高分子基本知识

合集下载

高分子知识点

高分子知识点

什么是高分子?答:由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物,叫高分子化合物。

什么是聚合物的柔顺性?聚合物为什么具有柔顺性?影响聚合物柔顺性的因素有哪些?答:高分子链能够改变其构象的性质称为柔顺性。

高分子由于分子量大,分子链中能够内旋转的化学键众多,内旋转使其具有大量不同卷曲程度的构象状态,因而有良好的柔顺性。

影响因素有主链结构、侧链基结构、侧基极性的强弱、链的长短、分子间作用力、分子链规整度、分子量大小、支化、交联。

什么是液晶?液晶具有什么性质?聚合物都可以形成液晶吗?答:液晶是某些物质在熔融态或在溶液状态下所形成的有序流体的总称。

液晶具有高弹性、粘滞性、流变性。

不可以,形成液晶的物质通常具有液晶基元。

什么是聚合物的力学三态?对应的特征温度是什么?聚合物的力学三态有什么特点?交联聚合物有粘流态吗?答:聚合物的力学三态是玻璃态、高弹态和黏流态。

玻璃态和高弹态之间的转变温度称为玻璃化转变温度,高弹态和黏流态之间的转变温度称为黏流温度。

玻璃态链段运动被冻结,形变小,可逆,模量高;高弹态链段运动被激活,形变大,可逆,模量低;黏流态分子整链运动被激活,形变很大且不可逆,模量很小,处于粘性流动状态。

交联聚合物没有粘流态,原因如下:1.高分子流动是通过链段的位移运动来完成的。

2.小分子流动“孔穴”理论液体流动模型:低分子液体中存在着许多与分子尺寸相当的孔穴。

当没有外力存在时,靠分子的热运动,孔穴周围的分子向孔穴跃迁的几率是相等的,孔穴与分子不断交换位置即产生分子扩散运动。

外力存在使分子沿作用力方向跃迁的几率比其他方向大。

分子向前跃迁后,分子原来占有的位置成了新的孔穴,可让后面的分子向前跃迁。

分子在外力方向上的从优跃迁,使分子通过分子间的孔穴相继向某—方向移动,形成液体的宏观流动现象。

当温度升高,分于热运动能量增加,液体中的孔穴也随着增加和膨胀,使流动的阻力减少。

什么是形变~温度曲线?答:在一定的力学负荷下,高分子材料的形变量与温度的关系成为高聚物的温度-形变曲线。

高分子材料基本知识

高分子材料基本知识

链段:从高分子链中划分出来的最小运动单元柔顺性:高分子链能改变其构象的性质近程结构:即第一层次结构,指单个高分子的一个或几个结构单元的化学结构和立体化学结构远程结构:即第二层次结构,指单个高分子的大小和在空间所在的各种形态结构:组成高分子不同尺度的结构单元在空间的排列构型:分子中由化学键所固定的原子在空间的几何排列构象:由于单键的内旋转而产生的分子在空间的不同形态高弹性:小应力作用下,由于高分子链段的运动而产生的很大的可逆变形强迫高弹性:玻璃态聚合物在外力作用下,出现的高弹形变力学松弛:高聚物的力学性质随时间的变化表现的性质蠕变:在恒温恒负载下,高聚物材料的形变随时间的延长而逐渐增大的现象5应力松弛:在恒温和保持形变不变的情况下,高聚物内部应力随时间延长逐渐衰减的现象滞后现象:在交变应力作用下,高聚物应变落后于应力变化的现象内耗:橡胶及其他高分子材料在形变过程中,一部分弹性形变转变热能的损耗的现象冷拉:高聚物材料的低温下受外力作用而产生大变形的现象银纹屈服:在拉伸应力作用下,高聚物某些脆弱部分由于应力集中而产生空化条纹形变区剪切屈服:高聚物在拉伸或压缩应力作用下,与负载方向呈45度截面上产生最大剪切力,从而引发高分子链沿最大剪切面方向上产生滑移形变,从而导致材料形状扭的现象高聚物材料发生脆性断列时,其断裂面比较光滑;韧性断裂时,由于分子间滑移,断裂面较为粗糙,有凹凸不平的丝状物流变性:物质流动与变形的性能及其行为表现牛顿流体:流动规律符合牛顿粘性定律的流体剪切流动:产生横向速度梯度的场的流动拉伸流动:产生纵向速度梯度的场的流动剪切变稀流体:随剪切应力或剪切速率的升高表观黏度降低的流体挤出胀大:橡胶等高聚物熔体基础口型后,挤出物的尺寸及断面形状与口型不同的膨胀可塑度:施加一定负载在一定温度的时间下,测定形变负载移去后变形保持的能力切力增稠流体:随剪切速率增加,切应力增加的速率增大,即切黏度随切应力。

高分子的基本知识

高分子的基本知识

4、对于高分子的强度等物性,存在着一个临界分子量M0, 超过这个分子量时开始出现强度。当分子量超过MS时强度达 到一定值。
物 性
M0 分子量 分子量与物性的关系图
Ms
H-(CH2)n-H的分子量与性质
n
分子量
性质
名称
用途
1
16
气体
甲烷燃气Biblioteka 6 ~886~114
易挥发液体
石脑油、石油英、 粗汽油
溶剂
18~22
254~310
半固体/油脂状
凡士林
医药、化妆品
20~30
282~422
固体
石蜡
蜡烛等制品
2000~20000
28000~280000
强韧的固体
聚乙烯
薄膜等
第一章 高分子材料概论
第三节 高分子的基本知识
高分子与低分子的区别在于前者分子量很高,通常:
1、分子量高于约10000的称为高分子(polymer); 2、分子量低于约1000的称为低分子;
3、分子量介于两者之间的称为低聚物(oligomer,又称齐聚物)。
4、一般高聚物的分子量为10000~1000000,分子量大于这个范 围的又称为超高分子量聚合物。
5、一般高分子又可称为大分子、聚合物、高聚物等。
Polymer~~聚合物、高聚物
Macromolecule~~大分子、高分子。
低分子
高分子
n CH 2=CH2
n为聚合度
-(CH 2-CH2)-n
1、高分子是有机化合物。 2、分子量高所带来的性质上的变化,主要是使高分子化合 物具有一定的机械强度。这样,高分子化合物就不同于一般 有机化合物,而可以作为材料使用。 3、人们还可以根据高分子的结构特征,利用各种手段,改 变这些结构,以制造出所需性能的产品;还可以引入具有功 能性的基团,制造出有功能的材料。

第一章 高分子材料基础知识

第一章  高分子材料基础知识

第一章高分子材料基础知识第一节.高分子材料的基本概念一、高分子材料的结构1.高分子的含义:高分子材料是以高分子化合物为主要成分(适当加入添加剂)的材料。

高分子化合物:1.天然:松香、石蜡、淀粉2.合成:塑料、合成橡胶、合成纤维高分子化合物都是一种或几种简单低分子化合物集合而成为分子量很大的化合物,又称为高聚物或聚合物。

通常分子量>5000 高分子材料没有严格界限<500 低分子材料如:同为1000的多糖(低),石蜡(高)一般高分子化合物具有较好的弹性、塑性及强度二、高分子化合物的组成:高分子化合物虽然分子量很大,但化学组成比较简单。

都是由一种或几种简单的低分子化合物聚合而成。

即是由简单的结构单元以重方式相连接。

例:聚乙烯由乙烯聚合而成{ }概念:单体——组成高分子化合物的低分子化合物链节——大分子链由许许多多结构相同的基本单元重复连接构成,组成大分子链的这种结构单元称为链节。

聚合度——链节的重复次数。

n↑导致机械强度↑熔融粘度↑流动性差,不利于成型加工。

n要严格控制。

三、高分子的合成:加聚反应、缩聚反应①加聚反应:指一种或几种单体,打开双键以共价键相互结合成大分子的一种反应例如:乙烯→聚乙烯(均聚)②分类:均聚:同种单体聚合共聚:两种或两种以上单体聚合(非金属合金丁二烯+苯乙烯→丁苯橡胶二元共聚三元共聚ABS:丙烯脂:耐腐蚀表面致密丁二烯:呈橡胶韧性苯乙烯:热塑加工)特点:反应进行很快链节的化学结构和单体的相同反应中没有小分子副产物生成②缩聚反应:指一种或几种单体相互混合儿连接成聚合物,同时析出(缩去)某种低分子物质的反应。

例:尼龙(聚酰胺)氨基酸,缩去一个水分子聚合而成。

特点:由若干步聚合反应构成,逐步进行。

链节化学结构与单体不完全相同,反应中有小分子副产物生成。

总结:目前80%的高分子材料由加聚反应得到。

四、聚合物的分类与命名①按聚合物分子的结构分类a.碳链聚合物:这一类聚合物分子主链是由碳原子一种元素所组成{ }侧基有多种,主要是聚烯烃、聚二烯烃(橡胶)b. 条链聚合物,器结构特点是除碳原子外,还有氧、氮、硫原子。

高分子基本知识

高分子基本知识

高分子概述高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。

高分子化合物由于分子量很大,分子间作用力的情况与小分子大不相同,从而具有特有的高强度、高韧性、高弹性等。

高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。

这种高分子在加热时可以熔融,在适当的溶剂中可以溶解。

高分子化合物中的原子连接成线状但带有较长分支时,也可以在加热时熔融,在适当溶剂中溶解。

如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。

体型高分子加热时不能熔融,只能变软;不能在任何溶剂中溶解,只能在某些溶剂中溶胀。

高分子化合物在自然界中大量存在,这种高分子叫天然高分子。

在生物界中,构成生物体的蛋白质,纤维素;携带生物遗传信息的核酸;食物中的淀粉,衣服原料的棉、毛、丝、麻以及木材、橡胶等等,都是天然高分子。

非生物界中,如长石、石英、金刚石等,都是无机高分子。

天然高分子可以通过化学加工成天然高分子的衍生物,从而改变其加工性能和使用性能。

例如,硝酸纤维素、硫化橡胶等。

完全由人工方法合成的高分子,在高分子科学中占有重要的地位。

这种高分子是由一种或几种小分子作原料,通过加聚反应或缩聚反应生成的,故也叫聚合物。

用做原料的小分子称为单体,如由乙烯(单体)经加聚反应得聚乙烯(聚合物);由乙二醇(单体)和对苯二甲酸(单体)经缩聚反应生成聚对苯二甲酸乙二酯(聚合物)。

特点(Macro Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。

定义由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。

是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、大分子等。

一般把相对分子质量高于10000的分子称为高分子。

(完整版)高分子材料基础知识

(完整版)高分子材料基础知识

名词解释:1. 通用型热塑性塑料:是指综合性能好,力学性能一般,产量大,适用范围广泛,价格低廉的一类树脂。

2. 通用型热固性塑料:为树脂在加工过程中发生化学变化,分子结构从加工前的线型结构转变成为体型结构,再加热后也不会软化流动的一类聚合物。

3. 聚乙烯相对分子量的大小常用熔体流动速率(MFR )来表示。

4. 共混改性是指两种或两种以上聚合物材料以及助剂在一定温度下进行掺混,最终形成一种宏观上均与且力学,热学,光学以及其它性能得到改善的新材料的过程。

5. 茂金属聚苯乙烯:为在茂金属催化剂作用下合成的间同结构聚苯乙烯树脂,它的苯环交替排列在大分子链的两侧。

6. 通常把使用量大、长期使用温度在100~150℃、可作为结构材料7. 使用的塑料材料称为通甩工程塑料,而将使用量较小、价格高、长期使用温度在150℃以上的塑料材料特种工程塑料。

8. 聚酰胺(PA):俗称尼龙,是指分子主链上含有酰胺基团的高分子化合物。

聚酰胺可以由二元胺和二元酸通过缩聚反应制得,也可由w-氨基酸或内酰胺自聚而得。

聚酰胺的命名是二元胺和二元酸的碳原子数来决定的。

9. 单体浇注聚酰胺(MC 聚酰胺),是以氢氧化钠为主催化剂、将聚酰胺6 单体直接浇注到模具内进行聚合并制成制品。

制备的主要特点有:①只要简单的模具就能铸造各种大型机械零件。

②工艺设备及模具都很简单,容易掌握。

③MC 聚酰胺的各项物理机械性能,比一般聚酰胺优越。

④可以浇注成各种型材,并经切削加工成所需要的零件,因此适合多品种,小批量产品的试制。

10. RIM 聚酰胺:是将具有高反应活性的原料在高压下瞬间反应,再注入密封的模具中成型的一种液体注射成型的方法。

11. 共聚甲醛:是以三聚甲醛为原料,与二氧五环作用,在以三氟化硼-乙醚络合物为催化剂的情况下共聚,再经后处理出去大分子链两端不稳定部分而成的。

12. 均聚甲醛:是以三聚甲醛为原料,以三氟化硼-乙醚络合物为催化剂,在石油醚中聚合,再经端基封闭而得到的。

高分子材料的基本知识

高分子材料的基本知识

高分子材料的基本知识
高分子材料是由高分子化合物组成的一类材料,其基本知识包括以下几个方面:
1. 高分子化合物的定义:高分子化合物是由许多重复单元通过共价键连接而成的聚合物,其相对分子质量通常很高,一般在10000以上。

2. 高分子材料的分类:高分子材料可以根据来源、特性和应用功能进行分类。

按来源分类可分为天然高分子材料和合成高分子材料,按特性分类可分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等,按应用功能分类可分为通用高分子材料、特种高分子材料和功能高分子材料。

3. 高分子材料的性能:高分子材料具有许多优良的性能,如较高的力学性能、良好的化学稳定性、优良的电绝缘性能和耐热性等。

这些性能使得高分子材料在许多领域都有着广泛的应用。

4. 高分子材料的合成与加工:高分子材料的合成通常是通过化学反应将小分子聚合在一起形成的。

在合成过程中,需要选择合适的单体、催化剂、反应条件等,以确保获得的高分子材料具有所需的性能。

高分子材料的加工通常是在高温下进行的,通过热塑或热固的方式将高分子材料制成各种制品。

5. 高分子材料的应用:高分子材料在日常生活和工业生产中都有着广泛的应用。

例如,塑料、橡胶、纤维等高分子材料在汽车、建筑、航空航天、电子
电器、包装等领域都有着广泛的应用。

此外,高分子材料还在医疗、生物工程、环保等领域有着重要的应用。

总的来说,高分子材料的基本知识包括高分子化合物的定义、分类、性能、合成与加工以及应用等方面。

了解这些基本知识可以帮助我们更好地认识高分子材料的性质和用途,并在日常生活和工业生产中更好地应用这些材料。

高分子基本知识

高分子基本知识

高分子化合物的命名和分类
O -C-NHO -C-OO -NH-C-O-O-
以高分子链的结构特征命名
£
聚酰胺 聚酯 聚氨酯 聚醚 商品名 合成纤维最普遍,我国以“纶”作为合成纤维的后缀 涤纶 聚对苯二甲酸乙二醇酯(聚酯) 丙纶 聚丙烯 锦纶 聚酰胺(尼龙),后面加数字区别 数字含义
第一个数字表示二元胺的碳原子数 第二个数字表示二元酸的碳原子数 只附一个数字表示内酰胺或氨基酸的碳原子数
高分子的加工性能与分子量有关
尼龙 纤维素 乙烯基 聚合物
A
40 60 100
B
150 250 400
分子量过大, 聚合物熔体粘度过高, 难以成型加工
达到一定分子量,保证使用强度后,不必追求过 高的分子量
1.2 高分子化合物的基本特征
常用的聚合物的分子量(万)
塑料
聚乙烯
分子量
6~30
纤维
涤纶
分子量
结构单元=单体单元
1.1 高分子的基本概念
1、高分子(大分子) 大分子化合物、聚合物、高聚物 2、单体 3、重复单元
5、结构单元
6、单体单元 7、聚合度 8、聚合物的分子量
1.2 高分子化合物的基本特征
1.2 高分子化合物的基本特征

分子量大是高分子的根本性质 高分子的许多特殊性质都与分子量大有关,如: 高分子的溶液性质: 难溶,甚至不溶,溶解过程往往要经过溶胀阶段 溶液粘度比同浓度的小分子高得多
xn DP n
由聚合度可计算出高分子的分子量:
M xn M0 DP M0
式中: M 是高分子的分子量 M0 是结构单元的分子量
1.1 高分子的基本概念
另一种情况:

高分子化学知识点总结

高分子化学知识点总结

高分子化学知识点总结高分子化学是一门研究高分子材料的合成、结构、性质、加工和应用的学科,其内容涉及有机化学、物理化学、材料科学等多个学科领域。

下面是关于高分子化学的一些常见知识点的总结。

1. 高分子的定义和分类:高分子是由多个结构相似的重复单元组成的巨大分子。

根据高分子的来源可以分为天然高分子和合成高分子;按照化学结构可以分为线性高分子、支化高分子、网络高分子和共聚高分子等。

2. 高分子的合成方法:高分子合成方法主要包括聚合反应和缩聚反应。

聚合反应是指在单体之间发生共价键的形成,从而形成高分子;缩聚反应是指两个或多个单体通过失去一个小分子而结合成高分子。

3. 高分子的聚合反应:聚合反应可以分为自由基聚合、阴离子聚合、阳离子聚合和离子聚合等几种类型。

其中,自由基聚合是最常见的一种聚合反应,其原理是利用自由基引发剂引发单体之间的自由基反应,从而形成高分子。

4. 高分子的物理性质:高分子的物理性质受到其分子结构的主导。

常见的高分子物理性质包括玻璃化转变温度、熔融温度、热膨胀系数、力学性能等。

另外,高分子的物理性质还与其分子量、分子量分布、聚合度和晶形等因素有关。

5. 高分子的结构性质:高分子的结构性质是指高分子链的空间构型和排列方式。

高分子的结构性质直接影响其力学性能、热学性能和电学性能等。

常见的高分子结构性质包括晶体结构、无规共聚物和嵌段共聚物等。

6. 高分子的应用:高分子材料是一类重要的工程材料,广泛应用于塑料、橡胶、纤维、涂料、胶粘剂、管材、包装材料、电子材料、医疗材料等领域。

高分子材料具有重量轻、力学性能好、耐高温、绝缘性能好等优点。

7. 高分子的改性:由于高分子的一些性能和应用方面的限制,科学家通过添加助剂、共混物、交联等方式对高分子进行了改性。

改性可以改变高分子的力学性能、热学性能、电学性能等,并且使其能够满足特定应用的要求。

8. 高分子的可持续发展:随着环境问题的日益突出,高分子化学也在朝着可持续发展的方向发展。

高分子化学知识要点

高分子化学知识要点

高分子化学知识要点一、高分子的基本概念高分子化合物,简称高分子,是指那些由众多原子或原子团主要以共价键结合而成的相对分子质量在一万以上的化合物。

生活中常见的高分子材料有塑料、橡胶、纤维等。

高分子与小分子化合物相比,具有独特的性能。

例如,高分子材料通常具有较好的韧性、弹性和机械强度。

这是因为高分子的长链结构能够有效地分散和承受外力。

高分子的相对分子质量是一个重要的参数。

它不是一个确定的值,而是具有一定的分布范围。

这是由于聚合反应过程中的随机性导致的。

相对分子质量的大小和分布会显著影响高分子材料的性能。

二、高分子化合物的分类高分子化合物的分类方法有多种。

按照来源,可分为天然高分子和合成高分子。

天然高分子如纤维素、蛋白质等,是自然界中原本就存在的;合成高分子则是通过人工化学反应合成的,如聚乙烯、聚苯乙烯等。

根据高分子主链的结构,又可分为碳链高分子、杂链高分子和元素有机高分子。

碳链高分子的主链全部由碳原子组成,像聚乙烯、聚丙烯就属于此类;杂链高分子的主链除了碳原子,还含有氧、氮、硫等杂原子,如聚酯、聚酰胺;元素有机高分子的主链中不含碳原子,而是由硅、磷、铝等元素组成,不过侧基一般是有机基团。

另外,还可以根据用途将高分子分为塑料、橡胶、纤维、涂料、胶粘剂等。

不同类型的高分子在性能和应用方面有着很大的差异。

三、高分子的合成方法高分子的合成方法主要包括加聚反应和缩聚反应。

加聚反应是指由不饱和单体通过加成反应相互结合形成高分子的过程。

在这个过程中,没有小分子副产物生成。

例如,乙烯在引发剂的作用下发生加聚反应生成聚乙烯。

缩聚反应则是由具有两个或两个以上官能团的单体,通过官能团之间的缩合反应逐步形成高分子,同时会产生小分子副产物,如水、醇、氨等。

聚酯的合成就是一个典型的缩聚反应。

此外,还有开环聚合、逐步加成聚合等合成方法。

开环聚合是指环状单体通过开环形成线性高分子的反应;逐步加成聚合则是通过逐步的加成反应形成高分子。

高考化学有机高分子知识点

高考化学有机高分子知识点

高考化学有机高分子知识点一、高分子的概念和分类高分子是由许多较简单的分子单元通过共价键相互连接而成的大分子化合物。

高分子可以分为天然高分子和合成高分子两大类。

天然高分子包括蛋白质、纤维素等,而合成高分子则是通过人工合成得到的聚合物,如聚乙烯、聚氨酯等。

二、聚合反应和聚合物聚合反应是指在特定的条件下,将单体分子通过共价键相连形成聚合物的过程。

聚合反应可以分为缩聚和加聚两种类型。

缩聚是指两个或更多的单体分子通过形成共价键而合成出长链聚合物,如酯的缩聚反应。

加聚是指通过单体中碳原子上的双键或三键将多个单体分子连接起来,形成线型聚合物,如乙烯的加聚反应。

三、高分子的结构和性质高分子的结构可以分为线型、支化、网络和交联结构等。

线型结构的高分子比较柔软,易于加工和改性;支化结构的高分子含有分支链,使其分子量增加,从而提高其机械强度和热稳定性;网络结构高分子的分子链相互交织形成网状结构,具有较高的强度和硬度;而交联结构高分子的分子链通过交联点连接,形成三维网络结构,具有较好的弹性和耐热性。

高分子的性质包括物理性质和化学性质两个方面。

物理性质主要涉及熔点、熔融温度、硬度、韧性等,具体取决于高分子的结构;而化学性质则涉及与其他物质的相互作用,例如与溶剂的溶解性、与氧气的氧化性等。

四、合成高分子材料的方法合成高分子材料的方法有很多种,其中常用的有聚合、交联和共聚等。

聚合是通过聚合反应将单体转化为聚合物;交联是将线型聚合物通过交联反应形成具有网络结构的高分子材料;共聚是指在聚合反应中同时使用两个或更多的单体,形成包含多种单体的高分子材料。

五、高分子的应用领域高分子广泛应用于各个领域,如塑料制品、药物载体、纺织品、涂料、电子材料等。

塑料制品是高分子应用最广泛的领域之一,例如聚乙烯、聚丙烯等塑料制品在日常生活中随处可见。

药物载体是指利用高分子材料作为药物的载体,将药物包裹在高分子材料中,以提高其稳定性和控释性。

纺织品广泛使用聚酯纤维等高分子材料制成,具有良好的抗皱性和耐磨损性。

高分子化学知识点

高分子化学知识点

2. 名词解释交替共聚物:两种单体在大分子链上严格交替相间排列。

嵌段聚合:两种或两种以上单体分别聚合成链节(或链段)生成嵌段共聚物的一类共聚合反应。

活性聚合:阴离子聚合由链引发、链增长和链终止三个基元反应组成,如聚合体系纯净、无质子供体,阴离子聚合可控制其终止反应,这种无终止;无链转移的聚合反应即为活性聚合。

特征为(1)无链终止;(2)无链转移;(3)引发反应比增长反应快,反应终了时聚合链仍是活的。

异构化聚合:指在链增长反应过程中常常发生原子或原子团的重排过程的反应。

反应程度:高分子缩聚反应中用以表征高分子聚合反应反应深度的量。

计算方法为参加反应的官能团数占起始官能团数的比例。

转化率:进入共聚物的单体量占起始单体量M 的百分比。

笼蔽效应:在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单体分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。

诱导分解:诱导分解(Induced Decomposition )自由基向引发剂转移的反应为诱导分解。

自由基发生诱导分解反应将使引发剂的效率降低,同时也使聚合度降低平均官能度:有两种或两种以上单体参加的混缩聚或共缩聚反应中在达到凝胶点以前的线形缩聚阶段,反应体系中实际能够参加反应的官能团数与单体总物质的量之比。

(每一份子平均带的官能度)凝胶点:开始出现凝胶瞬间的临界反应程度Pc。

高分子:由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。

由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。

计量聚合:指链引发速率在阴离子聚合反应中严格控制条件,以得到接近单分散的聚合物为目的的聚合反应。

配位聚合:单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。

随后单体分子插入过渡金属(Mt )-碳(C)链中增长形成大分子的过程。

第一章高分子材料的基础知识

第一章高分子材料的基础知识

2、大分子链的立体构型(同分异构)
构型:是指分子链中由化学键所固定的原子在空间的几何排 列。这种排列是化学稳定的,要改变分子构型必须经过化学 键的断裂和重建。
由构型不同而形成的异构体有两类: ①旋光异构体
②几何异构体
①旋光异构体
正四面体的中心原子(如C、Si、P、N)上四个取代 基或原子如果是不对称的,则可能产生异构体。 结构单元为—CH2C*HR—的高分子,每一链节有两种旋 光异构体。假如高分子全部由一种旋光异构体单元组成,称 为全同立构;由两种旋光异构体交替间接,称为间同立构; 两种旋光异构体完全无规键接时,称为无规立构。 立体异构体之间的性能差别很大。例如:全同立构聚苯 乙烯能结晶,熔点240 ℃,而无规立构聚苯乙烯不能结晶, 软化点仅为80 ℃。 全同立构和间同立构聚合物统称为“等规聚合物”
CH O O ( Si C CH O) n
O ( CH )
O
C ( CH )
聚酯涂料
有机硅橡胶
√主链含有芳杂环时,内旋转难,链柔性差
CH3 O C CH3 O
O C
聚苯 聚碳酸酯PC
√主链中含有孤立C=C双键时,链柔顺性好, 如:聚丁二烯等橡胶
-CH2-CH=CH-CH2-CH=CH-CH2-
√主链中含有共轭双键时,则只有刚性无柔性,如:聚乙炔
只有当化合物的分子量达到一定数值,产生了量变到质变的飞跃, 即在物理、机械等性能具有与低分子化合物有较大差别时,才能称 为高分子化合物,方可作为高分子材料在工程上应用。
高分子化合物分子量的分散性
高分子化合物及大多数天然高分子化合物则是各种长度不同、分子量 不同、化学组成相同的同系高分子混合物,即高分子化合物总是由不 同大小的分子组成。这一现象称为高分子化合物分子量的多分散性。

(完整版)高分子化学知识点总结

(完整版)高分子化学知识点总结

第一章绪论1.1 高分子的基本概念高分子化学:研究高分子化合物合成与化学反应的一门科学。

单体:能通过相互反应生成高分子的化合物。

高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。

相对分子质量低于1000的称为低分子。

相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。

相对分子质量大于1 000 000的称为超高相对分子质量聚合物。

主链:构成高分子骨架结构,以化学键结合的原子集合。

侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。

支链可以较小,称为侧基;也可以较大,称为侧链。

端基:连接在主链末端原子上的原子或原子集合。

重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。

结构单元:单体分子通过聚合反应进入大分子链的基本单元。

(构成高分子链并决定高分子性质的最小结构单位称为~)。

单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。

聚合反应:由低分子单体合成聚合物的反应。

连锁聚合:活性中心引发单体,迅速连锁增长的聚合。

烯类单体的加聚反应大部分属于连锁聚合。

连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。

逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。

绝大多数缩聚反应都属于逐步聚合。

加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。

加聚反应无副产物。

缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。

该反应常伴随着小分子的生成。

1.2 高分子化合物的分类1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。

②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。

③元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要由硅、硼、铝和氧、氮、硫、磷等原子组成。

④无机高分子:主链与侧链均无碳原子的高分子。

(完整版)高分子材料基础知识

(完整版)高分子材料基础知识

名词解释:1.通用型热塑性塑料:是指综合性能好,力学性能一般,产量大,适用范围广泛,价格低廉的一类树脂。

2.通用型热固性塑料:为树脂在加工过程中发生化学变化,分子结构从加工前的线型结构转变成为体型结构,再加热后也不会软化流动的一类聚合物。

3.聚乙烯相对分子量的大小常用熔体流动速率(MFR)来表示。

4.共混改性是指两种或两种以上聚合物材料以及助剂在一定温度下进行掺混,最终形成一种宏观上均与且力学,热学,光学以及其它性能得到改善的新材料的过程。

5.茂金属聚苯乙烯:为在茂金属催化剂作用下合成的间同结构聚苯乙烯树脂,它的苯环交替排列在大分子链的两侧。

6.通常把使用量大、长期使用温度在100~150℃、可作为结构材料7.使用的塑料材料称为通甩工程塑料,而将使用量较小、价格高、长期使用温度在150℃以上的塑料材料特种工程塑料。

8.聚酰胺(PA):俗称尼龙,是指分子主链上含有酰胺基团的高分子化合物。

聚酰胺可以由二元胺和二元酸通过缩聚反应制得,也可由w-氨基酸或内酰胺自聚而得。

聚酰胺的命名是二元胺和二元酸的碳原子数来决定的。

9.单体浇注聚酰胺(MC聚酰胺),是以氢氧化钠为主催化剂、将聚酰胺6单体直接浇注到模具内进行聚合并制成制品。

制备的主要特点有:①只要简单的模具就能铸造各种大型机械零件。

②工艺设备及模具都很简单,容易掌握。

③MC聚酰胺的各项物理机械性能,比一般聚酰胺优越。

④可以浇注成各种型材,并经切削加工成所需要的零件,因此适合多品种,小批量产品的试制。

10.RIM聚酰胺:是将具有高反应活性的原料在高压下瞬间反应,再注入密封的模具中成型的一种液体注射成型的方法。

11.共聚甲醛:是以三聚甲醛为原料,与二氧五环作用,在以三氟化硼-乙醚络合物为催化剂的情况下共聚,再经后处理出去大分子链两端不稳定部分而成的。

12.均聚甲醛:是以三聚甲醛为原料,以三氟化硼-乙醚络合物为催化剂,在石油醚中聚合,再经端基封闭而得到的。

13.由饱和二元酸和二元醇得到的线型高聚物称为热塑性聚酯,目前最常使用的是:聚对苯二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯。

高分子基本知识

高分子基本知识
底康复锻炼后,进 行适当的休息与放松,有 助于肌肉的恢复和生长。
观察身体反应
留意身体的反应,如出现 不适或疼痛,应及时调整 锻炼计划或寻求专业医生 的建议。
保持积极心态
保持积极的心态,坚持盆 底康复锻炼,相信自己的 努力会带来积极的变化。
05
产后盆底康复案例分享
尿失禁的原因可能是盆底肌松 弛、膀胱括约肌功能失调等。
尿失禁的治疗方法包括药物治 疗、物理治疗、手术治疗等。
性功能障碍
性功能障碍表现为性欲减退、性 高潮障碍等症状,影响夫妻生活
质量。
性功能障碍的原因可能是分娩过 程中损伤、心理因素等。
性功能障碍的治疗方法包括心理 治疗、药物治疗、物理治疗等。
03
总结词
盆底康复治疗减轻了新妈妈盆底肌疼痛,提高生活质量。
详细描述
分娩过程中会对盆底肌肉造成一定的损伤,导致盆底肌疼痛 。盆底康复治疗通过专业的按摩和拉伸技术,缓解盆底肌的 紧张和疼痛,帮助新妈妈恢复舒适的生活状态。
案例三:性功能障碍的恢复
总结词
盆底康复治疗改善了新妈妈的性功能 问题,提高了生活质量。
注意事项
在进行盆底肌锻炼时,产妇应保持正常的呼吸,不要憋气,避免过度用力导致肌肉疲劳或 不适。
电刺激疗法
01
总结词
电刺激疗法是一种物理治疗方法,通过电流刺激盆底肌肉,促进盆底肌
肉的收缩和舒张,改善盆底功能。
02 03
详细描述
电刺激疗法需要在专业医生的指导下进行,通常每周进行2-3次,每次 20-30分钟。电刺激疗法对于改善盆底肌肉的张力和耐力、缓解盆底疼 痛和尿失禁等症状有较好的效果。
注意事项
生物反馈疗法需要配合其他盆底康复方法一起使用,同时产妇应与医生进行详细的讨论并遵循医生的指 导。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临界点的聚合度不同,如
聚合物
高分子的加工性能与分子量有关
分子量过大, 聚合物熔体粘度过高, 难以成型加工
达到一定分子量,保证使用强度后,不必追求过
高的分子量
A
28
1.2 高分子化合物的基本特征
常用的聚合物的分子量(万)
塑料 分子量
聚乙烯 6~30 聚氯乙烯 5~15 聚苯乙烯 10合物的基本特征
平均分子量的表示方法
数均分子量(Number-average molecular weight) 按聚合物中含有的分子数目统计平均的分子量
高分子样品中所有分子的总质量除以其分子(摩尔)总数
M nW
N iM i
W i N iM i
N i N i (W i M i)
聚合物由一种单体聚合而生成,但重复单元的元素组 成与单体的元素组成不同。
结构单元=重复单元=链节 单体单元
A
20
1.1 高分子的基本概念
2.由两种结构单元组成的高分子
此时 ,两种结构单元构成一个重复结构单元,单体在形成高分
子的过程中要失掉一些原子。
结构单元 重复单元 单体单元
A
21
1.1 高分子的基本概念
1.2 高分子化合物的基本特征
A
34
1.2 高分子化合物的基本特征
A
35
1.2 高分子化合物的基本特征
即使是一种“纯粹”的高分子,也是由化学组成相同、 分子量不等、结构不同的同系聚合物的混合物所组成。
A
36
1.2 高分子化合物的基本特征
这种高分子的分子量不均一(即分子量大 小不一、参差不齐)的特性,就称为分子量 的多分散性。
M1M2M1M1M2M1M2M2M2
在这种情况下,无法确定它的重复单元,仅
结构单元=单体单元
A
23
1.1 高分子的基本概念
1、高分子(大分子) 大分子化合物、聚合物、高聚物
2、单体 3、重复单元 5、结构单元 6、单体单元 7、聚合度 8、聚合物的分子量
A
24
1.2 高分子化合物的基本特征
高分子科学已经发展成高分子化学 和高分子物理两个主要分支
主 高分子的基本概念
要 高分子化合物的基本特征
内 容
高分子化合物的命名和分类
聚合反应
A
11
1.1 高分子的基本概念
A
12
1.1 高分子的基本概念
一个大分子往往是由许多相同的、简单的结构单元 通过共价键重复连接而成。 例如:聚苯乙烯
m iM i m i
n iM i2 n iM i
w iM i
式中符号意义同前 测定方法:光散射法
A
39
1.2 高分子化合物的基本特征
粘均分子量(Viscosity- average molecular weight)
对于一定的聚合物-溶剂体系,其特性粘数[η] 和分子量的关系如下:
xn2DP 2n
注意:Mo两种
结构单元的平
M xnM 02DM P0 均分子量
A
22
1.1 高分子的基本概念
3. 由无规排列的结构单元组成的高分子 如:
----( C 2--HCH=CH2--xC )-H -(-2C --H CH y n-)----
x, y为任意值,故在分子链上结构单元的排列 是任意的:
涤纶 1.8~2.3 尼龙-66 1.2~1.8 维尼纶 6~7.5
橡胶 分子量
天然橡胶 20~40 丁苯橡胶 15~20 顺丁橡胶 25~30
A
29
1.2 高分子化合物的基本特征
A
30
1.2 高分子化合物的基本特征
A
31
1.2 高分子化合物的基本特征
A
32
1.2 高分子化合物的基本特征
A
33
nC2HC聚H 合 C2-HCH 2--C CH H 2--C CH H
缩写成
CH2 CH n
A
13
1.1 高分子的基本概念
A
14
1.1 高分子的基本概念
A
15
1.1 高分子的基本概念
A
16
1.1 高分子的基本概念
1.由一种结构单元组成的高分子
结构单元=单体单元=重复单元=链节
A
17
1.1 高分子的基本概念
1.2 高分子化合物的基本特征
分子量多大才算是高分子? 其实,并无明确界限,一般
- - - - - < 1000 < - - - - - - - - - - - - < 10000 < - - - - -
低分子
过渡区(齐聚物)
高聚物
一般高分子的分子量在 强
104 ~106 范围

B
超高分子量的聚合物
数均分子量是通过依数性方法(冰点降低法、沸点升高法、 渗透压法、蒸汽压法) 和端基滴定法测定
A
38
1.2 高分子化合物的基本特征
质均分子量( Weight-average molecular weight) 是按照聚合物的质量进行统计平均的分子量
即i-聚体的分子量乘以其质量分数的加和
M w
n 表示重复单元数,也称为链节数, 在此等于聚合度。
A
18
1.1 高分子的基本概念
在这里,两种聚合度相等,都等于 n
xnDPn
由聚合度可计算出高分子的分子量:
MxnM 0DP M 0
式中: M 是高分子的分子量 M0 是结构单元的分子量
A
19
1.1 高分子的基本概念
另一种情况:
n2 N H-2 ( -5 - )- -C CH O --O NH 2 -5 )- -n ( C + -n -O 2 C O H -H -
A
25
1.2 高分子化合物的基本特征
分子量大是高分子的根本性质 高分子的许多特殊性质都与分子量大有关,如: 高分子的溶液性质: 难溶,甚至不溶,溶解过程往往要经过溶胀阶段 溶液粘度比同浓度的小分子高得多 分子之间的作用力大,只有液态和固态,不能汽化 固体聚合物具有一定的力学强度,可抽丝、能制膜
A
26
的分子量高达106 以上
A
高分子的强度与分子
量密切相关
A
C
聚合度 27
1.2 高分子化合物的基本特征
A 点是初具强度的最低聚合度,A
点以上强度随分子链迅速增加
AB
B 点是临界点,强度增加逐 渐减慢 尼龙 40 150
C 点以后强度不再明显增加
纤维素 60 250
不同高分子初具强度的聚合度和 乙烯基 100 400
高分子基本知识
—中石化聚丙烯装置操作工技能拔尖人才培训班
燕山石化教育培训中心 李庆萍
二○○九年三月
A
1
高分子基本知识
A
2
A
3
A
4
A
5
A
6
A
7
A
8
A
9
高分子基本知识
不足100
A
10
高分子基本知识
高分子科学是当代发展最迅速的学 科之一
高分子科学既是一门应用科学,又 是一门基础科学
相关文档
最新文档