变电站的防雷保护PPT课件

合集下载

变电所的防雷保护

变电所的防雷保护

摘要变电所是电力系统中对电能的电压和电流进行变换、集中和分配的场所,是联系发电厂与电力用户的纽带,担负着电压变换和电能分配的重要任务。

如果变电所发生雷击事故,会给国家和人民造成巨大的损失。

所以变电所的防雷是不可忽视的问题。

随着电力系统的快速发展,使得电能这一清洁能源在人民生产、生活中得到了普遍使用。

但当高压输电网在为人们提供动力和照明时,不能忽视自然界产生的雷电对高压输变电设备产生的大量危害。

因此,必须加强变电所雷电防护问题的认识与研究。

关键词:变电所;防雷保护;雷击原因;防雷原则;具体措施目录摘要 (2)1,变电所遭受雷击的主要原因 (4)1.1微机设备屡遭雷害的原因 (4)1.2远动载波系统受雷害特别严重原因 (4)2、变电所防雷的原则 (4)2.1、外部防雷和内部防雷 (5)2.2、防雷等电位连接 (5)3、变电所防雷的具体措施 (5)3.1、变电所装设避雷针对直击雷进行防护 (5)3.2、变电所的进线防 (6)3.3、变电站对侵入波的防护 (6)3.4、变压器的防护 (6)3.5、变电所的防雷接地 (7)3.6、变电所防雷感应 (7)4教训与收获 (7)5结束语 (7)6参考文献 (8)1变电所遭受雷击的主要原因雷电放电是带电荷的雷云引起的放电现象,在某种大气和大地条件下,潮湿的热气流进入大气层冷凝而形成雷云,大气层中雷云底部大多数带负电,它在地面上感应出大量的正电荷,这样就形成了强大的电场,当空间电场强度超过大气游离放电的临界电场强度时,就会发生雷云之间或是雷云对地的放电,从而形成雷电。

按其发展方向可分为下行雷和上行雷。

下行雷是在雷云产生并向大地发展的,上行雷是接地物体顶部激发起,并向雷云方向发起的。

供电系统在正常运行时,电气设备的绝缘处于电网的额定电压作用之下,但是由于雷击的原因,供配电系统中部分电压会大大超过正常状态下的数值.雷电波通常是通过变电所临近的10kV线路侵入10kV母线,再经过10kV所用变压器高、低压绕组间的静电和电磁耦合,闯入低压出线。

发电厂和变电所的防雷保护

发电厂和变电所的防雷保护

分析用图
避雷器上的电压
变压器上的电压波形
变压器承受雷电波能力
U c.5
2
l
Uj
变电所中变压器距避雷器的最大允许电气距离
lm
U j U c.5
2 /
三.变电所的进线段保护
保护目的:
为使变电所内避雷器能可靠地保护电气设 备,限制流经避雷器的电流幅值不超过 5kv、限制侵入波陡度α不超过一定的允 许值
1.进线段首端落雷,流经避雷器电流的计算 计算条件:
进线段1---2公里 雷电侵入波最大幅值为线路绝缘50%冲击 闪络电压
原理接线和等值电路图
3. 35kv及以上变电所的进线段保护
计算方程:
2.进入变电所的雷电波陡度α的计算
u
u
l
0.5
0.008u hd
令v=300m/us,陡度化为kv/m单位
2u
ib
ub z1
z1
ub
ub
ib
z1 2
u
用图解法求解
分析
避雷器电压有两个峰值:
uch
避雷器冲击放电电压,由于阀式避雷
器的伏的特性较平,可认为是一个定

uca 避雷器最高的残压,由于流经避雷器
的雷电流一般不超过5kA,因此其值取 为5kA下的残压
(2).变压器和避雷器之间有一定的电器距离 接线图
110kv及以上 可以相连,若ρ>1000Ω·m 应 加集中接地装置
35—60kv 当ρ<=500Ω·m 允许相连,但应 加集 中接地装置
当ρ>500Ω·m 不允许相连
二.变电所的侵入波保护
1.阀式避雷器的保护作用分析
(1).变压器与避雷器之间的距离为零

变电站二次设备防雷a-wyj

变电站二次设备防雷a-wyj

某大型变电站二次设备防雷案例
案例概述
防雷措施
某大型变电站的二次设备在雷雨天气下正 常运行,未受到雷击影响。
采用多级防雷保护措施,包括在控制楼安 装避雷网、避雷针等装置,对电缆、开关 柜等设备进行过电压保护。
案例分析
案例结论
该变电站的防雷措施较为完善,多级保护 有效降低了雷击风险。
大型变电站应采取多重防雷措施,确保二 次设备的稳定运行。
雷电的产生与传播
雷电的产生
雷电是大气中的静电放电现象,通常在雷雨天气中出现。当 雷暴云中的电荷积累到一定程度时,会在云层与地面之间产 生电场,引发雷电。
雷电的传播
雷电主要包括直击雷和感应雷。直击雷是指雷电直接击中建 筑物或设备,造成直接雷击。感应雷则是指雷电产生的电磁 感应脉冲,通过导体传播,影响周围的电子设备。
防雷系统的设计原则与要求
综合防护
综合考虑直击雷、雷电波 侵入、电磁脉冲等对二次 设备的影响,采取多层次、 多级别的防护措施。
接地系统
确保防雷系统的接地电阻 符合要求,保证雷电流能 够顺利导入大地。
屏蔽措施
对二次电缆进行屏蔽,减 少电磁干扰对二次设备的 影响。
防雷系统的施工与验收
施工准备
确保施工队伍具备相应的资质和 经验,熟悉防雷系统的设计要求。
某山区变电站二次设备防雷案例
案例概述
某山区变电站的二次设备在雷电活动 频繁的季节正常运行,未受到雷击影 响。
案例分析
该变电站地处山区,雷电活动频繁, 但因采取了有效的防雷措施,二次设 备运行稳定。
防雷措施
采用直击雷防护和雷电电磁脉冲防护 相结合的方式,包括在控制楼安装避 雷网、避雷针等装置,对电缆、开关 柜等设备进行过电压保护。

10 发电厂和变电站的防雷保护

10 发电厂和变电站的防雷保护
避雷器动作后:
变压器(也是避雷器)上电压有两个峰值: Uch :避雷器冲击放电电压 Ubm:避雷器残压的最大值,取5kA下的数值
两个峰值Uch和Ubm基本相同
1.避雷器与被保护设备距离为零时的过电压
变压器得到可靠保护条件:变压器冲击放电电压大于避雷 器的冲击放电电压和5kA下的残压 110kV~220kV变电所雷电流不得超过5kA,故5kA下的 残压用Ub.5表示。
§10-3 变电所的进线段保护
进线段:输电线靠近变电站1-2km的线段 进线段保护:加强进线段防雷保护措施(无避雷线的架设
避雷线,有避雷线减小保护角,增加绝缘子片数,加强检查巡 视);使进线段耐雷水平高于线路其它部分,减小进线段发生 绕击和反击形成侵入波的概率,这样侵入变电站的雷电波主要 来自进线段之外.
32
例:220kV线路的冲击绝缘强度U50%=1200kV,线 路波阻400,变电站中氧化锌避雷器的残压520kV
21200 520
Ibm
400
4.7kA
避雷器中的雷电流不超过5kA ,这也是避雷器残
压按照5kA考虑的原因。
33
2. 进入变电站的雷电波陡度a
τ

τ0

(0.5

0.008U hc

2a
l2 v
uT
(t)

2at p
Ub5

2a
l2 v
由于入侵波在变压器与避雷器之间多次反射,作用
在变压器上的电压具有振荡性质,相当于截波的作用。
uT
U b5
变压器上典型的实际电压波形
t
22
3.变压器与避雷器之间允许的最大电气距离
实际中以变压器承受多次截波的能力(多次截波耐压值 uj)表示承受雷电波的能力。

防雷接地ppt课件

防雷接地ppt课件
害。
经济性原则
在满足安全要求的前提下,应 尽量降低防雷接地系统的成本 ,包括材料、施工和维护费用 。
技术先进性原则
防雷接地系统的设计应采用先 进的技术和设备,以提高系统 的性能和可靠性。
环境适应性原则
防雷接地系统的设计应充分考 虑当地的气候、地质和环境条 件,确保系统能够适应各种环
境变化。
防雷接地系统的设计步骤
接闪器
接闪器是用来直接接受雷 击的金属物体,通常安装 在建筑物顶部,如避雷针 。
引下线
引下线是连接接闪器和接 地装置的金属导体,用于 将雷电流从接闪器传导至 接地装置。
接地装置
接地装置包括接地体和接 地线,负责将雷电流引入 大地,实现电流的分散和 消散。
防雷接地系统的设计原则
安全性原则
防雷接地系统的设计应确保人 员和设备的安全,避免雷击对 建筑物及其内部的设施造成损
防雷设施检查
检查防雷设施是否完好,如避雷针、 避雷带等是否出现锈蚀、断裂等现象 。
防雷接地系统故障排查
接地电阻异常
当接地电阻值异常时,应检查接 地体是否受到腐蚀、损伤,接地
线连接是否牢固等。
防雷设施损坏
如发现防雷设施损坏,应及时更换 或修复,并重新进行防雷检测。
设备接地不良
对于设备接地不良的情况,应检查 设备接地线是否完好,接地端子是 否牢固连接。
防雷接地系统更新改造
系统升级改造
根据实际情况和需要进行防雷接 地系统的升级改造,提高系统的
防雷效果和安全性。
材料更换与更新
对于老化、腐蚀的接地材料,应 及时进行更换,使用符合规定的
优质材料。
设计优化
根据最新的防雷技术标准和规范 ,对防雷接地系统设计进行优化

第7章发电厂和变电站的防雷保护

第7章发电厂和变电站的防雷保护
段杆塔接地电阻难于下降,不能达到要求的耐雷水平,
可在进线的终端杆上安装一组 1000左右的电抗线圈来
H
代替进线段,此电抗线圈既能限制流过避雷器的雷电
流又能限制入侵波陡度。
变压器的防雷保护
一、三绕组变压器的防雷保护
高压侧有雷电过电压波时,通过绕组间
的静电耦合和电磁耦合,低压侧出现一
定过电压。在任一相低压绕组加装阀式
➢ 电缆段保护(进线段保护):限制流经避雷器中
的雷电流小于3kA(对直配电机以3kA下的残压作
为设计标准)
➢ 电抗器保护:使F2可靠动作
电机母线上装设电容C以限制来波陡度
(a)原理接线图 (b)等值电路 Zg—电机波阻抗
有电缆段的电机进线段保护接线
L1-电缆芯线的自感;L2- 电缆外皮的自感;
L3- 电缆末端外皮接地线的自感 ;L4- 电缆末
➢110kV及以上的中性点有效接地系统
1、中性点为全绝缘时,一般不需采用专门的保护。但在变电
所只有一台变压器且为单路进线的情况下,仍需在中性点加装
一台与绕组首端同样电压等级的避雷器。
2、当中性点为降级绝缘时,则必须选用与中性点绝缘等级相
当的避雷器加以保护,同时注意校核避雷器的灭弧电压
➢ 35kV及以下的中性点非有效接地系统
发电厂和变电所雷电过电压来源及危害



雷直击发电厂和变电所
雷击输电线路产生的过电压沿线路侵入
发电厂和变电所
造成大面积停电。发电机、变压器等主
要电气设备的内绝缘大都没有自恢复的
能力
过电压防护的主要措施
防止直击雷过电压的主要措施是装设专门的避雷针或
悬挂避雷线。
对雷电侵入波过电压防护的主要措施是在发电厂、变

变电站的防雷及接地保护

变电站的防雷及接地保护

变电站的防雷及接地保护避雷针与被保护物之间,应保持足够的安全距离,即Sk>0.3Rsh+0.1h;Sd>0.3Rsh,其中Rsh为避雷装置的冲击接地电阻;h 为被保护物的高度。

条件许可时,Sk与Sd应尽量大。

一般情况下,Sk>5m,Sd>3m。

避雷装置接地电阻不能太大,否则将增加避雷装置的高度,成本增加。

一般土壤工频接地电阻不大于10Ω。

35kV及以下配电装置的构架或房顶,用独立避雷针保护,装设在距离人行道路大于3m,也可采取均压措施,或铺设50~80mm的沥青加碎石层。

60kV及以上配电装置,可将避雷针(线)安装于架构或房顶。

所有被保护的设备均应在避雷针保护范围内。

一、电气装置接地要求1.接地要求(1)一般要求①接地。

为保证人身和设备安全,电气设备外壳宜接地;交流电气设备充分利用自然接地体,但要校验自然接地体的稳定性;直流电路中,不应利用自然接地体作电流电路的接地线或接地体。

②接地电阻。

设计接地装置时,考虑土壤干燥或冻结等因素,保证接地电阻符合要求。

③接地距离。

不同用途和不同电压的电气设备,除另有规定外,用一个总接地体,但电气设备的工作接地和保护接地,应与防雷接地分开,并保持安全距离。

④中性线。

中性点直接接地的供用电系统中,装设能迅速自动切除接地短路故障的保护装置;中性点非直接接地的供用电系统中,装设迅速反映接地故障的信号装置,必要时可装设延时自动切除故障装置。

(2)防静电接地要求①可靠连接。

车间内每个系统设备和管道应可靠连接,接头处接触电阻小于0.03Ω。

②接地连接。

车间内和栈桥上等平行管道,相距约10cm时,每隔20m要互相连接一次;相交或相距近于10cm的管道,应互相连接,管道与金属构架相距10cm处要互相连接。

③气体场所接地。

气体产品输送管干线头尾部和分支线处都应接地;贮存液化气体、液态氮氢化合物及其他有火灾危险的液体贮液罐,贮存易燃气体贮气罐等都应接地。

(3)特殊设备接地要求①接地体。

变电站的防雷保护

变电站的防雷保护

在更新与升级防雷设备时,应充 分考虑设备的兼容性和可靠性, 确保其能够正常、稳定地运行。
对更新与升级后的防雷设备进行 验收和性能测试,确保其性能达
标,符合变电站的防雷要求。
04
CHAPTER
变电站防雷保护的未来发展
新型防雷技术的研发与应用
研发更高效、可靠的防雷设备与装置,提高防雷保护的可靠性和稳定性。
2
通过安装传感器和监测设备,实时监测变电站的 防雷设备运行状态和环境气象条件,及时发现异 常情况并采取相应措施。
3
利用人工智能算法对监测数据进行处理和分析, 预测雷电活动趋势和雷击风险,为变电站的运行 和维护提供决策支持。
防雷保护与环境保护的协调发展
在防雷保护措施的设计和实施过 程中,充分考虑环Байду номын сангаас保护的需求, 选用环保材料和设备,降低对环
人员和周边居民的生命安全。防雷保护可以降低雷电对人员安全的威胁。
02
CHAPTER
变电站防雷保护措施
直击雷防护
安装避雷针
在变电站的屋顶和烟囱上安装避 雷针,以吸引雷电并引导电流入
地。
避雷网和避雷带
在变电站的屋面和墙体上设置避雷 网和避雷带,以防止直击雷对设备 造成损坏。
防雷接地
将避雷针、避雷网和避雷带等防雷 设施与大地相连,确保雷电能够安 全导入大地。
电磁感应
雷电放电时产生的电磁场 可能引起变电站设备过电 压,导致设备故障。
防雷保护对电力系统稳定性的影响
保障电力供应
有效的防雷保护可以减少 因雷电造成的设备损坏和 停电事故,保障电力系统 的稳定运行。
防止连锁反应
雷电可能导致变电站设备 故障,引发连锁反应,影 响整个电力系统的稳定性。

6_发电厂和变电所的防雷保护

6_发电厂和变电所的防雷保护
电气绝缘
20
20
b. 限制侵入波陡度

U U 1 0.5 0.008 (0.5 0.008U )l ( )l0 0 hdp U hdp
变电所侵入波计算陡度
侵入波计算陡度(kV/m) 额定电 压(kV) 35 60 1km进线 段 1.0 1.1 2km进线段 或全线有避 雷线 0.5 0.55 额定电 压(kV) 220 330
装设的避雷针(线)应该使所有设备均处于避雷针及避 雷线的保护范围之内。
另外,要注意防止反击。即雷击于避雷针及避雷线后, 它们的地电位可能提高,如果它们与被保护设备的距离不够 大,则有可能在避雷针、避雷线与被保护设备之间发生放电, 或叫做逆闪络。此类放电现象不但会在空气中发生,而且还 会在地下接地装置间发生,一旦出现,高电位就将加到电力 设备上,有可能导致电力设备的绝缘损坏。
电气绝缘
6
6
第二节 发电厂和变电所的雷电侵入波保护
a. 阀型避雷器(限制来波的幅值) b. 进线保护(冲击电晕降低入侵波的陡度和幅值;导线波阻 抗限制流过避雷器的冲击电流幅值)
一 避雷器的保护作用
1. 避雷器保护的动作过程
避雷器上的电压可以 看作斜角平顶波
电气绝缘
7
7
二.变压器与避雷器之间允许的最大电气距离
第六章 发电厂和变电所的防雷保护
第一节 发电厂和变电所的直击雷防护 第二节 发电厂和变电所的雷电侵入波保护 第三节 变电所防雷的进线段保护 第四节 旋转电机的防雷保护
电气绝缘
1
1
第一节 发电厂和变电所的直击雷防护
发电厂、变电所防止直击雷的措施:采用避雷针、避雷线 及良好的接地网。
装设避雷针(线)的原则
电气绝缘

变电站防雷保护与防雷范围计算ppt课件

变电站防雷保护与防雷范围计算ppt课件

晋煤供电
◇ 避雷针
避雷针也称为引雷针,主要是把雷电引向自身,通过自身放电保护建筑物 ,避雷针高于被保护建筑物,避雷针保护建筑物的大体范围如下图所示。一般称 避雷针的保护范围为伞状保护,避雷针在雷云的作用下,其顶端电场强度最大, 所以吸引雷电流过来通过避雷针放电,之后通过引下线和接地体把雷电流泄入大 地,保护建筑物安全。
◇ 避雷针
晋煤供电
图 常见接闪器外形图
避雷针一般用镀锌钢管制成,避雷针的直径不得小于下列数值:
针长 1m 以下 圆钢 12mm,钢管 20mm
针长 1~2m
圆钢 16mm,钢管 25mm
晋煤供电
◇ 避雷针
※ 避雷针的保护范围计算
避雷针的保护范围的计算方法,国际电工委员会 IEC 推荐使用滚球法来确 定,也可以使用折线法来确定,对于同一类型的避雷针,采用滚球法的精确度 要高于折线法。 GB50057-2016规定采用滚球法来确定接闪器的保护范围。
晋煤供电
变电站防雷保护与防雷范围计算
☆雷电知识简述 ☆变电站防雷措施 ☆避雷针保护范围计算(滚球法) ☆接地体及接地网
晋煤供电
☆第一章 雷电知识简述
雷电的实质是一种气体放电现象,叫做大气过电压。雷电的实质是云团在 大气中上下翻滚不断的摩擦碰撞而使某些云团带正电荷,而某些云团带负电荷, 当两个云团接近到一定距离时,击穿大气互相放电的过程,这就是人们在天空 经常看到的雷电,当带电云团接近大地附近的比较高的建筑物或者物体时,会 在建筑物或比较高的物体中感应出相反的电荷,会产生雷云对大地的放电,即 我们经常说的雷击现象,遭受雷击时,会产生很大的雷电流和雷电压,对于建 筑物及设备甚至人身都会产生极大的威胁。通常建筑物遭受雷击都是下形雷造 成的,下形雷主要是指雷电由雷云向地面建筑物行进的,反之称为上形雷,比 较少见。雷电的种类通常有三类,比较常见的是线形雷。片形雷比较少见,另 外有时候还能看到球形雷。

007--发电厂和变电所的防雷保护

007--发电厂和变电所的防雷保护
高电压技术
第七章
发电厂和变电所的
防雷保护
高电压技术


一、发、变电所雷电过电压来源及危害: 发电厂、变电所是电力系统的中心环节,另外变电所是 多条输电线路的交汇点和电力系统的枢纽。 1、雷电直击发电厂和变电所 2、雷击线路产生的雷电过电压沿线路侵入发、变电所 3、雷电直击发电厂和变电所造成大面积停电,影响工 业生产和人民生活。 4、雷击线路产生的雷电过电压沿线路侵入发、变电所电 气设备,发电机、变压器等主要电器设备的内绝缘大都没 有自恢复的能力,一旦受损,直接经济损失严重;同时修 复困难,影响时间较长,间接损失无法估量。
旋转电机的防雷保护要比变压器困难得多,其雷害事故 也往往大于变压器,这是由它的绝缘结构、运行条件等方 面的特殊性造成的。 1、旋转电机主绝缘的冲击耐压值远低于同级变压器的冲 击耐压值。在同一电压等级的电气设备中,以旋转电机的冲 击电气强度为最低。运行中的旋转电机主绝缘更低于出厂时 的核定值。
高电压技术
第一节 发电厂、变电所的直击雷保护
发电厂、变电所防雷保护的措施: 按照安装方式的不同,装设独立避雷针、构架避雷针。
直击雷防护设计内容:
选择避雷针的支数、高度、装设位置、验算它们的保护范 围、应有的接地电阻、防雷接地装置设计等。
高电压技术
一、独立避雷针
适用范围:35kv及以下变电所 1、 避雷针的反击问题: 雷电经引下线入地时,在引下线上产生高电位,会 对被保护对象或与其有联系的物体(母线、电缆、金属 管道等)产生反击。 2、安全距离的确定: 为避免反击发生,就要求避雷针的引下线与被保护物体之 间有一定的安全距离。
设辅助集中接地装置,且避雷针与主接地网的地下连接 点到变压器接地线到主接地网的地下连接点,沿接地体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③ 10kv及以上的配电装置,可将线路的避雷线引到出线门 形架构上。土壤电阻率>1000Ω.m的地方,应加设集中 接地装置。35~60kv配电装置,在土壤电阻率≯500Ω.m 的地方,允许将线路的避雷线引接到门形构架上,但应 加设集中接地装置。在土壤电阻率> 500Ω.m的地方 ,避雷线应架到线路终端杆塔为止。从线路终端杆塔到 配电装置的一档线路的保护,可采用独立避雷针,也可 在终端杆塔上装设避雷针。
阀型避雷器:
阀型避雷器是由火花间隙和 非线性电阻这两种基本元件 组成的。间隙与非线性电阻相串联。
氧化锌避雷器:也称金属氧化物避雷器,是20世纪70年代初出现的一种新型避
雷器。这种避雷器的阀片以氧化锌(ZnO)为主要原料,辅以少量能产生非线性特性的 金属氧化物,经混料、选粒、成型,在高温下烧结而成。它的结构非常简单,仅由相 应数量的ZnO阀片密封在瓷套内组成。
① 500kV及以上送电线路,应全线装设双避雷线,且输电线路愈高,保护角愈小( 有时小于20°)。在山区高雷区,甚至可以采用负保护角。
② 220~330kV线路,同样应全线装设双避雷线,一般杆塔上避雷线对导线的保护角 为20°~30°。
③ ll0kV线路,一般沿全线装设避雷线,在雷电特别强烈地区采用双避雷线。在少 雷区或运行经验证明雷电活动轻微的地区,可不沿线架设避雷线,但杆塔仍应逐 基础接地。
④ 严禁在装有避雷针,避雷线的构筑物上架设通信线,广 播线和低压线。
⑤ 滚球法计算保护范围
(2) 避雷线:
➢ 作用原理同避雷针,主要用于输电线路的保护,也可用于保护发电厂和变电站。 ➢ 保护范围的长度与线路等长,而且两端还有其保护的半个圆锥体空间。 ➢ 在架空输电线路上多采用保护角α来表示避雷线的保护程度。 ➢ 保护角α表示避雷线和外侧导线间连线与 ➢ 垂直线的夹角,α越小,雷击导线的概率 越小,对导线的屏蔽保护越可靠。
(1)独立避雷针:有专用支座和接地装置
,接地电阻一般≤10Ω。当设独立的接地线装 置有困难时,该接地装置可与主接地网连接。 但避雷针与主接地网的地下连接点至35kv及以 下设备与主接地网的地下连接点,沿接地体的 长度不得<15m。 ① 独立避雷针不应设在人经常通行的地方避雷
针及其接地装置与道路或出入口等的距离不 宜<3m,否则应采取均压措施,或铺设砾石 或沥青地面。
二 变电站雷害的来源
➢直击雷 ,即雷直击于变电站导线上或设备上。
➢感应雷,即变电站避雷针上落雷时产生的感应过 电压。
➢雷电波侵入,由于架空线路或金属管道对雷电的 传导的作用,雷电波可能沿着这些管线侵入屋内 ,危及人身安全或损坏设备。
三 变电站防雷保护装置
现代电力系统中实际采用的防雷保护 装置主要有: 避雷针,避雷线,保护间隙,各种避雷器, 防雷接地,电抗线圈,电容器组,消弧线圈 ,自动重合闸等。
同时放电时会产生截波,对有线圈的设备造成危害。保护间 隙另一个严重的缺点是弧灭能力差。
管型避雷器:
它实ห้องสมุดไป่ตู้上是一种具有较高熄弧能力的保 护间隙。
优点:管型避雷器采用了强制熄弧的
装置,因此比保护间隙熄弧能力强。
缺点:但由于管型避雷器具有外间隙,受环
境的影响大,故与保护间隙一样,仍具有伏秒 特性曲线较陡、放电分散性大的缺点,不易与被保护设备实现合理的绝 缘配合;同时动作后也会产生截波,不利于变压器等有线圈设备的绝缘 。因此,管型避雷器目前只用于输电线路个别地段的保护,如大跨距和 交叉档距处,或变电所的进线段保护。
避雷器的基本要求:
➢ 过电压作用时,避雷器先于被保护电力设备放电。 ➢ 避雷器应具有一定的熄弧能力。
保护间隙避雷器:保护间隙可以说是一种最简单的避雷器,按其
形状可分为棒形、角形、环形、球形等。它是由它是由主间隙和辅助 间隙串联而成的。
优点:就是结构简单、造价低。 缺点:由于放电间隙暴露在空气
中,放电特性受环境影响大,放 电分散性大,并且由于一般保护 间隙的电场属于极不均匀电场, 因此他的伏秒特性曲线比较陡, 与被保护设备的绝缘配合不理想。
变电站的防雷保护
裴亚文
SHENZHEN CLOU ELECTRONICS CO., LTD.
一 雷电的形成原理
雷电是云内、云与云之间或云与大地之间的放电现象。夏 季由于太阳辐射的作用,近地层空气温度升高,密度降低 ,产生上升运动,在上升过程中水汽不断冷却凝结成小水 滴或冰晶粒子,形成云团,而上层空气密度相对较大,产 生下沉运动,这样的上下运动形成对流。在对流过程中, 云中的小水滴和冰晶粒子发生碰撞,吸附空气中游离的正 离子或负离子,这样水滴和冰晶就分别带有正电荷和负电 荷,一般情况下,正电荷在云的上层,负电荷在云的底层 ,这些正负电荷聚集到一定的量,就会产生电位差,当电 位差达到一定程度,就会发生猛烈的放电现象,这就是雷 电的形成过程。雷电电荷在放电过程中,产生很强的雷电 电流,雷电电流将空气击穿,形成一个放电通道,出现的 火光就是闪电。在放电通道中空气突然加热,体积膨胀形 成爆炸的冲击波产生的声音就是雷声。
② 110kv及以上的配电装置, 可以将避雷针装在配电装 置的构架或房顶上,但在 土壤电阻率>1000Ω.m的 地区,宜装设独立避雷针 。35kv及以下高压配电装 置,为防止反击和感应过 电压损坏设备,避雷针不 宜装设在构架或房顶上。 在变压器的门形构架上, 也不应装设避雷针或将避 雷线拉到该构架上。
SUCCESS
THANK YOU
2021/4/17
(3)避雷器
避雷器的作用是限制过电压,它的的保护原理与避雷针不同。 它实际上是一个放电器,并联连接在被保护设备附近,当作用电
压超过避雷器的放电电压时避雷器即先放电,从而限制过电压的 发展,从而保护了其他电气设备免遭击穿损坏。
避雷器的类型主要有:保护间隙,管型避雷器,阀型避雷器,和 氧化锌避雷器等。
小结:每种避雷器各自有各自的优点和特点,需要针对不同的环境进行使用,才能
起到良好的绝缘效果。避雷器在额定电压下,相当于绝缘体,不会有任何的动作产生 。当出现危机或者高电压的情况下,避雷器就会产生作用,将电流导入大地,有效的 保护电力设备。
相关文档
最新文档