(完整word版)QPSK通信系统性能分析与MATLAB仿真
QPSK通信系统性能分析与MATLAB仿真讲解
![QPSK通信系统性能分析与MATLAB仿真讲解](https://img.taocdn.com/s3/m/b7e2134aba68a98271fe910ef12d2af90242a80e.png)
QPSK通信系统性能分析与MATLAB仿真讲解QPSK(Quadrature Phase Shift Keying)是一种调制方式,常用于数字通信中的短波通信和卫星通信等场景。
在QPSK通信系统中,将每个二进制位编码为相位不同的信号,通常使用正交载波来实现。
为了分析和评估QPSK通信系统的性能,可以使用MATLAB进行仿真。
下面将具体讲解如何进行QPSK通信系统性能分析和MATLAB仿真。
首先,我们需要定义一些基本参数。
QPSK调制是基于二进制编码的,因此将要发送的数据转换为二进制比特流。
可以使用MATLAB中的函数来生成二进制比特流,如`randi([0,1],1,N)`,其中N是比特流的长度。
在这里,可以自行选择比特流的长度。
接下来,需要将二进制比特流分组为2比特一组,以便编码为相位信息。
可以使用MATLAB中的函数来进行分组,如`reshape(bit_stream,2,length(bit_stream)/2)'`,其中bit_stream是二进制比特流。
这里的重点是要确保二进制比特流的长度为2的倍数。
然后,将每组2比特编码为相位信息。
QPSK调制使用4个相位点来表示4种可能的组合,通常用0、π/2、π和3π/2来表示这些相位点。
可以使用MATLAB中的函数生成这些相位信息,如`phase_data =[0,pi/2,pi,3*pi/2]`。
接下来,通过幅度和相位信息生成QPSK信号。
可以使用MATLAB中的函数来生成QPSK信号,如`qpsk_signal = cos(2*pi*f*t+phase)`,其中f是载波频率,t是时间,phase是相位信息。
然后,添加噪声到QPSK信号中以模拟实际通信环境。
可以使用MATLAB中的函数来添加噪声,如`noisy_signal =awgn(qpsk_signal,SNR)`,其中SNR是信噪比。
最后,解调接收到的信号以恢复原始数据。
可以使用MATLAB中的函数来解调信号,如`received_bits = reshape(received_signal,[],2) > 0`。
(完整word版)BPSK和QPSK调制解调原理及MATLAB程序资料
![(完整word版)BPSK和QPSK调制解调原理及MATLAB程序资料](https://img.taocdn.com/s3/m/5787553beff9aef8941e06e8.png)
2.1 PSK调制方式PSK原理介绍(以2-PSK为例)移相键控(PSK)又称为数字相位调制,二进制移相键控记作2PSK。
绝对相移是利用载波的相位(指初相)直接表示数字信号的相移方式。
二进制相移键控中,通常用相位0 和π来分别表示“0”或“1”。
2PSK 已调信号的时域表达式为s2psk(t)=s(t)cosωct, 2PSK移相键控中的基带信号与频移键控和幅度键控是有区别的,频移键控和幅度键控为单极性非归零矩形脉冲序列,移相键控为为双极性数字基带信号,就模拟调制法而言,与产生2ASK 信号的方法比较,只是对s(t)要求不同,因此2PSK 信号可以看作是双极性基带信号作用下的DSB 调幅信号。
在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。
通常用已调信号载波的 0°和 180°分别表示二进制数字基带信号的 1 和 0。
二进制移相键控信号的时域表达式为e2PSK(t)=[nna g(t-nT s)]cosw c t其中, an与2ASK和2FSK时的不同,在2PSK调制中,an应选择双极性。
1, 发送概率为Pan=-1, 发送概率为1-P若g(t)是脉宽为Ts, 高度为1的矩形脉冲时,则有cosωct, 发送概率为Pe2PSK(t)=-cosωct, 发送概率为1-P由上式(6.2-28)可看出,当发送二进制符号1时,已调信号e2PSK(t)取0°相位,发送二进制符号0时,e2PSK(t)取180°相位。
若用φn表示第n个符号的绝对相位,则有0°, 发送 1 符号φn=180°, 发送 0 符号由于在2PSK信号的载波恢复过程中存在着180°的相位模糊,所以2PSK信号的相干解调存在随机的“倒π”现象,从而使得2PSK 方式在实际中很少采用。
为了解决2PSK 信号解调过程的反向工作问题, 提出了二进制差分相位键控(2DPSK),这里不再详述。
基于MATLAB的QPSK通信系统仿真设计重要
![基于MATLAB的QPSK通信系统仿真设计重要](https://img.taocdn.com/s3/m/3a983063ae45b307e87101f69e3143323868f563.png)
基于MATLAB的QPSK通信系统仿真设计重要QPSK (Quadrature Phase Shift Keying) 是一种常用的数字调制技术,广泛应用于无线通信系统中。
在QPSK通信系统中,数字信号通过将两个正交调制的载波相位进行相应的转换来进行传输。
MATLAB作为一种强大的科学编程语言和工具包,可以用来进行QPSK通信系统的仿真设计。
本文将介绍基于MATLAB的QPSK通信系统仿真设计的重要性,并详细解释如何进行设计。
首先,基于MATLAB的QPSK通信系统仿真设计可以帮助我们更好地理解和研究QPSK调制技术。
通过仿真设计,我们可以模拟整个通信系统,包括信号生成、调制、传输、接收和解调等各个环节。
通过控制各个参数,我们可以分析不同参数对系统性能的影响,如调制误差、信噪比、误码率等。
这有助于我们深入理解QPSK调制技术的原理和特性,并为系统性能的优化提供依据。
其次,基于MATLAB的QPSK通信系统仿真设计可以用来评估系统的性能。
在通信系统中,误码率是一个重要的性能指标,用来评估系统的抗干扰能力。
通过仿真设计,我们可以计算得到不同信噪比下的误码率曲线,从而评估系统的性能。
同时,还可以通过仿真设计研究并优化接收机的设计,如信道均衡、时钟恢复等,以提高系统的性能。
再次,基于MATLAB的QPSK通信系统仿真设计可以用来进行系统参数的选择和优化。
在设计通信系统时,很多参数需要进行选择和优化,如载波频率、采样率、均衡器参数等等。
通过仿真设计,我们可以对这些参数进行优化,并选择最佳的参数组合。
这有助于提高系统的性能和效率,实现更好的通信质量和可靠性。
最后,基于MATLAB的QPSK通信系统仿真设计可以用来进行系统的性能对比和验证。
我们可以采用不同的调制技术和设计方案进行仿真,比较系统的性能差异,从而选择最佳的方案。
同时,还可以将仿真结果与理论计算结果进行对比,验证仿真设计的准确性和有效性。
总之,基于MATLAB的QPSK通信系统仿真设计在研究、设计和优化通信系统中扮演着重要的角色。
基于Matlab的QPSK通信系统建模与仿真综述
![基于Matlab的QPSK通信系统建模与仿真综述](https://img.taocdn.com/s3/m/e3562ba2cc22bcd126ff0cec.png)
•
•
D_sam=conv(D_s_sam,BB);
• 3.相偏的预测 Discriminator_Out(pos_timing)=(sign(D_timing(pos_timin g))*(Q_timing(pos_timing))sign(Q_timing(pos_timing))*D_timing(pos_timing))/(sqrt( 2)*abs(D_timing(pos_timing)+1j*Q_timing(pos_timing)));
QPSK中文全称是“正交相移键控”。从名字可以看出属于“相位” 调制。 QPSK四相移键控是目前最常用的一种卫星数字信号调制方式。 优点:(1)频谱效率比较高,(2)误码率小(抗干扰能力强),(3)电路 实现简单。
二.QPSK调制解调基本原理
• 2.1QPSK调制
• 说明: 基带信号A(t)是单极性不归零双极性码元,串/并转换之后 变成并行码元a和b。这两路码元分别用两路正交的载波相 乘。相加之后即可得到QPSK信号。 • 原因: QPSK信号可以看成是两路BPSK信号相加的结果。上面 的每一路其实是一个BPSK调制。
• 5.3 误比特率曲线 • 5.3.1 信噪比SNR与比特能量比/噪声功率谱密度的转换 • QPSK通信系统不存在频偏时,为了得到统一的误比特率曲 线,我们用Eb/No作为我们的自变量。关于Eb/No与SNR的 关系有以下说明:EbNo就是Eb/No。 Eb表示单位比特的能 量,单位是焦耳(Joules)。No表示功率谱密度,单位是瓦 特/赫兹(Watts/Hz)。SNR就是S/R。S表示信号功率,单 位是瓦特(Watts)。N表示噪声功率,单位是瓦特 (Watts)。显然SNR单位是无量纲的。EbNo的单位是 Joules·Hz/ Watts,其实也是无量纲的。因为Watts表示是焦 耳/秒(Joules /s),而1 Hz=1/s。EbNo与SNR关系转换:
QPSK通信系统性能分析与MATLAB仿真
![QPSK通信系统性能分析与MATLAB仿真](https://img.taocdn.com/s3/m/bbb5d55b11a6f524ccbff121dd36a32d7375c7f2.png)
QPSK通信系统性能分析与MATLAB仿真QPSK是一种常见的调制方式,广泛应用于数字通信系统中。
在QPSK通信系统中,传输的数据被分为两个相互正交的子载波进行调制,每个子载波可以携带2位二进制数据。
本文将对QPSK通信系统的性能进行分析,并使用MATLAB进行仿真。
首先,我们需要了解QPSK调制的基本原理。
在QPSK中,发送端的数据被分为两个二进制数据流,分别称为I路和Q路。
通过调制器对I路和Q路进行调制生成正交的载波信号,然后进行并行传输。
接收端接收到信号后,通过对两路信号进行解调,并将解调后的数据进行重新组合,得到原始数据。
为了分析QPSK通信系统的性能,我们需要考虑到噪声的影响。
在传输过程中,信号会受到各种噪声的干扰,如加性高斯白噪声。
这些噪声会使得接收信号误码率增加。
我们可以使用误码率(Bit Error Rate)来评估系统的性能,误码率是指发送的比特和接收到的比特不一致的比率。
为了进行性能分析,我们可以进行理论分析和仿真两个步骤。
在理论分析中,我们可以通过理论计算得到系统的误码率曲线。
而在仿真过程中,我们可以通过编写一段MATLAB代码来模拟整个通信系统,然后进行模拟传输并统计误码率。
在仿真过程中,我们首先需要生成发送端的数据流。
这可以通过随机生成0和1的序列来实现。
然后,我们将数据流分为I路和Q路,并对每一路进行调制生成载波信号。
接下来,我们引入噪声,在信号上添加高斯白噪声。
然后,我们将接收到的信号进行解调,并将解调后的数据重新组合。
最后,我们统计误码率和信噪比(Signal-to-Noise Ratio)之间的关系,并绘制性能曲线。
通过MATLAB进行仿真,我们可以调整信噪比,并观察误码率的变化。
通过仿真实验,我们可以得到系统在不同信噪比下的性能表现。
通过比较理论结果和仿真结果,我们可以验证我们的分析是否准确。
总结起来,QPSK通信系统的性能分析是一个重要的研究课题。
通过理论分析和MATLAB仿真,我们可以得到系统在不同信噪比下的性能表现,并且验证我们的分析是否准确。
QPSK通信系统性能分析与MATLAB仿真
![QPSK通信系统性能分析与MATLAB仿真](https://img.taocdn.com/s3/m/061df5683c1ec5da50e27053.png)
淮海工学院课程设计报告书课程名称:通信系统的计算机仿真设计题目:QPSK通信系统性能分析与MATLAB仿真学院:电子工程学院学期:2013-2014-2专业班级:姓名:学号:评语:成绩:签名:日期:QPSK通信系统性能分析与MATLAB仿真1 绪论1.1 研究背景与研究意义数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。
数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。
数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。
根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。
本实验采用QPSK。
QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 课程设计的目的和任务目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。
课程设计的任务是:(1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。
QPSK通信系统性能仿真
![QPSK通信系统性能仿真](https://img.taocdn.com/s3/m/6b684587cc1755270622081c.png)
淮海工学院课程设计报告书课程名称:通信系统的计算机仿真设计题目:QPSK通信系统性能分析与MATLAB仿真系(院):学期:专业班级:姓名:学号:QPSK通信系统性能分析与MATLAB仿真1绪论在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。
信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。
在新技术革命的高速推动和信息高速公路的建设,全球网络化发展浪潮的推动下,通信技术得到迅猛的发展,载波通信、卫星通信和移动通信技术正在向数字化、智能化、宽带化发展。
Simulink具有适应面广、结构和流程清晰及仿真精细、效率高、贴近实际、等优点,基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件应用于Simulink。
本次课程设计通过对QPSK模型进行仿真,以分析QPSK在不同信道噪声中的性能,更好地了解QPSK系统的工作原理,传输比特错误率和符号错误率的计算。
1.1研究背景与研究意义要规划和设计一个性能完善的通信系统,光靠理论计算或凭个人的组网经验是无法完成的。
如果在真实的网络环境中进行通信性能研究、网络、设计和开发,不仅耗资大,而且在统计数据的手机和分析上也有一定困难。
通信仿真技术是通过在计算机中构造虚拟的环境来反映现实的通信网络环境,模拟现实中的网络行为,从而可以有效提高通信网络规划和设计的可靠性和准确性,明显降低通信系统的投资风险,减少不必要的投资浪费。
通过仿真软件来模拟和估算通信系统的性能,通过模拟和仿真来调整一些通信系统的参数以期达到最佳使用效果具有非常重大的意义。
在本课题中用国际控制界公认的标准仿真软件MATLAB来仿真移动通信系统各种数字调制解调技术中,具有数字通信的诸多优点,广泛使用它来传送各种控制信息的数字调相信号,比较不同调相技术之间的性能差异。
1.2 课程设计的目的和任务本次课程设计是根据“通信工程专业培养计划”要求而制定的。
(完整word版)QPSK调制解调的simulink仿真
![(完整word版)QPSK调制解调的simulink仿真](https://img.taocdn.com/s3/m/9a1b59ba3c1ec5da50e270f8.png)
摘要QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
四相相移键控信号简称“QPSK”.在现代通信系统中,调制与解调是必不可少的重要手段。
所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。
解调则是调制的相反过程,而从已调制信号中恢复出原信号。
本课程设计主要介绍通过进行QPSK调制解调的基带仿真,对实现中影响该系统性能的几个重要问题进行了研究。
针对QPSK的特点,调制前后发生的变化,加上噪声后波形出现的各种变化,通过星座图、眼图、波形图等来观察。
程序设计与仿真均采用MATLAB集成环境下的Simulink仿真平台,最后仿真详单与理论分析一致。
关键词:QPSK调制解调; Simulink仿真平台;MATLAB7.0 ;噪声。
目录一、实验目的 (1)二、实验内容 (1)三、设计原理 (1)1. Simulink简介 (1)2。
QPSK星座图 (2)3。
QPSK的调制 (2)4。
QPSK的解调 (4)四、设计步骤 (4)五、设计结果及分析 (8)1。
信号调制解调后的时域波形图 (9)2.数据源的频谱图 (9)3.QPSK调制后的频谱 (8)4.QPSK解调后的频谱 (8)5。
误码曲线图 (9)六、体会 (12)七、参考文献 (12)一、实验目的1、理解电子信号通信原理.2、熟悉系统建模方法。
3、配置电子信号,设计相关应用方法。
二、实验内容1、利用Matlab—Simulink建立系统模型.2、信号参数:信息速率80Hz,载波中心频率15MHz,采样频率120MHz。
3、依据相关参数,产生QPSK调制信号.4、设计一种方法完成QPSK信号的数据解调。
三、设计原理1. Simulink简介Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
(完整版)QPSK调制原理及matlab程序实现
![(完整版)QPSK调制原理及matlab程序实现](https://img.taocdn.com/s3/m/d831de8890c69ec3d4bb751c.png)
QPSK已调信号生成一、QPSK介绍QPSK是英文Quadrature Phase Shift Keying 的缩写,意为正交相移键控,是一种数字调制方式。
其有抗干扰性强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
二、实验平台和实验内容1、实验平台本实验是MATLAB环境中生成基本QPSK已调信号,只需要MATLAB12.0。
2、实验内容1.基带信号为周期127bits伪随机序列,信息比特速率:20kbps,载波频率:20kHz(速率及频率参数现场可调整);2.在MATLAB环境中编写M代码搭建QPSK调制系统模型;3.观测基带时域波形、已调信号时域波形;4.观测基带发射星座图;5.观测已调信号的功率谱(优先)或频谱;三、实现框图及其原理分析1、原理分析及其结构QPSK与二进制PSK一样,传输信号包含的信息都存在于相位中。
载波相位取四个等间隔值之一,如л/4, 3л/4,5л/4,和7л/4。
相应的E为发射信号的每个符号的能量,T为符号持续时间,载波频率f等于nc/T,nc为固定整数。
每一个可能的相位值对应于一个特定的二位组。
例如,可用前述的一组相位值来表示格雷码的一组二位组:10,00,01,11。
Sin(t)=2E/tcos[2]4/+∏i]0<=t<=T)1-ft∏2(其中,i=1,2,3,4。
2、框图四、实验结果与分析图一基带信号为周期为127bits的伪随机序列。
图二:已调信号时域波形带宽为7104 HzB点信号的星座图映射,00、01、10、11组合分别映射成-1-j,-1+j,1-j,1+j。
五、实验源码clc;clear all;Num=127;data=randi([0 1],1,Num);figure(1)plot(data)title('基带时域波形');f=20000; %载波频率20kHzRb=20000; %码元速率20kHzTs=1/f;Ns=8000;sample=1*Ns; %每个码元采点数为8000,采样频率为8000*20kHz N=sample*length(data)/2; %总采样点数data1=2*data-1; %正/负极性变换,产生二进制不归零双极性码元%-------------------------将信息源分成两路,分别对信号进行抽样-------------data_1=zeros(1,N); %定义一个长度为N的空数据data_1for i1=1:Num/2data_1(sample*(i1-1)+1:sample*i1)=data1(2*i1-1); %对奇数码元进行采样enddata_2=zeros(1,N);for i2=1:Num/2data_2(sample*(i2-1)+1:sample*i2)=data1(2*i2); %对偶数码元进行采样enda=zeros(1,N);b=zeros(1,N);for j1=1:Na(j1)=cos(2*pi*f*(j1-1)*Ts/Ns); %对余弦载波抽样每个周期采N个点 b(j1)=-sin(2*pi*f*(j1-1)*Ts/Ns); %对正弦载波抽样每个周期采N个点end%---------------------------调制---------------------------data_a=data_1.*a; %a路用余弦调制data_b=data_2.*b; %b路用正弦调制data_c=data_a+data_b;figure(2)subplot(3,1,1)plot(data_a)title('QPSK已调实部时域信号');subplot(3,1,2)plot(data_b)title('QPSK已调虚部时域信号');subplot(3,1,3)plot(data_c);title('QPSK已调信号时域波形');%---------------------绘制调制后波形的频谱图-------------------data_modul1= data_1(1:502000)+1i*data_2(1:502000);data_modul=data_a+1i*data_b;%调制后总的信号figure(3)plot(data_modul1,'o');axis([-2 2 -2 2]);title('星座图');figure(4)QPSK=10*log10(abs(fftshift(fft(data_modul,2048))).^2); %信号的频率值SFreq=linspace(-Rb*sample/2,Rb*sample/2,length(QPSK)); %信号的频率谱范围plot(SFreq,QPSK);title('QPSK已调信号频谱图');xlabel('Frequency');ylabel('Amplitude');hold on;。
基于MATLAB的QPSK系统仿真设计与实现
![基于MATLAB的QPSK系统仿真设计与实现](https://img.taocdn.com/s3/m/ff194650a31614791711cc7931b765ce05087a38.png)
基于MATLAB的QPSK系统仿真设计与实现QPSK(Quadrature Phase Shift Keying)是一种常用的调制技术,广泛应用于无线通信系统中。
本文将基于 MATLAB 对 QPSK 系统进行仿真设计与实现。
首先,我们需要了解 QPSK 调制的原理。
QPSK 将每个符号分成两个维度,分别为实部和虚部,以实现两个维度上的相位调制。
在 QPSK 中,每个符号可以表示为 a+jb 的形式,其中 a 和 b 分别为两个调制点的幅度,j 为虚数单位。
在 QPSK 中,通常我们使用 2 相移键控(BPSK)调制的方式来实现每个维度上的相位调制。
接下来,我们可以开始进行QPSK系统的仿真设计与实现。
1.首先,我们需要生成QPSK调制所使用的信号。
a.定义QPSK调制器:b.生成随机数据序列:data = randi([0,3],1000,1);c.通过调制器将数据序列调制为QPSK信号:modulatedData = modulator(data);2.接下来,我们需要添加高斯噪声模拟通信信道。
我们可以使用 MATLAB 中的 AWGN(Additive White Gaussian Noise)信道模型来添加高斯噪声。
步骤如下:a.定义AWGN信道对象:b.设置信道的信噪比(SNR)值:awgnChannel.SNR = 10;c.通过信道对象添加高斯噪声:receivedSignal = awgnChannel(modulatedData);3.最后,我们需要进行解调和误码率的计算。
a.定义QPSK解调器:b.对接收到的信号进行解调:demodulatedData = demodulator(receivedSignal);c.计算误码率(BER):ber = errorRate(data, demodulatedData);4.可选择性的结果输出和显示。
我们可以通过输出误码率(BER)并进行可视化的方式来评估QPSK系统的性能。
课程设计OQPSK通信系统的matlab仿真分析
![课程设计OQPSK通信系统的matlab仿真分析](https://img.taocdn.com/s3/m/492174156c175f0e7cd137b4.png)
加入不同的噪声进行循环rt=1.8%
(四)matlab程序及其功能
⑴主程序以及注释
clc;
A=1;% 载波幅度
fc=2;% 载波频率
Ts=1;% 码元宽度
fs=1/Ts
B1=fs;%低通滤波器的宽度
N_sample=32;% 基带码元抽样点数
N=500;% 码元数
dt=Ts/fc/N_sample;% 抽样时间间隔
1.对oqpsk进行调制和解调,通过MATLAB编程,掌握MATLAB的使用,熟练掌握OQPSK的调制原理,解调原理。
2.对OQPSK通信系统进行matlab仿真分析,分析起信噪比和差错率。为现实中通信系统的调制,解调,及信道传输进行理论指导。
2设原理
1.OPSK的调制
它和QPSK有着同样的相位关系,也是把输入码流分成两路,然后进行正交调制。随着数字通信技术的发展和广泛应用,人们对系统的带宽、频谱利用率和抗干扰性能要求越来高。而与普通的QPSK比较,交错正交相移键控的同相与正交两支路的数据流在时问上相互错开了半个码元周期,而不像QPSK那样I、Q两个数据流在时间上是一致的(即码元的沿是对齐的)。由于OQPSK信号中的I(同相)和Q(正交)两个数据流,每次只有其中一个可能发生极性转换,所以,每当一个新的输入比特进入调制器的I或Q信道时,其输出的OQPSK信号中只有0°、+90°三个相位跳变值,而根本不可能出现180°相位跳变。所以频带受限的OQPSK信号包络起伏比频带受限的QPSK信号要小,而经限幅放大后的频带展宽也少。
2产生均值为0,方差为1的加性高斯随机噪声;
3进行OQPSK调制,画出波形;
4进行误码率分析,并与理论值比较;
5解调OQPSK,画出眼图。
qpsk信号matlab仿真程序
![qpsk信号matlab仿真程序](https://img.taocdn.com/s3/m/0651034091c69ec3d5bbfd0a79563c1ec4dad763.png)
qpsk信号matlab仿真程序QPSK信号MATLAB仿真程序—理论与应用导言:随着无线通信技术的迅猛发展,QPSK(Quadrature Phase Shift Keying)信号成为了目前广泛应用于通信领域的一种调制方式。
本文将详细介绍如何使用MATLAB进行QPSK信号的仿真程序设计,并从理论与应用两个方面进行解析,以帮助读者深入理解并灵活应用该仿真程序。
1. 什么是QPSK信号?QPSK信号是一种基于相位调制的数字调制技术,其特点是将数字信号分成4个不同的相位状态进行传输和接收。
其中,每个相位状态代表2个比特的信息,即每个相位状态可以传输2个比特的信息,因此QPSK又被称为4相位调制。
QPSK信号可以通过泰勒展开可以分解成I(In-phase)分量和Q(Quadrature)分量。
2. MATLAB中的QPSK信号仿真程序设计步骤:(1)生成随机比特流。
在MATLAB中,可以使用randi函数生成一串随机的比特流,作为模拟发送端的输入信号。
(2)将比特流转换成QPSK符号。
将生成的比特流进行分组,每两个比特为一组,将每组比特映射到对应的QPSK符号。
一般而言,00表示的是第一象限的点,01表示的是第二象限的点,11表示的是第三象限的点,10表示的是第四象限的点。
(3)通过QPSK符号产生QPSK信号。
通过对每个QPSK符号进行相位调制,可以得到QPSK信号。
(4)添加高斯噪声。
为了模拟仿真实际通信环境,我们需要向信号中添加高斯噪声。
可以使用randn函数生成指定均值和标准差的高斯噪声信号,并将其与QPSK信号相加。
(5)解调QPSK信号。
在接收端,需要进行相位解调操作,从而恢复原始的比特流。
通过解调操作,将接收到的QPSK信号恢复为I和Q两个分量。
(6)计算误码率。
通过比较原始比特流和解调后的比特流,可以统计出误码率,从而评估通信系统的性能。
3. QPSK信号仿真程序的理论分析:对于QPSK信号,可以利用复数域的理论进行分析。
(完整word版)QPSK通信系统性能分析与MATLAB仿真
![(完整word版)QPSK通信系统性能分析与MATLAB仿真](https://img.taocdn.com/s3/m/3518be82960590c69ec37671.png)
淮海工学院课程设计报告书课程名称:通信系统的计算机仿真设计题目:QPSK通信系统性能分析与MATLAB仿真学院:电子工程学院学期:2013-2014-2专业班级:姓名:学号:评语:成绩:签名:日期:QPSK通信系统性能分析与MATLAB仿真1 绪论1.1 研究背景与研究意义数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。
数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。
数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。
根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。
本实验采用QPSK。
QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 课程设计的目的和任务目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。
课程设计的任务是:(1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。
SIMULINK的QPSK传输系统仿真(word文档良心出品)
![SIMULINK的QPSK传输系统仿真(word文档良心出品)](https://img.taocdn.com/s3/m/cf8e60ab1711cc7930b7166f.png)
设计内容用matlab的.m文件或simulink设计一个QPSK调制解调传输系统。
包括01码的产生,NRZ编码,串并变换,QPSK调制解调,高斯信道,低通滤波器,判决器, 并串变换。
二QPSK系统描述QPSK信号的产生与得到可以分为调制和解调两个部分。
QPSK信号的产生方法有两种:第一种是用相乘电路,第二种是选择法。
这里我们采用第一种方法产生QPSK信号,输入的基带信号被“串/并变换”电路变成两路码元a和b,再分别和正交载波相乘。
a(0)> a⑴和b(0)、b(l)码元分别表示二进制“0”、“1”,这两路信号在相加电路中相加后得到输出矢量s(t)oQPSK的解调原理,由于QPSK信号可以看作是两个正交2PSK信号的腔加, 所以用两路正交的相干载波去解调,可以很容易地分离这两路正交的2PSK信号。
相干解调后的并行码元a利b,经过并/串变换后,成为串行数据输出。
QPSK的基本传输模型如下图所示:图1QPSK信号传输模型三系统分析与设计1、QPSK调制原理在QPSK调制中,QPSK信号可以看作两个载波正交的2PSK调制器构成。
串/并转变器将输入的二进制序列分为速率减半的两个双极性净列,然后分别对sin(gt)和cos(CD c t)调制,相加后得到QPSK调制信号。
QPSK同相支路和正交支路可分别采用相干解调方式解调,得到I(t)和Q(t)0经抽样判决和并/串转换器,将上、下支路得到的并行数据恢复成串行数据。
图2QPSK调制框图2、QPSK解调原理在QPSK解调中,正交支路和同相支路分别设置两个相关器(或匹配滤波器), 得到I(t)和Q(t),经电平判决和并/串变换后即可恢复原始信息。
图3 QPSK ffl干解调框图从发射机发射的己调信号经过传输媒介传播到接收端,接收机接收到的已调信号为:SQPSK(t)=I(t)COS(COct)+Q(t)Sill(Cdct)I(t)、Q⑴分别为同相和正交支路,GX为载波频率,那么相干解调后,同相支路相乘可得:L(t)=SQPSK(t) COS(COct)=[I(t) cos(cdct)+Q(t) sin(oxt)] cos(co c t)=I(t) C0s2(g)+Q⑴;n3)_I(t) I(t)cos(2o>ct) + Q(t)sin(2coct)正交支路相乘可得:Qq(t)=SQPSK (t)Sin(CDct)=[I(t) cos(cOct)+Q(t) sin(oxt)] sin((D c t) =I(t) siii (G )ct)* cos(GXt)+ Q(t) sin 2(coct) I(t) sin(2coct) Q(t) cos (2c )ct) Q(t)-1 ---------------------------2 2 2经低通滤波器可得:T小 I(t)c m Q (t )Ht)= —Qq(0=—1、信源的产生在搭建QPSK 调制解调系统中直接使用贝努力信号发生器产生01比特序列,每 两比特代表一个符号。
(完整word版)QPSK仿真实现要点
![(完整word版)QPSK仿真实现要点](https://img.taocdn.com/s3/m/6b4a65bffe4733687f21aa43.png)
基于MATLAB的QPSK仿真设计与实现一、摘要本次方向设计根据当今现代通信技术的发展,对QPSK信号的工作原理进行了仿真分析。
并结合调制解调的基本性能和通信原理的基础知识,利用MATLAB 仿真工具设计出一个QPSK 仿真程序,以衡量QPSK在理想信道、高斯白噪声信道和先通过瑞利衰落信道再通过高斯信道三种方式的调制解调得到的功率谱密度、噪声曲线、星座图及误码性能,并对仿真结果进行了分析。
关键字:MATLAB仿真;QPSK调制;QPSK解调;误码率;信噪比Based on the modern communication technology, design of oriented major has implemented a simulated analysis in regard to the principle of QPSK signal. Associating with the performance of design of oriented major and underpinning communication knowledge, a QPSK simulate program was implemented and analysed in the aim of measuring its power spectral density,curve of noise,constellation and bit error performance under ideal channel,white Gaussian noise channel and via Rayleigh fading channel and white Gaussian noise channel respectively。
Key words:MATLAB Simulate; QPSK Modulation; QPSK Demodulation; Error Rate; Signal to Noise Ratio二、设计目的和意义近年来,软件无线电作为解决通信体制兼容性问题的重要方法受到各方面的注意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮海工学院课程设计报告书课程名称:通信系统的计算机仿真设计题目:QPSK通信系统性能分析与MATLAB仿真学院:电子工程学院学期:2013-2014-2专业班级:姓名:学号:评语:成绩:签名:日期:QPSK通信系统性能分析与MATLAB仿真1 绪论1.1 研究背景与研究意义数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。
数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。
数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。
根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。
本实验采用QPSK。
QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 课程设计的目的和任务目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。
课程设计的任务是:(1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。
(2)训练学生网络设计能力。
(3)训练学生综合运用专业知识的能力,提高学生进行通信工程设计的能力。
1.3 可行性分析QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
QPSK 分为绝对相移和相对相移两种。
由于绝对相移方式存在相位模糊问题,所以在实际中主要采用相对移相方式QDPSK 。
它具有一系列独特的优点,目前已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。
其也是目前最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。
2 QPSK 通信系统正交相移键控(Quadrature Phase Shift Keying :QPSK )通信系统已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。
要求利用Matlab 语言对QPSK 通信系统进行仿真,验证QPSK 的特性(如误码率随信噪比的增加而减小)。
2.1 基于MATLAB 的QPSK 通信系统的基本模型QPSK 通信系统的基本模型图如图1所示。
图1 QPSK 通信系统的基本模型图2.2 QPSK 通信系统的性能指标2.2.1 有效性指标(1)码元传输速率R B码元传输速率通常又称为码元速率,传码率,码率,信号速率或波形速率,直单位时间内传输码元的数目,单位为波特,常用B 表示(2)信息传输速率R b信息传输速率简称信息速率,又称比特率,表示单位时间内传送的比特数,单位为bit/s(3)频带利用率 信号源 抽样量化性能分析 信 道 解 码 解 调 通 道 调制 信 道 编 码 编码器 噪 声频带利用率指的是传输效率问题,定义为:单位频带内码元传输速率的大小即η= Rb/B(B/Hz)用信息速率形式表示为η=Rb/B (b/(s.Hz))2.2.2 可靠性指标(1)码元差错率Pe码元差错率简称误码率,指接受错误的码元数在传送码元数中所占的比例。
准确的说,误码率就是码元在传输系统中被传错的概率,表示为:Pe=单位时间内接收的错误码元数/单位时间内系统传输的总码元数(2)信息差错率Pb信息差错率称误信率或误比特率,指接收错误的信息量在传送信息总量所占比例。
表示为:Pb=单位时间内接受的错误比特数(错误信息量)/单位时间内系统传输的总比特数(总信息量)结论:一定范围内,随着信噪比逐渐变大,其误码率逐渐减小。
3 QPSK通信系统的主要模块3.1 信源/信宿及其编译码13折线近似的PCM编码器测试模型图如图2所示。
图2 PCM编码主要过程是将话音、图像等模拟信号每隔一定时间进行取样,使其离散化,同时将抽样值按分层单位四舍五入取整量化,同时将抽样值按一组二进制码来表示抽样脉冲的幅值。
PCM的解码主要是将数字信号转换成模拟信号。
13 折线近似的PCM解码器测试模型图如图3所示。
图3 PCM解码器测试模型图3.2 QPSK调制/解调我们将信息直接转换得到的较低频率的原始信号称为基带信号。
通常基带信号不宜直接在信道中传输。
因此在通信系统的发送端需将基带信号的频谱搬移(调制)到适合信道传输的频率范围内,而在接收端,再将它们搬移(解调)到原来的频率范围,这就是调制和解调。
图4 QPSK调制与解调图3.3 信道信道(information channels)是信号的传输媒质,可分为有线信道和无线信道两类。
有线信道包括明线、对称电缆、同轴电缆及光缆等。
无线信道有地波传播、短波电离层反射、超短波或微波视距中继、人造卫星中继以及各种散射信道等。
如果我们把信道的范围扩大,它还可以包括有关的变换装置,比如:发送设备、接收设备、馈线与天线、调制器、解调器等,我们称这种扩大的信道为广义信道,而称前者为狭义信道。
3.4 信道编码及译码3.4.1 编码原理为了与信道的统计特性相匹配,并区分通路和提高通信的可靠性,而在信源编码的基础上,按一定规律加入一些新的监督码元,以实现纠错的编码。
实质是在信息码中增加一定数量的多余码元(称为监督码元),使它们满足一定的约束关系,这样,由信息码元和监督码元共同组成一个由信道传输的码字。
一旦传输过程中发生错误,则信息码元和监督码元间的约束关系被破坏。
在接收端按照既定的规则校验这种约束关系,从而达到发现和纠正错误的目的。
3.4.2 RS编码介绍卷积码编码器参数设置表如表3-1所示,RS码编码器模块及其参数设置表3-2所示。
表3-1 卷积码编码器参数设置表Trellis structure poly2trellis(9, [753 561])Reset None表3-2 RS码编码器模块及其参数设置表Codeword length N 8Message length K 2Primitive polynomial [1 0 1 1]Generator polynomial rsgenpoly(7,3)RS码又称里所码,即Reed-solomon codes,是一种低速率的前向纠错的信道编码,对由校正过采样数据所产生的多项式有效。
编码过程首先在多个点上对这些多项式求冗余,然后将其传输或者存储。
对多项式的这种超出必要值的采样使得多项式超定(过限定)。
当接收器正确的收到足够的点后,它就可以恢复原来的多项式,即使接收到的多项式上有很多点被噪声干扰失真。
RS(Reed-Solomon)码是一类纠错能力很强的特殊的非二进制BCH码。
对于任选正整数S可构造一个相应的码长为n=qS-1的q进制BCH码,而q作为某个素数的幂。
当S=1,q>2时所建立的码长n=q-1的q进制BCH码,称它为RS码。
当q=2m(m>1),其码元符号取自于F(2m)的二进制RS码可用来纠正突发差错,它是最常用的RS码。
RS码为(204,188,t=8),其中t是可抗长度字节数,对应的188符号,监督段为16字节(开销字节段)。
实际中实施(255,239,t=8)的RS编码,即在204字节(包括同步字节)前添加51个全“0”字节,产生RS码后丢弃前面51个空字节,形成截短的(204,188)RS码。
RS的编码效率是:188/204。
图5 RS码模块图因为本系统中采用(2,1,9)卷积码,即每输入一个比特,将输出2个比特,约束长度为9,因此本系统中,信源设置成基于采样的二进制序列。
卷积码编码器格型结构Trellis structure设置成poly2trellis(9, [753 561]),其中9是约束长度,[753 561]是生成多项式的八进制表示方式,转换成二进制为[111101011 101110001],代表了卷积码编码器反馈连线的有无。
操作模式Operation mode设置成Continuous,即卷积码编码器在整个仿真过程中都不对寄存器复位。
另外三种操作模式分别为:每帧数据开始之前自动对寄存器复位;每帧输入信号的末尾增加填充比特;通过输入端口复位.接收端用维特比译码器进行译码,译码器的参数设置与编码器相对应,判决方式采用硬判决,反馈深度可设为72。
3.4.3 卷积码介绍因为本系统中采用(2,1,9)卷积码,即每输入一个比特,将输出2个比特,约束长度为9,因此本系统中,信源设置成基于采样的二进制序列。
卷积码编码器格型结构Trellis structure设置成poly2trellis(9, [753 561]),其中9是约束长度,[753 561]是生成多项式的八进制表示方式,转换成二进制为[111101011 101110001],代表了卷积码编码器反馈连线的有无。
操作模式Operation mode设置成Continuous,即卷积码编码器在整个仿真过程中都不对寄存器复位。
另外三种操作模式分别为:每帧数据开始之前自动对寄存器复位;每帧输入信号的末尾增加填充比特;通过输入端口复位.接收端用维特比译码器进行译码,译码器的参数设置与编码器相对应,判决方式采用硬判决,反馈深度可设为72。
图6 卷积码模块图3.4.4 汉明码介绍汉明码是一种线性分组码,一般来说,若码长为n,信息位数为k,则监督位数为r=n-k。
如果希望用r个监督位构造出r个监督关系式来指示一位错码的n 种可能位置,则要求2的r次方减去1大于等于n或者2的r次方大于等于k+r+1。