模拟电路课件PPT-2-6-2-共基

合集下载

《模拟集成电路基础》PPT课件

《模拟集成电路基础》PPT课件

h
20
P
N
V
PN结的接触电位
(二)PN结的接触电位:
(1).内电场的建立,使PN结 中产生电位差。从而形成接 触电位V(又称为位垒)。
(2).接触电位 V决定于材 料及掺杂浓度:
硅: V=0.7 锗: V=0.2 (3).其电位差用 表示
h
21
(三)PN结的单向导电性
U
I
P
N
扩散
Q(V-U)
1.PN结加正向电压时:
第四节 二极管的应用
h
8
第一节 半导体基础知识
一1.、什半么导是体导的体特、性绝:缘体导、电半导率量导电1级0体率-2,2:为-如110:0-154s金.sc.、mc-m1-1
(1).导体:导电性能良好导量的电级物率,质为银如。1、:0-铜橡9-、胶10铝、2 s。云.c母m-、1 (2).绝缘体:几乎不导电量砷塑的级化料物,镓等质如等。。:。硅、锗、 (3).半导体:导电能力介于导体和半导体之间。
生载流子的扩散运用动下的定结向果移产动生称空
间电荷区耗尽层为(漂多移子运运动动)。
空穴 P
(2).空间电荷区产生建立了内电场 产生载流子定向运动(漂移运动)
N
•当扩散运动↑内电场↑漂移运
动↑扩散运动↓动态平衡。
(3).扩散运动产生扩散电流;漂移运动 产生漂移电流。
•动态平衡时:扩散电流=漂移电流。 PN结内总电流=0。 PN结的宽度一定 。
1.电子空穴对: 电子和空穴是成对产生的.
h
12
两种载流子——电子和空穴
外电场E 的方向
电子流
2.自由电子——载流子:
自由电子
• 在外电场作用下形成电子流(在 导带内运动),

模拟电子技术基础PPT课件-经典全

模拟电子技术基础PPT课件-经典全
模拟电子技术基础
绪论
一、电子技术的发展 二、模拟信号与模拟电路 三、电子信息系统的组成 四、模拟电子技术基础课的特点 五、如何学习这门课程
一、电子技术的发展
电子技术的发展,推动计算机技术的发展,使之“无 孔不入”,应用广泛!
• 广播通信:发射机、接收机、扩音、录音、程控交换机、电 话、手机
• 网络:路由器、ATM交换机、收发器、调制解调器
因基区薄且多子浓度低,使极少 数扩散到基区的电子与空穴复合
基区空穴 的扩散
因发射区多子浓度高使大量 电子从发射区扩散到基区
最大功耗PZM= IZM UZ
动态电阻rz=ΔUZ /ΔIZ
若稳压管的电流太小则不稳压,若稳压管的电流太大则会
因功耗过大而损坏,因而稳压管电路中必需有限制稳压管电
流的限流电阻!
§1.3 晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
结电容小,故结允许 结电容大,故结允许 可大,小的工作频率
的电流小,最高工作 的电流大,最高工作 高,大的结允许的电
频率高。
频率低。
流大。
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u)
u
i IS(eUT 1) (常温下UT 26mV)
击穿 电压
温度的 电压当量
漂移运动
因电场作用所产 生的运动称为漂移 运动。
参与扩散运动和漂移运动的载流子数目相同,达到动态 平衡,就形成了PN结。
PN 结的单向导电性
PN结加正向电压导通: 耗尽层变窄,扩散运动加
剧,由于外电源的作用,形 成扩散电流,PN结处于导通 状态。

模拟cmos集成电路设计拉扎维MOS器件物理基础PPT课件

模拟cmos集成电路设计拉扎维MOS器件物理基础PPT课件
定义从D流 向S为正 PMOS管电流驱动能力比NMOS管差 0.8 m nwell:p=250cm2/V-s, n=550cm2/Vs 0.5 m nwell:p=100cm2/V-s, n=350cm2/V-
第23页/共61页
跨导gm
VGS对IDS的控制能力 IDS对VGS变化的灵敏度
gm ID VGS VDS cons tant
• 直流关系式-I/V特性 • 交流关系式-小信号电路中的参数
第6页/共61页
MOS管简化模型
简化模型——开关 由VG控制的一个开关
第7页/共61页
MOS管的结构
Bulk(body)
源漏在物理结构上是完全对称的,靠什么区分开?
提供载流子的端口为源,收集载流子的端口为漏
最重要的工作区域?
受VG控制的沟道区
• 小信号模型 • 信号相对于偏置工作点而言比较小、不会显著影响偏置工作点时用该模型简化计算 • 由gm、 gmb、rO等构成低频小信号模型,高频时还需加上 CGS等寄生电容、寄生电阻(接触孔电阻、 导电层电阻等)
沟道电荷的产生
当VG大到一定 程度时,表面势 使电子从源流向 沟道区 VTH定义为表面电 子浓度等于衬底 多子浓度时的VG
第12页/共61页
阈值电压
0 栅与衬底功函数差
COX
OX
TOX
常通过沟道注入把VTH0调节到合适值 工艺确定后,VTH0就固定了,设计者无法改变
第13页/共61页
I/V特性-沟道随VDS的变化
第3页/共61页
掌握器件物理知识的必要性
• 数字电路设计师一般不需要进入器件内部,只把它当开关用即可 • AIC设计师必须进入器件内部,具备器件物理知识
• MOS管是AIC的基本元件 • MOS管的电特性与器件内部的物理机制密切相关,设计时需将两者结

《模拟电子技术》课件第2章半导体二极管及其基本电路

《模拟电子技术》课件第2章半导体二极管及其基本电路
成为本自由征电半子导(体带负电), 同时的共价导键电中机留理下一个空
位,称为空穴(带正电)。
+4
+4
+4
+4 空穴
&;4
4
自由电子
空穴:共价键中的空位。
空穴的移动:相邻共价
+4
键中的价电子依次充填
空穴来实现。 +4
电子空穴对:由热激发
而产生的自由电子和空
+4
穴对。
§1.1 半导体的基本知识
P型半导体——掺入三价杂质元素(如硼)的 半导体。【Positive】
1. P型半导体
三、杂质半导体
掺入三价元素(如硼)
Si
Si
BS–i
Si
空穴
掺杂后空穴数 目大量增加,空穴导电 成为这种半导体的主要 导电方式,称为空穴半 导体或 P型半导体。
接受一个 电子变为 负离子
硼原子
空穴:多子(多数载流子)
26
三、二极管的主要参数: (1) 最大整流电流IF
§3.3 二极管
二极二管极长管期反连向续电工流作急时, 允许剧通增过加二时极对管应的的最反大 整流向电电流压的值平称均为值反。向
击穿电压VBR。
(2) 反向击穿电压VBR和最大反向工为作安全电计压,V在R实M际工作
(3) 反向电流IR (4) 极间电容Cj
当vI = 6 sinωt (V)时,分别对于理想模型和恒压降模型绘出相应
的输出电压vO的波形。
R
+a.理想模型 D
当AVI=0V时 +
D截止
当VI=4V时
D导通
当VI=6V时
D导通
vI
VREF

东南大学模拟电路教程课件

东南大学模拟电路教程课件

UA R5
节点电压法:
I =-+ E -+ UA R
E.UA与本支 路电流方向 相同取“+”, 反之取“-”。
I3=
-E3 + UA R3
28
例: 已知R1=R2=R3=R4=R; Uab=10V,E=12V.若将E去掉,
并将 cd 短接,此时Uab=?
怎么解决? 郁闷!
E
c d R1 ••
R2 a IS1 •
IS2 R3 • b R4
29
1 - 10 叠加原理
在线性电路中,任一支路中的电流为电路中 各电源单独作用时的代数和。
方法:依次计算各电源单独作用时的电流,此时其它 电压源视作短路,电流源视作开路。
例:求I3
U1 +140V
R1 20
R3
R2
U2
5 +90V
6
I3
R1
R2
20
5
U1 140V
I3
6 R3
例:求UIS = ?
解: UIS = UR – U = IS R – U = - 6V
2A
I
Is
UIS
2
UR
U
R
10V
21
例: 求 I .
I2 3A
I2 3A
12V
U1
I1
6 Ω 2A

I
3Ω 6Ω
2A
I1

6Ω 2A
I
3Ω 6Ω
电压源的方向?
电电压流源源的的 方方向向??
3A

8V
6V
6Ω I
U2 90V
30
U1 +140V

模拟电路ppt课件

模拟电路ppt课件
(4-10)
例:求Au =?
i2 R2 M R4 i4
i3 R3
i1 ui
R1
_ +
+
RP
虚短路
u u 0
i1= i2
虚开路
uo
uo
vM
1
R4 1
1
R2 R3 R4
i2
vM R2
i1
ui R1
(4-11)
uo
vM
1
R4 1
1
R2 R3 R4
i2
vM R2
i1
ui R1
Au
uo ui
)
RF
2
RF1 R4
( ui1 R1
ui 2 R2
)
ui3 R5
(4-29)
五、三运放电路
ui1 +
A+
+
ui2
A+
uo1
R
R1
a
RW b
R
R1
uo2
R2
+
uo
A+
R2
(4-30)
ui1 +
A+
+
ui2
A+
uo1
R a
RW b
ua ui1 ub ui2
uo1 uo2 ua ub
t
思考:如果输入是正弦波,输出波形怎样,请 自己计算。运放实验中请自己验证。
(4-36)
积分电路的主要用途: 1. 在电子开关中用于延迟。 2. 波形变换。例:将方波变为三角波。 3. A/D转换中,将电压量变为时间量。 4. 移相。
其他一些运算电路:对数与指数运算电路、乘 法与除法运算电路等,由于课时的限制,不作 为讲授内容。

模拟电子课件第一章_半导体材料及二极管

模拟电子课件第一章_半导体材料及二极管
–10 0 0.2 0.4
–20
I/uA
锗管的伏安特性
图 二极管的伏安特性
ID
UD
-
UD / V
34
1.正偏伏安特性
当正向电压比较小时,正向电流很小,几乎为零。,
相应的电压叫死区电压。
死区电压: 硅二极管为0.5V左右 锗二极管为0.1V左右
i/mA 30
当正向电压超过死区电压后,二极 管导通, 电流与电压关系近似指数关 系。
42
3.二极管的其它主要参数
➢最大平均整流电流 : I F 允许通过的最大正向平均电流 ➢最高反向工作电压 : 最V大R 瞬时值,否则二极管击穿
1
18
半导体中某处的扩散电流 主要取决于该处载流子的浓 度差(即浓度梯度),而与 该处的浓度值无关。即扩散 电流与载流子在扩散方向上 的浓度梯度成正比,浓度差 越大,扩散电流也越大。
图1.6 半导体中载流子的浓度分布
1
19
即:某处扩散电流正比于浓度分布曲线上该点处的斜率
和。
dn( x) dx
dp ( x) dx
在硅或锗的晶体中掺入少量的 5 价杂质元素,即构成 N 型半导体 (或称电子型半导体)。
常用的 5 价杂质元素有磷、锑、砷等。
1
10
原来晶格中的某些硅原子将 被杂质原子代替。 杂质原子与周围四个硅原子 组成共价键时多余一个电子。 这个电子只受自身原子核吸引, 在室温下可成为自由电子。
5价的杂质原子可以提供电子, 所以称为施主原子。
Problem: N型半导体是否呈电中性?
1
+4
+4
+5
+4
+4
+4

《模拟电子技术》课件第6章 集成运算放大电路

《模拟电子技术》课件第6章 集成运算放大电路

IE2
IE1Re1 Re2
VT Re2
ln
IE1 IE2
§6.2 电流源电路
IR R
IC1
T1
IE1 Re1
IB1 IB2
VCC
I C 2=IO
T2
IE2 Re2
当值足够大时
IR IC1 IE 1 IO IC2 IE 2
IO
IR
Re1 Re2
VT Re2
ln
IR IO
IO
IR
Re1 Re2
四、微电流源
R c + vo R c
VCC
Rs
+
vi1
T1 RL T2
Rs
+
vi2
Re
VEE
2、差模信号和共模信号的概念
vid = vi1 vi2 差模信号
vic
=
1 2
(vi1
vi2 )
共模信号
Avd
=
vod vid
差模电压增益
其中vod ——差模信号产生的输出
Avc
=
voc vic
共模电压增益
总输出电压
IE3
IC2
IC1
1
IC2
2
IC 1
2 IC1 β
IO
1
IR 2
2
2
IR
IC1
T1
R IB3
T3
IE3
IB1 IB2
V CC IO= IC2 = IC1
T2
IR R
IC1
IB3
T1 I B1
VCC
IO
T3
IE3 IC2
T2 IB2
三、比例电流源

模拟电子技术PPT课件

模拟电子技术PPT课件
处理模拟信号的电子电路称为模拟电路。
1.4 放大电路模型
信号的放大是最基本的模拟信号处理 功能。
这里研究的是线性放大,即放大电路 输出信号中包含的信息与输入信号完全相 同。输出波形的任何变形,都被认为是产 生了失真。
1、放大电路的符号及模拟信号放大
• 电压放大模型
• 电流放大模型
• 互阻放大模型
电压增益
+ Vs

Ri ——输入电阻
+
+
+
Vi
Ri
AVOVi
Vo RL



Ro ——输出电阻
由输出回路得 则电压增益为
Vo AV
AVVVoOi ViRAoVROLRRLo RLRL
由此可见 RL
AV 即负载的大小会影响增益的大小
要想减小负载的影响,则希望 Ro RL 理想情况 Ro 0
(考虑改变放大电路的参数)
由输入回路得
Ii
Is
Rs Rs Ri
要想减小对信号源的衰减,则希望…?
Ri Rs
理想 Ri 0
3. 互阻放大模型(自学) 4. 互导放大模型(自学) 5. 隔离放大电路模型
Ro
+
+
+
Vi
Ri
AV Vi
Vo

–O

输入输出回路没有公共端
1.5 放大电路的主要性能指标
放大电路的性能指标是衡量它的品质优劣 的标准,并决定其适用范围。
Vs 0
另一方法
+ Vs=0

放大电路
IT
+ VT

Vo AVOVi

集成运算放大器电路 模拟电子电路-PPT

集成运算放大器电路 模拟电子电路-PPT

IE2

1 R2
(U BE1
UBE2 )

UT R2
ln
I E1 IE2
当β1>>时,IE1≈Ir,IE2≈IC2,由此可得
R2

UT IC2
ln
Ir IC2
(4―10)
UCC
Ir
Rr
V1
第4章 集成运算放大器电路
IC2 V2
R2
图4―7微电流电流源
第4章 集成运算放大器电路
此式表明,当Ir和所需要的小电流一定时,可计算
UCC
Rr
Ir
IC1 IC2
IC3
第4章 集成运算放大器电路
V1
V2
Rr Ir
UCC V3
IC2
IC3
(a)
(b)
图4―5 (a)三集电极横向PNP管电路;(b)等价电路
第4章 集成运算放大器电路
三、比例电流源
如果希望电流源的电流与参考电流成某一比例关 系,可采用图4―6所示的比例电流源电路。由图可知
利用交流等效电路可求出威尔逊电流源的动态内阻
Ro为

Ro 2 rce
(4―13)
可见,威尔逊电流源不仅有较大的动态内阻,而且 输出电流受β的影响也大大减小。
图4―9给出了另一种反馈型电流源电路。它由两 个镜像电流源串接在一起组成,故称串接电流源。关 于它的稳流原理留给读者自行分析。
UCC
Ir
Rr
集成运放是一种多级放大电路, 性能理想的运放 应该具有电压增益高、 输入电阻大、 输出电阻小、 工 作点漂移小等特点。 与此同时, 在电路的选择及构成 形式上又要受到集成工艺条件的严格制约。 因此, 集 成运放在电路设计上具有许多特点, 主要有:

模拟电路整套课件完整版电子教案最全ppt整本书课件全套教学教程

模拟电路整套课件完整版电子教案最全ppt整本书课件全套教学教程
常使用的二极管,是不允许出现这种现象的。
上一页 下一页 返回
第一节 晶体二极管
三、晶体二极管器件的参数及分类
1.二极管的主要参数 (1)最大整流电流IFM 最大整流电流是指二极管长时间使用时,允许流过二极管的
最大正向平均电流。当电流超过这个允许值时,二极管会因 过热而烧坏,使用时务必注意。 (2)最高反向工作电压VRM 指二极管在使用时允许加上的最高反向电压。如果超过此值 二极管可能被击穿。一般是反向击穿电压的1/2或2/3。
上一页 下一页 返回
第一节 晶体二极管
二、PN结合晶体二极管的结构和特性
1.PN结 如果在硅或锗本征半导体中采用掺杂工艺,使半导体的一边
形成P型半导体,另一边形成N型半导体,则在这两种导电性 能相反的半导体交界面上,将形成一个特殊的接触面,称为 PN结。如图1-2 ( a)所示。 将P型半导体与N型半导体制作在同一块硅片上,在无外电场 和其他激发作用下,参与扩散运动的多子数目等于参与漂移 运动的少子数目,从而达到动态平衡
和集电极电流之和。无论是NPN型管还是PNP型管,均符合这
一规律。由于基极电流很小,因而 IE≈IC 在PNP型管中,IE流入三极管,IB IC流出三极管,如图1-19
所示
上一页 下一页 返回
第二节 晶体三极管
(2)三极管的电流放大作用。
在图1-18所示电路中,信号从基极与发射极之间输入,从集电 极和发射极输出,因此发射极是输入、输出回路的公共端,这
上一页 下一页 返回
第二节 晶体三极管
2.极限参数 极限参数是指管子工作时,不允许超过的参数,否则管子性
能下降或损坏。常见的极限参数主要有: (1)集电极最大允许电流ICM :当集电极电流超过此值时,三

模拟电子技术基础第5章ppt课件

模拟电子技术基础第5章ppt课件

u-o 2
Rc T2 Rb
+ u i1

.
+
R
_
e
V
EE
u i2 -
6
3. 差模信号与共模信号
差模信号: uid=ui1ui2
1 共模信号: uic =2(ui1ui2)
+ V CC
Rc
Rc
差模电压增益: Aud
=
uod u id
Rb
共模电压增益:
A uc
=
uoc u ic
+ u i1

总输出电压:
第五章 集成运算放大器
5.1 差动放大电路 5.2 集成运算放大器中的单元电路 5.3 集成运放简介 5.4 集成运算放大器中的主要参数 5.5 特殊集成运算放大器
.
1
什么是集成运算放大器?
集成运算放大器——高增益的直接耦合的集成 的多级放大器。
集成电路的工艺特点:
(1)元器件具有良好的一致性和同向偏差,因而特别有利于实现 需要对称结构的电路。
u-i2
2

EE
IRe不变 UE不变 所以,Re对差模
信号相当于短路。
.
10
①求差模电压放大倍数:
因为ui1 =- ui2
Rc + uo - Rc
设ui1 ,ui2 uo1 ,uo2 。
电路对称│uo1│=│uo2│ +
Rb T1
+
u-o1 E
+
u-o2 T2 Rb
+
uo= uo1 – uo2=2 uo1
+ uo _
T1
T2
R
_

模拟电子技术基础第四版课件-第一章

模拟电子技术基础第四版课件-第一章
60A 40A
20A IB=0 9 12 UCE(V)
(1-51)
4
IC(mA
) 此区域中UC1E00UBAE,
集电结正偏,
3
IB>IC,UCE800.3VA 称为饱和区。
60A
2
40A
1
20A
IB=0
3 6 9 12 UCE(V)
(1-52)
IC(mA ) 4 3
2
此1区00域A中 :
I,UB=B80E0<,ICA死=I区CEO 电压60,A称为 截止40区A。
变薄
+ P
-+ -+ -+ -+
内电场被削弱,多子 的扩散加强能够形成 较大的扩散电流。
_ N
外电场
R
内电场
E
(1-22)
2、PN 结反向偏置
_ P
变厚
-+ -+ -+ -+
内电场被被加强,多子
的扩散受抑制。少子漂
移加强,但少子数量有
限,只能形成较小的反
向电流。
+
N
内电场
外电场
R
E
(1-23)
3 PN 结方程
I
U
I I S (e UT 1)
U
三 PN结的击穿
(1-24)
四 PN结的电容效应
PN结高频小信号时的等效电路: rd
势垒电容和扩散电 容的综合效应
(1-25)
1. 2 半导体二极管
1.2. 1 半导体二极管的结构和符号
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线

模拟电子电路教材课件.

模拟电子电路教材课件.
模拟电子技术基础
聊城大学 物理科学与信息工程学院
杨少卿
1
《模拟电子技术基础》是电子信息科学与技术专业、通信 工程专业、电子信息工程专业以及物理学专业本、专科的一 门重要的专业核心课,具有很强的综合性、技术性和实用性。 该课程的研究对象是电子元器件及其组成的电路(包括分立、 集成电路)。主要研究常用半导体器件、基本放大电路、多 级放大电路、集成运算放大电路、放大电路的频率响应、放 大电路中的反馈、信号的运算和处理、波形的发生和信号的 变换、功率放大电路、直流电源和模拟电子电路读图等内容。 模拟电路已经广泛地应用于国防和国民经济的各个领域并极 大地促进了相关领域的迅速发展,特别是模拟电路中的新器 件、新技术、新方法的广泛应用,使得电子测量和探索自然 规律的实验方法进入了一个新阶段,因此《模拟电子技术基 础》具有重要的地位和作用。
1.载流子、自由电子和空穴 空穴
在绝对0度(T=0K)和没
束缚电子 自由 电子
有外界激发时,价电子完全被
共价键束缚着,本征半导体中
+4
+4
没有可以运动的带电粒子(即
载流子),它的导电能力为 0,
相当于绝缘体。
+4
+4
在常温下,由于热激发,
使一些价电子获得足够的能量
而脱离共价键的束缚,成为自 本征半导体中自由电子和空穴
PN 结具有单向导电性
常用电子仪器的使用方法
电子电路的测试方法
故障的判断与排除方法
EDA软件的应用方法
11
第一章 常用半导体器件
§ 1.1 半导体的基础知识 § 1.2 半导体二极管 § 1.3 双极型晶体管 § 1.4 场效应管 § 1.5 单结晶体管和晶闸管(了解) § 1.6 集成电路中的元件(了解) 重点掌握:基本概念,晶体二极管的伏安特性及主要参 数、晶体三极管和场效应管输入、输出特性及主要参数。 不要将注意力过多放在管子内部,而以理解外特性为主。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6.2 共基极放大电路
(a)原理电路
(b)实际电路
图 2.6.3 共基极放大电路
VEE 保 证 发 射 结 正 偏 ; VCC 保证集电结反偏;三极管 工作在放大区。
实际电路采用一个电 源 VCC ,用 Rb1、Rb2 分 压提供基极正偏电压。
ห้องสมุดไป่ตู้
一、静态工作点(IBQ , ICQ , UCEQ)
IEQ
UBQ
UBEQ Re
1 Re
(
Rb1 Rb1 Rb2
VCC
UBEQ )
ICQ
IBQ
IEQ
1
UCEQ VCC ICQRc IEQ Re VCC ICQ(Rc Re )
图 2.6.3(b)实际电路
二、电流放大倍数
微变等效电路
由图可得: Ii Ie ,
Io Ic
图 2.6.4 共基极放大电路的等效电路
2.6.3 三种基本组态的比较
2.6.3 三种基本组态的比较
所以
A i IIoi IIec
由于 小于 1 而近似等于 1 ,所以共基极放电电路
没有电流放大作用。
三、电压放大倍数
由微变等效电路可得
所以
U i Ibrbe
U o Ib RL
A u
U o U i
RL
rbe
共基极放大电路没有电流放大作用,但是具有电压放 大作用。电压放大倍数与共射电路相等,但没有负号,说 明该电路输入、输出信号同相位。
四、输入电阻
暂不考虑电阻 Re 的作用
Ri
UIii
(1
Ib rbe
)
Ib
rbe
1
五、输出电阻
暂不考虑电阻 Re 的作用 Ro rcb .
已知共射输出电阻 rce ,而 rcb 比 rce大 得多,可认

rcb (1 + )rce
如果考虑集电极负载电阻,则共基极放大电路的输
出电阻为
Ro = Rc // rcb Rc
相关文档
最新文档