医疗器械临床前研究中的人因可靠性分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医疗器械临床前研究中的人因可靠性分析

[摘要] 医疗器械的临床前研究是医疗器械风险控制的重要环节。在进行医疗器械的临床前研究过程中,人因可靠性是影响临床前研究结果有效性的重要因素。作者论述了人因可靠性研究的发展历程和人因可靠性分析方法,并结合医疗器械临床前研究特点,分析在医疗器械临床前研究中影响人因可靠性的相关因素,就如何提高医疗器械临床前研究中的人因可靠性提出建议和措施。

[关键词]医疗器械;医疗器械临床前研究;人因可靠性分析

[Key words]medical devices;preclinical studies of medical devices;human reliability analysis

随着科学技术的发展,医疗器械市场规模不断扩大,新型复杂医疗器械大量涌现,复杂程度不断提高,如药物复合型医疗器械、生物制品复合型医疗器械、使用新型材料的植入类医疗器械和原理复杂的高端医疗器械等等。这些医疗器械的出现使医疗水平大大提高,在给广大患者带来福音的同时,医疗器械的使用风险也随之加大,医疗器械不良事件报告逐年增加。医疗器械的风险存在于医疗器械设计开发、生产、流通、使用等各个环节,每个环节均应进行相应的风险评估和实施风险控制措施。2008年4月,国家食品和药品监督管理局发布了YY/T0316-2008《医疗器械-风险管理对医疗器械的应用》,该标准等同转化自ISO 14971:2007,代替YY/T0316-2003,自2009年6月1日起实施[1]。从医疗器械全生命周期风险示意图(图1)[2]中我们可以看出,医疗器械的上市前研究是一关键的风险控制点。

医疗器械范围广、门类多、构成复杂、原理多样[3]。为了保证医疗器械的安全性,必须在产品上市前对其进行一系列的安全性评价,这是医疗器械上市前研究的重要内容之一,也是医疗器械注册审批过程中的重要科研资料。广义上讲,医疗器械的安全性评价程序为:理化性能评价→生物学评价(包括动物模图1 医疗器械全生命周期风险示意图

型试验)→临床研究。作者在本研究中将临床研究之前的程序视为医疗器械的非临床研究,也称为医疗器械的临床前研究、临床前安全性评价,是以验证医疗器械安全性为主要目的的研究,并且是以医疗器械的注册上市为目的的。和药品的非临床研究类似,医疗器械的非临床研究是医疗器械首次应用到人类的最后一道屏障,研究结果质量的高低直接决定着人类用械风险的大小。因此,良好的医疗器械非临床研究,是保证医疗器械安全性、降低医疗器械使用风险的重要步骤。

医疗器械的非临床研究过程通常在实验室完成,随着实验室技术的飞速发展,实验室设备的先进性日益提高,并有大量辅助测试工具,如自动免疫组化机、自动化检测系统等,大大提高了实验室结果的准确性。但与此同时,高科技复杂医疗器械、使用全新材料产品、药物复合产品、带有硬件及软件的医疗器械产品

不断被研发出来,这也给医疗器械的非临床研究带来了新的挑战。在医疗器械的非临床研究过程中,人是整个研究过程的绝对主导者。从实验设计、实验操作、总结报告等一系列具体过程,以及动物模型的选择、动物手术的实施等,皆由人完成。因此,人因可靠性的高低会对安全性评价结果造成直接影响,进而影响被测试医疗器械的安全性结论的得出。现阶段,我国在医疗器械非临床前研究方面尚没有相应的质量管理规范和相关的质量控制文件出台和实施,加之医疗器械的复杂程度日益提高,对医疗器械的非临床研究要求不断提高,因此,研究医疗器械非临床研究领域中的人因可靠性,探讨人因因素在整个研究系统中的影响和人因因素的控制方法,进而提出适当的管理措施,对于避免研究中可能出现的人为错误及不确定因素,提高研究水平,具有现实指导意义。

人因可靠性分析(human reliability analysis, HRA)是以分析、预测、减少和预防人类失误为研究核心,以行为科学、认知科学、信息处理和系统分析等科学理论为基础,对人的可靠性进行分析和评价的学科,是在人-机工程学或者人因工程的基础上发展起来的,正在成为新兴的研究热点和方向[4]。

作者首先介绍人因可靠性的发展历程和有代表性的HRA方法,继而以具有代表性的归属于第3类高风险医疗器械的人工关节的非临床研究过程为例,使用适当的人因分析方法对人工关节非临床研究中人因可靠性进行相关的分析,强调人因可靠性的重要性,文章结尾部分就如何提高人在医疗器械非临床研究过程中的可靠性以及如何保证医疗器械临床前研究的有效性提出具体的建议和措施。

1 人因可靠性相关概念及其分析方法

1.1 人因可靠性概念和HRA的发展历程

HRA的研究开始于20世纪50年代,此后,随着工业生产尤其是核工业的发展,安全性问题越来越突出,HRA越来越得到重视[5]。人因可靠性研究发展过程大致可以分为两个阶段。第1个阶段是指从20世纪60年代到80年代中后期,这个阶段内具有代表性的分析方法有HCR(human cognitive reliability)方法[6]、HEART(human error assessment and reduction technique)方法[7]等;第2个发展阶段是指20世纪90年代之后,代表性的分析方法有人的失误分析技术(ATHEANA)[8]、认知可靠性和失误分析方法(CREAM)[9]。Dhillon 针对人因可靠性给出的定义是:“在规定的最小时间限度内(如果规定有时间要求),在系统运行中的任一要求阶段,由人成功地完成工作或任务的概率”[10]。

1.2 人为差错的定义和分类方法

根据IEC/TC56(国际电工委员会/电子元件可靠性技术委员会)思想,人类差错被定义如下:引起未预料的后果的人类行为以及超过某一允许范围内的人为集合的一部分。Swain[11]给出的工程中人为错误的含义为:“任何超过一定接受标准——系统正常工作所规定的接受标准或容许范围的人为动作”。

导致人为差错的原因很多,除了偶尔出现的随机差错之外,人为差错的诱因

主要可以分为训练水平、任务本质、人机交互界面质量、环境因素、任务执行时间5类。

根据看问题的角度和侧重点不用,人因失误的分类标准和方法也不同。当前主流的分类方法有3种,即行为主义的、关系的、概念的。行为主义的分类法只与可观察的、不期望的人的行为相关联,着重于什么行为发生。关系分类法强调人因失误产生的认知机制和试图提供可用于改善系统设计和训练程序的框架结构。英国心理学家Reason[12]根据认知心理学理论提出概念的分类方法,将人的认知活动分为技能基、规则基和知识基,是一种最有效、最有用的方法,他把所有的人因失误分为偏离(slip)、疏忽(lapse)、错误(mistake)。Reason认为大多数人的失误是非意向性的(unintended),即漫不经心下的疏忽造成的;有些失误是意向性的(intend),即操作者以一套不正确的计划、方案去解决问题,但她相信这是正确的或者更好的方法。这一方法能够较好地解释人因失误的有关安全科学的原理。见图2。

图2 人因失误分类

1.3 人因可靠性常用分析方法

自人因可靠性研究发展以来,据不完全统计,HRA的方法有50多种,但是一些分析方法由于受到当时认知水平和科学技术发展水平的影响,目前基本已经不再使用;还有一些分析方法从本质上看,是同一种方法。结合本研究特点,选取以下适合度较高的两种HRA方法加以介绍。

1.3.1 人的失误分析技术(ATHEANA)ATHEANA是由美国和能管理委员会USNRC提出来的。该方法认为,绝大部分的人为差错事件(human failure event, HFE)都是由自身条件和性能形成因子(PSF)相结合共同影响造成的,统称为差错诱发环(error-forcing context, EFC)。EFC可能导致非安全动作(unsafe action, UA),UA最终导致HFE。因此,该方法的重点在于辨识出那些EFC及可能诱发的UA。为此,ATHEANA方法将认知过程分为由监测—环境感知—计划—实现4个阶段构成的回路,任一阶段出现差错,都可能导致UA,这是一个不断反复的过程。这一方法考虑到人的失误事件来自多方面因素的影响,包括发生人的失误时间的原因及后果。

1.3.2 认知可靠性及其分析方法(CREAM)CREAM是Hollnagel[9]于1998年提出来的,是基于认知模型的新一代HRA方法。它的核心思想是人的性能并不是孤立的随机行为,而是依赖于完成任务时所处的环境。CREAM采用情景依赖控制模型COCOM(contextual control model)作为认知模型的基础。在这一模型中,认知功能分为观察、解释、计划、执行4类;认知控制模式分为混乱的、机会的、战术的、战略的4种。每一类控制模式都对应着一个认知行为差错概率区间[13]。

2 医疗器械非临床研究的HRA

相关文档
最新文档