语音倒谱特征的研究
基于MATLAB的语音倒谱分析
![基于MATLAB的语音倒谱分析](https://img.taocdn.com/s3/m/3d5d836abdd126fff705cc1755270722182e594b.png)
基于MATLAB的语音倒谱分析语音倒谱分析是一种通过对语音信号进行倒谱变换来提取语音特征的方法。
MATLAB作为一种常用的科学计算软件,具有丰富的信号处理工具箱,可以用于实现语音倒谱分析。
语音倒谱分析的基本原理是将语音信号分解为一系列频率低通滤波器的输出,然后对滤波器输出进行离散傅立叶变换(DFT),得到倒谱系数。
倒谱系数反映了语音信号的频谱特征,可用于语音识别、语音合成、语音增强等应用。
在MATLAB中进行语音倒谱分析的步骤如下:1. 读取语音信号:使用`audioread`函数读取语音文件,得到语音信号的波形数据和采样率。
例如:```matlab[x, fs] = audioread('speech.wav');```2. 预处理语音信号:通常需要对语音信号进行预处理,例如去除噪声、端点检测等。
这可以使用MATLAB的信号处理工具箱实现。
例如,使用`medfilt1`函数对语音信号进行中值滤波去噪:```matlabx = medfilt1(x, 3); % 使用中值滤波去噪```3. 分帧:将语音信号分为若干帧,每帧包含N个采样点。
通常选择帧长为20-40毫秒左右,帧移为10-20毫秒。
可以使用`buffer`函数实现:```matlabframeLength = round(fs * 0.025); % 帧长为25msframeShift = round(fs * 0.01); % 帧移为10msframes = buffer(x, frameLength, frameLength-frameShift,'nodelay');```4. 加窗:对每一帧的数据应用窗函数,以减小频谱泄漏效应。
常用的窗函数有汉明窗(hamming window)和黑曼窗(hanning window)。
可以使用`hamming`或`hanning`函数实现:```matlabwindow = hamming(frameLength); % 汉明窗```5. 计算功率谱:对窗函数加权的每一帧信号进行离散傅立叶变换(DFT),得到每帧的功率谱。
语音信号的倒谱分析
![语音信号的倒谱分析](https://img.taocdn.com/s3/m/25a687f8941ea76e58fa045a.png)
因为
ˆ X ' (Z ) X ' (Z ) X (Z )
求复倒谱的一种有效的递推算法
ˆ Z[nx(n)] Z (nx(n))Z[ x(n)]
ˆ n( x(n)) {nx(n)} x(n)
n 1
l ˆ ˆ x(n) ( ) x(l ) x(n l ) x(n) x(0) l 0 n 可推导出: ˆ x ( n)
i 1
P
ˆ e(n) s(n) s(n) s(n) ai s(n i) ai s(n i)
i 1 i 0
P
P
线性预测原理
线性预测是目前分析语音信号的最有效的方法之一,分 析的结果是得到一组信号的全极点模型参数,所以又称 为信号参数模型法。 这个方法的基本思想是将被分析信号模型化,即用有限 数目的模型参数来描述信号中的信息,具体来说,将被 分析信号s(n)视为某系统(即模型)的输出,而系统的 输入,在s(n)为确定性信号是采用单位取样序列。在s(n) 为随机信号是采用白噪声序列。
Linear
Prediction
1947年维纳提出; 1967年板仓等人应用于语音分析与合成;
语音信号处理与分析的核心技术
提供了预测功能;
提供了声道模型和声道模型的参数估计方法;
基本思想:
语音样本之间存在相关性,一个语音信号的样本可 以用过去若干个样本的线性组合来逼近;
ˆ s ( n) a i s ( n i )
g jZ
j 0
Q
j
, A( Z ) ai Z i
i 0
P
g j 和ai都是实数,且a0 1。如果能有一种算法,可能根据已知的s (n) 正确的估计出这些参数,那么未知的系统V(Z)便可求得。由于 E ( Z )V ( Z ) S ( Z ),根据V ( Z )和S ( Z )便可以求得E(Z),从而全部解决 解卷的的问题。
mel频谱倒谱系数
![mel频谱倒谱系数](https://img.taocdn.com/s3/m/9d005e5e2379168884868762caaedd3382c4b570.png)
mel频谱倒谱系数随着科技的进步,声音处理已经成为了我们日常生活中不可或缺的一部分。
在声音处理领域中,Mel频谱倒谱系数(MFCC)扮演着至关重要的角色。
本文将深入解析Mel频谱倒谱系数,探讨其在声音处理领域中的应用和重要性。
一、Mel频谱倒谱系数的概念Mel频谱倒谱系数,简称MFCC,是一种用于语音识别和声音分类的特征。
它通过将语音信号转换为倒谱系数(cepstral coefficients),能够有效地描述语音信号的特性。
在语音处理中,倒谱系数是一种将频域信号转换为时域信号的方法,而MFCC则是在倒谱系数的基础上,进一步考虑了人耳对声音的感知特性。
二、Mel频谱倒谱系数的提取过程提取MFCC的过程主要包括预加重、分帧、加窗、快速傅里叶变换(FFT)、梅尔滤波器组、对数压缩、离散余弦变换(DCT)等步骤。
下面将简要介绍每个步骤:1.预加重:通过一个一阶高通滤波器对语音信号进行预处理,以突出语音信号的高频部分。
2.分帧:将语音信号分成若干个短时帧,每帧通常为20-40毫秒。
3.加窗:对每个帧应用窗函数,以减少帧边缘的突变。
4.快速傅里叶变换(FFT):将加窗后的帧从时域转换到频域。
5.梅尔滤波器组:将频域信号通过一组梅尔滤波器,模拟人耳对不同频率的感知特性。
6.对数压缩:将梅尔滤波器的输出进行对数压缩,以突出语音信号中的关键信息。
7.离散余弦变换(DCT):对压缩后的梅尔频谱进行离散余弦变换,得到倒谱系数。
三、Mel频谱倒谱系数在声音处理中的应用MFCC在声音处理领域中有着广泛的应用,主要包括以下几个方面:1.语音识别:MFCC能够有效地描述语音信号的特性,因此在语音识别中发挥着重要的作用。
通过提取语音信号的MFCC特征,可以实现对语音的自动识别和分类。
2.声音分类:MFCC可以用于声音分类任务,例如动物声音分类、乐器声音分类等。
通过提取声音信号的MFCC特征,可以实现对不同声音类型的自动分类和识别。
倒谱分析
![倒谱分析](https://img.taocdn.com/s3/m/11d7874058fb770bf78a55f8.png)
图
图
图
(2).倒频谱的应用
分离信息通道对信号的影响
图2.26对数功率谱关系图。
在机械状态监测和故障诊断中,所测得的信号,往往是由故障源经系统路径的传输而得到的响应,也就是说它不是原故障点的信号,如欲得到该源信号,必须删除传递通道的影响。
如在噪声测量时,所测得之信号,不仅有源信号而且又有不同方向反射回来的回声信号的混入,要提取源信号,也必须删除回声的干扰信号。
若系统的输入为x(t),输出为y(t),脉冲响应函数是h(t),两者的时域关系为: y(t)=x(t)*h(t)
频域为: Y(f)=X(f)*H(f)或Sy(f)=Sx(f)*|H(f)|2
对上式两边取对数,则有:
(2.11)
式(2.72)关系如图(2.26)所示,源信号为具有明显周期特征的信号,经过系统特性logGk(f)的影响修正,合成而得输出信号logGy(f)。
对于(2.72)式进一步作傅里叶变换,即可得幅值倒频谱:
(2.12)
即:
(2.13)
以上推导可知,信号在时域可以利用x(t)与h(t)的卷积求输出;在频域则变成X(f)与H(f)的乘积关系;而在倒频域则变成Cx(q)和Ch(q)相加的关系,使系统
特特性Ch(q)与信号特性Cx(q)明显区别开来,这对清除传递通道的影响很有用处,而用功率谱处理就很难实现。
图(2.26b)即为相应的倒频谱图。
从图上清楚地表明有两个组成部分:一部分是高倒频率q2,反映源信号特征;另一部分是低倒频率q1,反映系统的特性。
两部分在倒频谱图上占有不同的倒频率范围,根据需要可以将信号与系统的影响分开,可以删除以保留源信号。
语音识别 实验报告
![语音识别 实验报告](https://img.taocdn.com/s3/m/1ff31b9181eb6294dd88d0d233d4b14e84243e72.png)
语音识别实验报告语音识别实验报告一、引言语音识别是一项基于人工智能的技术,旨在将人类的声音转化为可识别的文字信息。
它在日常生活中有着广泛的应用,例如语音助手、智能家居和电话客服等。
本实验旨在探究语音识别的原理和应用,并评估其准确性和可靠性。
二、实验方法1. 数据收集我们使用了一组包含不同口音、语速和语调的语音样本。
这些样本覆盖了各种语言和方言,并涵盖了不同的背景噪音。
我们通过现场录音和网络资源收集到了大量的语音数据。
2. 数据预处理为了提高语音识别的准确性,我们对收集到的语音数据进行了预处理。
首先,我们对语音进行了降噪处理,去除了背景噪音的干扰。
然后,我们对语音进行了分段和对齐,以便与相应的文字进行匹配。
3. 特征提取在语音识别中,特征提取是非常重要的一步。
我们使用了Mel频率倒谱系数(MFCC)作为特征提取的方法。
MFCC可以提取语音信号的频谱特征,并且对人类听觉系统更加符合。
4. 模型训练我们采用了深度学习的方法进行语音识别模型的训练。
具体来说,我们使用了长短时记忆网络(LSTM)作为主要的模型结构。
LSTM具有较好的时序建模能力,适用于处理语音信号这种时序数据。
5. 模型评估为了评估我们的语音识别模型的准确性和可靠性,我们使用了一组测试数据集进行了模型评估。
测试数据集包含了不同的语音样本,并且与相应的文字进行了标注。
我们通过计算识别准确率和错误率来评估模型的性能。
三、实验结果经过多次实验和调优,我们的语音识别模型在测试数据集上取得了较好的结果。
识别准确率达到了90%以上,错误率控制在10%以内。
这表明我们的模型在不同语音样本上具有较好的泛化能力,并且能够有效地将语音转化为文字。
四、讨论与分析尽管我们的语音识别模型取得了较好的结果,但仍存在一些挑战和改进空间。
首先,对于口音较重或语速较快的语音样本,模型的准确性会有所下降。
其次,对于噪音较大的语音样本,模型的鲁棒性也有待提高。
此外,模型的训练时间较长,需要更多的计算资源。
语音信号的同态滤波和倒谱分析
![语音信号的同态滤波和倒谱分析](https://img.taocdn.com/s3/m/596883685b8102d276a20029bd64783e09127d38.png)
单击此处添加副标题
演讲人姓名
LPC系数 a1,a2,… ap
声道模拟 滤波器H(z) 线性预测滤波器Hl(z)
u(n)
线性预测滤波器Hl(z)
x(n)
2.同态信号处理的基本原理
01.
进行如下处理:
02.
特征系统D*[] 完成将卷积信号转化为加性信号的运算。
添加标题
逆特征系统D*-1[] ,恢复为卷积性信号。
添加标题
进行如下处理:
a.第一步和第三步的运算相同。 b.第二步不同,前者是对数运算,后者是指数运算。
(3)特征系统D*[]和逆特征系统D*-1[]的区别
Z
exp
Z-1
Z
ln
Z-1
x(n)
x(n)
^
x(n)
^
x(n)
添加标题
特征系统 D*[]
添加标题
x(n)
添加标题
验证一个时域信号经过同态处理,是否回到时域?
ln(.)
MFCC
DCT Y(l)
4.MFCC的应用
预处理
语音识别系统框图
特征 提取
模型库
测度 估计
单击此处添加文本具体内容
现有语音识别系统采用的最主要的两种语音特征包括:(1)线性预测倒谱参数(2)MFCC参数 后处理 输入 输出
MFCC系数考虑到了人耳的听觉特性,具有较好的识别性能。但是,由于它需要进行快速傅立叶变换,将语音信号由时域变换到频域上处理,因此其计算量和计算精度要求高,必须在DSP上完成。
1.Mel频率尺度
线性频率f
Mel频率 Mel(f)
Mel频率带宽随频率的增长而变化,在1000Hz以下,大致呈线性分布,带宽为100Hz左右,在1000Hz以上呈对数增长。将频谱通过24个三角滤波器,其中中心频率在1000Hz以上和以下的各12个。滤波器的中心频率间隔特点是在1000Hz以下为线性分布,1000Hz以上为等比数列分布。
语音信号的同态滤波及倒谱分析
![语音信号的同态滤波及倒谱分析](https://img.taocdn.com/s3/m/6b6a96ec81c758f5f61f67c3.png)
*
[ ]
y1 ( n ) y 2 ( n )
* *
x(n)
X (z)
ln[ ]
ˆ X (z)
Z
1
ˆ x(n)
Z[
]
[
]
ˆ y (n)
ˆ Y (z)
exp[ ]
Y (z)
Z
1
* *
y (n)
Z[
]
[
]
12
3. 复倒谱和倒谱
13
3. 复倒谱和倒谱
复倒谱和倒谱P49
复倒谱:一个时间序列的Z变换的对数所对应的时间序列
) X 2 (e
j
)
( ) 1 ( ) 2 ( )
( ) 2 k
24
5. 复倒谱分析中的相位卷绕问题
递推法解决相位卷绕
d d ˆ X (z) [ln X ( z )] X (z) dz dz X ( z ) dz zX ( z ) d ˆ d ˆ X ( z ) z X ( z ) X ( z ) z X (z) dz dz dz d
z d dz X ( z ) nx ( n )
d
ˆ n x ( n ) x ( n ) nx ( n )
k
ˆ k x ( k ) x ( n k ) nx ( n ) k ˆ n x(k ) x(n k ) k 0
n
ˆ Y (z)
对数谱函数
峰值检测
共振峰 28
6. 同态滤波在语音信号处理中的应用
同态声码器
L1 ( n )
gammatone倒谱系数
![gammatone倒谱系数](https://img.taocdn.com/s3/m/c9e2e7f064ce0508763231126edb6f1aff0071b3.png)
gammatone倒谱系数
Gammatone倒谱系数(Gammatone Frequency Cepstral Coefficients,GFCC)是一种音频特征提取方法,主要用于声音处理、语音识别和音乐信息检索等领域。
以下是GFCC的基本概念和计算步骤:
GFCC基于Gammatone滤波器组,这是一种模拟人耳听觉特性的滤波器组。
Gammatone滤波器可以很好地模拟人耳基底膜的频率响应特性,只需要很少的参数就能模拟听觉实验中的生理数据。
由于相邻的Gammatone滤波器通道有重叠的部分,因此提取的Gammatone特征系数相互之间存在相关性。
为了减小这种相关性,GFCC采用了离散余弦变换(DCT)进行处理。
GFCC的计算过程主要包括以下步骤:
对经过预处理后的语音帧进行快速傅里叶变换(FFT),获得频谱,并计算短时能量谱。
使用Gammatone滤波器组对频谱进行滤波,模拟人耳听觉的频率响应特性。
对滤波后的信号进行非线性变换,如对数变换,以模拟人耳对声音强度的感知特性。
对变换后的信号进行离散余弦变换(DCT),得到Gammatone 倒谱系数。
GFCC具有一些优点,例如能够模拟人耳的听觉特性,提取
出与人耳感知相关的音频特征;同时,GFCC的计算复杂度相对较低,适用于实时处理和大规模数据处理。
基于MATLAB的语音倒谱分析
![基于MATLAB的语音倒谱分析](https://img.taocdn.com/s3/m/2d7e501f814d2b160b4e767f5acfa1c7aa0082c6.png)
基于MATLAB的语音倒谱分析语音倒谱分析(Cepstral Analysis)是一种常用于语音信号处理的技术,通过在短时频域上进行倒谱分析,可以提取出语音信号的特征参数,进一步应用于语音识别、语音合成和语音编码等领域。
MATLAB作为一种功能强大的科学计算软件,提供了丰富的工具箱,可以方便地进行语音倒谱分析的实现。
语音倒谱分析的基本原理是将频谱的信息转换到倒谱域,再提取出倒谱系数作为特征参数。
语音信号的频谱特性通常用功率谱密度来表示,而倒谱系数则是通过对频谱进行对数运算和离散余弦变换得到的。
MATLAB提供了类似于“cepstral”和“rceps”等函数,可以直接计算语音信号的倒谱系数,并进行后续的分析和处理。
在使用MATLAB进行语音倒谱分析时,通常可以按照以下步骤进行:1. 读取语音信号:首先需要将语音信号读入MATLAB中,可以使用“audioread”函数来完成这一步骤。
读取后的语音信号通常是一个列向量,表示声音随时间的变化。
2. 分帧处理:语音信号是一个时间域的信号,倒谱分析通常需要对其进行分帧处理。
可以使用“buffer”函数将语音信号划分为多个帧,并逐帧进行处理。
每一帧的长度通常选择20-30ms,可以根据需要进行调整。
3. 加窗处理:语音信号是一个非平稳信号,为了保证每一帧都满足平稳的假设,通常需要对每一帧进行加窗处理。
常用的加窗函数有汉明窗和汉宁窗等,可以使用“hamming”和“hanning”等函数来生成加窗函数。
4. 计算频谱:对于每一帧语音信号,可以通过对其进行快速傅里叶变换(FFT)得到其频谱信息。
可以使用“fft”函数来完成这一步骤,得到每一帧的频谱表示。
5. 计算倒谱系数:对于得到的频谱信息,可以通过对其进行对数运算和离散余弦变换(DCT)得到倒谱系数。
可以使用“log”、“dct”等函数来完成这一步骤,得到每一帧的倒谱系数。
6.特征提取和分析:得到每一帧的倒谱系数后,可以进一步进行特征提取和分析。
语音信号的同态滤波和倒谱分析课件
![语音信号的同态滤波和倒谱分析课件](https://img.taocdn.com/s3/m/da9671854128915f804d2b160b4e767f5acf80a5.png)
倒谱分析的应用
倒谱分析在语音识别领域中应 用广泛,用于提取语音特征, 提高识别准确率。
Hale Waihona Puke 倒谱分析还可以用于语音合成 ,通过对倒谱系数的调整和重 构,实现语音信号的合成。
此外,倒谱分析在语音降噪、 语音增强等领域也有广泛应用 。
语音信号的同态滤波 和倒谱分析课件
目录
• 语音信号的同态滤波 • 语音信号的倒谱分析 • 语音信号的同态滤波与倒谱分析的比较 • 语音信号处理的其他方法 • 语音信号处理的应用前景
01
语音信号的同态滤波
同态滤波的定义
同态滤波是一种信号处理方法,它通过非线性变换将输入信号分解为两部分:包 络信号和调制信号。包络信号表示信号的幅度变化,调制信号表示信号的相位变 化。
01
倒谱分析是一种语音信号处理技 术,通过对语音信号的倒谱变换 ,提取出语音信号的特征信息。
02
倒谱分析通过将语音信号的频谱 转换为倒谱,实现了对语音信号 的频域和时域特征的综合分析。
倒谱分析的原理
倒谱分析基于对语音信号的短时傅里 叶变换(STFT)和逆变换,通过对 频谱取对数后再进行逆变换,得到倒 谱系数。
质量。
05
语音信号处理的应用前景
语音识别
语音识别技术是实现人机语音交互的 关键技术,能够将人的语音转换为文 字或命令,从而实现人机交互。
随着人工智能技术的不断发展,语音 识别技术在智能家居、智能客服、智 能车载等领域的应用越来越广泛,为 人们的生活和工作带来了便利。
语音合成
语音合成技术是将文字转换为语音的技术,广泛应用于语音导航、语音播报、虚拟人物等领域。
倒谱分析的原理与应用
![倒谱分析的原理与应用](https://img.taocdn.com/s3/m/daeffbaa541810a6f524ccbff121dd36a22dc473.png)
倒谱分析的原理与应用1. 什么是倒谱分析?倒谱分析是一种在信号处理和声学领域常用的分析方法,用于分析时域信号的频谱特征。
利用倒谱分析,可以得到信号的频率成分和振幅信息,进而对信号进行特征提取和模式识别。
2. 倒谱分析的原理倒谱分析的原理基于信号的光谱结构。
信号的频谱可以通过傅里叶变换得到,而倒谱分析则是对频谱进行进一步处理。
2.1 频谱图的构造倒谱分析的第一步是构造信号的频谱图。
频谱图将信号的频率和振幅信息可视化,通常使用对数幅度谱来表示。
2.2 傅里叶变换傅里叶变换将时域信号转换为频域信号,通过傅里叶变换可以得到信号的频谱表示。
2.3 对数幅度谱的计算对数幅度谱是频谱的一种常见表示形式,它使用对数刻度来表示信号的振幅。
对数幅度谱可以通过对频谱取对数来得到。
2.4 倒谱的计算倒谱是对对数幅度谱进行进一步处理得到的。
倒谱通过对对数幅度谱进行伪逆傅里叶变换得到,反映了信号的调频特性。
2.5 倒谱的性质倒谱具有以下性质: - 倒谱是实数序列。
- 倒谱的对称性。
- 倒谱的平滑性。
3. 倒谱分析的应用倒谱分析在音频信号处理、语音识别和模式匹配等领域有广泛的应用。
3.1 音频信号处理倒谱分析在音频信号处理中通常用于特征提取和声音合成。
倒谱可以对音频信号进行降维处理,从而提取出信号的关键特征。
在声音合成中,倒谱分析可以用于生成逼真的声音效果。
3.2 语音识别倒谱分析在语音识别中扮演着重要的角色。
语音信号可以通过倒谱分析和模式匹配算法进行识别和辨别。
倒谱分析可以提取出语音信号的关键特征,为语音识别算法提供支持。
3.3 模式匹配倒谱分析可以应用于模式匹配问题。
在模式匹配中,倒谱分析可以将复杂的信号转化为一系列简单的特征向量,从而实现信号的匹配和识别。
3.4 其他应用领域除了音频信号处理、语音识别和模式匹配,倒谱分析还可以应用于其他领域,如图像处理、生物医学工程和自动控制系统等。
4. 总结倒谱分析是一种常用的信号处理方法,可以用于分析时域信号的频谱特征。
语音识别中的特征提取技术研究
![语音识别中的特征提取技术研究](https://img.taocdn.com/s3/m/d8e22e3f03768e9951e79b89680203d8cf2f6a6a.png)
语音识别中的特征提取技术研究特征提取是语音识别领域中的重要技术之一,它将语音信号从时域转换到特征域,提取出能够表征语音信号的关键特征,以便于后续的模式识别和分类任务。
特征提取的质量对于语音识别系统的性能具有重要影响,因此研究如何提取高质量的特征一直是该领域的热点问题之一、本文将介绍目前常用的语音识别中的特征提取技术及其研究进展。
在语音识别领域,常用的特征提取技术包括MFCC(Mel频率倒谱系数)、PLP(感知线性预测系数)和FBANK(滤波器组特征)。
MFCC是最常用的语音特征提取方法之一,它首先对语音信号进行快速傅里叶变换,然后计算能量谱,再对能量谱进行梅尔滤波器组变换,最后取对数能量并进行倒谱变换得到MFCC特征。
PLP也是一种常用的特征提取方法,它采用包络线性预测方法来估计语音信号的谐波特性。
FBANK是一种基于滤波器组的特征提取方法,与MFCC类似,FBANK首先将语音信号通过一组滤波器,然后计算滤波器组的能量特征。
除了这些传统的特征提取技术,近年来,还出现了一些基于深度学习的特征提取方法,如DeepSpeech和E2E-ASR。
DeepSpeech是一种基于循环神经网络(RNN)的端到端语音识别系统,它直接从原始语音信号中提取出高层次的语音特征进行识别。
E2E-ASR是一种基于端到端自动语音识别(ASR)系统,它直接从原始音频信号中生成文本,不需要中间的特征提取和对齐步骤。
特征提取技术的研究主要包括特征维数、特征间相关性、特征选择和特征加权等方面。
特征维数是指特征向量的维度,通常,特征维数越高,能够表征语音信号的信息越丰富,但同时也会增加计算复杂度和存储开销。
特征间相关性是指不同特征之间的相关性,过高的相关性可能会导致特征冗余和信息丢失。
特征选择是指选择最优的特征子集,以减少特征维度和去除冗余特征,从而提高识别性能。
特征加权是指对不同特征进行适当的加权,以提高关键特征的重要性。
总结来说,特征提取是语音识别中的重要环节,不同的特征提取方法适用于不同的语音信号和识别任务。
语音信号的动态时频倒谱特征
![语音信号的动态时频倒谱特征](https://img.taocdn.com/s3/m/01d8f020915f804d2b16c126.png)
p r n e u t n t e C i e e da e t M I ,YUE,W U )i e tf a in wi h y t m f ei me tr s lso h h n s il c s( N d n i c t t t es s e o i o h GM M h w h tDT— s o t a
Se ., 011 p 2
语 音信 号 的动 态 时频 倒 谱 特征
孙 平 , 顾明亮 , 彪 , 原 , 宁 张 高 张
( . 州 师 范 大 学 物 理 与 电 子 工 程 学 院 , 苏 徐 州 2 1 1 ; . 州 师 范 大 学 语 言科 学 学 院 , 苏 徐 州 2 1 1 ) 1徐 江 216 2徐 江 2 1 6
第 2 卷第 3 9 期范大学学报 ( 自然 科 学 版 )
J u n l fXu h u Noma ie st ( tr l ce c io ) o r a z o r lUnv r i Nau a in eEdt n o y S i
Vo . 9 No 3 12 , .
中 图分 类 号 : P 9 T 31 文献标识码 : A 文章 编 号 : 0 76 7 (0 1 0 -0 80 10 —5 3 2 1 ) 30 5-4
Dy a i i e f e e c e s r lf a u e o pe c i n l n m c tm ・ r qu n y c p t a e t r f s e h s g a
倒谱域特征分量置信度分析及说话人识别应用
![倒谱域特征分量置信度分析及说话人识别应用](https://img.taocdn.com/s3/m/14f73e074a7302768e99390f.png)
第 1期
信 号 处 理
S GNAL P I R0C S I E S NG
Vo . 6. No 12 .1
2l 0 0年 1 月
Jn 2 l a.0 0
倒 谱 域 特 征 分 量 置 信 度 分 析 及 说 话 人 识 别 应 用
薛 峰 俞 一彪
( ,大学 电子信息 学院 ,苏州 2 52 ) 苏J i 1 10 1
噪声表现 出了比传统方法更低 的误识率 ,说 明了这种方 法的有效性 。 关键词 :说话人识别 ;鲁 棒性 ;置信度 ;C T BM
中图分类号 :T 9 2 3 N 1. 文献标 识码 :A 文章编号 :10 0 3 ( 00 0 — 17— 5 0 3— 50 2 1 ) 1 0 2 0
MF C各维分量的置信度 ,在此基 础上通过对 G C MM模 型的方差加权来减少置信度 小的特征分 量对输 出概率 的影响 ,以此来
提高系统的鲁棒性 。在基 于 S D 20 语料库 的说话人辨认 实验中 ,上述方法对 N i X 9 噪声库 中的 w i 、p k aty U A 02 o e .2 s h e i 、f o l t n cr
p s d meho sbet rt n tadto a eh dsi h es n e o t p n f eo y ie o ie 9 a a s o e t d i te ha r iin lm t o n t e pr e c fwhie、 i k、a t r l nos fNo s X一 2 d tba e.
Co f e c n lss o e s r l e t r n p l a in t n i n e a a y i fc p ta a u e a d a pi t o d f c o
(完整word版)语音信号进行倒谱分析
![(完整word版)语音信号进行倒谱分析](https://img.taocdn.com/s3/m/6ffb670ac850ad02de80419f.png)
实验三 语音信号进行倒谱分析一、 实验目的、要求1. 理解倒谱分析的作用2. 掌握倒谱分析求基音周期的方法3. 了解LPC 倒谱分析方法二、实验原理1.倒谱分析原理同态信号处理也称为同态滤波,实现将卷积关系变换为求和关系的分离处理,即解卷。
如 进行如下3步处理对于语音信号进行解卷,可将语音信号的声门激励信息及声道响应信息分离开来,从而求得声道共振特征和基音周期,用于语音编码、合成和识别。
同态信号处理的基本原理(1)第一个子系统D*[](特征系统)完成将卷积信号转化为加性信号的运算。
)(ˆ1n x 和 )(ˆ2n x信号也均是时域序列,但它们所处的离散时域显然不同于x(n)所处的离散时域,故把它称之为复倒频谱域。
)(ˆn x是x(n)的复倒频谱,简称为复倒谱,有时也称为对数复倒谱。
复倒谱具体计算公式其中倒谱计算公式为:2 线性预测原理线性预测分析的基本思想由于语音样点之间存在相关性,所以可以用过去的样点值来预测现在或未来的样点值。
通过使实际语音抽样和线性预测抽样之间的误差在某个准则下达到最小值来决定唯一的一组预测系数,而这组系数就能反映语音信号的特性,可以作为语音信号特征参数来用于语音编码、语音合成和语音识别等应用中去。
线性预测分析的基本原理每个采样值由前面的p 个采样值线性组合所构成。
记为x '(n),有:)(ˆ)(ˆ)(ˆ)](ˆ)(ˆ[)](ˆ[)3()(ˆ)(ˆ)(ˆ)(ln )(ln )(ln )2()()()()]([)1(212111212121n x n x n x z X z X Z z X Z z X z X z Xz X z X z X z X z X z X n x Z =+=+==+=+=⋅==--12()()()x n x n x n =*1ˆ()[ln (())]x n Z Z x n -=[()]()ˆ()ln ()ˆˆ()[()]jw jw jw jw DFT x n X e Xe X e xn IDFT X e ===要提高预测精度,就是要预测系数{k a }的取值使e(n)最小。
基于倒谱特征的重放语音检测
![基于倒谱特征的重放语音检测](https://img.taocdn.com/s3/m/4f9c9a28bc64783e0912a21614791711cc79796e.png)
物联网技术 2020年 / 第6期860 引 言说话人识别领域在过去的几十年中取得了重大进展。
事实上,这项技术已经成熟了,可以广泛的应用于现实世界中。
但是多项研究表明,没有采取一定检测措施的自动说话人验证(Automatic Speaker Verification ,ASV )系统对于欺骗攻击表现得非常脆弱[1-3]。
语音欺骗攻击手段主要有模仿、语音合成、语音转换、录音重放等,其中重放录音是最容易采用的欺骗攻击方式,它不需要特殊的信号处理知识就能够进行[4]。
在过去的几年里,特别是从ASVspoof 2015挑战赛开始,为了保护说话人识别系统,人们进行了大量的研究工作,制定了各种反欺骗策略。
一般,反欺骗系统由两部分组成:前端用于参数化语音信号,后端通过分类器确定其是真实语音还是欺骗语音[5]。
本文对基于倒谱特征的重放语音检测系统进行实验和分析,并对比几种不同倒谱系数特征系统的性能。
1 ASV 系统及重放语音检测基于GMM-UBM 分类器的ASV 系统模型如图1所示。
图1 ASV 系统模型ASV 系统模型可能在8个位置受到攻击,其中重放语音攻击一般发生在语音信号的输入,即麦克风接收端。
相应的,反欺骗系统的分类器需要训练真实语音模型和欺骗语音模型,针对重放语音的检测过程如图2所示。
图2 重放语音检测过程2 基于倒谱特征的重放语音检测算法重放语音检测算法的流程如下。
(1)语音信号的采集。
(2)信号的预处理,包含采样量化,预加重,端点检测,分帧,加窗等。
(3)特征提取。
(4)模型的训练,即分类器。
本文采用高斯混合模型(GMM ),通过训练集语音数据获得真实说话人语音模型与欺骗语音模型。
(5)检测判决。
对测试语音数据(开发集或评估集语音数据)分别在真实说话人语音模型与欺骗语音模型上计算对数似然分值后,获得系统的等错误率EER 值。
本文主要对基于不同倒谱系数特征的欺骗检测系统进行评估对比,系统的EER 值越低反映检测性能越优。
基于基音周期和共振峰频率检测的倒谱特征研究
![基于基音周期和共振峰频率检测的倒谱特征研究](https://img.taocdn.com/s3/m/229f864a856a561253d36f5e.png)
在噪声环境下,短时能量与其它特征参数都不能很好地区分语音段与非语音段。
倒谱能很好表示语音的特征,因此在大多数语音识别系统中选择倒谱系数作为输入特征矢量。
语音信号不是加性信号,而是卷积信号。
为了能用线性系统对其进行处理,可以先采用卷积同态系统处理。
经过卷积同态系统后输出的伪时域序列称为原序列的“复倒频谱”。
它的定义式可以表示为倒谱或称“倒频谱”的定义为。
它和复倒谱的主要区别是对序列对数幅度谱的傅立叶逆变换,它是复倒谱中的偶对称分量。
它们都将卷积运算,变为伪时域中的加法运算,使得信号可以运用满足叠加性的线性系统进行处理。
复倒谱涉及复对数运算,而倒谱只进行实数的对数运算,较复倒谱的运算量大大减少。
2 倒谱法检测基音周期噪声环境下常用基音检测方法的检测效果都不理想,而实际语音在产生过程中,不可避免地要受到背景噪声的影响。
语音的倒谱是将语音的短时谱取对数后再进行IDFT 得到的,所以浊音信号的周期性激励反映在倒谱上是同样周期的冲激。
因此,可以从倒谱波形中估计出基音周期。
先计算倒谱,然后在预期的基音周期附近寻找峰值。
如果倒谱的峰值超出了预先规定的门限,则输入语音段定位浊音,而峰的位置就是基音周期的良好估值。
如果没有超出门限的峰值,则输入语音段定位清音。
图1是倒谱法求浊音的基音周期。
语音信号是缓慢的时变的信号,倒谱是时变的,可以估计出激励源模型及基音周期随时间的变化。
通常每20-30ms 计算一次倒谱。
浊音是周期性的,清音不是周期性的,没有强烈的峰起,利用倒谱可以判断出清浊音和估算基音周期。
图1 倒谱法求浊音的基音周期3 倒谱法检测共振峰频率共振峰参数包括共振峰频率、频带宽度和幅值,共振峰信息包含在语音频谱的包络中。
因此共振峰提取的关键是估计语音频谱包络,并认为谱包络中的最大值就是共振峰。
利用语音频谱傅里叶变换相应的低频部分进行逆变换,就可以得到语音频谱的包络曲线。
依据包络线各峰值能量的大小确定出第一至第四共振峰。
(完整版)语音信号进行倒谱分析
![(完整版)语音信号进行倒谱分析](https://img.taocdn.com/s3/m/64c72a374028915f814dc2f6.png)
实验三 语音信号进行倒谱分析一、 实验目的、要求1.理解倒谱分析的作用 2. 掌握倒谱分析求基音周期的方法3. 了解LPC 倒谱分析方法二、实验原理1.倒谱分析原理同态信号处理也称为同态滤波,实现将卷积关系变换为求和关系的分离处理,即解卷。
如 进行如下3步处理)(ˆ)(ˆ)(ˆ)](ˆ)(ˆ[)](ˆ[)3()(ˆ)(ˆ)(ˆ)(ln )(ln )(ln )2()()()()]([)1(212111212121n x n x n x z X z X Z z X Z z X z X z Xz X z X z X z X z X z X n x Z =+=+==+=+=⋅==--对于语音信号进行解卷,可将语音信号的声门激励信息及声道响应信息分离开来,从而求得声道共振特征和基音周期,用于语音编码、合成和识别.同态信号处理的基本原理(1)第一个子系统D *[](特征系统)完成将卷积信号转化为加性信号的运算。
)(ˆ1n x 和 )(ˆ2n x信号也均是时域序列,但它们所处的离散时域显然不同于x(n )所处的离散时域,故把它称之为复倒频谱域。
)(ˆn x是x(n)的复倒频谱,简称为复倒谱,有时也称为对数复倒谱.复倒谱具体计算公式其中倒谱计算公式为:2 线性预测原理12()()()x n x n x n 1ˆ()[ln (())]x n Z Z x n [()]()ˆ()ln ()ˆˆ()[()]jw jw jw jw DFT x n X e X e X e x n IDFT X e线性预测分析的基本思想由于语音样点之间存在相关性,所以可以用过去的样点值来预测现在或未来的样点值。
通过使实际语音抽样和线性预测抽样之间的误差在某个准则下达到最小值来决定唯一的一组预测系数,而这组系数就能反映语音信号的特性,可以作为语音信号特征参数来用于语音编码、语音合成和语音识别等应用中去。
线性预测分析的基本原理每个采样值由前面的p 个采样值线性组合所构成。
第4章 语音信号短时频域及倒谱分析
![第4章 语音信号短时频域及倒谱分析](https://img.taocdn.com/s3/m/123f2e3aaaea998fcc220efe.png)
对 数 幅 度 /dB
对 数 幅 度 /dB
浊 音
0 -20 -40 -60 -80
0
1000
2000 3000 f/Hz 加 Hamming窗 时 语 音 谱
4000
0 -20 -40 -60 -80
清 音
0
1000
2000 3000 f/Hz 加 Hamming窗 时 语 音 谱
4000
对 数 幅 度 /dB
wn m xm
(-∞≤m≤+∞)
的傅里叶变换或离散傅里叶变换。 (2) 当 或k 固定时,它们是一个卷积,这相当于滤波 器的运算。因此,语音信号的短时频域分析可以解释为傅 里叶变换或滤波器。
5
第四章语音信号短时频域及倒谱分析
“十二五”普通高等教育本科国家级规划教材
4.1 傅里叶变换 的解释
第四章语音信号短时频域及倒谱分析
“十二五”普通高等教育本科国家级规划教材
第四章 语音信号短时频域及倒谱分析
1
第四章语音信号短时频域及倒谱分析
“十二五”普通高等教育本科国家级规划教材
目
1
1 2
录
傅里叶变换的解释 2 滤波器的解释 短时综合的滤波器组相加法 4 语音信号的复倒谱和倒谱分析及应用
3
5
2
“十二五”普通高等教育本科国家级规划教材
i
hi (n) wi (n)e jin
X n (e ji ) e jin
x(n m)h (m)
m
(4.22)
26
4.3 短时综合的滤波器组相加法
“十二五”普通高等教育本科国家级规划教材
式(4.25)的图形解释
x(n)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)
综上可得式(6)的 LPCC倒谱的计算公式。
0 ln G n −1 ^ k ^ h ( n ) = a n + ∑ h ( k ) a n− k k =1 n n −1 k ^ h (k )a n −k ∑ k=n − p n n< 0 n = 0 0 < n ≤ p n > p
图 1 用 于 计 算 Mel倒谱的三角滤波器
为便于计算,本文将式(8) 的三角滤波器简化为
0 f ' Hm (k ) = f 0 k < f ( m − 1) k − f ( m − 1) ( m ) − f ( m − 1) f ( m + 1) − k ( m + 1) − f ( m ) f ( m − 1) ≤ k ≤ f ( m )
(9)
f ( m ) ≤ k ≤ f ( m + 1) k > f ( m + 1)
其中
M −1 m=0
∑H
' m
(k ) = 1 。
(a) 含倒谱c0项
B ( f h) − B ( f l ) ) M +1
Mel滤波器的中心频率定义为:
f (m ) = N B Fs
−1
( B ( fl ) + m
Research on Speech Cepstral Features
WANG Rangding1,2, CHAI Peiqi1
(1. AI Laboratory , Tongji University, Shanghai 200092;2. College of Information Science and Engineering, Ningbo University, Ningbo 315211) 【Absrtact 】 The speech cepstral features are very important parameter in ASR, which symbolizes the property of HAS(human auditory system). The paper discusses cepstral features based on linear predictive and non-linear MEL scale, and presents LPCC and MFCC's extraction algorithm and differential coefficient and accelerated coefficient are also presented. The recognition experiment results show that MFCC's robustness is prior to LPCCs. 【 Key words】 LPCC;MFCC;Feature extraction
∑ h( k ) z
∞
^
−k
(2)
再对式(2)两边关于z求导,有
—31—
起基础膜上不同位置的振动。由此可用带通滤波器组来模仿 人耳听觉,从而减少噪声对语音的影响。 (1) 算法原理[2] 设语音信号的DFT为
X a (k ) = ∑ x(n )e
n =0 N −1 − j 2 πnk / N
在提取了LPCC 和MFCC 参数后,可统一用式 (13)的差 分特征参数提取算法提取△LPCC、△△LPCC和△MFCC、 △△MFCC参数。
第 29卷 第 13期 Vol.29 № 13
计 算 机 工 程 Computer Engineering
文章编号: 1000— 3428(2003)13 — 0031— 03 文献标识码: A
2003年 8月 August 2003
中图分类号: TP301.6
・博士论文・
语音倒谱特征的研究
王让定 1,2, 柴 佩 琪1
(10)
其中 f h 和 f l 分别为滤波器组的最高频率和最低频率, Fs为采样频率,单位为Hz。M是滤波器组的数目,N为 FFT 变换的点数,式中 B − 1 ( b ) = 700 ( e 1125 − 1) 。 每个滤波器组的输出的对数能量为
S ( m ) = ln( ∑ X a ( k ) H m ( k ))
(1. 同济大学人工智能研究室,上海 200092;2.宁波大学信息科学与工程学院,宁波 315211 ) 摘 要 :语音倒谱特征是语音识别中最常用的特征参数,它表征了人类的听觉特征。该文在研究基于线性预测倒谱和非线性MEL刻度倒谱特 征的基础上,研究了LPCC 和MFCC参数提取的算法原理及提取算法,提出了一级、二级差分倒谱特征参数的提取算法。识别实验验证了 MFCC参数的鲁棒性优于LPCC参数。 关键词 :LPCC ;MFCC;特征提取
c t +1 − c t − c t c t +1 dt = Θ ∑ θ ( c t +θ − c t −θ ) θ =1 Θ 2∑ θ 2 θ =1 t < Θ t ≥ T −Θ
0≤k < N
(7)
其中x(n) 为输入的语音信号,N表示傅立叶变换的点数。 我们定义一个M个滤波器组,采用的滤波器为三角滤波 器,中心频率为f(m),m=1,2,... ,M, 则三角滤波器的频率响应 按式(8) 定义,频率响应波形如图1 所示。
1) 预加重 xn = xn − kxn−1 ,其中k为预加重系数,一般取0.95;
'
(a) 含倒谱c0项
2) 加窗(hamming窗),帧长为N; 3) DFT变换; 4) 设计一个具有M 个带通滤波器的滤波器组,采用三角滤波 器,中心频率从0~Fs/2间按Mel频率分布; 5) 按式(11) 计算每个滤波器组输出的对数能量; 6) 按式(12)求得MFCC系数。
−
∑ na
n =1 p l =1
p
n
z − n −1 =−
l
1−
∑a
z
−l
k = −∞
∑ k h(k ) z
∑a
l =1 p l
∞
^
− k −1
(3)
式(3)两边同乘
− z (1 −
∞
z −l )
p
,得
∞ ^
∑ na z
n n =1
p
−n
=
n =−∞
∑ nh(n)z
−n
− ∑ ∑ k h(k ) al z − k −l
(b) 不含倒谱c0项 图 3 MFCC 参数
3 差分特征参数的提取 [3] —32—
4.2 实 验 二 : 识 别 实 验 本实验在两个识别平台上进行:一是 我们自行开发的基于 VQ的有限说话人有 特征 LPCC MFCC 限汉语短语识别系统;二是在HTK3.1 下 参数 训练的有限说话人有限汉语短语语音识别 测试 94.2 95.8 系统。实验的目的主要是验证所提语音参 实时1 89.6 92.3 49.7 实时2 34.3 数的鲁棒性,由于我们的识别系统工作的 2 背景环境中存在各种各样的干扰,输入系 统的语音信号除了端点检测外,未进行语音增强处理,因此 参数的鲁棒性直接影响识别精度。 实验中用于两个识别平台的训练和测试语音样本相同, 共有27个汉语短语(2-4 字),分别是开机、关机、正常、 升温、降温、升x度,降 x 度(x 表示1-9 )等某设备控制命 令。在带有噪声干扰的背景环境(SNR约为20dB) 下采集,采 集的语音样本来自3男2女,每个说话人对每个命令发音30次 (分上午、下午和晚上采集,每个时间段各采集10次),共 采集语音样本为5× 30×27 个,其中 70% 用于训练, 30% 用 于测试。两个识别平台分别采用LPCC+△LPCC+△△LPCC 和MFCC+△MFCC+ △△MFCC的33维特征参数,删去参数 中的能量系数,每个识别参数为11 维。在训练基于HTK 的 识 别 平 台 时 , 对 每 个 汉 语 短 语 训 练 HMM(Hide Markov Model) 模 型 , HMM 状 态 为 8 个 , 混 合 分 量 数 为 3 , 流 ( stream)数依参数结构分设为 1、 2、3。两个识别系统分别 以 LPCC 、 MFCC 、 LPCC+ △ LPCC 、 MFCC+ △ MFCC 、 LPCC+△ LPCC+ △△ LPCC 和 MFCC+ △MFCC+ △△ MFCC 结构形式的特征参数进行训练,产生的识别系统称为 VQLPC VQMFCC+△MFCC、 VQLPCC+ △ C、 VQMFCC、 VQLPCC+△LPCC、 VQ 、 LPCC+△△LPCC MFCC+△MFCC+△△MFCC和HTKLPCC、HTKMFCC、 H TKLPCC+ △LPCC、 HTKMFCC+ △ MFCC、 HTKLPCC+ △ LPCC+ △ △ LPCC、HTKMFCC+ △ ,对所训练的不同系统用测试语音样本进行测试 MFCC+△△ MFCC 识别,同时对所训练的各识别系统进行了实时实验,其实验 统计结果见表1所示。 表1中的实验结果(识别率)是按汉语短语识别的正确 次数与总的待识短语总数之比统计的,表中实时1和实时2分 别表示训练的和未训练的说话人的识别结果。从表中的结果 可知, LPCC参数的鲁棒性比 MFCC参数的鲁棒性差,尤其 (上接第30页) 号,并记录各线的信息;最后记录该盒片零件的总体信息, 如该盒片零件的编号、名称等。各盒片零件的尺寸与其所在 盒片的长、宽、高尺寸有着对应关系,因此其尺寸由所在盒 片的长、宽、高来确定,对于尚未拼合的盒片零件,则先由 系统给出基本尺寸,拼合后自动转换为其所属盒片的长、 宽、高的对应值即可。