同位素示踪法

合集下载

同位素示踪法

同位素示踪法

同位素示踪法同位素示踪法是现代环境科学中,用以分析特定同位素在环境中的流动、迁移、传输,以及污染物运动轨迹,研究其来源、移动方向等重要污染控制信息的研究方法。

同位素示踪法是地球科学、化学及环境科学的重要手段,应用广泛,曾多次在国际学术刊物上发表论文,是当今环境科学实验技术中的一项重要研究方法。

什么是同位素?它是指具有相同核集合但不同质量的组分,也就是说,相同的元素可以有不同的质量。

比如,氢元素有两个同位素,就是氘和氚,它们都是都同一种元素,但氘的质量是1,而氚的质量是2。

同位素示踪法主要用于研究污染物运动轨迹以及污染物来源等重要信息。

具体而言,它是根据污染物中某种特定同位素的形成和分布来实现的,比如,重氢(氘)是燃烧碳素及硫化物排放时所形成的特定同位素,比较重氢含量的一组样品的时间变化,就可以推测出污染物的是从哪里来的,以及它到达何处。

同时,同位素示踪法还能够反映环境污染的发展趋势,检测污染的严重性。

比如,铀的比值可以反映出核能相关污染的本质,以及当地污染物的来源及变化趋势。

此外,单不稳定性同位素也能够检测土壤污染,比如钚-241在放射性污染中被称为“指示素”,可以用于检测放射性污染的严重性。

同位素示踪法受到了越来越多的关注,不仅因为它的灵活性强、结果可靠性高,还因为它可以用于今后环境污染的研究、治理及监测。

比如,通过同位素示踪法,可以对污染物来源、变化趋势、转移方向等更加清晰地了解,从而为环境污染的防治提供重要依据。

同位素示踪法作为当今环境科学实验技术的一项重要方法,在环境污染的监测和防治方面发挥着越来越重要的作用。

随着社会经济的发展,环境的污染问题也越来越严峻,同位素示踪法的研究应用也将受到越来越多的重视和关注,为污染防治提供更多更有效的手段。

同位素示踪与荧光标记技术

同位素示踪与荧光标记技术

同位素示踪与荧光标记技术[热考解读]1.同位素示踪法(1)同位素示踪法:用示踪元素标记的化合物,可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。

这种科学的研究方法叫做同位素示踪法,也叫同位素标记法。

(2)应用:可用于研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。

还可用于疾病的诊断和治疗,如碘的放射性同位素可以用来治疗甲状腺肿大。

(3)使用注意事项:一次只能使用一种同位素标记2.荧光标记法荧光标记法(Fluorescent Labeling)是利用荧光蛋白或荧光蛋白基因作为标志物对研究对象进行标记的分析方法。

(1)常用的荧光蛋白为绿色和红色两种①绿色荧光蛋白(GFP)常用的是来源于发光水母的一种功能独特的蛋白质,分子量为27 kD,具有238个氨基酸,蓝光或近紫外光照射,发射绿色荧光。

②红色荧光蛋白来源于珊瑚虫,是一种与绿色荧光蛋白同源的荧光蛋白,在紫外光的照射下可发射红色荧光,有着广泛的应用前景。

(2)人教版教材中用到荧光标记法的地方①《必修1》P66“细胞融合实验”:这一实验很有力地证明了细胞膜的结构特点是具有一定的流动性。

②《必修2》P30“基因在染色体上的实验证据”:通过现代分子生物学技术,运用荧光标记的手段,可以很直观地观察到某一基因在染色体上的位置。

(3)荧光标记法特别是在免疫学研究中也有重要的作用,例如免疫荧光抗体标记法。

将已知的抗体或抗原分子标记上荧光素,当与其相对应的抗原或抗体起反应时,在形成的复合物上就带有一定量的荧光素,在荧光显微镜下就可以看见发出荧光的抗原抗体结合部位,检测出抗原或抗体。

[命题设计]1.(2018·山东青岛一模)同位素标记法常用于追踪物质运行和变化规律的研究,下列相关叙述不正确的是()A.给小鼠供应18O2,其呼出气体中可能含有C18O2B.用含3H标记的尿嘧啶核糖核苷酸的营养液培养洋葱根尖,只能在分生区细胞中检测到放射性C.用15N标记DNA分子,可用于研究DNA分子的半保留复制D.用32P标记的噬菌体侵染大肠杆菌,保温、搅拌、离心后可检测到沉淀物中放射性很高解析:选B。

化学反应中的同位素示踪实验

化学反应中的同位素示踪实验

化学反应中的同位素示踪实验同位素示踪实验是一种在化学反应中使用同位素标记物质的方法,通过追踪同位素的行为,可以了解反应发生的过程和机制。

同位素示踪实验在化学领域中具有重要的地位,广泛地应用于反应动力学、反应机理、生物化学等领域。

本文将展示同位素示踪实验的原理、应用以及相关技术。

一、同位素示踪实验的原理同位素示踪实验的原理是利用同位素在化学反应中的行为与稳定同位素的特性,通过追踪同位素的排布来了解反应的过程。

同位素是具有相同原子序数但不同中子数的同种元素,因此具有相似的化学性质。

在同位素示踪实验中,通常使用的同位素有氢的氘同位素(2H)、碳的碳-14同位素(14C)、氮的氮-15同位素(15N)等。

二、同位素示踪实验的应用1. 反应动力学研究同位素示踪实验在反应动力学研究中起到关键的作用。

通过追踪同位素标记物质的浓度随时间的变化,可以确定反应速率常数、反应级数和活化能等重要参数,从而揭示反应的动力学过程。

2. 反应机理研究同位素示踪实验可用于研究化学反应的机理。

通过引入标记同位素,在不同反应步骤中追踪同位素的转移和分布情况,可以揭示反应中是否存在中间体、裂解反应、交换反应等一系列的反应步骤,进而了解反应的机理。

3. 生物化学研究同位素示踪实验在生物化学研究中具有广泛的应用。

通过给生物体内引入同位素标记物质,可以追踪其在代谢途径中的转化过程,如糖的代谢、蛋白质合成等,从而揭示生物体内的代谢途径、信号转导机制等。

三、同位素示踪实验的技术与方法同位素示踪实验涉及到较多的技术与方法,包括同位素标记化合物的制备、同位素测定方法、标记物质的纯化与追踪等。

通常使用的同位素测定方法有质谱法、辐射测量法等。

1. 同位素标记化合物的制备同位素标记化合物的制备需要选择合适的同位素标记剂和反应条件。

例如,在有机化学反应中,可以使用氘代试剂、碳-14标记试剂等来引入同位素。

制备过程需要注意同位素标记化合物的选择、合成方法的优化以及纯化方法的选择。

化学反应中的同位素示踪分析方法

化学反应中的同位素示踪分析方法

化学反应中的同位素示踪分析方法同位素示踪分析方法是化学领域中一项重要的技术手段,用以研究物质在化学反应中的变化过程。

同位素示踪分析方法通过标记不同同位素的原子,可以追踪和研究物质在化学反应中的转化路径、速率以及机理等关键信息。

本文将介绍几种常见的同位素示踪分析方法,并探讨其在化学反应研究中的应用。

一、同位素示踪分析方法简介同位素是指具有相同原子序数(即具有相同的质子数)但具有不同中子数的原子。

同位素的存在使得我们可以用具有不同同位素的原子标记分子或原子,在化学反应过程中追踪其转化行为。

同位素示踪分析方法主要包括同位素示踪法、稳定同位素示踪法和放射性同位素示踪法等。

二、同位素示踪法在化学反应中的应用1. 同位素标记法同位素标记法是一种常见的同位素示踪分析方法,通过将具有特定同位素的原子或分子引入反应体系中,用以标记特定物质的变化。

例如,氢气可以用氘(D)代替,从而用氘气作为示踪物,观察氢气在化学反应中的转化程度。

2. 稳定同位素示踪法稳定同位素示踪法是利用稳定同位素的示踪分析方法。

常见的稳定同位素包括氘(D,重氢同位素)、氧-18(^18O)、氮-15(^15N)等。

通过检测反应体系中特定稳定同位素的含量变化,可以确定化学反应中物质的转化路径和速率。

例如通过检测CO2中^13C的含量变化,可以追踪和研究光合作用等碳转化反应。

3. 放射性同位素示踪法放射性同位素示踪法是利用放射性同位素的示踪分析方法。

通过放射性同位素的衰变过程,可以追踪和测量反应体系中物质的转化过程。

放射性同位素示踪法在核化学以及放射性同位素医学中有着广泛的应用。

三、同位素示踪分析方法的优势和挑战同位素示踪分析方法具有许多优势。

首先,由于同位素标记只会改变原子或分子的质量,不会改变其化学性质,所以可以准确地追踪物质的变化。

其次,同位素示踪分析方法可以提供定量的数据,使得对反应转化速率等参数进行精确测量成为可能。

然而,同位素示踪分析方法也存在一些挑战。

化学反应中的同位素示踪实验方法探讨研究

化学反应中的同位素示踪实验方法探讨研究

化学反应中的同位素示踪实验方法探讨研究同位素示踪实验方法在化学反应研究中发挥着重要的作用。

通过替代化学反应物中的同位素,科学家们可以追踪反应过程中同位素的移动和转化,从而揭示出化学反应的机理和动力学。

本文将探讨几种常见的同位素示踪实验方法,并介绍其原理和应用。

一、同位素标记法同位素标记法是一种常见的同位素示踪实验方法。

它通过将待反应的化合物中的某个原子或官能团替换成同位素标记的化合物,来追踪同位素在反应中的转换和分配。

同位素标记法可以通过不同的同位素选择来实现对不同反应过程的研究。

例如,在有机合成化学中,常用的同位素标记法是将13C或2H等稳定同位素标记到化合物的特定位置。

这种方法能够提供有关化合物的结构、构象和反应动力学的重要信息。

另外,同位素标记法在药物代谢研究中也有广泛的应用,可以追踪药物在体内的代谢途径和消除速率。

二、同位素交换法同位素交换法是另一种常见的同位素示踪实验方法。

它通过使用标记同位素与待反应的化合物进行同位素交换,实现对反应过程中原子转移的研究。

同位素交换法可以提供有关反应机理和催化剂的信息,对于理解复杂的化学反应有着重要的作用。

一种常见的同位素交换方法是氢氘交换法。

在氢氘交换法中,氢原子会与氘原子交换位置,通过质子核磁共振技术等手段可以观察到交换过程的动力学和热力学参数。

这种方法在有机化学和生物化学中有广泛的应用,可以揭示化学反应的具体机制和过渡态的形成。

三、同位素示踪法同位素示踪法是一种直接追踪同位素在反应中的移动和转化的方法。

通过在化学反应物中引入同位素示踪剂,可以追踪同位素在反应过程中的转化情况。

同位素示踪法在研究底物的转化率、反应速率和发生路径等方面具有重要价值。

例如,在环境科学领域,同位素示踪法可以用于追踪有害物质在土壤或水体中的迁移和转化。

通过标记同位素的示踪剂,科学家们可以准确测定有害物质的分布和迁移速率,为环境保护和资源管理提供重要依据。

总结起来,同位素示踪实验方法是化学反应研究中的一项重要工具。

化学反应机理的同位素标记与示踪技术

化学反应机理的同位素标记与示踪技术

化学反应机理的同位素标记与示踪技术引言:化学反应机理是研究化学反应过程中发生的分子和原子之间的相互作用的核心。

了解反应机理对于揭示化学反应的本质以及优化反应条件具有重要意义。

同位素标记与示踪技术在研究化学反应机理方面发挥了关键作用。

本文将介绍同位素标记的原理、示踪技术的应用以及相关方法和技术的优势。

一、同位素标记的原理同位素是指具有相同原子序数但质量数不同的原子。

同位素标记就是用特定的同位素替代分子中的某些原子,从而实现对化学反应过程的追踪和研究。

常用的同位素标记元素包括氢、碳、氮、氧等。

同位素标记主要通过同位素稳定性和化学反应速率的差异来实现。

二、示踪技术的应用1. 同位素示踪法同位素示踪法是利用同位素在化学反应过程中的特殊性质,通过对其在反应中的转化过程进行示踪从而研究反应机理。

例如,利用碳同位素标记的化合物可以追踪其在反应中的位置和转移路线,从而揭示反应的不同步骤和机理。

同位素示踪法在有机合成、反应动力学和自由基反应研究中有广泛应用。

2. 放射性同位素示踪法放射性同位素示踪法是利用具有放射性的同位素标记化合物来研究反应机理。

放射性同位素的衰变过程可以通过放射性探测器进行实时监测,从而获得反应速率和中间体的信息。

这种方法在核化学、辐射化学和生物医学研究中得到了广泛应用。

三、相关方法和技术的优势1. 高分辨质谱法高分辨质谱法是同位素标记中常用的分析技术之一。

通过该技术,可以确定同位素标记化合物的分子结构、转化等信息。

高分辨质谱法具有高灵敏度、高分辨率和多变量测量能力等优势。

2. 核磁共振法核磁共振法是同位素标记中常用的非破坏性分析技术。

它可以用于研究同位素标记化合物的空间构型、化学环境和反应进程。

核磁共振法具有高选择性、高灵敏度和非破坏性等特点。

3. 放射性测量技术放射性测量技术广泛应用于放射性同位素示踪法中。

通过放射性测量技术,可以实时监测放射性同位素的衰变过程,获得反应速率和中间体的信息。

同位素示踪法原理

同位素示踪法原理

同位素示踪法原理
同位素示踪法是一种利用放射性同位素的性质追踪化学物质在生物体内或环境中的运动和转化过程的方法。

它基于同位素的特征,即同一元素的同种原子,但质量不同,因而具有不同的放射性衰变速率。

通过将示踪剂中的原子或分子中的特定同位素替换为放射性同位素,可以追踪其在生物体内或环境中的行为和交换。

同位素示踪法的原理是利用放射性同位素的衰变过程来确定化学物质的运动和转化。

放射性同位素不稳定,具有一定的衰变速率,通过测量衰变过程中放射性同位素的衰变产物的浓度变化,可以反推原始化学物质的转化路径和速率。

示踪剂中的放射性同位素在注入或摄入生物体后,会与目标化学物质发生相同的代谢过程,如吸收、分布、代谢和排泄。

测量生物体中放射性同位素或其衰变产物的浓度变化,可以了解目标化学物质在生物体内的转化速率、转化路径和剩余量。

同位素示踪法的应用非常广泛。

在环境科学中,可以利用同位素示踪法研究污染物在土壤、水体和大气中的迁移和转化过程。

在生物医学研究中,可以利用同位素示踪法研究药物的代谢途径和剂量分布,以及了解生物体内的代谢过程和疾病的发展情况。

总之,同位素示踪法通过利用放射性同位素的特性,可以追踪化学物质在生物体内或环境中的运动和转化过程,为环境科学、生物医学等领域的研究提供了强大的工具。

高中生物学中常见同位素示踪法实验

高中生物学中常见同位素示踪法实验

高中生物学中常见同位素示踪法实验同位素示踪法是一种微量分析方法,利用放射性同位素作为示踪剂对研究对象进行标记,通过放射性探测仪器进行追踪,可以了解放射性原子的运动路径和分布情况。

在生物学实验中,同位素示踪法经常被应用于研究细胞内元素或化合物的来源、组成、分布和去向,以及细胞的结构和功能、化学物质的变化、反应机理等。

放射性同位素一般用于构成细胞化合物的重要元素,如H、C、N、O、P、S、I等。

下面是高中生物学教材中涉及到同位素示踪法的应用:1.研究蛋白质或核酸合成的原料及过程。

将放射性原子标记在合成蛋白质或核酸的原料(氨基酸或核苷酸)中,通过追踪放射性原子的运动路径和分布情况,可以了解其通过的路径、运动到哪里以及分布情况。

2.研究分泌蛋白的合成和运输。

用H标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。

通过观察细胞中放射性物质在不同时间出现的位置,可以明确细胞器在分泌蛋白合成和运输中的作用。

3.研究细胞的结构和功能。

用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。

4.探究光合作用中元素的转移。

利用放射性同位素O、C、H作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。

例如,科学家XXX和卡门用氧的同位素O分别标记H2O和CO2,进行两组光合作用实验,结果表明第一组释放的氧全部是O2,第二组释放的氧全部是O2.标记噬菌体的DNA,将其注入大肠杆菌内,并发现放射性物质。

而使用S标记噬菌体的蛋白质,则在大肠杆菌35内未发现放射性物质。

这证明了噬菌体在侵染细菌的过程中,进入细菌体内的是噬菌体的DNA,而不是噬菌体的蛋白质。

这进一步证明了DNA是噬菌体的遗传物质。

通过放射性标记,可以“区别”亲代与子代的DNA。

例如,放射性标记N可以用于区分DNA分子的两条链是否都是15N。

如果是,则在离心时会出现重带;如果一条链是N,一条链是N,则会出现中带;如果两条链都是N,则会出现轻带。

地球化学中的同位素分析

地球化学中的同位素分析

地球化学中的同位素分析地球化学是研究地球化学成分、地球化学过程、地球化学循环和地球化学环境的一门学科。

其中的同位素分析是地球化学中的重要分支之一。

同位素是指具有相同原子序数但不同质量数的单质,在自然界中广泛存在。

同位素分析可用来研究岩石、矿物、水体、大气等自然现象,也可用来解决环境、生物和人类问题。

同位素分析的原理是依据同位素在化学和物理活动中的差异性。

同一元素的同位素化学性质相同,但物理性质不同。

例如,具有同位素^12C和^13C的二氧化碳分子在光谱分析技术中可以被分辨,从而得到不同的信号。

利用这些信号,就可以分析样品中同位素的含量和同位素比值。

同位素分析的方法主要包括质谱法、光谱法、放射性测量法等。

其中,质谱法是同位素分析中最常用的方法之一。

该方法基于质谱仪的原理,利用精确的磁场和电场对离子进行分析,得出不同离子的质量-电荷比,从而测定样品中的同位素含量。

同位素分析在地球化学中有许多应用。

以下介绍几个例子:1.同位素示踪法同位素示踪法是同位素分析中使用最广泛的应用之一。

当同位素被注入到一个系统中时,同位素浓度会随着时间变化而发生变化。

通过测量不同时间点的同位素浓度,可以了解系统中各种物质的来源、分布和移动方式。

地球化学中常用的同位素示踪法包括放射性示踪法和稳定同位素示踪法。

放射性示踪法是将一种有放射性同位素标记注入样品中,通过测量标记同位素的衰变速率和产生的辐射量来示踪样品中物质的分布和运动。

稳定同位素示踪法则是利用稳定同位素测定样品中物质的来源、变化和转移。

2.同位素地球化学同位素地球化学是利用同位素在地球科学中的广泛应用,包括地质学、气候学、生物学和环境科学。

通常情况下,地球化学家使用不同的同位素分析方法来研究样品的化学成分和样品的起源。

例如,根据岩石中铀、钍、锶等放射性同位素的衰变速率,研究岩石的时代和成因;利用碳同位素分析技术,研究生物的食物链变化和生物地球化学过程;通过测量气体中气体同位素的含量和同位素比值,可以研究大气的物理和化学特性。

化学反应中的同位素示踪方法

化学反应中的同位素示踪方法

化学反应中的同位素示踪方法化学反应中的同位素示踪方法是一种利用同位素的不同质量来追踪化学反应过程的技术。

同位素示踪方法广泛应用于科学研究、工业生产和环境监测等领域。

本文将介绍同位素示踪方法的原理、应用和局限性。

一、同位素示踪方法的原理同位素是指原子核中质子数相同而中子数不同的同一种元素。

同位素之间以及同位素与普通元素之间的化学性质基本相同,但由于同位素的质量不同,它们在化学反应中会表现出一些特殊的物理和化学行为。

同位素示踪方法利用同位素的这些特性来研究化学反应过程。

通过标记反应物中的同位素,可以追踪同位素在反应中的转化情况,从而揭示反应的机理和动力学信息。

二、同位素示踪方法的应用1. 生物化学研究:同位素示踪方法在生命科学领域有着重要的应用。

例如,通过标记DNA中的同位素,可以研究DNA的合成和分解过程,揭示基因表达的机理。

同时,同位素示踪方法还能用于追踪生物分子在生物体内的代谢途径,研究代谢通路的调控和储备物质的转化。

2. 工业生产:同位素示踪方法在工业生产中也得到了广泛应用。

例如,利用同位素示踪方法可以追踪化工过程中的反应路径和产品分布,优化反应条件和提高产品收率。

同时,同位素示踪方法还可以用于追踪污染源和污染物的扩散路径,为环境保护提供科学依据。

3. 地质学研究:同位素示踪方法在地质学研究中也发挥着重要作用。

例如,通过分析矿石中的同位素含量,可以揭示矿床的形成和演化过程。

同时,同位素示踪方法还可以用于追踪岩石和水体中的同位素组成,研究地球内部的运动和地壳演化。

三、同位素示踪方法的局限性1. 同位素的制备成本较高:由于同位素示踪方法需要用到标记化合物,而制备同位素标记化合物的成本较高,因此限制了同位素示踪方法的推广应用。

2. 同位素的辐射风险:某些同位素具有较高的放射性,使用这些同位素进行示踪可能带来辐射风险。

因此,在实际应用中需要严格控制辐射剂量,并做好防护措施。

3. 受标记影响的化学性质:在部分情况下,同位素的引入可能会改变化合物的化学性质,从而影响反应的速率和产物的选择性。

[讲解]同位素示踪法

[讲解]同位素示踪法

[讲解]同位素示踪法同位素示踪法同位素示踪法在高中生物学实验中的应用同位素示踪法是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,即把放射性同位素的原子参到其他物质中去,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径,运动到哪里了,是怎样分布的。

同位素示踪法是生物学实验中经常应用的一项重要方法,它可以研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。

用于示踪技术的放射性同位素一般是用于构成细胞化合物的重要元素,如3H、14C、15N、18O、32P、35S、131I等。

在高中生物学教材中有多处涉及到放射性同位素的应用,下面笔者对教材中的相关知识进行归纳如下:1 研究蛋白质或核酸合成的原料及过程把具有反射性的原子参到合成蛋白质或核酸的原料(氨基酸或核苷酸)中,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径、运动到哪里以及分布如何。

2 研究分泌蛋白的合成和运输用3H标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。

在一次性给予放射性标记的氨基酸的前提下,通过观察细胞中放射性物质在不同时间出现的位置,就可以明确地看出细胞器在分泌蛋白合成和运输中的作用。

例如,通过实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网?高尔基体?细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密联系的。

3 研究细胞的结构和功能用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。

4 探究光合作用中元素的转移利用放射性同位素18O、14C、3H作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。

例如,美国的科学家鲁宾和卡门研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。

他们用氧的同位素18O 分别标记H2O和CO2,使它们分别成为H218O和C18O2,然后进行两组光合作用实验:第一组向绿色植物提供H218O和CO2,第二组向同种绿色植物提供H2O和C18O2。

化学反应中的同位素示踪

化学反应中的同位素示踪

化学反应中的同位素示踪化学反应是研究和探索物质变化的重要工具。

为了更好地理解化学反应过程,科学家们常常使用同位素示踪的方法。

同位素示踪是指利用同位素在化学反应中的不同行为差异,通过测量同位素的相对丰度变化来揭示反应的机理和动力学。

本文将介绍同位素示踪的原理、应用和挑战。

一、同位素示踪的原理同位素是指拥有相同原子序数但质量数不同的同种元素。

由于拥有不同的中子数,同位素具有略微不同的物理和化学性质。

同位素示踪利用这些微小差异来追踪化学反应中的物质变化。

最常用的同位素示踪元素包括氧、碳、氢、氮和硫等。

同位素示踪的原理是同位素在反应中以不同的速率参与反应,从而导致同位素的相对丰度发生变化。

通过测量同位素的相对丰度变化,可以得出反应速率、中间体形成和反应路径等信息,进而揭示反应的机理和动力学。

二、同位素示踪的应用1. 代谢研究:同位素示踪在生物化学和医学领域有着广泛的应用。

例如,通过给研究对象摄入标记了碳-14的葡萄糖,科学家们可以追踪其在身体内的代谢路径,了解不同生物分子的合成和分解过程。

2. 环境科学:同位素示踪在环境科学中也扮演着重要角色。

通过测量地下水中同位素(如氧-18和氢-2)的丰度变化,可以推断水的来源、循环和贮存方式,有助于管理和保护地下水资源。

3. 资源勘探:同位素示踪被广泛应用于石油、天然气和矿产资源勘探中。

通过测量地下油气或矿石中特定同位素的比例,可以判断资源的成因、迁移路径和储集条件,为勘探活动提供重要依据。

三、同位素示踪的挑战尽管同位素示踪在科学研究和工业应用中发挥着重要作用,但也面临着一些挑战。

1. 同位素分离:要精确测量同位素的相对丰度变化,首先需要分离目标同位素。

同位素的分离通常需要复杂的化学过程和设备,增加了分析的复杂性和成本。

2. 预处理效应:在同位素示踪中,样品的预处理过程可能引入额外的误差,影响同位素的测量结果。

为了减小预处理效应的影响,科学家们需要设计合理的实验方案和标准化操作流程。

化学反应中的同位素示踪分析法

化学反应中的同位素示踪分析法

化学反应中的同位素示踪分析法同位素示踪分析法是一种通过引入含有同位素标记的物质来跟踪化学反应过程的方法。

在化学研究和工业生产中,同位素示踪分析法被广泛应用于了解反应机理、测定反应动力学参数、确定化合物的来源和追踪物质的转化路径等方面。

本文将介绍同位素示踪分析法的基本原理和常见应用。

一、同位素示踪分析法的原理同位素示踪分析法基于同位素的特性,即同一元素的原子核中具有相同的质子数(原子序数),但质量数(中子数加上质子数)不同。

同位素标记物质中的同位素与自然界中的同位素存在有差异,可以通过质谱仪等仪器进行分析和测定。

在化学反应中,引入同位素标记物质后,可以通过测定同位素比例的变化,来揭示反应的行为和行程。

二、同位素示踪分析法的应用1. 反应机理研究:同位素示踪分析法可以帮助研究人员了解复杂的化学反应机理。

例如,在有机合成中,通过引入同位素标记的原料,可以跟踪原子在反应中的运动轨迹,确定正反应路径、副反应路径以及中间体的生成过程。

2. 反应动力学测定:同位素示踪分析法还可以用于测定化学反应的速率常数和反应活化能。

通过测定同位素标记后化学反应中同位素比例的变化,可以得到反应动力学参数的信息,进而计算出速率常数和反应活化能。

3. 区分原料来源:在复杂的化学反应中,往往有多种原料参与其中。

同位素示踪分析法可以帮助区分不同原料对反应的贡献程度。

通过在不同原料中引入不同的同位素标记,可以准确地判定各种原料在反应中的相对贡献。

4. 追踪物质转化路径:同位素示踪分析法在环境科学和生物科学领域的应用也很广泛。

例如,通过标记土壤中的同位素,可以追踪农药、污染物等物质在土壤中的转化过程;通过标记生物体中的同位素,可以了解物质在食物链中的传递路径和浓度变化。

三、同位素示踪分析法的实验方法与技术同位素示踪分析法在实验操作上要求严谨,因为同位素的含量往往非常微量。

一般来说,实验流程包括样品的制备、同位素比例的测定、数据处理等步骤。

同位素示踪法

同位素示踪法

同位素示踪法放射性同位素的应用-同位素示踪法同位素示踪法(isotopic tracer method)是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,示踪实验的创建者是Hevesy。

Hevesy于1923年首先用天然放射性212Pb研究铅盐在豆科植物内的分布和转移。

继后Jolit和Curie于1934年发现了人工放射性,以及其后生产方法的建立(加速器、反应堆等),为放射性同位素示踪法的更快的发展和广泛应用提供了基本的条件和有力的保障。

一、同位素示踪法基本原理和特点同位素示踪所利用的放射性核素(或稳定性核素)及它们的化合物,与自然界存在的相应普通元素及其化合物之间的化学性质和生物学性质是相同的,只是具有不同的核物理性质。

因此,就可以用同位素作为一种标记,制成含有同位素的标记化合物(如标记食物,药物和代谢物质等)代替相应的非标记化合物。

利用放射性同位素不断地放出特征射线的核物理性质,就可以用核探测器随时追踪它在体内或体外的位置、数量及其转变等,稳定性同位素虽然不释放射线,但可以利用它与普通相应同位素的质量之差,通过质谱仪,气相层析仪,核磁共振等质量分析仪器来测定。

放射性同位素和稳定性同位素都可作为示踪剂(tracer),但是,稳定性同位素作为示踪剂其灵敏度较低,可获得的种类少,价格较昂贵,其应用范围受到限制;而用放射性同位素作为示踪剂不仅灵敏度,测量方法简便易行,能准确地定量,准确地定位及符合所研究对象的生理条件等特点:1.灵敏度高放射性示踪法可测到10-14-10-18克水平,即可以从1015个非放射性原子中检出一个放射性原子。

它比目前较敏感的重量分析天平要敏感108-107倍,而迄今最准确的化学分析法很难测定到10-12克水平。

2.方法简便放射性测定不受其它非放射性物质的干扰,可以省略许多复杂的物质分离步骤,体内示踪时,可以利用某些放射性同位素释放出穿透力强的r射线,在体外测量而获得结果,这就大大简化了实验过程,做到非破坏性分析,随着液体闪烁计数的发展,14C和3H等发射软β射线的放射性同位素在医学及生物学实验中得到越来越广泛的应用。

化学反应中的同位素示踪实验方法探讨

化学反应中的同位素示踪实验方法探讨

化学反应中的同位素示踪实验方法探讨同位素示踪实验是一种在化学反应中应用同位素标记的方法,通过使用同位素标记的化合物,可以追踪化学反应中原子或分子的运动和转化过程。

本文将探讨化学反应中常用的同位素示踪实验方法。

一、同位素标记同位素标记是利用同位素的不同质量来追踪化学反应中物质的变化过程。

同位素是具有相同原子序数但质量数不同的同一元素的不同核素。

在化学反应中,我们通过使用具有特殊同位素的化合物来标记反应物或生成物。

常用的同位素标记有放射性同位素和稳定同位素两种。

放射性同位素通常用于追踪速度较快的反应,如放射性同位素碳-14(14C)用于追踪有机物的代谢过程。

稳定同位素则可以用于研究较为缓慢的反应,如稳定同位素氢-2(2H)用于追踪水的循环过程。

二、同位素示踪实验方法1. 放射性示踪法放射性同位素示踪法是利用放射性同位素的衰变过程来追踪化学反应。

将放射性同位素标记的反应物加入反应体系后,通过测量放射性同位素的衰变活度变化,可以得到反应速率等信息。

常见的放射性同位素包括碳-14(14C)、氢-3(3H)和铯-137(137Cs)等。

以碳-14为例,我们可以将标记有碳-14的有机物加入反应体系,通过测量生成物中碳-14的含量变化,可以追踪有机物的代谢过程。

2. 稳定同位素示踪法稳定同位素示踪法是利用稳定同位素的质量差异来追踪化学反应。

通过测量反应物和生成物中稳定同位素的相对含量变化,可以获得反应过程中同位素的分配情况。

常用的稳定同位素包括氢-2(2H)、氧-18(18O)和碳-13(13C)等。

以氢-2为例,我们可以将标记有氢-2的水加入反应体系,通过测量生成物中氢-2的含量变化,可以了解水的转化过程。

3. 同位素质谱法同位素质谱法是一种利用质谱技术分析同位素含量的方法。

通过测量反应物和生成物中同位素的相对丰度,可以推断出反应过程中同位素的转化情况。

同位素质谱法适用于测量含有稳定同位素的化合物。

通过质谱仪的分析,可以得到同位素标记的化合物的质量谱图,并根据峰强度比值计算同位素的相对含量。

化学反应中的同位素示踪实验方法

化学反应中的同位素示踪实验方法

化学反应中的同位素示踪实验方法同位素示踪实验是一种重要的化学技术,通过利用同位素的化学性质和放射性特性,用于研究化学反应的机理、反应速率以及物质转化过程。

同位素示踪实验方法可以在不干扰化学反应本身的情况下,精确地跟踪和标记参与反应的分子或原子,以便更好地了解反应中的细节和步骤。

在化学反应中,同位素示踪实验方法主要有两种类型,即非放射性同位素示踪和放射性同位素示踪。

一、非放射性同位素示踪非放射性同位素示踪实验方法通常涉及稳定同位素,这些同位素的原子核不会发生自发放射性衰变。

常用的非放射性同位素包括氢同位素(氘和氚)、碳同位素(碳-13和碳-14)、氧同位素(氧-18)等。

1. 氢同位素示踪氢同位素示踪实验主要利用氘(D)和氚(T)来替代常见的氢同位素(氢-1),以便标记和追踪化学反应中的氢原子。

通过用氘或氚取代氢原子,可以精确测量反应中氢的亲核性、反应速率以及原子和分子的迁移路径。

例如,在酶催化反应中,用氚标记反应物可以帮助确定反应中关键的原子转移步骤。

2. 碳同位素示踪碳同位素示踪实验常利用碳-13和碳-14同位素来替代稳定的碳-12同位素,以便跟踪和研究碳原子在化学反应中的转化过程。

碳同位素示踪可用于研究碳源的转化、代谢途径以及有机合成反应中的化学键形成与断裂等。

3. 氧同位素示踪氧同位素示踪实验通常利用氧-18同位素来替代稳定的氧-16同位素,用于追踪化学反应中的氧原子转移和转化情况。

氧同位素示踪方法被广泛应用于研究水的来源、反应前后氧化程度以及有机物降解等。

二、放射性同位素示踪放射性同位素示踪实验方法涉及放射性同位素,这些同位素的原子核具有放射性衰变的特性。

放射性同位素常用于测量和追踪化学反应中的物质转化速率、动力学参数以及反应中心的位置等。

1. 放射性同位素示踪放射性同位素示踪常用的放射性同位素包括碳-14、氧-15、氧-17等。

通过放射性同位素的放射衰变过程和所释放的粒子(如α粒子、β粒子等)来跟踪及测定反应过程中不同物质的转化率与速率。

同位素示踪法和同位素标记法

同位素示踪法和同位素标记法

同位素示踪法和同位素标记法
同位素示踪法和同位素标记法都是利用同位素在生物、化学、地球科学等领域中的应用手段。

同位素示踪法指的是通过在样品中添加含放射性同位素的化合物,通过对其衰变方式进行测量,从而追踪样品在化学反应、代谢等过程中的变化。

而同位素标记法是在样品中添加非放射性同位素作为标记,利用这些同位素的特性探究样品在不同反应中物质的行为。

同位素示踪法对于现代化学和生物领域有着非常重要的应用,特别是在生命科学的研究中起着至关重要的作用。

比如说,在病毒研究中,同位素示踪法可以帮助研究人员确定病毒在体内如何复制,从而有助于研发新的治疗方法。

在食品化学中,同位素示踪法也能够用于分析食物成分的代谢途径,从而实现对胰岛素敏感性的评估以及准确评估营养摄入量。

同位素标记法则多用于原子轨道探测及量子物理中,目前主要用于分子生物学、药物研发等领域。

在分子生物学中,同位素标记法可用于研究许多重要的生物学过程。

例如基因表达研究、细胞分裂、DNA修复等等。

在新药研发方面,同位素标记法可以协助科学家确定新型药物在体内耗散的运动方式,从而更加准确地评估其药效。

总的来说,同位素示踪法和同位素标记法具有广泛的应用,尤其是在生命科学、物理化学、地球科学等领域中。

这些技术的应用,不仅为科学家的研究提供了新的手段,也为人类的生活带来了更多的希望和机遇。

同位素示踪法和靶向代谢组

同位素示踪法和靶向代谢组

同位素示踪法和靶向代谢组
同位素示踪法是通过将同位素标记化合物如13C、14C等加入到
代谢物中,然后通过检测标记化合物的分布来研究代谢途径。

例如,13C-葡萄糖可以被加入到细胞培养基中,随后通过检测13C-某些代
谢产物的分布来研究这些代谢产物的产生途径。

同位素示踪法常常被用来研究细胞代谢、药物代谢等领域,并且在生物医学、药物研发等方面都有重要应用。

靶向代谢组学则是利用代谢产物的差异来识别代谢通路的一种
方法。

生物体内的代谢产物种类非常多,每种代谢产物的含量和分布都受到多种因素的影响,如基因、环境等。

靶向代谢组学通过对代谢产物的分析,可以识别代谢通路的变化和生物体内代谢的差异,从而研究代谢疾病的发生和治疗。

同位素示踪法和靶向代谢组学在研究代谢途径和代谢疾病方面
都有广泛的应用。

例如,在肿瘤代谢研究中,同位素示踪法可以用来研究肿瘤细胞代谢的变化,从而为肿瘤治疗提供新的思路。

而靶向代谢组学可以识别代谢疾病的特征,为疾病诊断和治疗提供重要帮助。

总之,同位素示踪法和靶向代谢组学是两种重要的代谢研究方法,可以为代谢途径和代谢疾病的研究提供重要的信息和思路。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9 探究DNA分子半保留复制的特点
通过放射性标记来“区别”亲代与子代的DNA,如放射性标记15N,因为放射性物质15N的原子量和14N的原子量不同,因此DNA的相对分子质量不同。如果DNA分子的两条链都是15N,则离心时为重带;如果DNA分子的一条链是15N,一条链是14N,则离心时为中带;如果DNA分子的两条链都是14N,则离心时为轻带。因此可以根据重带、中带、轻带DNA出现的比例,判断DNA复制是全保留复制还是半保留复制。
5 研究细胞呼吸过程中物质的转变途径
利用18O作为示踪原子研究细胞呼吸过程中物质的转变途径,揭示呼吸作用的机理。例如,用18O标记的氧气(18O),生成的水全部有放射性,生成的二氧化碳全部无放射性,即18O→H218O。用18O标记的葡萄糖(C6H1218O6),生成的二氧化碳全部有放射性,生成的水全部无放射性,即C6H1218O6→C18O2。例如将一只实验小鼠放入含有放射性18O2气体的容器内,18O2进入细胞后,最先出现的放射性化合物是水。
1 研究蛋白质或核酸合成的原料及过程
把具有反射性的原子参到合成蛋白质或核酸的原料(氨基酸或核苷酸)中,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径、运动到哪里以及分布如何。
2 研究分泌蛋白的合成和运输
用3H标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。在一次性给予放射性标记的氨基酸的前提下,通过观察细胞中放射性物质在不同时间出现的位置,就可以明确地看出细胞器在分泌蛋白合成和运输中的作用。例如,通过实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密联系的。
即:DNA在第一次复制后,形成两个DNA分子,即四 条链,两条链含15N,两条链含14N,进行第二次复制后,得到4个DNA分子,即八条链:其中含15N的两条,含14N的6条。进行第三次复制后,得到八个DNA分子,即16条链,其中含15N的两条,14N的14条。即不管DNA复制多少次,含15N的模板链只有2条,其余都是含14N的链。若用密度梯度离心法进行离心,得到这样的结果。
10 探究基因的转录和翻译
用放射性同位素标记尿嘧啶核糖核苷酸(RNA的特征碱基为U)、氨基酸,则在基因转录、翻译的产物中就会含有放射性同位素,还可以用来确定转录、翻译的场所。
11 基因探针在基因诊断中的应用
在基因诊断中可利用放射性同位素15N、32P等标记的DNA分子做基因探针,将某一致病基因放到含放射性15N或32P的培养基中进行扩增,加热得到被标记的致病基因单链即基因探针,利用DNA分子杂交原理,将待测者的DNA分子加热处理形成DNA分子单链并与基因探针混合,让其杂交,检测是否形成双链,若完全形成双链,证明该待测者患有该病,否则不患。该基因诊断的方法可迅速地检测出肝炎病毒、肠道病毒等多种病毒,以及镰刀型细胞贫血症、苯丙酮尿症、白血病等。根据杂交带情况可检测生物亲缘关系或转基因生物是否插入目的基因,应用同样的原理还可检测饮用水中病毒的含量。例如我国科学工作者利用DNA分子杂交的原理,利用基因工程研制出“非典”诊断盒,快速诊断“非典”。
16 研究生长素的极性运输
证明植物生长素的极性运输时,用同位素14C标记茎形态学上端的生长素(吲哚乙酸),可在茎的形态学下端探测到放射性同位素14C,而标记茎形态学下端的生长素,则在茎的形态学上端探测不到放射性同位素,说明植物生长素只能从形态学的上端运输到形态学的下端。
17 研究物质循环和能量流动等方面的问题
6 研究某些矿质元素在植物体内的吸收、运输过程
研究矿质元素的吸收部位时,常用放射性同位素32P等来做实验,发现根毛区是根尖吸收矿质离子最活跃的部位。研究矿质离子在茎中的运输部位时,用不透水的蜡纸将柳树的韧皮部和木质部隔开,并在土壤中施用含42K的肥料,5小时后测定42K在柳茎各部位的分布;有蜡纸隔开的木质部含有大量42K,韧皮部几乎无42K,说明运输42K的是木质部;柳茎在用蜡纸隔开韧皮部和木质部的以下区段以及不插入蜡纸的对照实验中,韧皮部中也有很多42K,说明42K可从木质部横向运输到韧皮部。
12 在生物诱变育种方面的应用
诱变育种是利用 X 射线、γ射线、β射线或中子去辐照农作物的种子,植株或者某些器官,使它们产生的遗传性发生改变,产生各种各样的突变,在较短时间内获得有利用价值得突变体,然后从中选择出对人类有用的突变,经过培育而成的新品种。诱变育种常用的放射性同位素有35S、32P、45Ca(β射线)65Zn、60Co(γ射线)等,主要方法有浸泡种子、施入土壤、涂抹幼苗、注入植物组织内等。如是典型的γ放射源,可用于诱变育种。我国应用该方法培育出了许多农作物新品种。如棉花高产品种“鲁棉1号”,年种植面积曾达到3000多万亩,在我国自己培育的棉花品种中栽培面积最大。
13 探究大脑皮层的功能
科学家们常用PET技术对大脑皮层的高级功能进行定位。PET技术是指正电子反射型计算机断层造影成像技术,是一种直接对脑功能造影的技术,运用该技术,科学家可以通过特制的探测元件测定大脑不听区域物质的消耗情况,进而定位大脑皮层的不同功能区。将葡萄糖的基本元素(C、H、O)用超短“寿命”的放射性同位素标记(如F18、C11等),制成放射性示踪剂,然后把这种示踪剂注射到受试者的血管中,通过特制的探测元件,就可以获取示踪剂在受试者大脑中的三维分布及其随时间变化的情况。如让受试者进行思维、语言、聆听、书写等高级机能活动,皮层中相应的中枢将处于高度兴奋状态,此时,通过观察这些中枢对示踪剂的消耗情况,就可以得出大脑皮层各功能区的位置和分布。例如让受试者进行书写时,大脑皮层中关于书写的中枢将大量消耗葡萄糖,该神经中枢的位置就可以通过探测进行定位。目前该技术已广泛用于多种疾病的诊断与鉴别诊断、病情判断、疗效评价、脏器功能研究和新药开发等方面。
在生态系统中,组成生物体的C、H、O、N、P、S等元素,不断进行着从无机环境到生物群落,又从生物群落到无机环境的循环过程。如果用放射性同位素标记参与物质循环的这些元素,就可以追踪物质的转移途径。例如用35S标记SO2、用14C标记CO2追踪硫循环和碳循环中S和C的转移途径。
总之,同位素示踪法正在更大规模地应用于生物研究领域,作为中学生物教师,了解更多的有关同位素标记技术的知识和实验,无疑将开拓自身的知识视野,构建自身坚实的知识支架,教学中适当讲授一些同位素标记技术的原初实验,有利于把与生物学相关的复杂知识点更科学、更原始地传授给学生,同时,也使学生对这项技术有一个更深刻的认识和把握。
【关键词】放射性同位素 半保留复制 C4途径 分泌蛋白 基因诊断
一、同位素示踪法证明DNA是遗传物质
在噬菌体浸染细菌的实验中,噬菌体只有两种物质:分别是DNA和蛋白质。从组成元素上看,DNA含C、H、O、N、P,而蛋白质含C、H、O、N、S等。且P主要存在于DNA中,而S主要存在于蛋白质外壳中,用35S、32P分别标记蛋白质和DNA,直接单独地去观察它们到底哪一种物质是遗传物质.
放射性同位素示踪法在高中生物学中的应用
【摘要】放射性同位素广泛应用于生物学的研究中,如对DNA是遗传物质、,DNA的半保留复制、基因诊断、矿质元素的运输。C4植物光合途径、生长素的极性运输、分泌蛋白的合成与运输、光合作用、呼吸作用的原子转移的途径的研究。
二、研究DNA的半保留复制特点
DNA的复制是全保留复制、半保留复制、还是弥散复制?我们可以用同位素示踪法进行研究。我们把DNA用15N标记,然后提供14N的原料让其进行复制,在F1代、F2代、F3代的DNA分子中,含14N、15N的链到底有多少条?通过同位素示踪法非常清楚,即:
3 研究细胞的结构和功能
用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。
4 探究光合作用中元素的转移
利用放射性同位素18O、14C、3H作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。例如,美国的科学家鲁宾和卡门研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。他们用氧的同位素18O分别标记H2O和CO2,使它们分别成为H218O和C18O2,然后进行两组光合作用实验:第一组向绿色植物提供H218O和CO2,第二组向同种绿色植物提供H2O和C18O2。在相同条件下,他们对两组光合作用释放的氧进行了分析,结果表明第一组释放的氧全部是18O2,第二组释放的氧全部是O2,从而证明了光合作用释放的氧全部来自水。另外,卡尔文等用14C标记的CO2,供小球藻进行光合作用,追踪检测其放射性,探明了CO2中的碳在光合作用中转化成有机物中碳的途径。 质的变化会引起一系列的调节反应,也会引起其他物质的相应变化。标记某一物质,用一定方法处理,通过检测放射性物质在某器官中的变化量,研究反馈调节的机制。例如在研究甲状腺腺体与甲状腺激素、促甲状腺激素的分泌时,一般选用131I进行同位素原子的示踪标记。因为人体从食物中吸收的碘元素几乎全部集中在甲状腺腺体,用于合成甲状腺激素。
15 在免疫调节中的应用
给动物以高剂量的同位素标记的抗原,结果动物不但不发生免疫反应,而且以后对同样的、但不同同位素标记的抗原也不再发生免疫反应。此时如给其他抗原,动物仍能发生正常免疫反应。这一实验表明,同位素标记的抗原与带有互补抗体的淋巴细胞结合,这种淋巴细胞全被射线杀死,因此不发生免疫反应。第二次给正常的同样抗原时,由于带有互补抗体的淋巴细胞已全被杀死,其他种类的淋巴细胞虽对其他抗原能正常反应,但不能对此种抗原发生反应,即不能转变为与此种抗原互补的淋巴细胞。因此,动物就失去对此种抗原的免疫能力。由此可见,淋巴细胞的特异性是先天存在的,而不是由抗原的“教导”而产生的。
7 研究有丝分裂过程中染色体的变化规律
在处于连续分裂的细胞的分裂期用3H标记胸腺嘧啶脱氧核苷酸,根据胸腺嘧啶被利用的情况,可以确定DNA合成期的起始点和持续时间,以研究有丝分裂过程中染色体的变化规律。例如为了验证促进有丝分裂的物质对细胞分裂的促进作用,将小鼠的肝细胞悬浮液分成等细胞数的甲、乙两组,在甲组的培养液中加入3H标记的胸腺嘧啶脱氧核苷(3H-TdR);乙组中加入等剂量的3H-TdR,加入促进有丝分裂的物质。培养一段时间后,分别测定甲、乙两组细胞的总放射性强度。再如,有人为确定DNA合成期的时间长度,在处于连续分裂的细胞的分裂期加入用3H标记的胸腺嘧啶,根据胸腺嘧啶被利用情况,可以确定DNA合成期的起始点和持续时间。
相关文档
最新文档