABC的度数.16.已知如图,在平行四边形ABCD中,点E是AD边上一点,连接BE,CE,BE=CE,BE ⊥CE,点F是EC上一动点,连接BF.(1)如图1,当BF⊥AB时,连接DF,延长BE,CD交于点K,求证:FD=DK;(2)如图2,以BF为直角边作等腰Rt△FBG,∠FBG=90°,连接GE,若DE=,当点F在运动过程中,求△BEG周长的最小值.17.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若,AC=4,求OE的长;(3)若点P是BD上一动点,在(2)的条件下,请求出△PCE周长的最小值.18.如图,在平面直角坐标系中,OA=OB=6,OD=1,点C为线段AB的中点.(1)直接写出点C的坐标为;(2)点P是x轴上的动点,当PB+PC的值最小时,求此时点P的坐标;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.19.如图,在正方形ABCD中,F为BC为边上的定点,E、G分别是AB、CD边上的动点,AF和EG交于点H且AF⊥EG.(1)求证:AF=EG;(2)若AB=6,BF=2.①若BE=3,求AG的长;②连结AG、EF,求AG+EF的最小值.20.如图1,在△ABC中,AB=AC,点E为边AB上一点,连接CE.(1)如图1,以CE为边作等腰三角形DCE,DE=DC,连接AD,且满足条件AB⊥AD,∠B=∠ADE,∠ACD=3∠B,求证:DE⊥DC.(2)如图2,∠BAC=120°,过点A作直线AM⊥BC交BC于点M,点F为直线M上一点,BE=AF,连接CF,当CE+CF最小时,直接写出∠ECF的度数.参考答案1.解:(1)①∵MD⊥BC,AB=AC,D是BC的中点,∴A、M、D共线,∴AD是△ABC的对称轴,∵ME=1,∴点M到AB的距离为1,故答案为:1;②∵D是BC的中点,MD⊥BC,∴MB=MC,∴MD平分∠BMC,∴∠BMC=2∠CMD=60°,∴△BCM是等边三角形,∴BC=BM=MC,∵D是BC的中点,∴BC=2CD=6,∴BM=MC=BC=6,∴△BCM的周长为BC+BM+MC=18;(2)连接AD交EF于点M,∵EF是AC的垂直平分线,∴AM=CM,∴CM+MD=AM+MD=AD,此时△CMD的值最小,最小值为AD+CD,∵BC=8,△ABC的面积为40,∴AD=10,∵D是BC的中点,∴CD=4,∴AD+CD=14,∴△CMD的周长最小值为14,故答案为:14.2.解:(1)∵AB=AC,∠B=70°,∴∠BAC=180°﹣70°×2=40°;(2)∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.(3)当点P与点M重合时,PB+CP的值最小,为AC长,最小值是8cm.3.解:(1)如图A1(﹣1,1)B1(﹣4,2)C1(﹣3,4),故答案为:(﹣1,1)、(﹣4,2)、(﹣3,4);(2)△A1B1C1的面积=(2+3)×3÷2﹣=7.5﹣1﹣3=3.5.(3)如图所示,作点A关于x轴的对称点A',再连接A'B,与x轴的交点P即为所求.4.解:(1)作A点关于y轴的对称点M(﹣1,1),连接BM后与y轴的交点即为所求的点P,如下图所示:设直线BM的解析式为y=kx+b,代入M(﹣1,1),B(3,2),,解之得,∴直线BM解析式为,令x=0,解得y=,∴存在点P的坐标,且P(0,);(2)当四边形ABCD是平行四边形,只能是AC为一条对角线,另一条对角线为BD,设D(m,0),由中点坐标公式可知:线段AC的中点坐标为,即,线段BD的中点坐标为,即,又线段AC与BD中点为同一个点,∴,解得m=2,故四边形ABCD是平行四边形,D点的坐标为(2,0),又速度为1个单位每秒,∴经过2秒后,四边形ABCD是平行四边形.5.(1)证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠GDF=∠HBE,∵AG=CH,∴DG=BH,∵E,O,F分别是对角线BD上的四等分点,∴DF=BE,在△DGF和△BHE中,,∴△DGF≌△BHE(SAS),∴GF=HE,∠DFG=∠BEH,∴∠EFG=∠FEH,∴GF∥HE,∴四边形GEHF是平行四边形;(2)①当AG=时,四边形GEHF是矩形.理由如下:连接GH,如下图,∵∠BAD=90°,∠ABD=60°,∴∠ADB=30°,∴BD=2AB=4,∴AD=,∵AG=CH=,AD=BC=2,∴,∵AG∥BH,∴四边形ABHG是平行四边形,∵GH=AB=2,∵E,O,F分别是对角线BD上的四等分点,∴EF=BD=2,∴EF=GH,∵四边形GEHF是平行四边形,∴四边形GEHF是矩形,故答案为:;②当AG=时,四边形GEHF是菱形.理由如下:连接BG、DH、GH,如下图,∵AG=CH,AD=BC,∴DG=BH,∵DG∥BH,∴四边形BHDG是平行四边形,∵AG=,AB=2,∠A=90°,∴DG=AD﹣AG=,BG=,∴BG=DG,∴四边形BHDG是菱形,∴GH⊥BD,即GH⊥EF,∵四边形GEHF是平行四边形,∴四边形GEHF是菱形.故答案为:;(3)解:过E作EM⊥AD于M,延长EM到点N,使得MN=EM,连接FN,NG,过F 作FP⊥EM于点P,如下图,则MN=EM=DE=,FP∥AD,EG=NG,∴∠EFP=∠ADB=30°,∴EP=EF=1,∴PN=EM+MN﹣EP=2,PF=,∵EG+FG=NG+FG≥FN,当F、G、N三点共线,EG+FG=NG+FG=FN的值最小,其值为FN=,∴四边形GEHF的周长的最小值为:2(EG+FG)=2.6.解:(1)∵AB⊥BD,AB=3,CD=x,∴BC=12﹣x,在Rt△ABC中,AC==,∵ED⊥BD,DE=2,在Rt△DEC中,CE==,∴AC+CE=,故答案为:;(2)如图,当C是AE和BD交点时,延长ED与AB的垂线AF交于点F,∴AC+CE=AE===13,∴AC+CE的最小值为13;(3)如图,AB=3,ED=2,DB=4,连接AE交BD于点C,∴AE=的最小∴AE的长即为代数式的最小值,∵四边形ABDF为矩形,∴AB=DF=1,AF=BD=4,在Rt△AEF中,由勾股定理得,AE===5,即代数式的最小值为5.7.解:(1)①α+β=180°;理由如下:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC∴∠CAE=∠BAD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°,故答案为:α+β=180°;②由①知,△ABD≌△ACE,∴BD=CE,AD=AE,∴CD+CE=BD+CD=BC=2,当AD⊥BC时,AD最短,即四边形ADCE周长的值最小,∵点A到直线BC的距离是3,∴AD=AE=3,∴四边形ADCE周长的最小值是2+3+3=8,故答案为:8;(2)①成立,理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∴∠BAC+∠BCE=∠DCE+∠BCE=180°,即α+β=180°;②∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,∵BD=BC+CD,∴CE=BC+CD,故答案为:CE=BC+CD.8.解:(3)①S1=3x+7y,S2=2x+8y.故答案为:3x+7y,2x+8y.②S1﹣S2=(3x+7y)﹣(2x+8y)=x﹣y,∵x>y∴x﹣y>0∴S1﹣S2>0∴S1>S2∴张丽同学的用纸总面积更大.(4)①a1=AB+AC=(3+x)km,故答案为:(3+x).②作BF⊥A′A于点F,在Rt△BAF中,由勾股定理得BF2=AB2﹣AF2=x2﹣1,在Rt△BF A′中,由勾股定理得A′B=A′P+BP=AP+BP==km,∴a2=km,故答案为:.③a12﹣a22=(x+3)2﹣()2=6x﹣39,由6x﹣39=0,得,此时a12﹣a22=0,即a1=a2,两种方案铺设的输气管道一样长;由6x﹣39>0,得,此时a12﹣a22>0,即a1>a2,方案二铺设的输气管道较短;由6x﹣39<0,得,此时a12﹣a22<0,即a1<a2,方案一铺设的输气管道较短.(5)===∵m≠n∴所以乙采购员的购货方式合算.9.解:(1)①∵A(0,4),AB=8,∴OB==4,∴B(4,0),设直线AB的解析式为y=kx+4,∴0=4k+4,k=﹣,∴AB解析式:y=﹣x+4;②过点A作x轴的平行线,分别过点C、B作y轴的平行线,交于G、H.则△AHB≌△CGA(AAS)∴AG=HB=4,CG=AH=4,∴C(﹣4,4﹣4);(2)由△AGC≌△BHA可知AG=4,(B在x轴负半轴同理可说明)点C在直线x=﹣4上运动,作点O关于直线x=﹣4的对称点O',∴OC=O'C=4,OO'=4+4=8,∴AC+OC=AC+O'C.AC+OC的最小值为AO'===4,此时OB=AH=CG=2,∴B(2,0).10.证明:(1)∵∠ABC=∠ADC=90°,BC=CD,AC=AC,∴Rt△ABC≌Rt△ADC(HL),∴∠ACB=∠ACD;(2)①∵Rt△ABC≌Rt△ADC,∴∠BAC=∠CAD,∵CA=CE,∴∠CAE=∠CEA,∵∠EBA=90°,∴∠BEA=∠BAC=∠CAE=30°,∵PD⊥AE,MP⊥PD,∴AE∥MP,∴∠PMC=∠MAE=30°,∵ME∥AB,∴∠MEB=∠ABE=90°,∴∠MEA=90°+30°=120°,∵∠MAE=30°,∴∠EMA=30°,∵CP⊥MP,CE⊥ME,∠MCP=∠MCE=60°,∴△NEC≌△NPC(SAS),∴EN=PN,∴N是EP的中点,NC⊥PE,∴AM垂直平分PE;②延长PD、ME交于Q点,由①知,∠BEA=30°,∠MEB=90°,∴∠MEA=120°,∴∠DEQ=60°,∵PD⊥AE,∴∠EDQ=90°,∴∠EQD=30°,∵∠CPN=30°,∴∠EPD=∠DQE,∴PE=EQ,∴ME+PE=QE+ME≥MQ,此时ME+PE的值最小,∵点O是直线AE上的动点,∴当MO+PO的值最小时,E点与O点重合.11.解:(1)证明:连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A和C关于对角线BD对称,∴CF=AF,∴AF=EF;(2)连接AC,∵M和N分别是AE和EF的中点,点G为CE中点,∴MN=AF,NG=CF,即MN+NG=(AF+CF),当点F与菱形ABCD对角线交点O重合时,AF+CF最小,即此时MN+NG最小,∵菱形ABCD边长为1,∠ABC=60°,∴△ABC为等边三角形,AC=AB=1,即MN+NG的最小值为;12.解:(1)①∵点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,∴OG=OP,OM⊥GP,∴OM平分∠POG,同理可得ON平分∠POH,∴∠GOH=2∠MON=2×50°=100°,故答案为:100°;②∵PO=5,∴GO=HO=5,当∠MON=90°时,∠GOH=180°,∴点G,O,H在同一直线上,∴GH=GO+HO=10;(2)如图所示:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接P A、PB,则AP=AP',BP=BP“,此时△P AB周长的最小值等于P′P″的长.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×60°=120°,∴∠OP′P″=∠OP″P′=(180°﹣120°)÷2=30°,∴∠OP A=∠OP'A=30°,同理可得∠BPO=∠OP″B=30°,∴∠APB=30°+30°=60°.13.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∵AC⊥CF,CF∥BD∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);∴OD=FC,∵CF∥BD,∴四边形OCFD是平行四边形,∴四边形OCFD是矩形;(2)解:∵菱形ABCD的周长为4,∴AB=BC=CD=DA=,∠COD=90°,AO=CO,BO=DO,∵△AOB的周长为3+,∴AB+AO+BO=3+,∴AO+BO=3,∴CO+DO=3,在Rt△COD中,CO2+DO2=(CO+DO)2﹣2CO•DO=CD2,∴32﹣2CO•DO=()2,∴CO•DO=2,∴四边形OCFD的面积=CO•DO=2;(3)解:如图,过点O作OG⊥AD于点G,过点E作EH⊥AD于点H,则四边形OGHE 是矩形.∴OG=EH,由(2)可知,OA•OD=2,AD=,∴•OA•OD=•AD•OG,∴OG=,∴EH=OG=∵四边形ABCD是菱形,∴BD平分∠ADC,作点P关于DB的对称点P′,连接QP′,∴PQ+QE=EQ+QP′≥EH=,∴PQ+QE的最小值为.14.(1)证明:如图1,连接AD,DC,∵BD平分∠ABC,DG⊥BA,DF⊥BC,∴DG=DF.又∵点D在边AC的垂直平分线上,∴DA=DC.在Rt△DGA和Rt△DFC中,,∴Rt△DGA≌Rt△DFC(HL).∴AG=CF.(2)解:∵BD平分∠ABC,点M在线段AB上,∴点M关于BD的对称点M′在边BC上.如图2,作点M关于BD的对称点M′,连接M′N,过点A作AP⊥BC于点P,∴MN=M′N.∴MN+AN=M′N+AN≥AP.∴当点A,N,P在同一条直线上且AP⊥BC时,MN+AN的值最小,最小值即为AP的长.=5,∵S△ABC∴.∵BC=5,∴AP=2.∴MN+AN的最小值为2.15.解:(1)①∵点A(﹣2,0),B(2,0),P(﹣1,2),∴△P AB的面积为4×2=4;②如图,连接QB,∵A和B关于y轴对称,∴QA=QB,∴QA+QP=QB+QP,∴当P、Q、B三点共线时QB+QP最小,即△P AQ周长取最小,∴点Q为直线PB与y轴的交点,设直线PB为y=kx+b,直线过点B(2,0),P(﹣1,2),∴,解得,∴y=﹣x+,∵当x=0时,y=,∴Q(0,),∴当△P AQ周长取最小值时,点Q的坐标(0,);(2)如图,连接AC,设∠ABC=x,∵CA=CB,∴∠CAB=∠ABC=x,∴∠PCA=∠CAB+∠ABC=2x,∴∠APC=∠ACP=2x,∴∠P AB=2x﹣20°,∵∠P AB+∠PBA+∠APB=180°,∴2x﹣20°+2x+x=180°,解得x=40°,∴∠ABC的度数为40°.16.(1)证明:如图1中,延长BF交CD于点T.∵EB=EC,∠BEC=90°,∴∠ECB=∠EBC=45°,∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DEC=∠ECB=45°,∵∠CEK=90°,∴∠DEK=∠DEF,∵AB⊥BF,AB∥CD,∴BT⊥CD,∴∠BEF=∠CTF=90°,∵∠EFB=∠TFC,∴∠EBF=∠ECK,在△BEF和△CEK中,,∴△BEF≌△CEK(ASA),∴EF=EK,在△DEK和△DEF中,,∴△DEK≌△DEF(SAS),∴DK=DF;(2)解:如图2,作BK⊥BE,GK⊥BK于点K,延长KG交射线CE于点P,∵∠EBK=∠FBG=90°,∴∠KBG=∠EBF=90°﹣∠GBE,∵∠K=∠BEF=90°,BG=BF,∴△BKG≌△BEF(AAS),∴BK=BE;∵∠EBK=∠K=∠BEP=90°,∴四边形BEPK是正方形,∴PE=BE=CE,∴当点F在CE上运动时,点G在PK上运动;延长EP到点Q,使PQ=PE,连接BQ交PK于点G,∵PK垂直平分EQ,∴点Q与点E关于直线PK对称,∵两点之间,线段最短,∴此时GE+GB=GQ+GB=BQ最小,∵BE为定值,∴此时GE+GB+BE即△BEG的周长最小;作DH⊥CE于点H,则∠DHE=∠DHC=90°,∵∠ECB=∠EBC=45°,∴∠HED=∠ECB=45°,∴∠HDE=45°=∠HED,∴DH=EH,∴DH2+EH2=2DH2=DE2=()2,∴DH=EH=1;∴CH===2,∴BE=CE=EH+CH=1+2=3,∴EQ=2PE=2BE=6,∵∠BEQ=90°,∴BQ==3,∴GE+GB+BE=3+3,∴△BEG周长的最小值为3+3.17.(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD=4,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=4.(3)如图,连接AE交BD于点P,连接PC,∵A,C关于BD对称,∴PC+PE=P A+PE=AE,此时PC+PE最小,即△PCE周长的最小,根据菱形ABCD的面积得BC•DE=BD•AC,∴2DE=8×4×,∴DE=,∴AE=,∵CE=,∴△PCE周长的最小值为+.18.解:(1)∵OA=OB=6,∴A(6,0),B(0,6),∵点C为线段AB的中点,∴点C的坐标为(3,3);故答案为:(3,3).(2)作点B关于x轴的对称点B',连接CB'交x轴于点P,此时PB+PC的值最小,由已知得,点B的坐标为(0,6),∴点B关于x轴的对称点B'(0,﹣6),由(1)知,C(3,3),可设直线CB'的解析式为y=kx+b,∴,解得∴直线CB'的解析式为y=3x﹣6,令y=0,∴3x﹣6=0,∴x=2,∴P(2,0);(3)存在点F,使以A、C、D、F为顶点的四边形为平行四边形,分三种情况考虑,如图所示:①当AC为对角线时,∵A(6,0),C(3,3),D(1,0),CF1=AD=5,CF1∥DA,∴点F1的坐标为(8,3);②当AD为对角线时,∵A(6,0),C(3,3),D(1,0),AC=DF2,AC∥DF2,∴点F2的坐标为(4,﹣3);③当CD为对角线时,∵A(6,0),C(3,3),D(1,0),CF3=AD=5,CF3∥DA,∴点F3的坐标为(﹣2,3).综上所述,点F的坐标是(8,3),(4,﹣3)或(﹣2,3).19.(1)证明:如图1,过点G作GP⊥AB交于P,∵AH⊥EG,∴∠AEH+∠DAH=90°,∵∠PEG+∠PGC=90°,∴∠EAH=∠PGE,∵PG=AB,∴△ABF≌△GPE(AAS),∴AF=EG;(2)①∵BF=2,∴PE=2,∵AB=6,BE=3,∴AE=3,∴AP=1,在Rt△APG中,AP=1,PG=6,∴AG==;②过点F作FQ∥EG,过点G作GQ∥EF,∴四边形EFQG为平行四边形,∴GQ=EF,∴AG+EF=AG+GQ≥AQ,∴当A、G、Q三点共线时,AG+EF的值最小,∵EG=AF,EG=FQ,∴AF=FQ,∵AF⊥EG,∴AF⊥FQ,∴△AFQ是等腰直角三角形,∵AF==2,∴AQ=4,∴AG+EF的最小值为4.20.(1)证明:设AD与BC交于点O,∵∠AOB=∠COD,∴∠B+∠BAO=∠ADC+∠OCD,∵AB⊥AD,∴∠BAO=90°,∵AB=AC,∴∠B=∠ACB,∵∠ACD=3∠B=∠ACB+∠OCD,∴∠OCD=2∠B,∴∠ADC=90°+∠B﹣2∠B=90°﹣∠B,∵∠ADE=∠B,∴∠EDC=∠ADE+∠ADC=90°,∴DE⊥DC;(2)解:作∠GBA=∠BAM,且BG=AB,连接BE,GA,CG,∵AB=AC,AM⊥BC,∴∠BAM=∠CAM=,∠ACB=∠ABC=30°,∴∠GBE=∠EAC=60°,∵BE=AF,BG=AC=AB,∴△GBE≌△CAF(SAS),∴GE=CF,∴CE+CF=GE+CE,当C,G,E在一条直线上时,CE+CF最短,∵∠GBA=60°,AB=BG,∴△GBA是等边三角形,∴∠GAB=60°,∵∠BAC=120°,∴C,G,A在一条直线上,∴当CE+CF最小时,E与A重合,∴BE=AF=AB=AC,∵∠F AC=60°,∴△AF'C是等边三角形,∴∠ACF=60°,即∠ECF=60°.。
中考数学总复习《45多边形与平行四边形》试题训练及解析.doc
第五节多边形与平行四边形基础训练1.(2017苏州中考)如图,在正五边形ABCDE中,连接BE,贝iJZABE的度数为(B)A.30°B.36°C.54°D.72°“(第1题图)2.(湘西屮考)下列说法错误的是(D)A.对角线互相平分的四边形是平行四边形2两组对边分别相等的四边形是平行四边形C 一组对边平行冃相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形3・(2015石家屮四十三屮模拟)如图,在口ABCD屮,延长AB到点E,使BE = AB,连接DE交BC于点F,则下列结论不一定成立的是(D)A. ZE=ZCDF B・ EF=DFC. AD = 2BFD. BE=2CF4.(2017 丽水中考)如图,在口ABCD 中,连接AC, ZABC= ZCAD=45° , AB =2,则BC的长是(C)A.y[2B. 2C. 2^2 D・ 45.(荷泽中考)在口ABCD中,AB = 3, BC=4,当口ABCD的面积最大时,下列结论正确的有(B)①AC = 5;②ZA+ZC=180° ;③AC丄BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6・(孝感中考)在口ABCD中,AD = 8, AE平分ZBAD交BC于点E” DF平分ZADC 交BC于点F,且EF=2,则AB的长为(D)儿 3 B. 5C 2或3 〃・3或57.平行四边形ABCD与等边AAEF如图放置,如果ZB = 45° ,那么ZBAE 的大小是(A)A.75°B.70°C.65°D.60°8.(北京中考)如图是由射线AB, BC, CD, DE, EA组成的平面图形,则Z1 + Z2+Z3+Z4+Z5= 360°9・(江西中考)如图所示,在oABCD中,ZC = 40° ,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则ZBEF的度数为§0。
中考数学专题复习一题多变与多解试题
无棣县埕口中学中考数学专题复习 一题多变与多解 新人教版制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
一、一题多解,拓宽思路,培养思维的多向性,发散性,采用一题多解的方法可以训练同学们应用多种方法,以多种角度去认识、解决问题. 例 :如图1,直线AB ∥CD ,P 是AB 和CD 之间的一点.试说明∠ABP +∠PDC =∠BPD .该题证明思路较多,主要有以下几种:证法一:如图1,过点P 向右作PE ∥AB ,那么有∠ABP =∠BPE .又∵ AB ∥CD ,∴ PE ∥CD ,∴ ∠EPD =∠PDC .因此,∠ABP +∠PDC =∠BPE +∠EPD =∠BPD .证法二:如图2,过点P 向左作PE ∥AB ,那么有∠ABP +∠BPE =180°. 易得PE ∥CD ,∴∠EPD +∠PDC =180°. 故有∠ABP +∠BPE +∠EPD +∠PDC =360°.又∵ ∠BPE +∠EPD +∠BPD =360°,∴ ∠ABP +∠PDC =∠BPD . 证法三:如图3,延长BP ,交CD 于点E ,那么∠BPD =∠PED +∠PDC . ∵ AB ∥CD ,∴ ∠ABP =∠PED . ∴ ∠ABP +∠PDC =∠BPD . 证法四:如图4,过点P 作直线EF ,分别交AB 、CD 于点E 、F . 那么∠EPB +∠BPD =∠EPD =∠PFD +∠PDC .又∵ AB ∥CD ,∴ ∠PFD =∠AEF =∠ABP +∠EPB , ∴ ∠EPB +∠BPD =∠ABP +∠EPB +∠PDC . ∴ ∠ABP +∠PDC =∠BPD .二、题多变,同中求异,培养思维的敏捷性、深入性.ACDP图1 E B ACD 图2E BP图3C D E AP BP E 图4A CD F B一题多变指改变同一问题中的条件或者题目改变求解目的,或者加深题目难度,从而训练同学生举一反三,以不变应万变的才能。
中考数学备考专题复习反比例函数含解析
反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是()A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3, y3)是反比例函数y= 上的三点,若x1<x2<x3, y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2-OB2=( )A、-2B、2C、-D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为()A、-B、-C、-3D、-67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m >0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A 、B 、C 、D 、12、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2, y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________.14、(2015•黄石)反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是________ .15、(2016•宁波)如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为________.16、(2016•丽水)如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=________(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是________.17、(2016•绍兴)如图,已知直线l:y=﹣x,双曲线y= ,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为________.三、解答题(共3题;共15分)18、当m 取何值时,函数是反比例函数?19、(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.20、已知与是反比例函数图象上的两个点.(1)求m和k的值(2)若点C(-1,0),连结AC,BC,求△ABC的面积(3)根据图象直接写出一次函数的值大于反比例函数的值的的取值范围.四、综合题(共4题;共45分)21、(2016•曲靖)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y= 图象上的所有“整点”A1, A2, A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22、(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.23、(2016•枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?24、(2016•雅安)已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y= 交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.答案解析部分一、单选题【答案】A【考点】反比例函数的性质【解析】【解答】解:在反比例函数y= 中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y= =2;当x=1时,y= =6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.本题考查了反比例函数的性质,解题的关键是找出反比例函数y= 在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.【答案】C【考点】根据实际问题列反比例函数关系式,三角形的面积【解析】【解答】∵S=xy,∴y=.故选C.【分析】考查列反比例函数关系式,得到三角形高的等量关系是解决本题的关键.三角形的面积= 1 2 底×高,那么高=,把相关数值代入即可求解.【答案】A【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵反比例函数y= 中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3, y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【分析】根据反比例函数y= 和x1<x2<x3, y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.【答案】B【考点】一次函数图象与几何变换,反比例函数与一次函数的交点问题【解析】【解答】∵平移后解析式是y=x+b,代入y=得:x+b=,即x2+bx=,y=x+b与x轴交点B的坐标是(-b,0),设A的坐标是(x,y),∴OA2-OB2=x2+y2+(-b)2=x2+(x+b)2-b2=2x2+2xb=2(x2+xb)=2×=2,故选B.【分析】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的计算能力的能力.【答案】D【考点】反比例函数图象的对称性【解析】【解答】由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP=于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选D.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【点评】此题是一道综合题,既要能熟练正确求出圆的面积,又要会用待定系数法求函数的解析式.【答案】C【考点】反比例函数系数k的几何意义,待定系数法求反比例函数解析式,三角形的面积【解析】【解答】如图,连接AC,∵点B的坐标为(4,0),△AO B为等边三角形,∴AO=OB=4.∴点A的坐标为(2,-2).∵C(4,0),∴AO=OC=4,∴∠OCA=∠OAC.∵∠AOB=60°,∴∠ACO=30°.又∵∠B="60°." ∴∠BAC=90°.∵S△ADE=S△DCO, S△AEC=S△ADE+S△ADC, S△AOC=S△DCO+S△ADC,∴∴S△AEC=S△AOC =×AE•AC=•CO•2,即•AE•2=×2×2,∴E点为AB的中点(3,-).把E点(3,-)代入y=中得:k=-3故选C.【分析】连接AC,由B的坐标得到等边三角形AOB的边长,得到AO与CO,得到AO=OC,利用等边对等角得到一对角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC为直角,可得出A的坐标,由三角形ADE与三角形DCO面积相等,且三角形AEC面积等于三角形AED与三角形ADC面积之和,三角形AOC面积等于三角形DCO面积与三角形ADC面积之和,得到三角形AEC与三角形AOC面积相等,进而确定出AE的长,可得出E为AB中点,得出E的坐标,将E坐标代入反比例解析式中求出k的值,即可确定出反比例解析式。
中考数学总复习经典(代数)试题
中考数学总复习经典(代数)题(一)代数试题1、小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟 C .25分钟 D .27分钟2、小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2)1c >;(3)0b >;(4)0a b c ++>;(5)0a b c -+>.你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个3、. 在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是知αβ、是关于x 的一4、已元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( ) A.3或-1 B.3 C. 1 D. –3或15、下列图形都是二次函数y=ax2+bx+a2-1的图象,若b >0,则a 的值等于( )A 、B 、-1C 、D 、16、如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是7、如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),则结论:①2AF =;②5BF =;③5OA =;④3OB =中,正确结论的序号是_ . 8、二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是( )A .a <0B.abc >0C.c b a ++>0D.ac b 42->09、已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论中不正确的有( )个.①abc>0②2a+b=0③方程ax 2+bx+c=0(a ≠0)必有两个不相等的实根 ④a+b+c>0⑤当函数值y 随x 的逐渐增大而减小时,必有x ≤1A 、1B 、2C 、3D 、410、如图101,二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴相交于负半轴.(以下有(1)、(2)两问,每个考生只须选答一问,若两问都答,则只以第(2)问计分)第(1)问:给出四个结论:① 0a >;② 0b >;③ 0c >;④ 0a b c ++=.其中正确结论的序号是 (答对得3分,少选、错选均不得分).第(2)问:给出四个结论:① 0abc <;② 20a b +>;③ 1a c +=;④1a >.其中正确结论的序号是 (答对得5分,少选、错选均不得分). 11、如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数的图象上.若点A 的坐标为(-2,-2),则k 的值为( )(11题图)A 、1B 、-3C 、4D 、1或-3 (第7题) 图1018题12、如图8,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发, 沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数 为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是13、 如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的 图象上,则点E 的坐标是( , ).14、如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: (1)b2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( )14题 A 、2个 B 、3个 C 、4个 D 、1个15、已知:如图所示,抛物线y=ax 2+bx+c 的对称轴为x=-1,与x 轴交于A 、B 两点,交y 轴于点C ,且OB=OC ,则下列结论正确的个数是 . ①b=2a ②a-b+c>-1 ③0<b 2-4ac<4 ④ac+1=bA.1个B.2个C.3个D.4个16、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 17、已知二次函数2(0)y ax bx c a =++≠的图象如图(1)所示,则直线y ax b =+与反比例函数acy x=,在同一坐标系内的大致图象为( ) (18题图)xA .xB .D .xC .18、二次函数y=ax 2+bx+c(a ≠0)的图像如图所示,下列结论正确的是( )A.ac <0B.当x=1时,y >0C.方程ax 2+bx+c=0(a ≠0)有两个大于1的实数根D.存在一个大于1的实数x 0,使得当x <x 0时,y 随x 的增大而减小; 当x >x 0时,y 随x 的增大而增大. 19、甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1, 工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少( )A.12天B.14天C.16天D.18天20、关于x 的一次函数21y kx k =++的图象可能正确的是( )21、(2010年杭州月考)如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )22、如图所示是二次函数.2y ax bx c =++图象的一部分,图象过A 点(3,0),二次函数图象对称轴为1x =,给出四个结论:①24b ac >;②0bc <;③20a b +=;④0a b c ++=,其中正确结论是( ) A .②④B .①③C .②③D .①④23、如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )24、若A (1,413y -),B (2,45y-),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y的大小关系是A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<xxxxD.第20题图ADCB图6(第1925、已知αβ,为方程2420x x ++=的二实根,则31450αβ++= . 26、在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( )A .B .C .D .27、如图4,直线24y x =-+与x 轴,y 轴分别相交于A B ,两点,C 为OB 上一点,且12∠=∠,则ABC S =△ ( ) A .1 B .2 C .3 D .428、 如图已知一次函数y=kx+b 和y=mx+n 的图象交于点P ,则根据图象可得不等式组0<mx+n <kx+b 的 解集是-29、如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx>kx+b>mx-2的解集是------29题图 30题图 31题图 30、如图,已知A (-4,2)、B (2,-4)是一次函数y=kx+b 的图象和反比例函数的图象上的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与y 轴的交点C 的坐标及△AOB 的面积; (3)直接写出方程kx+b=0的解; (4)直接写出不等式kx+b >0的解.31、如图:已知A (-4,n )、B (2,-4)是一次函数y 1=kx+b 的图象与反比例函数 的图象的两个交点.(1)求反比例函数和一次函数的解折式.(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积. (3)求不等式y 1<y 2的解集(请直接写出答案).图432题图32、如图,已知一次函数y=kx+b 的图象过点(1,-2),则关于x 的不等式kx+b+2≤0的解集是 33、已知一次函数y=kx+b 的图象经过点(1,2),且不经过第三象限,那么关于x 的不等式kx+b >2的解集是34、小明从图5所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个35、小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是( )A 、B 、C 、D 、136、如图,直线y kx b =+经过A (-2,-1)和B (-3,0)两点,则不等式组102x kx b <+< 的解集为 .37、如图,半径为5的⊙P 与轴交于点M (0,-4),N (0,-10),函数(0)ky x x=<的图像过点P ,则k = . 38、已知点(-1,y 1),(2,y 2),(3,y 3)在反比例函数y= 的图象上.下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1>y 3>y 2C 、y 3>y 1>y 2D 、y 2>y 3>y 139、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③80a c +>;④930a b c ++<. 其中,正确结论的个数是(A )1 (B )2 (C )3(D )4第37题第39题图540、 抛物线c bx ax y ++=2图像如图所示,则一次函数24b ac bx y +--=与反比例函数 a b cy x++=在同一坐标系内的图像大致为(41题图)C. D . 41、二次函数y=x 2-x-2的图象如图所示,则函数值y <0时x 的取值范围是( )A 、x <-1B 、x>2 C 、-1<x <2 D 、x <-1或x >242、如图,已知正方形ABCD 的边长为4 ,E 是BC 边上的一个 动点,AE ⊥EF , EF 交DC 于F , 设BE =x ,FC =y ,则当 点E 从点B 运动到点C 时,y 关于x 的函数图象是( ).43、(1)已知点A(2,3),将线段OA 绕点O 逆时针旋转900得到对应线段OA ’,则点A ’关于直线y=1对称的点的坐标是 ;(2)将直线y=2x+3向右平移2个单位长度得到直线L 1,则直线L 1关于直线y=1对称的直线的解析式为 ;(3)写出直线y=kx+b 关于直线y=1对称的直线的解析式 。
中考数学专题复习之一题多解题
三角形,分为三种情况:DA=DP,PA=PD,AP=AD(此时点P在边AB的延长
线上,不合题意).①如解图,当DA=DP=8时(点P为图中的点P1,E为图中的点
E1),由题意得BD= AB2 AD2= 62 82=10,BP1=BD-DP1=10-8=2,由
△P1BE1∽△DBC得
P1E1 =
DC
例3解题图
专题三 多解题
类型三 裁剪、拼接
例4 在一张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去 两个小三角形,剩下的部分就是如图所示的平行四边形ABCD,经测量这个平行四 边形的相邻两边长为5、3,一条对角线的长为4,则原三角形纸片的周长是 __2_4_或__1_6_+_4___13__.
33
n),抛物线y=ax2-x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围
是_a_≤_-__1_或____14_≤_a_<__13__.
【解析】∵直线y=-1 x+5 经过点M(-1,m)和点N(2,n),∴m=-1 ×(-1)
+5
1
35 3
3
3
=2,n=-
3
×2+
3
=1,∴M(-1,2)1,N(25,1),∵抛物线y=ax2-x+2
例4题图
专题三 多解题
【解析】如解图①,当以过点A的中位线AB、AD剪去两个小三角形时,有EC= 2AB=2×5=10,FC=2AD=2×3=6,EF=2DB=2×4=8,∴原三角形纸片 的周长为10+6+8=24;如解图②,当以过点B的中位线BA、BC剪去两个小三 角形时,有DF=2AB=2×5=10,DE=2BC=2×3=6,∵DC2=52=BC2+DB2 =32+42,∴∠DBC=90°,∴∠EDB=90°,∴BE= DB2 DE2 =2 13, ∴EF=24BE1=3 ,∴原三角形纸片的周长为10+4 61+3 =41613+ .综上所述, 原三角形纸片的周长为24或4161+3 .
中考数学总复习专题05 平面直角坐标系知识要点及考点典型题型和解题思路
专题05 平面直角坐标系【知识要点】知识点一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。
【注意】a、b的先后顺序对位置的影响。
平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。
两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。
平面直角坐标系原点:两坐标轴交点为其原点。
坐标平面:坐标系所在的平面叫坐标平面。
象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。
按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。
【注意】坐标轴上的点不属于任何象限。
点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。
知识点二点的坐标的有关性质(考点)性质一各象限内点的坐标的符号特征象限横坐标x纵坐标y第一象限正正第二象限负正第三象限负负第四象限正负性质二坐标轴上的点的坐标特征1.x轴上的点,纵坐标等于0;2.y轴上的点,横坐标等于0;3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;2.在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b a +XXX性质六 平面直角坐标系内平移变化性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;小结:坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点 X 轴Y 轴原平行X 轴平行Y 轴第一第二第三第四第一、第二、XyP2P mm -nOXy P3Pnm -nOn -XyP1Pnn -mO【考查题型】考查题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键.典例1.(2021·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可. 【详解】解:A. 小李现在位置为第1排第4列,故A 选项错误; B. 小张现在位置为第3排第2列,故B 选项正确; C. 小王现在位置为第2排第3列,故C 选项错误; D. 小谢现在位置为第4排第4列,故D 选项错误. 故选:B .变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是( )点象限 象限 象限 象限 三象限 四象限 (x,0)(0,y)(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0(m,m) (m,-m)A .(6,3)B .(6,4)C .(7,4)D .(8,4)【答案】C【详解】根据题意知小李所对应的坐标是(7,4).故选C.变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话: 小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了” 小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…” 根据两人的对话记录,从邮局出发走到小军家应( ) A .先向北直走700米,再向西走100米 B .先向北直走100米,再向西走700米 C .先向北直走300米,再向西走400米 D .先向北直走400米,再向西走300米 【答案】A【分析】根据对话画出图形即可得出答案.【详解】解:如图所示:从邮局出发走到小军家应:向北直走700米,再向西直走100米.故选:A .考查题型二 求点的坐标典例2.(2021·天津中考真题)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:∵O ,D 两点的坐标分别是()0,0,()0,6,∴OD =6,∵四边形OBCD 是正方形,∴OB ⊥BC ,OB =BC =6 ∴C 点的坐标为:()6,6, 故选:D .变式2-1.(2021·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( ) A .()4,5- B .(5,4)-C .(4,5)-D .(5,4)-【答案】D【分析】根据点到坐标轴的距离及点所在的象限解答即可. 【详解】设点M 的坐标为(x ,y ), ∵点M 到x 轴的距离为4, ∴4y =, ∴4y =±,∵点M 到y 轴的距离为5, ∴5x =, ∴5x =±,∵点M 在第四象限内, ∴x=5,y=-4,即点M 的坐标为(5,-4) 故选:D.变式2-2.(2021·湖北襄阳市模拟)如图,四边形ABCD 为菱形,点A 的坐标为()4,0,点C 的坐标为()4,4,点D 在y 轴上,则点B 的坐标为( )A .(4,2)B .(2,8)C .(8,4)D .(8,2)【答案】D【分析】根据菱形的性质得出D 的坐标(0,2),进而得出点B 的坐标即可. 【详解】连接AC ,BD ,AC 、BD 交于点E ,∵四边形ABCD 是菱形,OA =4,AC =4, ∴ED =OA =EB =4,AC =2EA =4, ∴BD =8,OD =EA =2 ∴点B 坐标为(8,2), 故选:D .变式2-3.(2021·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是( ) A .()4,0 B .()0,8C .()4,0-D .()0,8-【答案】A【分析】根据点P 在x 轴上,即y=0,可得出m 的值,从而得出点P 的坐标. 【详解】解:∵点2,24()P m m +-在x 轴上, ∴240m -=,∴2m=;∴2224m+=+=,∴点P为:(4,0);故选:A.变式2-4.(2021·广西一模)点M(3,1)关于y轴的对称点的坐标为()A.(﹣3,1)B.(3,﹣1)C.(﹣3.﹣1)D.(1,3)【答案】A【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】点M(3,1)关于y轴的对称点的坐标为(﹣3,1),故选:A.考查题型三点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律.典例3.(2021·山东中考真题)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2021的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)【答案】A【分析】观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,由于2021÷4=504…3,A2021在x 轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【详解】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2021÷4=504 (3)∴A2021在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2021的横坐标为﹣(2021﹣3)×12=﹣1008.∴A 2021的坐标为(﹣1008,0). 故选A .变式3-1.(2021·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标. 【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+, 则2019A 的坐标是()1009,0, 故选C .变式3-2.(2021·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭B .()600,0C .12600,5⎛⎫ ⎪⎝⎭D .()1200,0【答案】B【分析】根据三角形的滚动,可得出:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上,由点A ,B 的坐标利用勾股定理可求出AB 的长,进而可得出点C 2的横坐标,同理可得出点C 4,C 6的横坐标,根据点的横坐标的变化可找出变化规律“点C 2n 的横坐标为2n×6(n 为正整数)”,再代入2n=100即可求出结论.【详解】解:根据题意,可知:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上.∵A(4,0),B(0,3), ∴OA=4,OB=3,∴,∴点C 2的横坐标为4+5+3=12=2×6, 同理,可得出:点C 4的横坐标为4×6,点C 6的横坐标为6×6,…, ∴点C 2n 的横坐标为2n×6(n 为正整数), ∴点C 100的横坐标为100×6=600, ∴点C 100的坐标为(600,0). 故选:B .考查题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).典例4.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可以..是( ) A .1 B .32-C .43D .4或-4【答案】B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数即可判断. 【详解】解:∵点(,2)A a 是第二象限内的点, ∴0a <,四个选项中符合题意的数是32-, 故选:B变式4-1.(2021·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【分析】直接利用各象限内点的坐标特点分析得出答案.【详解】∵x 2+2>0,∴点P (x 2+2,−3)所在的象限是第四象限.故选:D .变式4-2.(2021·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据点(,)A a b -在第三象限,可得0a <,0b -<,进而判定出点B 横纵坐标的正负,即可解决.【详解】解:∵点(,)A a b -在第三象限,∴0a <,0b -<,∴0b >,∴0ab ->,∴点B 在第一象限,故选:A .变式4-4.(2021·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )A .(),a bB .(),a b -C .(),a b --D .(),a b -【答案】B 【分析】根据0,0a b ab +>>,得出0,0a b >>,判断选项中的点所在的象限,即可得出答案.【详解】∵0,0a b ab +>>∴0,0a b >>选项A:(),a b 在第一象限选项B:(),a b -在第二象限选项C:(),a b --在第三象限选项D:(),a b -在第四象限小手盖住的点位于第二象限故选:B考查题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)【答案】B【解析】由点P(a−4,a)在y 轴上,得a−4=0,解得a=4,P 的坐标为(0,4),故选B.2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为()A .(0,﹣4)B .(4,0)C .(0,﹣2)D .(2,0)【答案】D【详解】解:∵点P (m+3,m+1)在x 轴上,∴y =0,∴m+1=0,解得:m =﹣1,∴m+3=﹣1+3=2,∴点P 的坐标为(2,0).故选:D .3.(2021·甘肃中考真题)已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( )A .(40),B .(04),C .40)(-,D .(0,4)-【答案】A【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选:A .4.(2021·甘肃中考模拟)已知点P (m+2,2m ﹣4)在x 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(﹣4,0)D .(0,﹣4)【答案】A【详解】解:∵点P (m+2,2m ﹣4)在x 轴上,∴2m ﹣4=0,解得:m =2,∴m+2=4,则点P 的坐标是:(4,0).故选:A .5.(2021·广东华南师大附中中考模拟)如果点P (m +3,m +1)在平面直角坐标系的x 轴上,则m =() A .﹣1 B .﹣3 C .﹣2 D .0【答案】A【详解】由P (m +3,m +1)在平面直角坐标系的x 轴上,得m +1=0.解得:m =﹣1,故选:A .2.象限角的平分线上的点的坐标1.已知点A(-3+a,2a+9)在第二象限角平分线上,则a=_________【答案】-2【详解】∵点A在第二象限角平分线上∴它的横纵坐标互为相反数则-3+a+2a+9=0解得a=-22.(2018·广西中考模拟)若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)【答案】C【解析】已知点M在第一、三象限的角平分线上,点M到x轴的距离为2,所以点M到y轴的距离也为2.当点M 在第一象限时,点M的坐标为(2,2);点M在第三象限时,点M的坐标为(-2,-2).所以,点M的坐标为(2,2)或(-2,-2).故选C.3.与坐标轴平行的直线上的点的坐标特征1.(2021·广西中考模拟)已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1 B.3 C.﹣1 D.5【答案】B【详解】解:∵AB∥y轴,∴点A横坐标与点A横坐标相同,为1,可得:a -2=1,a=3故选:B.2.(2018·天津中考模拟)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【答案】A【解析】试题解析:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.3.(2021·广东华南师大附中中考模拟)已知点A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,且B到y轴的距离等于4,那么点B是坐标是()A.(4,﹣2)或(﹣4,﹣2)B.(4,2)或(﹣4,2)C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)【答案】A【详解】∵A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,∴B的纵坐标y=﹣2,∵“B到y轴的距离等于4”,∴B的横坐标为4或﹣4.所以点B的坐标为(4,﹣2)或(﹣4,﹣2),故选A.4.(2021·江苏中考模拟)若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1)B.(﹣1,1)C.(5,1)或(﹣1,1)D.(2,4)或(2,﹣2)【答案】C【详解】∵AB∥x轴且AB=3,点A的坐标为(2,1)∴点B的坐标为(5,1)或(﹣1,1)5.(2018·江苏中考模拟)已知点M(﹣1,3),N(﹣3,3),则直线MN与x轴、y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直【答案】D【详解】由题可知,M、N两点的纵坐标相等,所以直线MN与x轴平行,与y轴垂直相交.故选:D.4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5【答案】A【解析】∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .2.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4- 【答案】C【解析】由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( ) A .(﹣3,4)B .( 3,﹣4)C .(﹣4,3)D .( 4,﹣3) 【答案】C【详解】由点且到x 轴的距离为3、到y 轴的距离为4,得|y|=3,|x|=4.由P 是第二象限的点,得x=-4,y=3.即点P 的坐标是(-4,3),故选C .4.(2012·江苏中考模拟)在平面直角坐标系中,点P (-3,4)到x 轴的距离为( )A.3 B.-3 C.4 D.-4【答案】C【详解】∵|4|=4,∴点P(-3,4)到x轴距离为4.故选C.5.平面直角坐标系内平移变化1.(2021·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.2.(2021·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB 平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)【答案】A【详解】∵点A(4,﹣1)向左平移6个单位,再向上平移3个单位得到A′(﹣2,2),∴点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(﹣5,4).故选A.3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)【答案】D【解析】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【答案】C【解析】因为4-0=4,10-6=4,所以由点A到点A1的平移是向右平移4个单位,再向上平移4个单位,则点B的对应点1B的坐标为(1,1)故选C.5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A.(2,4)B.(1,5) C.(1,-3) D.(-5,5)【答案】B【详解】将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标(1,5).故选B.6.对称点的坐标1.(2021·广东中考模拟)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)【答案】A【解析】点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.2.(2021·山东中考模拟)已知点P(a+1,2a﹣3)关于x轴的对称点在第二象限,则a的取值范围是()A.﹣1<a<B.﹣<a<1 C.a<﹣1 D.a>【答案】C【详解】依题意得P点在第三象限,∴,解得:a <﹣1.故选C .3.(2014·广西中考真题)已知点A (a ,2013)与点B (2014,b )关于x 轴对称,则a+b 的值为( ) A .﹣1B .1C .2D .3 【答案】B【解析】关于x 轴对称的两个点的特点是,x 相同即横坐标,y 相反即纵坐标相反,故a=2014,b=-2013,故a+b=1 4.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( ) A .a 1<-B .31a 2-<<C .3a 12-<<D .3a 2> 【答案】B【解析】∵点P (a +1,2a -3)关于x 轴的对称点在第一象限,∴点P 在第四象限。
中考数学经典总复习专题动线、动形问题完美全文
学 (2)点P 、 Q在运动的过程中,△PCQ面积S有最 大值吗?若有,请求出最大值;若没有,请说明理 由。
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2). 作 (1)求抛物线的表达式;
学 存在,请说明理由;
y
解析:
C
AO
DB
x
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2).
作 互
( 3)点E 是 线 段 BC上的一个动点,过点E 作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积
8
1 2
3
x2+ 2
;
x+2;
∴抛物线的对称轴是x= ∴OD= .3
32.
∵C(0,2 2),
∴OC=2.
5
在Rt△OCD中,由勾股定理,得CD= .2
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP2=CP3=CD. 作CH⊥x轴于H,
∴HP1=HD=2,
∴∴DP1P(1=4.,32 4),P2(
中考数学---动线、动形问题
• 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是中考 中必考的内容。
• 本节课重点来探究动态几何中的动线、动形问题。
• 一、关于动线、动形问题的解题方法:
• 1.“以静制动”,把动态问题转化成静态问题;
• 2.图形的运动主要有翻折、平移、旋转,在运动过程中,分清哪 些量不变,哪些量发生了变化,以不变的量作为解题基础,以变 化中的规律和特点作为解题的关键。
中考数学专题复习-例说线段的最值问题 (共62张)
MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y
中考数学专题复习《利用解直角三角形测量物体高度 或宽度》经典题型讲解
中考数学专题复习《利用解直角三角形测量物体高度或宽度》经典题型讲解【经典母题】如图Z14-1,测得两楼之间的距离为32.6 m,从楼顶点A观测点D的俯角为35°12′,点C的俯角为43°24′,求这两幢楼的高度.(精确到0.1 m)解:略.【思想方法】利用解直角三角形测物高是常见的考题,通过作垂线将实际问题转化为解直角三角形的问题,然后利用解直角三角形的知识来解决,这是解此类问题的常规思路.【中考变形】1.[2016·长沙]如图Z14-2,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120 m,则这栋楼的高度为(A)A.160 3 mB .120 3 mC.300 mD.160 2 m2.[2017·内江]如图Z14-3,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底图Z14-2图Z14-1点E的仰角为30°,求塔ED的高度.(结果保留根号)【解析】先求出∠DBE=30°,∠BDE=30°,得出BE=DE,设EC=x,则BE=2x,DE=2x,DC=3x,BC=3x,再根据∠DAC=45°,可得AC=CD,列出方程求出x的值,即可求出塔ED的高度.解:由题意,得∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC-∠EBC=60°-30°=30°.又∵∠BCD=90°,∴∠BDC=90°-∠DBC=90°-60°=30°.∴∠DBE=∠BDE.∴BE=DE.设EC=x,则DE=BE=2EC=2x,DC=EC+DE=3x,BC=BE2-EC2=3x.∵∠DAC=45°,∠DCA=90°,AB=60,∴△ACD为等腰直角三角形,∴AC=DC.∴3x+60=3x,解得x=30+10 3.DE=2x=60+20 3,答:塔高约为(60+20 3) m.3.[2017·菏泽]如图Z14-4,某小区1号楼与11号楼隔河相望,李明家住在1号楼,他很想知道11号楼的高度,于是他做了一些测量,他先在B点测得C 点的仰角为60°,然后到42 m高的楼顶A处,测得C点的仰角为30°,请你帮李明计算11号楼的高度CD.图Z14-4中考变形3答图【解析】过点A作AE⊥CD于E,分别在Rt△BCD和Rt△ACE中,利用锐角三角函数用BD可以分别表示CE,CD的长,然后根据CD-CE=AB,即可求得CD长.解:如答图,过点A作AE⊥CD于E,在Rt△BCD中,tan∠CBD=CDBD,∴CD=BD·tan60°=3BD,在Rt△ACE中,tan∠CAE=CEBD,∴CE=BD·tan30°=33BD,∴AB=CD-CE,即3BD-33BD=42,233BD=42,解得BD=21 3,∴CD=BD·tan60°=3BD=63 m.答:11号楼的高度CD为63 m.4.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图Z14-5①),侧面示意图为图②,使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图③),侧面示意图为图④.已知OA=OB=24 cm,O′C⊥OA于点C,O′C=12 cm.图Z14-5(1)求∠CAO′的度数;(2)显示屏的顶部B′比原来升高了多少厘米?(3)如图④,垫入散热架后,要使显示屏O′B′与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?解:(1)∵O′C⊥AC,O′C=12 cm,O′A=OA=24 cm,∴sin ∠CAO ′=O ′C O ′A =1224=12, ∴∠CAO ′=30°,(2)如答图,过点B 作BD ⊥AC ,交AC 的延长线于点D ,∵∠BOD =180°-∠AOB =60°,∴BD =24·sin60°=123(cm),又∵B ′C =BO +O ′C =24+12=36(cm),∴B ′C -BD =(36-123)cm ;∴显示屏的顶部B ′比原来升高了(36-123)cm ;(3)120°-90°=30°,∴显示屏O ′B ′应绕点O ′按顺时针方向旋转30°.5.[2017·岳阳]某太阳能热水器的横截面示意图如图Z14-6所示,已知真空热水管AB 与支架CD 所在直线相交于点O ,且OB =OD .支架CD 与水平线AE 垂直,∠BAC =∠CDE =30°,DE =80 cm ,AC =165 cm.(1)求支架CD 的长;(2)求真空热水管AB 的长.(结果均保留根号)解:(1)在Rt △CDE 中,∠CDE =30°,DE =80 cm ,∴cos30°=CD 80 =32,解得CD =40 3 cm ;(2)在Rt △OAC 中,∠BAC =30°,AC =165 cm ,∴tan30°=OC 165=33,解得OC =55 3 cm ,∴OA =2OC =1103(cm),OB =OD =OC -CD =553-403=153(cm),AB中考变形4答图图Z14-6=OA -OB =1103-153=953(cm).6.[2016·泸州]如图Z14-7,为了测量出楼房AC 的高度,从距离楼底C 处60 3 m 的点D (点D 与楼底C 在同一水平面上)出发,沿斜面坡比为i =1∶3的斜坡DB 前进30 m 到达点B ,在点B 处测得楼顶A 的仰角为53°,求楼房AC的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈43,结果保留根号)图Z14-7 中考变形6答图解:如答图,过点B 作BN ⊥CD 于点N ,BM ⊥AC 于点M .在Rt △BDN 中,BD =30 m ,BN ∶ND =1∶3,∴∠D =30°.∴BN =15 m ,DN =15 3 m ,∵∠C =∠CMB =∠CNB =90°,∴四边形CMBN 是矩形,∴CM =BN =15 m ,BM =CN =603-153=453(m),在Rt △ABM 中,tan ∠ABM =AM BM ≈43,∴AM =60 3 m ,∴AC =AM +CM =()15+603 m. 7.[2016·海南]如图Z14-8,在大楼AB 的正前方有一斜坡CD ,CD =4 m ,坡角∠DCE =30°,小红在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A ,C ,E 在同一直线上.(1)求斜坡CD 的高度DE ;(2)求大楼AB 的高度.(结果保留根号)图Z14-8 中考变形7答题 解:(1)在Rt △DCE 中,CD =4 m ,∠DCE =30°,∠DEC =90°,∴DE =12CD =2(m);(2)如答图,过点D 作DF ⊥AB ,交AB 于点F .∵∠BFD =90°,∠BDF =45°,∴∠FBD =45°,即△BFD 为等腰直角三角形,设BF =DF =x (m),∵∠DEC =∠EAF =∠AFD =90°,∴四边形DEAF 为矩形,∴AF =DE =2 m ,即AB =(x +2)m ,在Rt △ABC 中,∠ABC =30°,∴BC =AB cos30°=x +232=2x +43=⎣⎢⎡⎦⎥⎤3(2x +4)3 m , BD =2BF =2x m ,DC =4 m ,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°,在Rt △BCD 中,根据勾股定理,得2x 2=(2x +4)23+16,解得x =4+43或4-43(舍去),∴AB=(6+43)m.【中考预测】某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图Z14-9①,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30 cm.(1)如图②,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;(2)如图③,当∠BAC=12°时,求AD的长.(结果保留根号,参考数据:sin24°≈0.40,cos24°≈0.91,tan24°≈0.46,sin12°≈0.20)图Z14-9解:(1)∵∠BAC=24°,CD⊥AB,∴sin24°=CDAC,∴CD=AC sin24°≈30×0.40=12(cm);∴支撑臂CD的长为12 cm;(2)如答图,过点C作CE⊥AB于点E,当∠BAC=12°时,sin12°=ECAC =EC30,∴CE≈30×0.20=6,∵CD=12,∴DE=6 3,∴AE=302-62=12 6 cm,∴AD的长为(126+63)cm或(126-63)cm.中考预测答图。
中考数学总复习考点知识专题练习13 二次函数 (解析版)
中考数学总复习考点知识专题练习专题13 二次函数一、单选题(共10小题,每小题3分,共计30分)1.(2021·山东菏泽市·中考真题)一次函数y ax b =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是()A .B .C .D .【答案】B【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y 轴的关系即可得出a 、b 的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】解:A 、∵二次函数图象开口向上,对称轴在y 轴右侧,∴a>0,b <0,∴一次函数图象应该过第一、三、四象限,A 错误;B 、∵二次函数图象开口向上,对称轴在y 轴左侧,∴a>0,b>0,∴一次函数图象应该过第一、二、三象限,B 正确;C 、∵二次函数图象开口向下,对称轴在y 轴右侧,∴a<0,b>0,∴一次函数图象应该过第一、二、四象限,C 错误;D 、∵二次函数图象开口向下,对称轴在y 轴左侧,∴a <0,b <0,∴一次函数图象应该过第二、三、四象限,D 错误.故选:B .2.(2021·四川达州市·中考真题)如图,直线1y kx =与抛物线22y ax bx c =++交于A 、B 两点,则2()y ax b k x c =+-+的图象可能是( )A .B .C .D .【答案】B 【分析】根据题目所给的图像,首先判断1y kx =中k >0,其次判断22y ax bx c =++中a <0,b <0,c <0,再根据k 、b 、的符号判断2()y ax b k x c =+-+中b-k <0,又a <0,c <0可判断出图像. 【详解】解:由题图像得1y kx =中k >0,22y ax bx c =++中a <0,b <0,c <0, ∴b-k <0,∴函数2()y ax b k x c =+-+对称轴x=2b ka--<0,交x 轴于负半轴, ∴当12y y =时,即2kx ax bx c =++, 移项得方程2()0ax b k x c +-+=,∵直线1y kx =与抛物线22y ax bx c =++有两个交点,∴方程2()0ax b k x c +-+=有两个不等的解,即2()y ax b k x c =+-+与x 轴有两个交点, 根据函数2()y ax b k x c =+-+对称轴交x 轴负半轴且函数图像与x 轴有两个交点, ∴可判断B 正确. 故选:B3.(2021·陕西中考真题)在平面直角坐标系中,将抛物线y =x 2﹣(m ﹣1)x +m (m >1)沿y 轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】根据平移规律得到平移后抛物线的顶点坐标,然后结合m 的取值范围判断新抛物线的顶点所在的象限即可. 【详解】 解:2221(1)(1)()24m m y x m x m x m --=--+=-+-,∴该抛物线顶点坐标是1(2m -,2(1))4m m --, ∴将其沿y 轴向下平移3个单位后得到的抛物线的顶点坐标是1(2m -,2(1)3)4m m ---, 1m >,10m ∴->,∴102m ->, 2222(1)4(21)12(3)4(3)3104444m m m m m m m ---+-------===--<,∴点1(2m -,2(1)3)4m m ---在第四象限; 故选:D .4.(2021·新疆中考真题)二次函数2y ax bx c =++的图像如图所示,则一次函数y ax b =+和反比例函数y cx=在同一平面直角坐标系中的图像可能是()A .B .C .D .【答案】D 【分析】根据二次函数图象开口向上得到a >0,再根据对称轴确定出b ,根据与y 轴的交点确定出c >0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】解:∵二次函数图象开口方向向上,∴a >0,∵对称轴为直线2bx a=->0,∴b <0,∵与y 轴的正半轴相交,∴c >0,∴y=ax+b 的图象经过第一、三象限,且与y 轴的负半轴相交,反比例函数y cx=图象在第一、三象限, ∴只有D 选项的图像符合题意; 故选:D .5.(2021·湖北黄石市·中考真题)若二次函数22y a x bx c =--的图象,过不同的六点()1,A n -、()5,1B n -、()6,1C n +、)12,Dy 、()22,E y 、()34,F y ,则1y 、2y 、3y 的大小关系是()A .123y y y <<B .132y y y <<C .231y y y <<D .213y y y << 【答案】D 【分析】根据题意,把A 、B 、C 三点代入解析式,求出213425942a b ⎧=⎪⎪⎨⎪=⎪⎩,再求出抛物线的对称轴,利用二次根式的对称性,即可得到答案. 【详解】解:根据题意,把点()1,A n -、()5,1B n -、()6,1C n +代入22y a x bx c =--,则22225513661a b c na b c n a b c n ⎧+-=⎪--=-⎨⎪--=+⎩, 消去c ,则得到2224613571a b a b ⎧-=-⎨-=⎩, 解得:213425942a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的对称轴为:25959422622642b x a-=-==,∵2x =与对称轴的距离最近;4x =与对称轴的距离最远;抛物线开口向上, ∴213y y y <<; 故选:D .6.(2021·天津中考真题)已知抛物线2y ax bx c =++(,,a b c 是常数,0,1a c ≠>)经过点()2,0,其对称轴是直线12x =.有下列结论: ①0abc >;②关于x 的方程2ax bx c a ++=有两个不等的实数根;③12a <-.其中,正确结论的个数是() A .0B .1C .2D .3 【答案】C 【分析】根据对称轴和抛物线与x 轴的一个交点,得到另一个交点,然后根据图象确定答案即可判断①根据根的判别式240b ac ->,即可判断②;根据1c >以及c=-2a ,即可判断③. 【详解】∵抛物线2y ax bx c =++经过点()2,0,对称轴是直线12x =, ∴抛物线经过点(1,0)-,b=-a当x= -1时,0=a-b+c ,∴c=-2a;当x=2时,0=4a+2b+c , ∴a+b=0,∴ab<0,∵c >1, ∴abc <0,由此①是错误的,∵222224=4(2)890b ac a a a a a a ---=+=>,而0a ≠∴关于x 的方程2ax bx c a ++=有两个不等的实数根,②正确;∵1c >,c=-2a>1, ∴12a <-,③正确故选:C.7.(2021·山西中考真题)竖直上抛物体离地面的高度()h m 与运动时间()t s 之间的关系可以近似地用公式2005h t v t h =-++表示,其中()0h m 是物体抛出时离地面的高度,()0/v m s是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20/m s 的速度竖直向上抛出,小球达到的离地面的最大高度为() A .23.5m B .22.5m C .21.5m D .20.5m 【答案】C【分析】将0h =1.5,0v =20代入2005h t v t h =-++,利用二次函数的性质求出最大值,即可得出答案. 【详解】解:依题意得:0h =1.5,0v =20,把0h =1.5,0v =20代入2005h t v t h =-++得2520 1.5=-++h t t当()20t 225=-=⨯-时,54202 1.5=21.5=-⨯+⨯+h故小球达到的离地面的最大高度为:21.5m 故选:C8.(2021·辽宁葫芦岛市·中考真题)如图,二次函数2(0)y ax bx c a =++≠的图象的对称轴是直线1x =,则以下四个结论中:①0abc >,②20a b +=,③244+<a b ac ,④30a c +<.正确的个数是()A .1B .2C .3D .4 【答案】B 【分析】由开口方向,对称轴方程,与y 轴的交点坐标判断,,a b c 的符号,从而可判断①②,利用与y 轴的交点位置得到c >1,结合a <0,可判断③,利用当1,,x y a b c =-=-+结合图像与对称轴可判断④. 【详解】解:由函数图像的开口向下得a <0, 由对称轴为12bx a=-=>0,所以b >0, 由函数与y 轴交于正半轴,所以c >0,abc ∴<0,故①错误;12bx a=-=, 2,b a ∴-=20,a b ∴+=故②正确; 由交点位置可得:c >1,a <0, c ∴>1a +,4ac ∴<244,a a +222,4,b a b a =-∴=4ac ∴<24,a b +故③错误; 由图像知:当1,,x y a b c =-=-+ 此时点()1,a b c --+在第三象限,a b c ∴-+<0,2,b a =-3a c ∴+<0,故④正确;综上:正确的有:②④, 故选B .9.(2021·浙江杭州市·中考真题)设函数y =a (x ﹣h )2+k (a ,h ,k 是实数,a ≠0),当x =1时,y =1;当x =8时,y =8,( ) A .若h =4,则a <0B .若h =5,则a >0 C .若h =6,则a <0D .若h =7,则a >0 【答案】C 【分析】当x =1时,y =1;当x =8时,y =8;代入函数式整理得a (9﹣2h )=1,将h 的值分别代入即可得出结果. 【详解】解:当x =1时,y =1;当x =8时,y =8;代入函数式得:221(1)8(8)a h k a h k ⎧=-+⎨=-+⎩, ∴a (8﹣h )2﹣a (1﹣h )2=7, 整理得:a (9﹣2h )=1, 若h =4,则a =1,故A 错误; 若h =5,则a =﹣1,故B 错误;若h =6,则a =﹣13,故C 正确;若h =7,则a =﹣15,故D 错误;故选:C .10.(2021·湖北襄阳市·中考真题)二次函数2y ax bx c =++的图象如图所示,下列结论:①0ac <;②30a c +=;③240ac b -<;④当1x >-时,y 随x 的增大而减小,其中正确的有()A .4个B .3个C .2个D .1个 【答案】B 【分析】根据抛物线的开口向上,得到a >0,由于抛物线与y 轴交于负半轴,得到c <0,于是得到ac <0,故①正确;根据抛物线的对称轴为直线x =−12ba=,于是得到2a +b =0,当x=-1时,得到30a c +=故②正确;把x =2代入函数解析式得到4a +2b +c <0,故③错误;抛物线与x 轴有两个交点,也就是它所对应的方程有两个不相等的实数根,即可得出③正确根据二次函数的性质当x >1时,y 随着x 的增大而增大,故④错误. 【详解】解:①∵抛物线开口向上与y 轴交于负半轴, ∴a >0,c <0 ∴ac <0 故①正确;②∵抛物线的对称轴是x=1, ∴12ba-= ∴b=-2a∵当x=-1时,y=0 ∴0=a-b+c故②正确;③∵抛物线与x轴有两个交点,即一元二次方程2=++有两个不相等的实数解0ax bx c∴240->b ac∴2-<40ac b故③正确;④当-1<x<1时,y随x的增大而减小,当x>1时y随x的增大而增大.故④错误所以正确的答案有①、②、③共3个故选:B二、填空题(共5小题,每小题4分,共计20分)11.(2021·贵州黔东南苗族侗族自治州·中考真题)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x 的取值范围是_____.【答案】﹣3<x<1【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.解:∵抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点为(﹣3,0),对称轴为x =﹣1, ∴抛物线与x 轴的另一个交点为(1,0),由图象可知,当y <0时,x 的取值范围是﹣3<x <1.故答案为:﹣3<x <1.12.(2021·江苏淮安市·中考真题)二次函数223y x x =--+的图像的顶点坐标是_________.【答案】(-1,4)【分析】把二次函数解析式配方转化为顶点式解析式,即可得到顶点坐标.【详解】解:∵223y x x =--+=-(x+1)2+4,∴顶点坐标为(-1,4).故答案为(-1,4).13.(2021·辽宁朝阳市·中考真题)抛物线2(1)1y k x x =--+与x 轴有交点,则k 的取值范围是___________________. 【答案】54k且1k ≠ 【分析】直接利用根的判别式进行计算,再结合10k -≠,即可得到答案.【详解】解:∵抛物线2(1)1y k x x =--+与x 轴有交点,∴2(1)4(1)10k ∆=--⨯-⨯≥,∴54k ≤, 又∵10k -≠,∴k 的取值范围是54k且1k ≠; 故答案为:54k 且1k ≠. 14.(2021·江苏连云港市·中考真题)加工爆米花时,爆开且不糊的颗粒的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式20.2 1.52y x x =-+-,则最佳加工时间为________min .【答案】3.75 【分析】根据二次函数的对称轴公式2b x a =-直接计算即可. 【详解】解:∵20.2 1.52y x x =-+-的对称轴为()1.5 3.75220.2b x a =-=-=⨯-(min ), 故:最佳加工时间为3.75min ,故答案为:3.75.15.(2021·山东青岛市·中考真题)抛物线()2221y x k x k =+--(k 为常数)与x 轴交点的个数是__________.【答案】2【分析】求出∆的值,根据∆的值判断即可.【详解】解:∵∆=4(k -1)2+8k=4k 2+4>0,∴抛物线与x 轴有2个交点.故答案为:2.三、解答题(共5小题,每小题10分,共计50分)16.(2021·甘肃兰州市·中考真题)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天≤≤且x为整数)的销售量为y件.(1x30()1直接写出y与x的函数关系式;()2设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?=+;()2第20天的利润最大,最大利润是3200元.【答案】()1?y2x40【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.【详解】()1由题意可知y2x40=+;()2根据题意可得:()()=---+,w145x8052x4022x80x2400=-++,2=--+,2(x20)3200a20=-<,∴函数有最大值,∴当x 20=时,w 有最大值为3200元,∴第20天的利润最大,最大利润是3200元.17.(2021·山东临沂市·中考真题)已知抛物线22232(0)y ax ax a a =--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围.【答案】(1)1x =;(2)233322y x x =-+或221y x x =-+-;(3)当a >0时,13m -<<;当a <0时,1m <-或3m >.【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a 的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q 关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m 的取值范围.【详解】(1)∵22232y ax ax a =--+,∴22(1)32y a x a a =---+,∴其对称轴为:1x =.(2)由(1)知抛物线的顶点坐标为:2(1,23)a a --,∵抛物线顶点在x 轴上,∴2230a a --=,解得:32a =或1a =-, 当32a =时,其解析式为:233322y x x =-+, 当1a =-时,其解析式为:221y x x =-+-,综上,二次函数解析式为:233322y x x =-+或221y x x =-+-. (3)由(1)知,抛物线的对称轴为1x =,∴()23,Q y 关于1x =的对称点为2(1,)y -,当a >0时,若12y y <,则-1<m <3;当a <0时,若12y y <,则m <-1或m >3.18.(2021·甘肃金昌市·中考真题)如图,在平面直角坐标系中,抛物线22y ax bx =+-交x 轴于A ,B 两点,交y 轴于点C ,且28OA OC OB ==,点P 是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若//PC AB ,求点P 的坐标;(3)连接AC ,求PAC ∆面积的最大值及此时点P 的坐标.【答案】(1)2722y x x =+-;(2)(72-,2-);(3)PAC ∆面积的最大值是8;点P 的坐标为(2-,5-).【分析】(1)由二次函数的性质,求出点C 的坐标,然后得到点A 、点B 的坐标,再求出解析式即可;(2)由//PC AB ,则点P 的纵坐标为2-,代入解析式,即可求出点P 的坐标;(3)先求出直线AC 的解析式,过点P 作PD ∥y 轴,交AC 于点D ,则12PAC S PD OA ∆=•,设点P 为(x ,2722x x +-),则点D 为(x ,122x --),求出PD 的长度,利用二次函数的性质,即可得到面积的最大值,再求出点P 的坐标即可.【详解】解:(1)在抛物线22y ax bx =+-中,令0x =,则2y =-,∴点C 的坐标为(0,2-),∴OC=2,∵28OA OC OB ==,∴4OA =,12OB =, ∴点A 为(4-,0),点B 为(12,0), 则把点A 、B 代入解析式,得16420112042a b a b --=⎧⎪⎨+-=⎪⎩,解得:172a b =⎧⎪⎨=⎪⎩, ∴2722y x x =+-; (2)由题意,∵//PC AB ,点C 为(0,2-),∴点P 的纵坐标为2-,令2y =-,则27222x x +-=-, 解得:172x ,20x =, ∴点P 的坐标为(72-,2-); (3)设直线AC 的解析式为y mx n =+,则把点A 、C 代入,得402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩, ∴直线AC 的解析式为122y x =--; 过点P 作PD ∥y 轴,交AC 于点D ,如图:设点P 为(x ,2722x x +-),则点D 为(x ,122x --), ∴22172(2)422PD x x x x x =---+-=--, ∵OA=4,∴2211(4)42822APC S PD OA x x x x ∆=•=⨯--⨯=--, ∴22(2)8APC S x ∆=-++,∴当2x =-时,APC S ∆取最大值8;∴22772(2)(2)2522x x +-=-+⨯--=-, ∴点P 的坐标为(2-,5-).19.(2021·安徽中考真题)在平而直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点.()1判断点B 是否在直线y x m =+上.并说明理由;()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)54 【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将将B 代入看式子能否成立即可; (2)先跟抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入21y ax bx =++得出关于a ,b 的二元一次方程组;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,根据顶点在直线1y x 上,得出k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,在将式子配方即可求出最大值.【详解】(1)点B 在直线y x m =+上,理由如下:将A (1,2)代入y x m =+得21m =+,解得m=1,∴直线解析式为1y x ,将B (2,3)代入1y x ,式子成立,∴点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同, ∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩, 解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,∵顶点在直线1y x 上, ∴k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,∵-h 2+h+1=-(h-12)2+54, ∴当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54. 20.(2021·江苏宿迁市·中考真题)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?21 / 21 【答案】(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得:55706060k b k b +=⎧⎨+=⎩, 解得:2180k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.。
人教版九年级数学上册中考专题复习题含答案全套
人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。
专题02 整式加减及其运算(6大考点)-2023年中考数学总复习真题探究与变式训练(解析版)
第一部分数与式专题02 整式加减及其运算(6大考点)核心考点一列代数式及代数式求值核心考点二整式的有关概念及运算核心考点三乘法公式的应用核心考点四整式的化简求值核心考点五因式分解核心考点核心考点六规律探索题新题速递核心考点一列代数式及代数式求值例1(2022·贵州六盘水·中考真题)已知,则的值是()A.4B.8C.16D.12【分析】令,代入已知等式进行计算即可得.【详解】解:观察所求式子与已知等式的关系,令,则,故选:C .,求代数式的值.”可以这样解:.根据阅读材料,解决问题:若是关于x的一元一次方程的解,则代数式的值是________.【答案】【分析】先根据是关于x的一元一次方程的解,得到,再把所求的代数式变形为,把整体代入即可求值.【详解】解:∵是关于x的一元一次方程的解,∴,∴.故答案为:14,的正方形秧田,,其中不能使用的面积为.(1)用含,的代数式表示中能使用的面积___________;(2)若,,求比多出的使用面积.【答案】(1)(2)50【分析】(1)利用正方形秧田的面积减去不能使用的面积即可得;(2)先求出中能使用的面积为,再求出比多出的使用面积为,利用平方差公式求解即可得.【详解】(1)解:中能使用的面积为,故答案为:.(2)解:中能使用的面积为,则比多出的使用面积为,,,,答:比多出的使用面积为50.【点睛】本题考查了列代数式、平方差公式与图形面积,熟练掌握平方差公式是解题关键.代数式及求值(1)概念:用基本运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫代数式.单独的一个数或一个字母也是代数式;(2)列代数式:找出数量关系,用表示已知量的字母表示出所求量的过程;(3)代数式求值:把已知字母的值代入代数式中,并按原来的运算顺序计算求值.【变式1】(2022·山东济宁·三模)若是方程的两个根,则的值为( )A.9B.8C.7D.5【答案】A【分析】根据一元二次方程根的定义以及根与系数的关系,求解即可.【详解】解:是方程的两个根,则,,∴,,故选:A【点睛】此题考查了一元二次方程根的定义以及根与系数的关系,解题的关键是熟练掌握相关基础知识.【变式2】(2022·甘肃·平凉市第十中学三模)十八世纪伟大的数学家欧拉最先用记号的形式来表示关于的多项式,把等于某数时一的多项式的值用来表示.例如时,多项式的值可以记为,即我们定义.若,则的值为()A.B.C.D.【答案】C【分析】代入多项式可以得,把整体代入求解即可.【详解】,,得:,,故选:C.【点睛】本题考查求代数式的值,整体代入是解题的关键.【变式3】(2022·浙江丽水·一模)已知,实数m,n满足,.(1)若,则_______;(2)若,则代数式的值是______________.【答案】 7 42或252##252或42【分析】(1)将已知式子因式分解代入得出,然后利用两个完全平方公式之间的关系求解即可;(2)利用(1)中结论得出或,然后分两种情况,将原式化简代入求值即可.【详解】解:(1)∵m+n=3,∴,∴,∴,∴,∵m>n,∴,∴;(2),由(1)得或解得:或当m=5,时,∵,∴,∴m+p=2,∴原式;当,n=5时,∵,∴,∴,∴原式;∴代数式的值为42或252;故答案为:①7;②42或252.【点睛】题目主要考查因式分解的运用,求代数式的值及完全平方公式与平方差公式,熟练掌握运算法则进行变换是解题关键.【变式4】(2022·福建省福州屏东中学模拟预测)已知,,且,则代数式的值是______ .【答案】【分析】先计算,利用平方差公式求出的值,再把化为完全平方式,代入求值即可.【详解】解:,,.∴.,..故答案为:.【点睛】本题考查了平方差公式和完全平方式,代数式求值,掌握平方差公式和完全平方式的特点,利用平方差公式求出的值,是解决本题的关键.【变式5】(2022·安徽芜湖·模拟预测)阅读下列材料,完成后面的问题.材料1:如果一个四位数为(表示千位数字为a,百位数字为b,十位数字为c,个位数字为d的四位数,其中a为1~9的自然数,b,c,d为0~9的自然数),我们可以将其表示为:;材料2:把一个自然数(个位不为0)的各位数字从个位到最高位倒序排列,得到一个新的数.我们称该数为原数的兄弟数.如数“123”的兄弟数为“321”.(1)四位数______;(用含x,y的代数式表示)(2)设有一个两位数,它的兄弟数比原数大63,请求出所有可能的数;(3)求证:四位数一定能被101整除.【答案】(1)1000x+10y+505(2)18、29(3)证明过程见详解【分析】(1)依据材料1的方法即可作答;(2)先根据(1)的方法表示出和,在结合题意列出二元一次方程,化简得:,再根据x、y均是1至9的自然数即可求解;(3)利用(1)的方法表示出,依据a为1~9的自然数,b为0~9的自然数,可得10a+b必为整数,即命题得证.(1)根据题意有:,即答案为:;(2)∵,,又∵,∴,∴,∵根据题意有x、y均是1至9的自然数,∴满足要求的x、y的数组有:(1,8)、(2,9),∴可能的数有18和29;(3)证明:∵,∴,∵a为1~9的自然数,b为0~9的自然数,∴10a+b必为整数,∴一定能被101整除,命题得证.【点睛】本题考查了列代数式和求解二元一次方程的整数解的知识,充分理解材料1、2所给的新定义是解答本题的关键.核心考点二整式的有关概念及运算例1(2021·四川绵阳·中考真题)整式的系数是()A.-3B.3C.D.【答案】A【详解】解:的系数为本题主要考查了单项式的系数,追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成个不同的数据二维码,现有四名网友对的理解如下:YYDS(永远的神):就是200个2相乘,它是一个非常非常大的数;DDDD(懂的都懂):等于;JXND(觉醒年代):的个位数字是6;QGYW(强国有我):我知道,所以我估计比大.其中对的理解错误的网友是___________(填写网名字母代号).用,将化为,再与比较,即可判断的乘方的个位数字的规律即可判断的逆用可得,即可判断【详解】是200个2相乘,YYDS,DDDD(懂的都懂)的理解是错误的;,2的乘方的个位数字4个一循环,,的个位数字是,,且,故QGYW(强国有我)的理解是正确的;故答案为:DDDD.【点睛】本题考查了乘方的含义,幂的乘方的逆用等,熟练掌握乘方的含义以及乘方的运算第1个等式:,第2个等式:,第3个等式:,第4个等式:,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【答案】(1)(2),证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n个等式为,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:,故答案为:;(2)解:第n个等式为,证明如下:等式左边:,等式右边:,故等式成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.整式及有关概念(1)单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的_次数,单项式中的数字因数叫做单项式的系数.单独的数、字母也是单项式;(2)多项式:由几个单项式组成的代数式叫做多项式,多项式里次数最高项的次数叫多项式的次数,一个多项式中的每个单项式叫做多项式的项,其中不含字母的项叫做常数项;(3)整式:单项式和多项式统称为整式;(4)同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项;所有的常数项都是同类项.整式的运算1.同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。
中考数学总复习考点知识专题练习05 平面直角坐标系(解析版)
中考数学总复习考点知识专题练习专题05 平面直角坐标系一、单选题(共10小题,每小题3分,共计30分)1.(2021·浙江台州市·中考真题)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)【答案】D【分析】先找到顶点C的对应点为F,再根据直角坐标系的特点即可得到坐标.【详解】∵顶点C的对应点为F,由图可得F的坐标为(3,1),故选D.P向下平移2个单位长2.(2021·四川成都市·中考真题)在平面直角坐标系中,将点(3,2)度得到的点的坐标是()A.(3,0)B.(1,2)C.(5,2)D.(3,4)【答案】A【分析】根据点的坐标平移规律“左减右加,下减上加”,即可解答.【详解】解:将点P ()3,2向下平移2个单位长度所得到的点坐标为()3,22-,即()3,0, 故选:A .3.(2021·四川泸州市中考真题)在平面直角坐标系中,将点(2,3)A -向右平移4个单位长度,得到的对应点A '的坐标为()A .()2,7B .()6,3-C .()2,3D .()2,1--【答案】C【分析】根据横坐标,右移加,左移减可得点A (-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3).【详解】解:点A (-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3), 即(2,3),故选:C .4.(2021·甘肃中考真题)已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)- 【答案】A【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选A .5.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点()2,3A -位于哪个象限?( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据各象限内点的坐标特征解答即可.【详解】解:点A 坐标为()2,3-,则它位于第四象限,故选D .6.(2018·江苏扬州市·中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .7.(2018·北京中考真题)右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A .①③B .②③④C .①④D .①②③④【答案】D【详解】分析:根据天安门的坐标和点的平移规律,一一进行判断即可.详解:显然①②正确;③是在②的基础上,将所有点向右平移1个单位,再向上平移1个单位得到,故③正确; ④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-,9-)时,表示左安门的点的坐标为(15,18-)”的基础上,将所有点向右平移1.5个单位,再向上平移1.5个单位得到,故④正确.故选D.点睛:考查平面直角坐标系,点坐标的确定,点的平移,熟练掌握点的平移规律是解题的关键.8.(2018·山东枣庄市·中考真题)在平面直角坐标系中,将点A (﹣1,﹣2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B′的坐标为( )A .(﹣3,﹣2)B .(2,2)C .(﹣2,2)D .(2,﹣2)【答案】B【分析】首先根据横坐标右移加,左移减可得B 点坐标,然后再根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】点A (﹣1,﹣2)向右平移3个单位长度得到的B 的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B 关于x 轴的对称点B ′的坐标是(2,2),故选B .9.(2018·浙江丽水市·中考真题)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【答案】C【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【详解】如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10);故选C.10.(2018·四川广元市·中考真题)若以A(﹣1,0),B(3,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【分析】首先画出平面直角坐标系,根据A、B、C三点的坐标找出其位置,然后再根据两组对边分别平行的四边形是平行四边形找出D的位置,进而可得答案.【详解】如图所示:第四个顶点不可能在第三象限.故选C.二、填空题(共5小题,每小题4分,共计20分)11.(2021·浙江金华市·中考真题)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)______.【答案】-1(答案不唯一,负数即可)【分析】根据第二象限的点符号是“-,+”,m取负数即可.【详解】∵点P(m,2)在第二象限内,m ,∴0m取负数即可,如m=-1,故答案为:-1(答案不唯一,负数即可).12.(2021·江苏连云港市·中考真题)如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为(3,9)、(12,9),则顶点A的坐标为________.【答案】(15,3)【分析】先根据条件,算出每个正方形的边长,再根据坐标的变换计算出点A的坐标即可.【详解】解:设正方形的边长为a,a=-则由题设条件可知:3123a=解得:3∴点A的横坐标为:12315-⨯=+=,点A的纵坐标为:9323故点A的坐标为(15,3).故答案为:(15,3).13.(2021·黑龙江大庆市·中考真题)点(2,3)关于y轴对称的点的坐标为_____.【答案】(﹣2,3)【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【详解】点(2,3)关于y 轴对称的点的坐标是(﹣2,3),故答案为:(﹣2,3).14.(2017·湖北荆州市·中考真题)将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为____.【答案】4【解析】试题分析:先根据一次函数平移规律得出直线y=x+b 沿y 轴向下平移3个单位长度后的直线解析式y=x+b ﹣3,再把点A (﹣1,2)关于y 轴的对称点(1,2)代入y=x+b ﹣3,得1+b ﹣3=2,解得b=4.故答案为4.15.(2021·宁夏中考模拟)点 P (a ,a -3)在第四象限,则a 的取值范围是_____.【答案】0<a <3【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】∵点P (a ,a -3)在第四象限,∴a 0{a 30>-<,解得0<a <3. 三、解答题(共5小题,每小题10分,共计50分)16.(2021·广西中考真题)如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是2,1,1,()()2,3,3()A B C ---(1)将ABC ∆向上平移4个单位长度得到111A B C ∆,请画出111A B C ∆;(2)请画出与ABC ∆关于y 轴对称的222A B C ∆; (3)请写出12A A 、的坐标.【答案】(1)如图所示:111A B C ∆,即为所求;见解析;(2)如图所示:222A B C ∆,即为所求;见解析;(3)122,3,),1(()2A A --.【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案; (2)直接利用轴对称的性质得出对应点位置进而得出答案; (3)利用所画图象得出对应点坐标.【详解】(1)如图所示:111A B C ∆,即为所求; (2)如图所示:222A B C ∆,即为所求;(3)122,3,),1(()2A A --.17.(2021·安徽中考模拟)在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A 1(,)、A 3(,)、A 12(,);(2)写出点A 4n 的坐标(n 是正整数);(3)指出蚂蚁从点A 100到点A 101的移动方向.【答案】⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0)⑶从下向上【解析】试题分析:(1)在平面直角坐标系中可以直接找出答案;(2)根据求出的各点坐标,得出规律;(3)点A 100中的n 正好是4的倍数,根据第二问的答案可以分别得出点A 100和A 101的坐标,所以可以得到蚂蚁从点A 100到A 101的移动方向.解:(1)A 1(0,1),A 3(1,0),A 12(6,0);(2)当n=1时,A 4(2,0),当n=2时,A 8(4,0),当n=3时,A 12(6,0),所以A 4n (2n ,0);(3)点A 100中的n 正好是4的倍数,所以点A 100和A 101的坐标分别是A 100(50,0),A 101的(50,1),所以蚂蚁从点A 100到A 101的移动方向是从下向上.18.(2021·沭阳县修远中学中考模拟)如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC 平移至A '的位置,使点A 与A '对应,得到△A B C ''';(2)图中可用字母表示,与线段AA '平行且相等的线有:________;(3)求四边形ACC A ''的面积.【答案】(1)见解析;(2);BB CC '';(3)14.【详解】(1)根据图形可得,点A 向右平移5个单位,向上平移4个单位,分别将B 、C 按照点A 平移的路径进行平移,然后顺次连接,则△A B C '''即为所求.(2)根据平移可得线段AA′与线段CC′、BB′相互平行且相等,故答案为BB′、CC′(3)S 四边形ACC′A′=6×6-(12×4×5+12×2×1)×2=14.19.(2021·江苏中考模拟)如图,在平面直角坐标系xOy中,矩形ABCD各边都平行于坐标轴,且A(-2,2),C(3,-2).对矩形ABCD及其内部的点进行如下操作:把每个点的横坐标乘以a,纵坐标乘以b,将得到的点再向右平移k()个单位,得到矩形及其内部的点(分别与ABCD对应).E(2,1)经过上述操作后的对应点记为.(1)点D的坐标为,若a=2,b=-3,k=2,则点的坐标为;(2)若(1,4),(6,-4),求点的坐标.【答案】(1)(3,2),(8,-6);(2)E′(5,2).【解析】(1)∵矩形ABCD各边都平行于坐标轴,且A(-2,2),C(3,-2),∴D(3,2),∵对矩形ABCD及其内部的点进行如下操作:把每个点的横坐标乘以a,纵坐标乘以b,将得到的点再向右平移k(k>0)个单位,得到矩形A′B′C′D′及其内部的点(A′B′C′D′分别与ABCD对应),E(2,1)经过上述操作后的对应点记为E′.∴若a=2,b=-3,k=2,则D′(8,-6);(2)依题可列:,解得:,故2b=4,则b=2,∵点E(2,1),∴E′(5,2).20.(2021·广东中考模拟)在平面直角坐标系中,点M的坐标为(a,1-2a).(1)当a=-1时,点M在坐标系的第___________象限(直接填写答案);(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.【答案】(1)第二象限(2).【详解】(1)把把a=-1代入点M的坐标得(-1,3),故在第二象限;(2)∵点M(a,1-2a)平移后的点N的坐标为(a-2,1-2a+1),依题意得解得.。
最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编
中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。
(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。
(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。
对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。
(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。
注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。
精编中考数学总复习五个专题练习汇总
精编中考数学总复习专题练习目录一、因式分解二、相似三角形的应用三、统计与概率-数据收集与处理四、图形认识初步综合能力提升练习五、分式方程专题练习因式分解-提公因式法与公式法的综合应用(含解析)一、单选题1.因式分解2x2﹣8的结果是()A. (2x+4)(x﹣4)B. (x+2)(x﹣2)C. 2 (x+2)(x﹣2)D. 2(x+4)(x﹣4)2.把a3-ab2分解因式的正确结果是()A. (a+ab)(a-ab)B. a(a2-b2)C. a(a+b)(a-b)D. a(a-b)23.把x2y﹣2y2x+y3分解因式正确的是()A. y(x+y)(x﹣y)B. y(x﹣y)2C. y(x2﹣2xy+y2)D. (x﹣2y)24.分解因式2x2—4x+2的最终结果是( )A. 2x(x-2)B. 2(x2-2x+1)C. 2(x-1)2D. (2x-2)25.分解因式a3﹣4a的结果是()A. a(a2﹣4)B. a(a+2)(a﹣2)C. a(a2+2)(a2﹣2)D. a(a2+4)(a2﹣4)6.下列各式分解因式正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2﹣4xy+9y2=(2x﹣3y)2C.2x2﹣8y2=2(x+4y)(x﹣4y)D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)7.因式分解x3﹣4x的结果是()A. x(x2﹣4)B. x(x﹣4)2C. x(x﹣2)(x+2)D. x(x﹣2)28.把多项式x3-2x2+x分解因式结果正确的是()A. x(x2-2x)B. x2(x-2)C. x(x+1)(x-1)D. x(x-1)29.下列因式分解中,正确的是()A. x2y2﹣z2=x2(y+z)(y﹣z)B. ﹣x2y+4xy﹣5y=﹣y(x2+4x+5)C. (x+2)2﹣9=(x+5)(x﹣1)D. 9﹣12a+4a2=﹣(3﹣2a)210.把代数式2x2﹣18分解因式,结果正确的是()A. 2(x2﹣9)B. 2(x﹣3)2C. 2(x+3)(x﹣3)D. 2(x+9)(x﹣9)11.下列分解因式中,结果正确的是()A. x2﹣1=(x﹣1)2B. x2+2x﹣1=(x+1)2C. 2x2﹣2=2(x+1)(x﹣1)D. x2﹣6x+9=x(x﹣6)+9二、填空题12.分解因式:﹣x2+2x﹣1=________.13.分解因式:a3﹣16a=________.14.分解因式:x3﹣2x2+x=________.15.分解因式:x2y﹣4xy+4y=________.16.分解因式:a3﹣ab2=________.三、计算题17. 分解因式(1)(2)18.把下列多项式因式分解(1);(2)19.因式分解:2x2﹣4x+2.20.把下列各式分解因式:(1);(2).21.因式分解:(1)20a﹣15ab(2)x2﹣12x+36(3)﹣a2+1(4)2a(b﹣c)2﹣3b+3c.22.因式分解:(1)(2)(3)(4)9x4-81y4四、解答题23.分解因式:4n2(m﹣1)+9﹣9m.24.分解下列因式:(1)(x+y)2﹣4x2;(2)3m2n﹣12mn+12n.25.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7;(3)分解因式:a2+4ab﹣5b2.五、综合题26.把下列各式因式分解(1)ap﹣aq+am(2)a2﹣4(3)a2﹣2a+1(4)ax2+2axy+ay2.27.先阅读下列材料:我们已经学过将一个多项式分解因式的方泫有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.①分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:,分组分解法:解:原式解:原式②拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:解:原式请你仿照以上方法,探索并解决下列问题:(1)分解因式:;(2)分解因式:.答案解析部分一、单选题1.因式分解2x2﹣8的结果是()A. (2x+4)(x﹣4)B. (x+2)(x﹣2)C. 2 (x+2)(x﹣2)D. 2(x+4)(x﹣4)【答案】C【考点】提公因式法与公式法的综合运用【解析】【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:C.【分析】先利用提公因式法,再利用平方差公式法,分解到每一个因式都不能再分解为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
图形变换不确定型多解题
• 特征与方法:图形变换不确定型多解题,常见有图形的旋转及轴对称 (翻折)等变换,在图形的变换中产生不明确的因素,需要进行分类讨论, 从而产生多解.解决此类问题首先要弄清变换前后哪些量发生变化,哪 些没有变化,找出变化后的数量关系,明确分类讨论的对象,全面考虑, 建立数学模型,从而解决问题.
4
图1 图2
③当∠ABP=90°时,如图 3, ∵∠AOC=∠BOP=60°,∴∠BPO=30°, ∴BP=taOn3B0°= 23=2 3,在直角三角形 ABP 中,AP= 2 32+42=2 7.
3 综上所述,AP 的长为 2 或 2 3或 2 7.
图3
5
(2016 江西模拟)如图,已知点 A 是反比例函数 y=1x的图象与一次函数 y=2x-1 的图象在第一象限的交点,点 P 是 x 轴上一动点,当△OAP 是等腰三角形时,点 P 的坐标为_(-____2_,__0_)或__(_1_,0_)_或__(__2_,__0_)_或__(2_,_0_)___ .
• 【考查内容】本题考查反比例函数和一次函数的性质、 解二元一次方程组、等腰三角形的判定和性质,勾股定 理,坐标与图形,分类讨论思想.本题有两个不确定对 象,一是点P是x轴上正半轴还是负半轴上;二是△OAP 是等腰三角形哪两边为腰.不重不漏进行分类讨论是解 决本题的关键.
6
【解析】解方程组y=1x, y=2x-1,
得x1=-12, y1=-2,
x2=1, y2=1,
则点 A(1,1),OA=2.①如图 1,当点 P 在 x 轴负半轴上且 OA=OP 时,点 P 的坐标为(- 2,0);
②如图 2,当点 P 在 x 轴正半轴上且 OA=OP 时,点 P 的坐标为( 2,0);
7
③如图 3,当点 P 在 x 轴正半轴上且 AO=AP 时,点 P 的坐标为(2,0);
9
• 【例2】 (2016吉安九校联考)如图,△ABC中,∠ACB=90°, ∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角 时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的 值为___________________.
40°或70°或100°
10
【思路点拨】 本题考查旋转的性质:对应点到旋转中心的距离相等;对应点 与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.连接 AP,由旋转 的性质得 OP=OB,则可判断点 P,C 在以 AB 为直径的圆上,利用圆周角定理得∠ BAP=12∠BOP=12α,∠ACP=∠ABP=90°-12α,∠APC=∠ABC=70°,然后分类 讨论:当 AP=AC 时,∠APC=∠ACP,即 90°-12α=70°;当 PA=PC 时,∠PAC =∠ACP,即12α+20°=90°-12α;当 CP=CA 时,∠CAP=∠CAP,即12α+20°=70°, 再分别解关于 α 的方程即可.
3
【解答】 分三种情况讨论: ①当∠APB=90°,点 P 在线段 CO 上时,如图 1, ∵AO=BO,∠APB=90°,∴PO=AO, ∵∠AOC=60°,∴△AOP 为等边三角形, ∴AP=AO=2; ②当∠APB=90°,点 P 在线段 CO 延长线上时,如图 2, ∵AO=BO,∴PO=BO,∵∠AOC=60°, ∴∠BOP=60°, ∴△BOP 为等边三角形, ∵AB=BC=4,∴AP=AB·sin60°=4× 23=2 3;
①如图 1,当 AP=AC 时,∠APC=∠ACP,
即 90°-12α=70°,解得 α=40°.
图1
12
②如图 2,当 PA=PC 时,∠PAC=∠ACP, 即12α+20°=90°-12α,解得 α=70°. ③如图 3,当 CP=CA 时,∠CAP=∠CPA,即12α+20°=70°,解得 α=100°. 综上所述,α 的值为 40°或 70°或 100°.
11
【解答】 连接 AP,如图,
∵点 O 是 AB 的中点,∴OA=OB.∵OB 绕点 O 顺时针旋转 α 角时(0°<α<180°),
得到 OP,∴OP=OB.∴点 P 在以 AB 为直径的半圆上.∴∠BAP=12∠BOP=12α.
∵∠ACB=90°,∴点 P,C 在以 AB 为直径的圆上.
∴∠ACP=∠ABP=90°-12α,∠APC=∠ABC=90°-20°=70°.
2
• 【例1】 (2015江西)如图,在△ABC中,AB=BC=4, AO=BO,P是射线CO上的一个动点,∠AOC=60°,则 当△PAB为直角三角形时,AP的长为_______________ .
2 或 2 3或 2 7
【思路点拨】 本题主要考查等边三角形的判定与性质、含30°角的直角三角形的性质和直角三角形斜边 的中线的性质、勾股定理及点运动型问题.当△PAB为直角三角形时,哪一个内角是直角呢?点P在线段CO上还 是在线段CO延长线上?就需要分情况讨论了,当∠APB=90°时,分两种情况讨论,情况一:利用直角三角形斜 边的中线等于斜边的一半得出结论;情况二:易得∠ABP=60°,利用锐角三角函数得AP的长;当∠ABP=90° 时,易得BP,利用勾股定理可得AP的长.因此分类讨论及数形结合是解答此题的关键.
第二部分 专题综合强化
专题一 多解题
重点类型 ·突破
点运动型多解题
• 特征与方法:满足条件的多解型试题是江西省2013年中考试题开始创设 的一类独创性题型,一直放在填空题的最后一题,考查宗旨主要是进一 步强调分类讨论这一思想方法运用.点运动型多解题,是江西省近几年 来常考的类型,常见于某点在射线、直线、多边形的边上或直角坐标系 的坐标轴上运动,与之相关的图形的边或角产生变化而不明确,从而导 致分情况讨论产生多解.解决此类问题时,利用数形结合方法,采取 “动中求静,静中求解”的策略,以相对静止的瞬间,发现量与量之间 的关系.而在图形的变化中不重不漏地进行分类讨论是解决此类问题的 关键.