《高分子物理》考前复习提纲

合集下载

最新北大医学部复习资料(精品)高分子物理和高分子化学复习提纲

最新北大医学部复习资料(精品)高分子物理和高分子化学复习提纲

一、高分子物理1. 高分子结构特点和结构分类2. 高分子构型、构象的定义和区别3. 柔顺性的定义和分类4. 链段的定义5. 影响高分子链柔顺性的因素(能够详细说明)6. 内聚能密度的定义、表示法和表达式7. 影响高分子结晶能力的因素(能够详细说明)8. 影响高分子结晶过程的因素(能够详细说明)9. 高分子链结构与熔点的关系10. 取向的定义,取向态与结晶态的异同11. 溶解度参数的表达式(与内聚能密度的关系式)12. 高分子运动的特点13. 玻璃化温度、粘流化温度的定义和表示法14. 影响玻璃化温度、粘流化温度、熔体粘度高低的因素(能够详细说明)15. 高分子溶解过程的特点16. 选择高分子的溶剂的3个原则17. 能够写出Hildebrand equation公式,并能用来解释。

18. 高分子溶液、小分子溶液及胶体溶液之间的区别。

19. 相互作用参数的表达式20. θ温度、θ溶剂和θ条件的定义;θ溶液的特征21. 第二维利系数A2的物理意义以及表达式22. 数均分子量、质均分子量、Z均分子量和粘均分子量的表示法和数学表达式23. 多分散系数的表示法和表达式24. 高分子分子量的测定方法,每种方法能测得哪种分子量;如何利用渗透压法求得分子量和第二维利系数二、高分子化学1. 认识并能写出一些结构单元2. 逐步聚合分2类3. 官能度的定义4. 缩聚反应的特点5. 反应程度、聚合度的定义、表示法和表达式6. 缩聚反应的副反应种类7. 掌握缩聚反应中重要的实例——聚酯合成的动力学公式,包括速率表达式、动力学方程式、聚合度的表达式8. 溶液聚合溶剂选择的依据9. 连锁聚合包括哪些步骤10. 共价键有哪2种断裂方式;存在哪2种终止方式11. 结构对发生阳离子聚合、阴离子聚合和自由基聚合的影响12. 掌握自由基聚合的特征、认识一些自由基聚合的引发剂13. 引发剂效率14. 自由基聚合反应的四个步骤对应的动力学方程式、聚合总速率方程式、动力学链长与聚合度的关系式15. 链转移的概念、链转移常数、链转移的种类16. 了解聚合上限温度的概念,影响聚合上限的因素17. 聚合方法包括哪四种?自由基溶液聚合的优缺点?悬浮聚合的优缺点?18. 阳离子聚合的表达式、阳离子聚合的若干种单体种类、引发剂种类、聚合反应的特征、阳离子聚合的链转移包括2种、影响阳离子聚合的因素19. 阴离子聚合的表达式、单体种类、引发剂种类、聚合反应的特征、影响阴离子聚合的因素20. 离子聚合与自由基聚合的比较21. 离子共聚合的特征22. 开环聚合的单体种类;己内酰胺阴离子聚合区别于其它聚合明显的特点23. 聚合物化学反应的特征和种类;聚合物化学反应的影响因素24. 聚合物的相似转变反应的分类;接枝反应的若干方法25. 活性聚合的定义和特征;活性阴离子聚合避免副反应的2个方法;活性阳离子聚合的3个途径;26. 认识原子转移自由基聚合反应式、单体种类、引发剂种类、金属活化剂等27. 聚合物热降解类型及其特点;无规则断链反应与聚合物化学结构的关系28. 影响聚合物稳定性的内因和外因所有高分子的中文通用名与常见的英文缩写认识所有高分子的结构单元壳聚糖(chitosan)透明质酸(hyaluronic acid)海藻酸钠sodium alginate磷脂酰胆碱( PC ,也称为卵磷脂)磷脂酰乙醇胺( PE ,也称为脑磷脂)磷脂酰肌醇(Pl)磷脂丝氨酸(PS)磷脂酰甘油(PG)磷脂酸(PA)聚丙交酯(polylactide)或聚乳酸(polylactic acid,PLA)聚己内酯poly(ε-caprolactone,ε-PCL)聚羟基乙酸(polyglycolide,PGA)及它与聚乳酸的共聚物(polylactic-co-glycolicacid,PLGA)聚氰基丙烯酸酯[poly(alkyl α-cyanoacrylates),PACA]聚膦腈polyphosphazenes聚磷酸酯polyphosphates (PPE)N-异丙基丙烯酰胺(N-isopropylacrylamide, NIPAM)聚( N - 异丙基丙烯酰胺)聚丙烯酸PAAc聚甲基丙烯酸PMAAc聚乙烯亚胺(poly ethylenimine,PEI)胺-聚酰胺(PAMAM)淀粉与纤维素结构是的异同微晶纤维素的用途壳聚糖与纤维素结构是的异同壳聚糖溶液的粘度的影响因素(如何影响)酸的种类、pH、浓度、温度、溶液中离子强度壳聚糖的生物学性质或功能(安全性、可降解性、抗菌、调节细胞生长、凝血等)壳聚糖在医药工业上的应用壳聚糖作为制剂载体上的应用透明质酸与海藻酸的结构、性质与应用磷脂的来源与分类⏹分天然磷脂和合成磷脂⏹天然磷脂包括:PC、PE、PA、PS、PG、PI等⏹合成磷脂包括:⏹DPPC(E)1,2-Di palmitoyl⏹DSPC(E)1,2-Di steroyl⏹DOPC(E)1,2-Di oleoyl⏹DMPC(E) 1,2-Di myristoyl⏹DDPC(E) 1,2-Di decanoyl⏹DEPC(E) 1,2-di erucoyl⏹POPC(E) 1-Palmitoyl,2-Oleoyl磷脂的性质(物理性质与稳定性)对磷脂进行化学改性的必要性PEG化磷脂稳定的机制:1)粒子表面的聚合物保护层增加了粒子间的排斥力2)PEG聚合物在粒子表面形成致密的“构象云”,它具有较强的空间位阻效应3)PEG亲水性,可使粒子表面形成水化膜,掩盖粒子表面疏水性结合位点影响PEG化磷脂微粒体系(体内)稳定性的影响因素(PEG分子量、PEG含量、磷脂的类型、粒径)磷脂的功能磷脂在制剂方面的应用白蛋白在医药方面的应用聚乙二醇的各种表示法聚乙二醇的性质(溶解性、昙点、吸湿、粘度、稳定性、配伍禁忌、安全性)聚乙二醇在制剂上的应用聚氧乙烯蓖麻油和泊洛沙姆的性质(包括配伍禁忌和安全性)泊洛沙姆(F68以及F127)在制剂上的应用聚乳酸降解速度的影响因素(分子量高、结晶度高的降解慢)PLA-PGA降解速度的影响因素(分子量、结晶度、共聚单体的配比)环境响应性材料对环境响应行为(溶解/沉淀、降解、水合作用的改变、膨胀/坍塌、亲水性/疏水性表面、形状变化、构象变化、胶束化)温度敏感材料举例调节温敏特性的手段(改变分子(水凝胶)微观结构-溶胀和收缩,调节亲、疏水性基团,pH敏感材料的结构特性和举例理想的基因载体必须满足以下几个条件:①载体材料本身具有无毒性和良好的生物相容性,释放药物后载体自身可完全生物降解并被代谢出体外;②具有靶向性;③能控制药物的释放。

高分子物理复习重点

高分子物理复习重点

高分子物理复习重点第一章高分子的链结构高分子物理的研究内容(结构—性能)高分子链的结构层次构型、构造、构象、链段定义、柔顺性及影响因素、链柔性的定量表示方法第二章高分子凝聚态结构单晶、球晶形成条件,在偏光显微镜及电镜照片中的特征;球晶对力学性能的影响及控制方法、结晶度对聚合物性能的影响;按液晶态的形成条件对液晶分类;液晶基元的结构;液晶晶型分类及特点、液晶构造、液晶织构形成的原因、种类及意义;聚合物的取向结构的定义、结构特征和性能,高分子合金及体系分类、高分子合金的相容性的判别第三章高分子溶液聚合物溶解需要考虑哪些因素(定性、定量)?或溶剂对聚合物溶解能力的判定;利用X1、A2、Δμ1E及θ温度判定高分子在溶剂中所处的状态(良溶剂、劣溶剂、析出);聚合物溶剂的选择方法;Θ溶液(溶剂、温度条件)第四章聚合物的分子量与分子量分布粘度的五种表表示方法(含单位);采用毛细管粘度计测定分子量的原理方法,采用凝胶渗透色谱法测定分子量分布的原理(体积排除理论)第五章高分子分子运动和转变掌握非晶态聚合物、交联聚合物、晶态聚合物的热机械曲线特征,并能绘制并标出黏弹行为的五个区域(指温度-形变曲线(即热机械曲线)的划分(含T g、T f标注),及分子量大小对曲线影响。

了解塑料、橡胶、纤维的使用上限、下限温度;掌握Tg转变温度的测定方法(膨胀计法、量热法与温度形变法);软化温度的定义及表示方法;玻璃化转变理论—等自由体积理论;影响玻璃化转变温度的因素;影响结晶能力的因素;影响熔点的因素;了解高分子熔点与小分子熔点的区别及测定熔点的方法;第六章橡胶弹性橡胶高弹性的本质、具有橡胶弹性的条件、应力、应变、模量、柔量、泊松比之间的关系,常见材料的泊松比(如橡胶)、热塑性弹性体定义。

第七章聚合物的粘弹性虎克定律、牛顿流动定律、高聚物粘弹性定义、粘弹性分类、应力松弛、蠕变(定义及形变包含几种类型)、滞后、力学损耗;交联聚合物与线型聚合物的应力松弛曲线和蠕变曲线;掌握Maxwell 运动方程和Kelvin运动方程的推导,掌握可模拟哪类聚合物,不模拟哪类聚合物,掌握粘弹性的时温等效原理及意义。

高分子物理复习提要

高分子物理复习提要

1’ 高分子化学组成,高分子链接键接方式、序列,分子构造,分子链构型2‘ 分子链大小(分子量,均方末端距,均方半径)分子链在空间的形态(构象、柔顺性)3’ 晶态,非晶态,液晶态,取向结构4‘ 多组分分子链体系,高分子生物体结构一级与二级结构统称为链结构,四级结构为高级结构,三级与四级结构统称聚集态结构1.碳碳PE PS PP PVC 可塑性好,键能低,强度低,化学性质差,耐热性差,不易水解2.杂链高分子PI PSU PEO 易水解,化学稳定性差,芳香族用于工程塑料3.元素高分子PDMS 可塑性和弹性好,热稳定性优良,但强度低4.三维网状结构的交联高分子受热不能熔融,加入溶剂不可以溶解,只能溶胀——热固性材料(①对线型高分子硫化或过氧化物交联②使用多官能团单体③具有一定分子量的齐聚物端基交联)交联度高弹性变差。

两交联点间平均分子量越小,交联密度越高。

5.梯形高分子热稳定性好,高强度高模量使用交联剂可以提高性能(1)一级结构(近程结构)1.线型高分子:柔顺性好,易结晶,高密度——热塑性高分子2.支链短的高分子规整度差,不易结晶;长支链的高分子流动黏度大。

整体结晶度密度强度降低。

3.无规支化高分子规整性差,不易结晶,强度弱(低密度聚乙烯LDPE:软塑料制品和薄膜);几乎无支化链高分子规整性好,易结晶,强度好(高密度聚乙烯HDPE:硬塑料制品、管、板材和包装容器)4.构型:几何异构(反式结构规整度好,易结晶;天然橡胶以顺式结构为主)光学异构(全同立构和间同立构规整性好,易于结晶,通常不具有旋光性,配位聚合可得到;自由基聚合多为无规立构)(2)二级结构(远程结构)1.高分子链构象:低温大部分以全反式构象(锯齿状)为主(聚丙烯PP为旁式构象和全反式构象交替的螺旋结构,一个晶胞中有单体单元12个,单斜晶系)高温时柔性高分子成为无规线团(全反式和左旁式构象和右旁式构象均有)刚性大分子以伸展的棒状构象存在(单键内旋转不易发生)2.柔顺性:热力学平衡下高分子卷曲程度越高,静态柔顺性越好;构象转变越容易越快动态柔顺性越好。

《高分子物理》复习提纲.

《高分子物理》复习提纲.

《高分子物理》复习提纲绪言一、高分子科学的发展●1920年德国Staudinger提出高分子长链结构的概念。

●此前1839年美国人Goodyear发明了天然橡胶的硫化。

1855年英国人Parks制得赛璐璐塑料(硝化纤维+樟脑)。

1883年法国人de Chardonnet发明了人造丝。

●H. Staudinger(德国):把“高分子”这个概念引进科学领域,并确立了高分子溶液的粘度与分子量之间的关系(1953年诺贝尔奖)●K.Ziegler (德国), G.Natta (意大利):乙烯、丙烯配位聚合(1963年诺贝尔奖)●P. J. Flory (美国):聚合反应原理、高分子物理性质与结构的关系(1974年诺贝尔奖)。

●H. Shirakawa白川英树(日本), Alan G. MacDiarmid (美国), Alan J. Heeger (美国):对导电聚合物的发现和发展(2000年诺贝尔奖)。

●de Gennes(法国):软物质、普适性、标度、魔梯。

●我国高分子领域的中科院院士:王葆仁、冯新德、何炳林、钱保功、钱人元、于同隐、徐僖、王佛松、程镕时、黄葆同、卓仁禧、沈家骢、林尚安、沈之荃、白春礼、周其凤、杨玉良、曹镛等。

二、高分子物理的教学内容高分子物理揭示高分子材料结构与性能之间的内在联系及其基本规律。

高分子结构是高分子性能的基础,性能是高分子结构的反映,高分子的分子运动是联系结构与性能的桥梁。

•高分子的结构:包括高分子链的结构和凝聚态结构,链段、柔顺性、球晶、片晶、分子量和分子量分布、θ溶液概念。

•高分子材料的性能:力学性能、热、电、光、磁等性能。

力学性能包括拉伸性能、冲击性能等、强度、模量、银纹、剪切带等概念。

•高分子的分子运动:玻璃化转变、粘弹性、熵弹性、结晶动力学、结晶热力学、熔点、流变性能、粘度、非牛顿流体。

•原理与方程:WLF方程、Avrami方程、橡胶状态方程、Boltzmann叠加原理等等。

高分子物理复习资料

高分子物理复习资料

高分子物理复习资料第一章高分子链的结构高分子结构的层次:●高分子链的结构:高分子的链结构又称一级结构,指的是单个分子的结构和形态,它研究的是单个分子链中原子或基团的几何排列情况。

包含一次结构和二次结构。

●高分子的一次结构:研究的范围为高分子的组成和构型,指的是单个高分子内一个或几个结构单元的化学结构和立体化学结构,故又称化学结构或近程结构。

●高分子的二次结构:研究的是整个分子的大小和在空间的形态(构象)。

例如:是伸直链、无规线团还是折叠链、螺旋链等。

这些形态随着条件和环境的变化而变化,故又称远程结构。

●高分子的聚集态结构:高分子的聚集态结构又称二级结构,是指具有一定构象的高分子链通过范德华力或氢键的作用,聚集成一定规则排列的高分子聚集体结构。

§1.1组成和构造1、结构单元的化学组成:按化学组成不同聚合物可分成下列几类:①碳链高分子(C)分子链全部由碳原子以共价键相连接而组成,多由加聚反应制得。

如:聚苯乙烯(PS)、聚氯乙烯(PVC)、聚丙烯(PP)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯PMMA。

②杂链高分子(C、O、N、S)分子主链上除碳原子以外,还含有氧、氮、硫等二种或二种以上的原子并以共价键相连接而成。

由缩聚反应和开环聚合反应制得。

如:聚酯、聚醚、聚酰胺、聚砜。

POM、PA66(工程塑料)PPS、PEEK。

③元素高分子(Si、P、Al等)主链不含碳原子,而由硅、磷、锗、铝、钛、砷、锑等元素以共价键结合而成的高分子。

侧基含有有机基团,称作有机元素高分子,如: 有机硅橡胶有机钛聚合物侧基不含有机基团的则称作无机高分子,例如:梯形和双螺旋型高分子,分子的主链不是一条单链而是像“梯子”和“双股螺线”那样的高分子链。

※表1-1,一些通用高分子的化学结构,俗称2、高分子的构型:构型(configurafiom):指分子中由化学键所固定的原子在空间的几何排列。

这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

何曼君 高分子物理复习提纲

何曼君 高分子物理复习提纲

第一章概论 1.1 高分子科学发展简史 1.2 从小分子到大分子 1.3 高分子的分子量和分子量分布 1.3.1 各种平均分子量的定义 1.3.2 分子量分布的表示方法 1.4 分子量和分子量分布的测定方法 1.4.1 渗透压法 1.4.2 蒸气压渗透法 1.4.3 光散射法 1.4.4 飞行时间质谱 1.4.5 黏度法 1.4.6 体积排除色谱法 1.5 高分子物质的类型 1.6 聚合物的玻璃化转变习题与思考题参考文献第二章高分子的链结构 2.1 高分子链的构型 2.1.1 结构单元的键接方式 2.1.2 结构单元的空间构型 2.1.3 高分子共聚物 2.1.4 高分子链的支化 2.1.5 高分子链的交联 2.2 高分子链的构象2.2.1 高分子链的内旋转构象和链的柔顺性 2.2.2 理想柔性链的均方末端距 2.2.3 线型高分子的均方回转半径 2.2.4 用光散射法测定高分子链的均方回转半径 2.2.5 蠕虫状链附录理想高分子链末端距的概率分布函数习题与思考题参考文献第三章高分子的溶液性质 3.1 聚合物的溶解过程和溶剂选择 3.1.1 聚合物溶解过程的特点3.1.2 聚合物溶剂的选择 3.2 Flory-Huggins高分子溶液理论 3.2.1 高分子溶液的混合熵 3.2.2 高分子溶液的混合热 3.2.3 高分子溶液的化学位 3.3 高分子的“理想溶液” 3.4 Flory-Krigbaum稀溶液理论 3.5 高分子溶液的相平衡和相分离 3.6 高分子的标度概念和标度定律 3.7 高分子的亚浓溶液 3.7.1 稀溶液向亚浓溶液的过渡3.7.2 亚浓溶液中高分子链的尺寸 3.7.3 亚浓溶液的串滴模型 3.7.4 亚浓溶液的渗透压 3.8 温度和浓度对溶液中高分子链尺寸的影响 3.9 高分子冻胶和凝胶 3.10 聚电解质溶液 3.11 高分子在溶液中的扩散 3.12 柔性高分子在稀溶液中的黏性流动习题与思考题参考文献第四章高分子的多组分体系 4.1 高分子共混物的相容性 4.2 多组分高分子的界面性质 4.3 高分子嵌段共聚物熔体与嵌段共聚物溶液 4.3.1 嵌段共聚物的微相分离 4.3.2 嵌段共聚物的溶液性质习题与思考题参考文献第五章聚合物的非晶态 5.1 非晶态聚合物的结构模型 5.2 非晶态聚合物的力学状态和热转变 5.3 非晶态聚合物的玻璃化转变 5.3.1 玻璃化温度的测量 5.3.2 玻璃化转变理论 5.3.3 影响玻璃化温度的因素 5.4 非晶态聚合物的黏性流动 5.4.1 聚合物黏性流动时高分子链的运动 5.4.2 黏流态中高分子链的蛇行和管道模型 5.4.3 影响黏流温度的因素5.4.4 聚合物熔体的黏度和各种影响因素 5.5 聚合物的取向态 5.5.1 非晶聚合物的取向和解取向 5.5.2 取向度及其测定方法 5.5.3 高分子链高度取向、局部链段无规取向的非晶聚合物附录聚合物的玻璃化温度习题与思考题参考文献第六章聚合物的结晶态. 6.1 常见结晶性聚合物中晶体的晶胞 6.2 结晶性聚合物的球晶和单晶 6.3 结晶聚合物的结构模型 6.4 聚合物的结晶过程 6.4.1 结晶速度及其测定方法 6.4.2 Avrami方程用于聚合物的结晶过程 6.4.3 温度对结晶速度的影响 6.4.4 其他因素对结晶速度的影响 6.5 结晶聚合物的熔融和熔点 6.5.1 结晶温度对熔点的影响6.5.2 晶片厚度对熔点的影响 6.5.3 拉伸对聚合物熔点的影响 6.5.4 高分子链结构对熔点的影响 6.5.5 共聚物的熔点 6.5.6 杂质对聚合物熔点的影响 6.6 结晶度对聚合物物理和机械性能的影响 6.6.1 结晶度概念及其测定方法 6.6.2 结晶度大小对聚合物性能的影响 6.6.3 分子量等因素对结晶聚合物性能的影响 6.7 聚合物的液晶态6.7.1 高分子液晶的结构 6.7.2 向列型高分子液晶的流动特性 6.7.3 高分子液晶的应用习题与思考题参考文献第七章聚合物的屈服和断裂7.1 聚合物的拉伸行为红尘紫陌,有轰轰烈烈的昨日,也有平淡如水的今天。

高分子物理复习提纲(分子运动及其介电性能)

高分子物理复习提纲(分子运动及其介电性能)

高分子物理复习提纲(分子运动及其介电性能)第三章高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。

除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。

高分子热运动是一个松驰过程。

在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -= 式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。

因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小,τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。

②温度升高使高聚物发生体积膨胀。

升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能,0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。

2. 高聚物的力学状态和热转变在一定的力学负荷(砝码)下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复。

这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t称为玻璃态转变温度(T g).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变。

高物课程复习大纲

高物课程复习大纲

高分子物理复习大纲第一章高分子的链结构基本内容和教学重点、难点:1、高分子科学的建立与发展;(了解)2、高分子物理所研究的主要内容;(了解)3、高分子结构的基本概念;一次结构(近程结构)涉及的结构内容;4、分子链化学组成、结构单元、键接方式、分子链构造及共聚物序列分布对聚合物性能的影响;(重点)5、聚合物构型的概念及构型对聚合物性能的影响;(重点、难点)6、高分子链段和构象的概念;(重点)7、聚合物在结晶态的构象以及在非晶态和溶液中的构象;8、链柔性产生的原因,静态链柔性和动态链柔性;9、主链结构对链柔性的影响;(重点、难点)10、均方末端距和均方回转半径的定义;11、等效自由结合链与自由旋转链的均方末端距;12、链柔性的表征方法;(重点)思考题:聚合物各个结构层次与聚合物的性能有何种关系?第二章高分子的聚集态结构基本内容和教学重点、难点:1、聚合物分子间作用力与聚集态结构的关系;(重点)2、内聚能和内聚能密度的概念;(重点)3、聚乙烯、聚丙烯的晶胞结构;4、单晶、球晶、纤维晶和串晶晶体的结构特点以及所对应的形成条件;(重点)5、结晶聚合物的两相结构模型、折叠链模型、插线板模型;(了解)6、非晶聚合物的无规线团模型和两相球粒模型;(了解)7、结晶度的概念(重点)及其测定方法;(掌握)8、结晶度对聚合物力学性能、热性能和光学性能的影响;(重点、难点)9、液晶的基本概念和基本类型;10、高分子液晶的特殊流变行为;(重点、难点)11、高分子液晶的应用——溶液纺丝;(重点)12、取向的概念;(重点)13、聚合物取向机理和取向态结构的稳定;(重点、难点)14、聚合物取向的应用——拉伸和热定型;(重点)15、聚合物共混的目的和意义;16、共混相容性的判断;(重点)17、非均相共混体系的聚集态结构形态;(重点)18、共混改性的应用—如塑料增韧和橡胶增强;(难点)讨论题:在聚合物纺丝工艺中,都有牵伸和热定型两道工序,为什么?思考题: PE因结晶方法、热处理和力学处理不同而呈现出不同的结晶形态,请简述下面各种形态结构的特征及获得该形态结构的方法。

高分子物理复习提要

高分子物理复习提要

高分子物理复习提要1’ 高分子化学组成,高分子链接键接方式、序列,分子构造,分子链构型2‘ 分子链大小(分子量,均方末端距,均方半径)分子链在空间的形态(构象、柔顺性)3’ 晶态,非晶态,液晶态,取向结构4‘ 多组分分子链体系,高分子生物体结构一级与二级结构统称为链结构,四级结构为高级结构,三级与四级结构统称聚集态结构1.碳碳PE PS PP PVC 可塑性好,键能低,强度低,化学性质差,耐热性差,不易水解2.杂链高分子PI PSU PEO 易水解,化学稳定性差,芳香族用于工程塑料3.元素高分子PDMS 可塑性和弹性好,热稳定性优良,但强度低4.三维网状结构的交联高分子受热不能熔融,加入溶剂不可以溶解,只能溶胀——热固性材料(①对线型高分子硫化或过氧化物交联②使用多官能团单体③具有一定分子量的齐聚物端基交联)交联度高弹性变差。

两交联点间平均分子量越小,交联密度越高。

5.梯形高分子热稳定性好,高强度高模量使用交联剂可以提高性能(1)一级结构(近程结构)1.线型高分子:柔顺性好,易结晶,高密度——热塑性高分子2.支链短的高分子规整度差,不易结晶;长支链的高分子流动黏度大。

整体结晶度密度强度降低。

3.无规支化高分子规整性差,不易结晶,强度弱(低密度聚乙烯LDPE:软塑料制品和薄膜);几乎无支化链高分子规整性好,易结晶,强度好(高密度聚乙烯HDPE:硬塑料制品、管、板材和包装容器)4.构型:几何异构(反式结构规整度好,易结晶;天然橡胶以顺式结构为主)光学异构(全同立构和间同立构规整性好,易于结晶,通常不具有旋光性,配位聚合可得到;自由基聚合多为无规立构)(2)二级结构(远程结构)1.高分子链构象:低温大部分以全反式构象(锯齿状)为主(聚丙烯PP为旁式构象和全反式构象交替的螺旋结构,一个晶胞中有单体单元12个,单斜晶系)高温时柔性高分子成为无规线团(全反式和左旁式构象和右旁式构象均有)刚性大分子以伸展的棒状构象存在(单键内旋转不易发生)2.柔顺性:热力学平衡下高分子卷曲程度越高,静态柔顺性越好;构象转变越容易越快动态柔顺性越好。

高分子物理复习提纲

高分子物理复习提纲

⾼分⼦物理复习提纲⼀.名词解释(16分)1.构型构型是对分⼦中的最近邻原⼦间的相对位置的表征。

构型是指分⼦中由化学键所固定的原⼦在空间的⼏何排列。

这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

构型不同的异构体有旋光异构和⼏何异构两种。

(构型是指某⼀个原⼦的取代基在空间的排列)2.构象:所谓构象是这种由于绕C-C单键内旋转⽽形成的空间排列。

(由于单键内旋转⽽产⽣的分⼦在空间的不同形态)3.熔融指数:在⼀定温度下,熔融状态的⾼聚物在⼀定负荷下,⼗分钟从规定直径和长度的标准⽑细管中流出的重量(克数)。

熔融指数越⼤,则流动性越好。

4.聚集态:⾼分⼦的聚集态结构是指⾼分⼦链之间的排列和堆砌结构,也称超分⼦结构,(是指⾼分⼦材料整体的内部结构,包括晶态,⾮晶态,取向态结构,液晶态结构以及织态结构)5.交联:⾼分⼦链之间通过⽀链联结成⼀个三维空间⽹型⼤分⼦时就称为交联,交联的程度⽤交联度表⽰,交联度通常⽤相邻两个交联点之间的链的平均分⼦量Mc来表⽰,交联度愈⼤,Mc愈⼩。

6.⽀化度:⽀化⾼分⼦是指在⾼链上存在⽀链的⾼分⼦,⽀化⾼分⼦有三种类型:星型⽀化、梳型⽀化和⽆规⽀化。

⾼分⼦发⽣了⽀化,⽀化的程度⽤⽀化度来表⽰,⽀化度是指⽀化点密度或两相邻⽀化点之间的链的平均分⼦量。

7.时温等效原理:前⾯我们讨论了在⼀定温度下⾼聚物粘弹性的时间依赖性,即如果作⽤⼒时间远远⼤于它的松弛时间时,⾼聚物表现出粘性流动,处于粘流态;如果作⽤⼒时间远远⼩于它的松弛时间时,⾼聚物处于玻璃态;如果作⽤⼒时间与它的松弛时间同数量级时,⾼聚物表现出粘弹性,处于⾼弹态。

像作⽤时间⼀样,温度T是影响⾼聚物性能的重要参数,随着温度从低到⾼,包括⼒学性能在内的许多性能都将发⽣很⼤变化,⾼聚物的三种⼒学状态玻璃态、⾼弹态和粘流态将依次出现。

⾼聚物在不同温度下或在不同外⼒作⽤时间下都显⽰出⼀样的三种⼒学状态和两种转变,表明温度和时间对⾼聚物的松弛过程的作⽤类似,对粘弹性的影响具有某种等效的作⽤。

高分子物理复习资料

高分子物理复习资料

高分子物理复习资料高分子物理复习资料高分子物理是研究高分子材料的物理性质和行为的学科,它在材料科学和工程领域中具有重要的地位。

对于学习高分子物理的学生来说,复习资料是提高复习效率和理解知识的重要工具。

本文将介绍一些高分子物理复习资料的内容和使用方法。

第一部分:高分子物理基础知识在复习高分子物理时,首先需要掌握一些基础知识。

这包括高分子的结构与性质、高分子的物理性质和高分子的力学性质等。

对于这些知识,可以通过查阅教材和课堂笔记来进行复习。

同时,还可以通过阅读相关的学术论文和综述来深入了解这些知识。

第二部分:高分子物理实验技术高分子物理实验技术是研究高分子物理的重要手段。

在复习时,可以通过学习实验技术来加深对高分子物理的理解。

这包括高分子的合成方法、高分子的表征方法和高分子的测试方法等。

可以通过查阅相关的实验教材和实验手册来学习这些实验技术。

第三部分:高分子物理理论模型高分子物理理论模型是解释高分子物理现象的重要工具。

在复习时,可以通过学习理论模型来深入理解高分子物理的本质。

这包括高分子的统计力学模型、高分子的自洽场理论和高分子的动力学模型等。

可以通过阅读相关的学术论文和专著来学习这些理论模型。

第四部分:高分子物理应用研究高分子物理的应用研究是将高分子物理理论应用于实际问题的重要领域。

在复习时,可以通过学习应用研究来了解高分子物理在材料科学和工程领域中的应用。

这包括高分子材料的功能性和高分子材料的性能调控等。

可以通过阅读相关的学术论文和专著来学习这些应用研究。

第五部分:高分子物理的前沿研究高分子物理的前沿研究是推动高分子物理学科发展的重要动力。

在复习时,可以通过学习前沿研究来了解高分子物理的最新进展。

这包括高分子自组装和高分子纳米材料等。

可以通过阅读相关的学术论文和综述来学习这些前沿研究。

总结:高分子物理复习资料的内容和使用方法多种多样,可以根据自己的学习需求选择合适的资料进行复习。

通过系统地学习高分子物理的基础知识、实验技术、理论模型、应用研究和前沿研究,可以提高对高分子物理的理解和应用能力。

高分子物理期末复习提纲汇总

高分子物理期末复习提纲汇总

高分子物理期末复习提纲第一章:1、高分子链的主链类型;碳链高分子:主链(链原子)完全由C原子组成。

杂链高分子:主链原子除C外,还含O,N,S等杂原子。

元素有机高分子:主链原子由Si,B,Al,O,N,S,P等杂原子组成。

2、高分子链的构型及构象;构型是指分子中由化学键所固定的原子在空间的排列。

这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

旋光异构,几何异构,键接异构构象可定义为由于单键的内旋转而产生的分子在空间的不同形态。

3、高斯链的概念;高斯线团模型对大分子链作如下简化假设:1,设大分子链由Z个链段组成,Z>>1,每个链段为一统计单元;2,每个统计单元均视为长度为b的刚性小棒;3,统计单元之间自由连接,在空间自由取向;4,大分子链本身不占有体积。

符合这种假定的分子链称高斯链,其末端距的分布函数符合高斯分布函数4、高分子链的柔顺性;柔顺性----高分子链能够改变其构象的性质。

3高分子的柔顺性由两类因素决定,一是结构因素,另一类是温度、溶剂、外力、时间等外部因素决定内旋转愈容易,则链的柔顺性愈好。

主链结构对高分子链柔顺性影响很显著(1)碳链高分子:a不饱和碳链高分子比饱和碳链高分子柔顺。

PB>PE IR>PP PVC>CRb主链含有苯环的高分子和有共轭双键的高分子柔顺性差。

聚苯醚(PPO)聚苯聚乙炔(2)杂链高分子和元素高分子:Si-O > C-N > C-O >C-C硅橡胶尼龙类酯类烯类侧基-侧基的极性、体积和对称性1)极性侧基极性的大小:极性越大,链的柔顺性越小。

PP> PVC > PAN极性多少:极性基增多,则柔顺性减小。

氯化聚乙烯当含氯量小时是一种弹性好的橡胶,随着含氯量的增加,链的柔顺性下降,弹性下降最后变形一种硬质材料。

聚乙烯> 聚氯乙烯> 1,2聚二氯乙烯对称性:取代基对称分布时,柔顺性好聚偏二氯乙烯> 聚氯乙烯2)非极性侧基当侧基是柔性时,侧基越长,链的柔性越好。

高分子物理期中复习大纲1~4章

高分子物理期中复习大纲1~4章

第一章高分子的链结构一、名词解释1、高分子链结构:单个高分子的结构和形态高分子的聚集态结构:高分子凝聚在一起形成的高分子材料本体的内部结构2、近程结构:是构成高分子的最基本微观结构,包括其组成和构型。

远程结构:大分子链的构象,即空间结构,以及链的柔顺性等。

3、链段:高分子链上划分出的可以任意取向的最小单元或高分子链上能够独立运动的最小单元称为链段。

链节:许多重复单元连接成线形大分子,类似一条链子,因此重复单元俗称链节。

4、静态链柔性:高分子链处于热力学稳定状态时的蜷曲程度。

动态链柔性:高分子链从一种平衡构象状态转变到另一种平衡构象状态的难易程度。

5、均方末端距:末端距的平方的平均值,通常用来表征高分子链的尺寸。

均方回转半径:从高分子链的质量中心到各链段的质量中心距离的平方的平均值。

6、自由结合链:假定分子是由足够多的不占体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中每个键在任何方向取向的几率都相同。

自由旋转链:假定分子是由足够多的不占体积的化学键自由结合而成,链中每一个键都可以在键角所允许的方向自由转动,不受单键内旋转的位垒限制。

等效自由结合链:如果将真实大分子链中的链段等同于自由结合链中的化学键,这种由n个链段组成的高分子链就是一个自由结合链。

e高斯链:末端距符合高斯分布的高分子链。

7、刚性因子:实测的无扰均方末端距与自由旋转链的均方末端距比值的平方根。

分子无扰尺寸:θ状态(无扰状态)下测得的高分子尺寸(单位分子量均方末端距的平方根)名词解释用前面的计算时根据后面的定义等效链段长度:以等效自由结合链描述分子尺寸时的链段长度。

特征比:无扰链与自由结合链均方末端距的比值。

二、问答题1、高分子可分为哪些结构层次?各个层次对聚合物的性能起什么作用?答:高分子结构包括高分子的链结构和高分子的聚集态结构,高分子的链结构包括近程结构和远程结构。

近程结构包括化学组成、结构单元链接方式、构型、支化与交联。

高分子物理复习提纲

高分子物理复习提纲

《高分子物理》复习提纲第章高分子链的结构一、概念:构型与构象、链段、均方末端距、等规立构与无规立构、顺反异构、链的柔顺性、高斯链、无扰尺寸二、知识点:§组成与构造●高分子结构分为高分子链结构和与高分子聚集态结构。

●高分子链的结构指高分子的结构和形态。

包括:①化学组成、构造、构型、共聚物的序列结构,为近程结构或一级结构。

②分子的大小与形态,为远程结构或二级结构,如伸直链、折叠链、钜齿链,螺旋链、无规线团。

●高分子聚集态结构(三级结构)是指高分子链之间的几何排列和堆砌状态。

包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织态结构。

●高分子链结构决定的聚合物的基本性能特点,凝聚态结构与材料的性能有着直接关系。

、第二页的※表,一些常见高分子的化学结构、缩写和俗称。

、构型()指分子中由化学键所固定的原子在空间的几何排列。

这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

旋光异构几何异构和链接异构。

●旋光异构:全同立构(或等规立构)、间同立构(或间规立构)、无规立构。

由于内消旋或外消旋作用,即使等规度很好的高分子也没有旋光性。

一般自由基聚合只能得到无规立构聚合物。

只有用特殊催化剂如催化剂进行配位聚合得到有规立构聚合物。

例如:全同的结晶240℃;无规为不结晶,软化温度80℃。

全同或间同的聚丙烯,结构比较规整,容易结晶,可纺丝做成纤维,而无规聚丙烯却是一种橡胶状的弹性体。

几何异构(顺反异构)例如:用钴、镍和钛催化系统可制得顺式构型含量大于的聚丁二烯称作顺丁橡胶。

分子链与分子链之间的距离较大,不易结晶,在室温下是一种弹性很好的橡胶。

用钒或醇烯催化剂所制得的聚丁二烯,主要为反式构型,分子链的结构比较规整,容易结晶,在室温下是弹性很差的塑料。

又如:、顺式异戊二烯的天然橡胶28℃,-73℃,柔软弹性好。

反式异戊二烯(古塔波胶)º、56℃53℃,室温硬韧。

●键接异构:对单烯类单体聚合有头一头,头一尾,尾一尾键合。

高分子物理复习资料

高分子物理复习资料

高分子物理期末考试复习资料1、高聚物的力学三态指的是:玻璃态、高弹态和粘流态。

2、熔限指的是结晶聚合物熔融开始至终了的过程中存在的一较宽的温度范围。

3、聚合物的聚合度一定要达到某一数值后,才能显示出适用的机械强度,这一数值称为临界聚合度。

一般情况下,聚合物的机械强度随聚合度的增大而非线性增大。

(详见《高分子化学》P8)4、构型与构象的区别:①定义:构型是指分子中由化学键所固定的原子在空间的几何排列,而构象则是由于单键的内旋转而产生的分子中原子在空间位置上的变化;②特点:构型是稳定的,要改变构型,必须经过化学键的断裂和重组;而构象是通过单键的内旋转实现的(热运动),是不稳定的,具有统计性,改变构象不需要打破化学键。

构型分为三种:几何异构(顺反异构),旋光异构(立体异构),键接异构体。

5、支化与交联的区别:支化:分子链上带有一些长短不一的支链高分子,有星型、梳型和无规支化之分;交联:分子链联结成的三维空间网络结构。

支化高分子能溶解在某些溶剂中,而交联高分子除交联度不太大时能在溶剂中发生一定的溶胀外,在任何溶剂中都不能溶解,受热时也不熔融。

6、1,2—二氯乙烷的内旋转位能:顺式重叠构象位能最高(最不稳定),反式交错构象能量最低(结构最稳定),因此结晶时大多数分子呈反式构象,所以在1,2—二氯乙烷晶体中反式能量大于(﹥)旁式。

7、高分子链的柔顺性:高分子链能够(通过内旋转作用)改变其构象的性质。

表征高分子链柔顺性的主要参数有:⑴空间位阻参数(或称刚性因子σ),σ值愈大,柔顺性愈差;⑵无扰尺寸A ,A 值愈小,分子链愈柔顺;⑶特征比Cn ,Cn 值越小,链的柔顺性越好;(4)链段长度b ,b 值愈小,链愈柔顺。

刚性因子σ即实测的无扰均方末端距(h 02)与自由旋转链的均方末端距(h f,r 2)之比:σ=[ h 02/ h f,r 2]1/2;特征比Cn 定义为:无扰链与自由连接链均方末端距的比值,即Cn= h 02/nl 2(对于自由连接链Cn=h 02/nl 2=1;对于完全伸直链Cn= h 02/nl 2=n );无扰尺寸A 定义为单位分子量的均方末端距,即A=[ h 02/M ]1/2 8、在数学上处理均方末端距的方法主要有:①几何计算法②统计计算法,处理后的结果自由结合链均方末端距一样(相同)。

839高分子物理考试大纲

839高分子物理考试大纲

839高分子物理考试大纲考试大纲:1、高分子的链结构。

高分子链的构型,高分子链的构象。

2、高分子的溶液性质。

聚合物的溶解过程和溶剂选择,Flory-Huggins高分子溶液理论,高分子的“理想溶液”,Flory-Krigbaum稀溶液理论,高分子溶液的相平衡和相分离,高分子的标度概念和标度定律,高分子的亚浓溶液,温度和浓度对溶液中高分子链尺寸的影响,高分子冻胶和凝胶,聚电解质溶液。

3、高分子的多组分体系。

高分子共混物的相容性,多组分高分子的界面性质,高分子嵌段共聚物熔体与嵌段共聚物溶液。

4、聚合物的非晶态。

非晶态聚合物的结构模型,非晶态聚合物的力学状态和热转变,非晶态聚合物的玻璃化转变,非晶态聚合物的取向态。

5聚合物的结晶态。

常见结晶性聚合物中晶体的晶胞,结晶性聚合物的球晶和单晶,结晶聚合物的结构模型,聚合物的结晶过程,结晶聚合物的熔融和熔点,结晶度对聚合物物理和机械性能的影响,结晶聚合物的取向,聚合物的液晶态。

6、聚合物的屈服和断裂。

聚合物的拉伸行为,聚合物的屈服行为,聚合物的断裂理论和理论强度,影响聚合物实际强度的因素。

7、聚合物的高弹性与黏弹性。

高弹性的热力学分析,高弹性的分子理论,交联网络的溶胀,聚合物的力学松弛——黏弹性,黏弹性的力学模型,黏弹性与时间、温度的关系——时温等效原理,聚合物黏弹性的实验研究方法,聚合物的松弛转变及其分子机理。

8、聚合物的流变性。

非牛顿流体的流动,聚合物熔体的切黏度,多组分聚合物材料的流变行为,聚合物熔体的弹性效应,拉伸黏度。

9、聚合物的其他性质。

聚合物的电学性质、光学性质,聚合物的透气性,聚合物的热性能,高分子的表面和界面性质。

10、聚合物的分析与研究方法,聚合物的分子量和分子量分布及其测定方法。

参考书目:1、《高分子物理》(第三版)何曼君、张红东等编著,复旦大学出版社,2007. 32、《高分子物理》(第三版)金日光、华幼卿主编,化学工业出版社,2006.11。

高分子物理复习提纲

高分子物理复习提纲

高分子物理复习提纲第一章:概论(1)问答题:1。

**分子量及分布p72。

**常用的统计分子量及定义式p5数均分子量:重均分子量:z均分子量:粘均分子量:3。

**渗透压法,凝胶色谱法的原理?p11-18(2)名词解释:1。

分布宽度指数:所谓分布宽度指数是指试样中的各个分子量与平均分子量之间的差值的平方的平均值。

2。

多分散系数:分布宽度指数与两种平均分子量的比值有关,d称为多分散系数。

第二章:高分子的链结构(1)问答题:0。

高分子结构的内容?答:高分子结构的内容可分为链结构和聚集态结构两个组成部分。

链结构又分为近程结构和远程结构。

近程结构包括构造与构型。

近程结构属于化学结构,又称一级结构。

远程结构包括分子的大小与形态。

链的柔顺性及分子在各种环境中所采取的构象。

远程结构又称二级结构。

链结构指单个分子的结构和形态。

聚集结构是指高分子材料整体的内部结构,包括晶态结构,非晶态结构,取向态结构,液晶态结构以及织态结构。

前四者是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。

织态结构和高分子在生物体中得结构则属于更高级的结构。

1。

线形,支化,交联高聚物的异同点?答:一般高分子都是线形的,分子长链可以蜷曲成团,也可以伸展成直线。

线形高分子的分子间没有化学键结合,在受热或者受力情况下分子间可互相移动,因此线形高聚物可以在适当溶剂中溶解,加热时可以熔融,易于加工成型。

支化高分子的化学性质与线形分子相似,但支化对物理机械性能的影响有时相当的显著。

支化程度越高,支链结构越复杂,则影响越大。

例如无规支化往往降低高聚物薄膜的拉伸度。

以无规支化高分子制成的橡胶,其抗张强度及伸长率均不及线形分子制成的橡胶。

交连与支化是有本质区别的,支化的高分子能够溶解,而交联的高分子是不溶不熔的,只有当交联度不太大时能在溶剂中溶胀。

高分子的交联度不同,性能也不同,交联度小的橡胶弹性较好,交联度大的橡胶弹性就差,交联度再增加,机械强度和硬度都将增加,最后将失去弹性而变脆。

高分子物理复习要点

高分子物理复习要点
• 对任何高聚物,玻璃化温度就是自由体积达 到某一临界值的温度,在这临界值以下,已 经没有足够的空间进行分子链构象的调整了。 因而高聚物的玻璃态可视为等自由体积状态。
影响玻璃化温度的因素
玻璃化温度是高分子链段从冻结到运动(或 反之)的一个转变温度,而链段运动是通过 主链的单键内旋转来实现的,因此,凡是能 影响高分子链柔性的因素,都对Tg有影响 。
PMMA:
CH3
C
CH2 n
O C OCH3
。 68


10
20
。 20

15
Tg


87


106
。 104
。 120
2.取代基团的空间位阻和侧链的柔性 (2) 刚性侧基的体积越大,分子链的柔顺性 越差,Tg越高
2.取代基团的空间位阻和侧链的柔性
(3) 柔性侧链越长,分子链柔顺性越好,Tg 越低
△HM>0,所以只有在 | △HM | <T |△SM | 时,才 能满足△FM <0 。
• 如何选择溶剂?
高分子溶液与理想溶液的偏差
• ①高分子间、溶剂分子间、高分子与溶剂分子 间的作用力不可能相等,因此溶解时,有热量 变化 。
• ②由于高分子由聚集态→溶剂中去,混乱度变 大,每个分子有许多构象,则高分子溶液的混 合熵比理想溶液要大得多。
ABS树脂是丙烯腈、丁二烯和苯乙烯的三元共聚物。共聚 方式是无规共聚与接枝共聚相结合,结构复杂:可以是以 丁苯橡胶为主链,将苯乙烯丙烯腈接在支链上;也可以是 以丁腈橡胶为主链,将苯乙烯接在支链上;当然还可以苯 乙烯—丙烯腈的共聚物为主链,将丁二烯和丙烯腈接在支 链上等等,这类接枝共聚物都称为ABS。 因为分子结构不同,材料的性能也有差别。总的来说, ABS三元接枝共聚物兼有三种组分的持性。其中丙烯腈有 CN基,能使聚合物耐化学腐蚀,提高制品的抗张强度和 硬度;丁二烯使聚合物呈现橡胶状韧性,这是制品抗冲强 度增高的主要因素;苯乙烯的高温流动性能好,便于加工 成型,且可改善制品的表面光洁度。因此ABS是一类性能 优良的热塑性塑料。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考题的主要类型
1.概念题主要考查对高分子物理的基本概念的掌握和理解。

2.判断题主要考察对基本理论和主要结论的分析判断能力。

3.论述题主要测验基础理论、基本知识掌握的程度。

4.简答题主要考察运用所学理论知识对实际问题的综合和概括能力、分析与解决问题的能力。

5.计算题主要考察运用所学理论知识对实际问题的计算能力。

《高分子物理》考前复习提纲
一、考试内容与要求
第一章概论
1、掌握重均、数均分子量和分子量分布的定义、表示方法,并各记两种测定方法。

2、了解高分子物理的三个组成方面和高分子的聚集态类型。

3、掌握数均、重均分子量和多分散性指数的计算方法。

会计算P24第7题。

第二章高分子的链结构
1、掌握高分子链的构型、构象、链段、均方末端距、内旋转、线型高分子、全同立构等概念。

2、了解影响聚合物柔性的因素。

3、能正确回答下列问题
(1)弹性聚合物为何具有柔弹性?
(2)聚丙烯通过单键的旋转能否把全同立构变为间同立构?为什么?
(3)如何表征大分子的柔性?
(4)聚乙烯、聚丙烯腈、聚氯乙烯的柔性顺序是什么?为什么?
(5)涤纶和芳纶那个柔性大?为什么?
第三章高分子的溶液性质
掌握聚合物的溶解过程和溶剂选择
第四章高分子的多组分体系
掌握高分子共混物的相容性、多组分高分子的界面性质
第五章聚合物的非晶态
1、掌握非晶态、玻璃化转变、主价键、次价键、内聚能密度、GOLR聚合物、聚集态、切力变稀流体、取向、取向度等概念
2、了解取向高分子材料的单轴取向和双轴取向;非晶态聚合物可能有两类取向,即分子取向和链段取向。

3、能正确回答下列问题
(1)线形非晶态高聚物的力学三态是什么?并分别给出定义。

(2)玻璃化温度的影响因素有哪些?
(3)黏度的影响因素有哪些?
(4)聚合物为何没有气态?
第六章聚合物的结晶态.
1、掌握晶体、晶系、结晶度、熔点、串晶、球晶等基本概念
2、能正确回答下列问题
(1)结晶的必要条件和充分条件是什么?
(2)什么是最佳结晶温度?
(3)结晶度与强度的关系?
(4)为何高聚物结晶没有明确的熔点而有一个熔限?
(5)涤纶和芳纶那个熔点高?为什么?
第七章聚合物的屈服和断裂
1、掌握聚合物的屈服应力、脆性断裂、韧性断裂、强迫高弹形变、脆化温度、冷拉、银纹、应力发白、应力集中等基本概念;
2、能正确回答下列问题
(1)影响聚合物实际强度的因素是什么?
(2)强迫高弹形变与高弹形变有何异同点?强迫高弹形变与塑性形变有何异同点?
(3)为社么聚合物的实际强度总达不到理论强度?
(4)取向可使材料的强度提高几倍至几十倍,为什么?
第八章聚合物的高弹性与黏弹性
1、掌握力学松弛、松弛时间、高弹性、粘弹性、蠕变、应力松
弛、滞后现象和力学损耗等概念
2、了解聚合物的时温等效原理
3、会计算P257第9题
4、能正确回答下列问题
(1)雨衣在墙上为什么越来越长?
(2)蠕变和应力松弛的根本原因是什么?
(3)橡胶高弹性的本质是什么?
(4)麦克斯韦模型和开尔文模型分别适合描述什么黏弹现象?
(5)化纤的拉伸和定长定型分属于什么力学松弛?
第九章聚合物的其他性质
1、掌握介电常数、介电损耗、介电强度、渗透性、透气性、静
电现象等概念
2、能正确回答下列问题
(1)用于电容器电介质的聚合物应具备什么电学性质?
(2)如何消除静电?
(3)那些聚合物是电致发光物质?
(4)那些聚合物可以做光纤?。

相关文档
最新文档