一道易错题引发的静电感应实验(精)
高中物理电磁感应现象易错题知识归纳总结含答案
高中物理电磁感应现象易错题知识归纳总结含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T .在匀强磁场区域内,有一对光滑平行金属导轨,处于同一水平面内,导轨足够长,导轨间距L =1m ,电阻可忽略不计.质量均为m =lkg ,电阻均为R =2.5Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4m /s 2向右做匀加速直线运动,5s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除PQ 棒锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热.(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)【答案】(1)25m /s m v = (2)Q =5 J (3)405m x = 【解析】 【分析】 【详解】(1)棒MN 做匀加速运动,由牛顿第二定律得:F -BIL =ma 棒MN 做切割磁感线运动,产生的感应电动势为:E =BLv 棒MN 做匀加速直线运动,5s 时的速度为:v =at 1=2m/s 在两棒组成的回路中,由闭合电路欧姆定律得:2E I R=联立上述式子,有:222B L atF ma R=+代入数据解得:F =0.5N 5s 时拉力F 的功率为:P =Fv 代入数据解得:P =1W棒MN 最终做匀速运动,设棒最大速度为v m ,棒受力平衡,则有:0m mPBI L v -= 2mm BLv I R=代入数据解得:25m/s m v =(2)解除棒PQ 后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,则有:2m mv mv '=设从PQ 棒解除锁定,到两棒达到相同速度,这个过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:2211222m Q mv mv '=-⨯ 代入数据解得:Q =5J ;(3)棒以MN 为研究对象,设某时刻棒中电流为i ,在极短时间△t 内,由动量定理得:-BiL △t =m △v对式子两边求和有:()()m BiL t m v ∑-∆=∑∆ 而△q =i △t对式子两边求和,有:()q i t ∑∆=∑∆ 联立各式解得:BLq =mv m , 又对于电路有:2E q It t R==由法拉第电磁感应定律得:BLxE t= 又2BLxq R=代入数据解得:405m x =3.在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm 2.螺线管导线电阻r=1.0Ω,R 1=3.0Ω,R 2=4.0Ω,C=30μF .在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势; (2)S 断开后,求流经R 2的电量. 【答案】(1)0.8V ;(2)41.210C -⨯ 【解析】 【分析】 【详解】(1)感应电动势:10.210000.00200.82B E n n S V t t ∆Φ∆-===⨯⨯=∆∆; (2)电路电流120.80.1134E I A r R R ===++++,电阻2R 两端电压220.140.4U IR V ==⨯=,电容器所带电荷量65230104 1.210Q CU C --==⨯⨯=⨯,S 断开后,流经2R 的电量为41.210C -⨯;【点睛】本题是电磁感应与电路的综合,知道产生感应电动势的那部分相当于电源,运用闭合电路欧姆定律进行求解.4.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(1)棒进入磁场前,回路中的电动势E 大小;(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.【答案】(1)0.04 V ; (2)0.04 N , I =22Bv tR;【解析】 【分析】 【详解】⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E ==0.04V⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最大e m =BLv =0.2V >E =0.04V根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m ==0.2A根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m =i m LB =0.04N 在棒通过三角形abd 区域时,切割有效长度l =2v (t -1)(其中,1s≤t≤+1s ) 综合上述分析可知,回路中的感应电流为:i ==(其中,1s≤t≤+1s )即:i =t -1(其中,1s≤t≤1.2s ) 【点睛】注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t 图象的含义.5.如图所示,竖直固定的足够长的光滑金属导轨MN 、PQ ,间距L =0.2m ,其电阻不计.完全相同的两根金属棒ab 、cd 垂直导轨放置,每棒两端都与导轨始终良好接触.已知两棒质量均为m =0.01kg ,电阻均为R =0.2Ω,棒cd 放置在水平绝缘平台上,整个装置处在垂直于导轨平面向里的匀强磁场中,磁感应强度B =1.0T.棒ab 在竖直向上的恒力F 作用下由静止开始向上运动,当ab 棒运动位移x =0.1m 时达到最大速度,此时cd 棒对绝缘平台的压力恰好为零,重力加速度g 取10m/s 2.求: (1)恒力F 的大小;(2)ab 棒由静止到最大速度通过ab 棒的电荷量q ; (3)ab 棒由静止到达到最大速度过程中回路产生的焦耳热Q .【答案】(1)0.2N(2)0.05C(3)5×10-3J 【解析】 【详解】(1)当棒ab 达到最大速度时,对ab 和cd 的整体:20.2N F mg ==(2) ab 棒由静止到最大速度通过ab 棒的电荷量q It = 22BLx E tI R R== 解得10.20.1C 0.05C 220.2BLx q R ⨯⨯===⨯ (3)棒ab 达到最大速度v m 时,对棒cd 有 BIL=mg由闭合电路欧姆定律知2EI R=棒ab 切割磁感线产生的感应电动势E=BLv m代入数据解得v m =1m/sab 棒由静止到最大速度过程中,由能量守恒定律得()212m F mg x mv Q -+=代入数据解得Q =5×10-3J6.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd ,线框质量为m,电阻为R,边长为L ,有yi 方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L ,左边界与ab 边平行,线框水平向右拉力作用下垂直于边界线穿过磁场区.(1)若线框以速度v 匀速穿过磁场区,求线框在离开磁场时七两点间的电势差; (2)若线框从静止开始以恒定的加速度a 运动,经过h 时间七边开始进入磁场,求cd 边将要进入磁场时刻回路的电功率;(3)若线框速度v 0进入磁场,且拉力的功率恒为P 0,经过时间T ,cd 边进入磁场,此过程中回路产生的电热为Q ,后来ab 边刚穿出磁场时,线框速度也为v 0,求线框穿过磁场所用的时间t. 【答案】(1)(2)(3)【解析】 【分析】 【详解】(1)线框在离开磁场时,cd 边产生的感应电动势 E=BLv 回路中的电流则ab 两点间的电势差 U=IR ab =BLv (2)t 1时刻线框速度 v 1=at 1设cd 边将要进入磁场时刻速度为v 2,则v 22-v 12=2aL 此时回路中电动势 E 2=BLv 2回路的电功率解得(3)设cd 边进入磁场时的速度为v ,线框从cd 边进入到ab 边离开磁场的时间为△t ,则 P 0T=(mv 2−m v 02)+Q P 0△t=m v 02-mv 2 解得线框离开磁场时间还是T ,所以线框穿过磁场总时间t=2T+△t=+T【点睛】本题电磁感应中电路问题,要熟练运用法拉第电磁感应定律切割式E=Blv ,欧姆定律求出电压.要抓住线框运动过程的对称性,分析穿出磁场时线框的速度,运用能量守恒列式求时间.7.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中.一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g .求:此过程中,(1)导体棒刚开始运动时的加速度a (2)导体棒速度的最大值v m (3)导体棒中产生的焦耳热Q (4)流过电阻R 的电量q 【答案】(1)F mg a m μ-= (2)22()()m F mg r R v B d μ-+= (3){2221()()[]2r F mg r R Q FL mgL m r R B d μμ-+⎫=--⎬+⎭(4)BLdq R r =+ 【解析】(1)导体棒刚开始运动时,水平方向只受拉力F 和摩擦力作用,则F-μmg=ma,解得F mga mμ-=(2)杆受到的安培力:F B =BId=22 mB d v R r+,杆匀速运动时速度最大,由平衡条件得:F=F B +f ,即:F=22 mB d v R r++μmg , 解得:()()22m F mg r R v B d μ-+=;(3)开始到达到最大速度的过程中,由能量守恒定律得:FL-μmgL=Q+12mv m 2, 导体棒上产生的热流量:Q R =rR r+Q , 解得:Q R = r R r + [(F-μmg )L-2244()()2m F mg R r B dμ-+]; (4)电荷量:()E BdL BdLq I t t t R r R r tR r ===⨯=+++; 【点睛】当杆做匀速运动时速度最大,应用平衡条件、安培力公式、能量守恒定律即可正确解题.分析清楚杆的运动过程,杆做匀速运动时速度最大;杆克服安培力做功转化为焦耳热,可以从能量角度求焦耳热.8.如图所示,间距为L 、电阻不计的足够长双斜面型平行导轨,左导轨光滑,右导轨粗糙,左、右导轨分别与水平面成α、β角,分别有垂直于导轨斜面向上的磁感应强度为 B1、B2 的匀强磁场,两处的磁场互不影响.质量为 m 、电阻均为 r 的导体棒 ab 、cd 与两平行导轨垂直放置且接触良 好.ab 棒由静止释放,cd 棒始终静止不动.求: (1)ab 棒速度大小为 v 时通过 cd 棒的电流大小和 cd 棒受到的摩擦力大小. (2)ab 棒匀速运动时速度大小及此时 cd 棒消耗的电功率.【答案】(1)12B Lv r ;2122B B L vr -mgsin β(2)222221sin m g r B L α 【解析】 【分析】(1)当导体棒ab 的速度为v 时,其切割磁感线产生的感应电动势大小为:E =B 1Lv① 导体棒ab 、cd 串联,由全电路欧姆定律有:2E I r=② 联立①②式解得流过导体棒cd 的电流大小为:12B LvI r=③ 导体棒cd 所受安培力为:F 2=B 2IL④ 若mgsin β >F 2,则摩擦力大小为:21212sin ?sin 2B B L vf mg F mg rββ=-=-⑤ 若mgsin β ≤F 2,则摩擦力大小为: 21222sin sin 2B B L vf F mg mg rββ=-=-⑥(2)设导体棒ab 匀速运动时速度为v 0,此时导体棒ab 产生的感应电动势为:E 0=B 1Lv 0⑦流过导体棒ab 的电流大小为:002E I r=⑧ 导体棒ab 所受安培力为:F 1=B 1I 0L⑨ 导体棒ab 匀速运动,满足:mgsin α-F 1=0⑩ 联立⑦⑧⑨⑩式解得:02212sin mgr v B L α=此时cd 棒消耗的电功率为:22220221sin m g r P I R B Lα== 【点睛】本题是电磁感应与力学知识的综合应用,在分析中要注意物体运动状态(加速、匀速或平衡),认真分析物体的受力情况,灵活选取物理规律,由平衡条件分析和求解cd 杆的受力情况.9.如图,光滑的平行金属导轨水平放置,导轨间距为L ,左侧接一阻值为R 的电阻,导轨其余部分电阻不计。
初中一年级物理实验静电的观察与实验验证
初中一年级物理实验静电的观察与实验验证静电是物理学中一个十分有趣的现象,特别是对于初中一年级的学生来说,通过观察和实验验证静电现象,可以激发他们对物理的兴趣和好奇心。
本文将介绍一些简单的静电实验,并通过观察和实验验证来进一步认识静电的特性。
实验一:橡皮筋的吸引力材料:- 一根橡皮筋- 一块小纸片步骤:1. 将橡皮筋绕在两个手指上,保持一定的紧度。
2. 将小纸片靠近橡皮筋的两端,观察它们之间的相互作用。
观察结果:当小纸片靠近橡皮筋时,它们会相互吸引并附着在一起。
实验验证:静电现象是橡皮筋和小纸片之间的相互吸引力产生的结果。
当橡皮筋被拉伸时,表面电荷分布不均匀,形成了正负两种电荷。
而小纸片也带有电荷,当两者接近时,它们之间的电荷会相互作用,从而产生了吸引力。
实验二:金属棒的电荷转移材料:- 一根金属棒- 一块小纸片步骤:1. 将金属棒握住一端,并用手触摸另一端。
2. 将金属棒的另一端靠近小纸片,观察它们之间的相互作用。
观察结果:当金属棒靠近小纸片时,小纸片会被金属棒吸引,并跟随着金属棒的移动。
实验验证:通过触摸金属棒,我们将自己的电荷转移到了金属棒上。
由于金属是良导体,电荷在金属棒上得到了平衡分布。
当靠近带有相反电荷的小纸片时,它们之间产生相互吸引的力,从而导致小纸片的移动。
实验三:水龙头的静电现象材料:- 一个开着水的水龙头- 一根金属勺子步骤:1. 将水龙头打开,并让水以细流形式流下。
2. 将金属勺子靠近水流,观察它们之间的相互作用。
观察结果:当金属勺子靠近水流时,水流会被勺子吸引,并产生偏移。
实验验证:水本身是一个良好的导体,并且可以带电。
当水流从水龙头流出时,它与空气中的分子发生摩擦,会导致水流带有些许电荷。
当金属勺子靠近带电的水流时,它们之间会产生相互作用,从而使水流发生偏移。
通过以上实验,我们能够初步观察和实验验证静电现象的产生和特性。
这些简单而有趣的实验不仅可以培养学生的实践操作能力,更可以激发他们对物理的兴趣和好奇心。
静电场易错题精选
静电场易错题经典题型1. 带电体能否看成点电荷易错题1.下列关于点电荷的说法中,正确的是( )A. 只有体积很小的带电体才能看成点电荷B. 体积很大的带电体一定不能看成点电荷C. 由公式122k q q F r 可知,r →0时,F 无穷大D. 当两个带电体的大小远小于它们间的距离时,可将这两个带电体看成点电荷2. 对电场强度与电势的关系认识不清易错题2.下列说法中,正确的是( )A . 电场强度为零的地方,电势一定为零B . 电势为零的地方电场强度不一定为零C . 电场强度相同的地方,电势一定相等D . 电势相等的地方电场强度一定相等3.对电场强度与电势差的关系认识不清易错题3.关于匀强电场强度和电势差的关系,下列说法正确的是( )A . 在相同距离上的两点,电势差大的其场强也必定大B . 场强在数值上等于每单位距离上的电势的降落C . 沿电场线的方向,任何相等距离上的电势降落必定相等D . 电势降低最快的方向必定是电场强度的方向4.对电场强度与等势面间的关系认识不清易错题4.下列说法中,正确的是( )A . 在同一等势面上各点的电场强度必定相等B . 两等势面一定相互平行C . 若相邻两等势面间的电势差相等,则等势面密的地方电场强度大D . 沿电场强度的方向等势面的电势逐渐降低5.对电荷的运动方向与电场线的关系认识不清易错题5.带正电的小球只在电场力的作用下,则在任意一段时间内( )A . 一定沿电场线由高电势向低电势运动B . 一定沿电场线向电势能减小的方向运动C . 不一定沿电场线运动,但一定向低电势方向运动D . 不一定沿电场线运动,也不一定向电势能减小的方向运动6.对电荷运动轨迹与电场线的关系认识不清易错题6.下列关于带电粒子在电场中的运动轨迹与电场线关系的说法中,正确的是()A . 带电粒子在电场中的运动轨迹一定与电场线重合B . 带电粒子只在电场力的作用下,由静止开始运动,其运动轨迹一定与电场线重合C . 带电粒子在电场中的运动轨迹可能与电场线重合D . 电场线上某点的切线方向与该处电荷的受力方向相同7.对电荷的电量、电性与电势能的关系认识不清易错题7.下列说法中,正确的是( )A . 在电场中的某一点,放入电荷的电量越大,电荷在该点的电势能越大B . 对某一电荷而言,放入点的电势越高,该电荷的电势能越大C . 正电荷在电势越高的点上电势能越大,负电荷在电势越低的地方电势能越大D . 电势能是标量,电荷的电势能与零电势的选择有关8.对电势、电势差、电势能和零电势的关系认识不清易错题8.下列说法中,正确的是( )A . 电场中每点电势的大小与零电势的选择有关B . 电场中任意两点间电势差的大小和零电势的选择有关C . 电荷在电场中某点电势能的大小和零电势的选择有关D . 电荷在电场中某两点移动,电场力做功的多少和零电势的选择有关9.对电势差与电场力做功间的关系认识不清易错题9.关于电场力做功与电势差的关系,下列说法正确的是( )A .M 、N 两点间的电势差等于单位电荷从M 点移到N 点电场力做的功B .不管是否存在其他力做功,电场力对电荷做多少正功,电荷的电势能就减小多少C .在两点移动电荷电场力做功为零,则两点一定在同一等势面上,且电荷一定在等势面上移动D .在两点间移动电荷电场力做功的多少与零电势的选择有关10.误认为AB B A U ϕϕ=-易错题10.将电量为6610C -⨯的负电荷从电场中的A 点移动到B 点,克服电场力做的功为5310J -⨯,再将电荷从B 点移到C 点,电场力做的功为51.210J -⨯,则A 、C 两点间的电势差为_________V ,电荷从A 点移到B 点,在从B 点移到C 点的过程中,电势能变化了_________。
高中物理电磁感应现象易错题专项复习含答案解析
高中物理电磁感应现象易错题专项复习含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。
高中物理电磁感应现象易错题知识归纳总结及答案解析
高中物理电磁感应现象易错题知识归纳总结及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2mgRsin B L vθ(2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 U E BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图1所示,在光滑的水平面上,有一质量m =1kg 、足够长的U 型金属导轨abcd ,间距L =1m 。
高考物理复习法拉第电磁感应定律专项易错题及详细答案
一、法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。
当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。
重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、内阻不计的电源,电源旁接有一特殊开关S ,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L 2的矩形匀强磁场区域,磁感应强度大小均为B ,方向如图。
一质量为m 的金属棒从ab 位置由静止开始下落,到达cd 位置前已经开始做匀速运动,棒通过cdfe 区域的过程中始终做匀速运动。
已知定值电阻和金属棒的阻值均为R ,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g ,求:(1)金属棒匀速运动的速度大小; (2)金属棒与金属导轨间的动摩擦因数μ;(3)金属棒经过efgh 区域时定值电阻R 上产生的焦耳热。
【答案】(1) ;(2);(3)mgL 2。
【解析】 【分析】(1)金属棒到达cd 位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解; (3)根据功能关系结合焦耳定律求解。
观察静电感应现象实验报告
观察静电感应现象实验报告一、引言静电是指物体带有的正负电荷之间的电荷差异。
静电感应是指当一个带电物体靠近一个中性物体时,中性物体的某些部分会受到带电物体的电场影响,而产生电荷分离的现象。
本实验旨在观察静电感应现象,并探究其原理。
二、实验材料和方法1. 实验材料:塑料杯、细铜丝、塑料棒、小纸片、羽毛等。
2. 实验方法:(1) 将塑料杯放在桌子上,使其保持稳定。
(2) 在塑料杯内部的侧面固定一根细铜丝,使其自由悬垂。
(3) 用塑料棒摩擦后,将其靠近铜丝,观察铜丝的变化。
(4) 将小纸片或羽毛靠近塑料杯,观察其变化。
三、实验结果和分析1. 实验结果:(1) 当塑料棒靠近铜丝时,铜丝会受到塑料棒的电场影响,发生电荷分离现象。
其中,与塑料棒靠近的一端的铜丝带有与塑料棒相反的电荷,而另一端的铜丝则带有与塑料棒相同的电荷。
(2) 当小纸片或羽毛靠近塑料杯时,它们也会受到塑料杯电场的影响,发生电荷分离现象。
其中,与塑料杯靠近的一端的纸片或羽毛带有与塑料杯相反的电荷,而另一端则带有与塑料杯相同的电荷。
2. 实验分析:(1) 静电感应是由于带电物体的电场对中性物体的影响而产生的。
当带电物体靠近中性物体时,电场会影响中性物体内部的电荷分布,使其发生电荷分离现象。
(2) 塑料棒在摩擦时会失去一部分电子,成为正电荷,而铜丝则会吸引这些正电荷,使铜丝带有负电荷。
这是因为塑料材料对电子的亲和力较强,容易失去电子而带正电荷,而金属材料对电子的亲和力较弱,容易吸引电子而带负电荷。
(3) 同样的原理,小纸片或羽毛也会受到塑料杯电场的影响,发生电荷分离现象。
由于纸片或羽毛的导电性较差,电荷分离的效果相对较弱。
四、实验结论通过本实验观察静电感应现象,我们可以得出以下结论:1. 当一个带电物体靠近一个中性物体时,中性物体的某些部分会受到带电物体的电场影响,而产生电荷分离的现象。
2. 带电物体靠近中性物体时,中性物体的一端会带有与带电物体相反的电荷,而另一端则带有与带电物体相同的电荷。
静电感应实验
静电感应实验静电感应实验是物理学中的基础实验之一,主要用于研究电荷之间的相互作用以及静电力的产生和感应。
在这个实验中,我们可以观察到电荷之间的相互作用导致的现象,以及通过移动电荷或改变电场来感应电荷。
实验定律:1. 库仑定律:描述了带电体之间静电斥力或吸引力的大小与它们电荷量的关系。
库仑定律可以表达为F = k * (|q1 * q2| / r^2),其中F是静电力,k是库仑常数,q1和q2是两个电荷体的电荷量,r是它们之间的距离。
实验准备:1. 实验器材:实验中可能需要的器材包括:带有調节开关的静电脚垫、金属导线、电荷产生器、金属小球等。
2. 实验环境:实验室应尽量保持干燥,避免空气中的水分影响实验结果。
实验过程:1. 准备工作:将实验室环境调整至适当的湿度,并清洁好实验器材。
2. 产生电荷:使用电荷产生器产生静电荷。
可以通过摩擦、感应等方式将电荷转移到导体上。
例如,可以通过摩擦将塑料棒与丝绸反复摩擦,然后将塑料棒带电。
3. 建立实验平台:将带有调节开关的静电脚垫放在平稳的桌面上,并连接脚垫与地线,以确保实验的安全。
4. 实验一:静电吸附a. 将带电的塑料棒靠近金属小球,观察小球是否被吸引住。
如果是,则说明靠近的一侧(通常是金属小球)带有相反的电荷。
b. 将带电的塑料棒靠近金属小球的另一侧,观察小球是否被吸引住。
如果是,则说明靠近的这一侧也带有相反的电荷。
c. 反复实验,尝试不同的电荷产生方式和实验器材,观察现象,并记录结果。
实验应用:1. 静电粉尘除尘:利用静电感应特性,可以开发出静电除尘器,用于清除工业生产中产生的粉尘和污染物。
2. 静电喷涂:另一种应用是静电喷涂技术,通过在涂料粒子表面带上适当的电荷,使其在喷涂过程中更均匀地附着在目标物体表面上。
3. 静电粉末冷焊:静电感应还可以用于粉末封装线路板和电子元件的焊接,实现高精度和高可靠性的连线。
其他专业性角度:1. 延伸实验:可以通过将不同材料带电体放置在导体上,并观察导体上的分布情况,以探究静电感应的影响因素。
静电实验了解静电的产生和静电现象
静电实验了解静电的产生和静电现象静电是我们日常生活中常见的现象之一。
它是由于物体带有不平衡的正电荷或负电荷而导致的。
通过静电实验,我们可以更好地了解静电的产生以及静电现象。
本文将介绍一些常见的静电实验,并解释静电的原理和现象。
一、静电实验:摩擦产生静电首先,我们可以进行一个简单的静电实验,通过摩擦产生静电。
这个实验需要准备一个橡皮棒和一块小片纸。
1. 取一个橡皮棒,用一块布擦拭橡皮棒,使其充分带电。
2. 将橡皮棒靠近小片纸,观察纸片的反应。
在靠近纸片时,我们可以看到纸片会被吸引到橡皮棒上。
这是因为橡皮棒经过擦拭后带有负电荷,而小片纸带有正电荷,因此它们之间会存在吸引力。
二、静电实验:电荷的转移接下来,我们可以进行一个关于电荷转移的静电实验。
这个实验需要准备一块塑料杯、一只金属勺子和一根丝线。
1. 首先,将塑料杯带电,可以通过擦拭或者摩擦的方式。
2. 将带电的塑料杯靠近金属勺子,观察勺子的反应。
在靠近勺子时,我们可以看到勺子会被带电的塑料杯吸引。
这是因为电荷在物体之间可以转移,带电的塑料杯靠近金属勺子时,电荷会转移到勺子上,使得勺子被带电并被吸引。
三、静电现象:静电的阻碍静电不仅可以产生吸引力,还可以产生一些阻碍。
下面我们将介绍一个展示静电阻碍现象的实验。
1. 准备一个空的塑料瓶和一些薄铁丝。
2. 将薄铁丝放入塑料瓶中,并将瓶口摩擦至带电状态。
3. 尝试将另一根薄铁丝靠近带电瓶口,观察现象。
我们会发现,当另一根薄铁丝靠近带电瓶口时,它会受到排斥,并无法靠近。
这是因为带电瓶口上的电荷会排斥其他带有相同电荷的物体,产生一种阻碍的效果。
通过以上的静电实验,我们可以更加深入地了解静电的产生和静电现象。
静电是由于电荷不平衡引起的,对于我们的日常生活具有一定的影响。
它不仅在实验中展现出吸引力、排斥力等现象,还可以导致静电电击等问题。
因此,我们在生活和工作中应该更加注意静电的产生和安全使用电器等设备。
总结:静电是由于物体带有不平衡的正电荷或负电荷而产生的现象。
静电实验原理
静电实验原理
1. 静电感应实验
用带电物体靠近一个导体,导体内部的电荷会重新分布,即发生静电感应现象。
通过这个实验可以验证静电感应定理。
2. 静电斥力实验
用两个同种带电物体(正正或负负相斥)靠近,会相互排斥,从而证实同种电荷之间存在斥力。
3. 静电引力实验
用正负不同种类的带电物体靠近,会相互吸引,从而证实异种电荷之间存在引力。
4. 静电放电实验
在两个不同电位的物体之间形成电火花或电晕放电,说明它们之间存在高电位差。
5. 静电屏蔽实验
用导体罩将带电体包裹起来,内部物体将被屏蔽不受静电场影响,验证了静电屏蔽效应。
6. 静电计实验
利用静电场改变金属箔或悬丝的形状或位置,通过观测变化来测量电荷大小和电场强度。
通过这些基本静电实验,可以直观地观察和体会静电场的存在,验证相关定理和公式,加深对静电学基本概念的理解。
一道易错题引发的实验法
带 负电 .
解此题 后 , 笔者 脑海 闪 出一 个 问题 , 导体 一端 接 地及 分离 时 电荷 在 导体 上究 竟 如 何 分 布 ? 过 理 论 通
图 3
/ 。 。 … 。 … ’ ‘ ‘ ‘ … ‘: … ’‘ … ’ 。 ’ 一 ’。 。… ‘ ‘
…~… 一 、 : 一 ‘ 。 … 一… 一: ’ …一 ……一’ = …。一
科 学 家 成 功 制 成 “ 电池 ”成 本 低 寿命 长 纸 ;
方法 : 摇动起 电机 , 使起 电机 一极 与 C接触 . 用 毛皮摩 擦过 的橡胶 棒 与验 电器 的 小 球 接触 , 它 带 使 上负电. 使球 形导 体接 触验 电器 , 发现 验 电器金 属铂 片张 开的角 度变 大 , 明球 形导 体带 的是 负 电荷 . 说
此实 验宏 观地 展现 了微 观 世界 ; 明确 了枕 形 导
分析 后 , 为验 证分 析 , 计 了 以下 实验 , 在 教 学 时 设 并
进行 了演示 . 2 实 验 验 证 2 1 实 验 器 材 .
仍 张开 , 端 箔 片仍 合拢 ; 去 C, 移 A端箔 片仍 张开 , 端 箔片仍 合 拢 . 验 电器检 验 带 的是 正 电 . 用 当用
匕.
3 小 结
J30感应 起 电机 1台 , 有金 属箔 片 的绝缘 导 21 带 体 A与 B 对 , 缘 球形导 体 c 个 , 电器 1 , 胶 1 绝 1 验 个 橡
棒 1 , 皮 1 . 个 毛 片
2 2 实 验 过 程 .
看不见的静电静电实验
看不见的静电静电实验静电是一种常见的自然现象,它是由于物体表面带电而产生的。
虽然我们无法直接观察到静电的存在,但通过一系列的静电实验,我们可以清晰地了解和验证静电的特性和行为。
本文将介绍一些简单的静电实验,帮助我们更好地理解看不见的静电。
实验一:电荷转移材料:塑料梳子或橡皮棒、小片纸、铁匠店镊子步骤:1. 通过摩擦,将塑料梳子或橡皮棒带电。
用塑料梳子梳头或橡皮棒擦身体的方式都可以产生带电效果。
2. 轻轻将带电的梳子或橡皮棒靠近小片纸,观察小片纸的反应。
3. 手持铁匠店镊子,将带电的梳子或橡皮棒靠近镊子的一侧,观察镊子的反应。
观察结果:1. 带电的梳子或橡皮棒靠近小片纸时,小片纸会被吸引并跟随梳子或橡皮棒的运动。
2. 当带电的梳子或橡皮棒靠近铁匠店镊子时,镊子发生了明显的吸引力,甚至可以看到镊子弯曲的程度增加。
实验原理:当我们通过摩擦方式使塑料梳子或橡皮棒带电时,梳子或橡皮棒表面的电子被转移到了它们之间的介质上。
当带电物体靠近小片纸时,物体表面的电荷会感应出小片纸上的相应电荷,导致它们之间的吸引力。
类似地,当带电物体靠近铁匠店镊子时,带电物体的电荷会感应出镊子上的相应电荷,导致它们之间的静电吸引。
实验二:静电中和材料:橡皮球、羊毛布、金属钥匙步骤:1. 用羊毛布摩擦橡皮球,使它带电。
2. 将带电的橡皮球靠近金属钥匙。
观察结果:当带电的橡皮球靠近金属钥匙时,我们会观察到橡皮球上的电荷逐渐转移到了金属钥匙上,橡皮球不再带电。
实验原理:带电橡皮球靠近金属钥匙时,金属钥匙上的自由电子会受到橡皮球电荷的影响而重新排列。
自由电子会从橡皮球转移到金属钥匙上,使得钥匙上出现与橡皮球上电荷相反的电荷。
由于电荷之间存在静电吸引力,橡皮球的电荷会逐渐转移到金属钥匙上,最终导致橡皮球不再带电。
实验三:静电排斥材料:两个塑料杯、丝线、小塑料球步骤:1. 使用丝线吊起两个塑料杯,使它们在空中平衡。
2. 将小塑料球带电,可以通过搓塑料球的方式使其带电。
精选静电感应现象的应用练习题(有答案)
静电感应专题复习1、如图1所示,面积足够大的、板间距离为d的两平行金属板竖直放置,与直流电压为U的电源连接,板间放一半径为R(2R<d)的绝缘金属球壳,C、D是球壳水平直径上的两点,则以下说法正确的是RUA.由于静电感应,球壳上C、D 两点电势差为dB.由于静电感应,球壳中心O 点场强为零C.用手摸一下球壳,再拿去平行金属板,球壳带正电D.用手摸一下球壳,再拿去平行金属板,球壳带负电答案.BD图12.如图所示为一空腔球形导体(不带电),现将一个带正电荷的小金属球A放入空腔中,当静电平衡时,图中a、b、c三点的场强E和电势φ的关系是().A.E a>E b>E c,φa>φb>φc B.E a=E b>E c,φa=φb>φC.E a=E b=E c,φa=φb=φc D.E a>E c>E b,φa>φb>φc解析空腔球形导体在正电荷A的电场中感应的结果如右图所示,从电场线的疏密可确定a点场强大于c点场强,而b点场强为零,故E a>E c>E b,而沿着电场线电势降低,故φa>φb>φc,D选项正确.答案 D3、如图8-5所示,把一个不带电的枕型导体靠近带正电的小球,由于静电感应,在a,b端分别出现负、正电荷,则以下说法正确的是:A.闭合K1,有电子从枕型导体流向地 B.闭合K2,有电子从枕型导体流向地C.闭合K1,有电子从地流向枕型导体 D.闭合K2,没有电子通过K2【解答】在K1,K2都闭合前,对于枕型导体它的电荷是守恒的,a,b出现的负、正电荷等量。
当闭合K1,K2中的任何一个以后,便把导体与大地连通,使大地也参与了电荷转移。
因此,导体本身的电荷不再守恒,而是导体与大地构成的系统中电荷守恒。
由于静电感应,a端仍为负电荷,大地远处感应出等量正电荷,因此无论闭K1还是K2,都是有电子从地流向导体,应选答案C。
4、把一个带正电的小球A,放入带绝缘支架不带电的空心球壳B内,但不与B的内壁接触,如图所示,达到静电平衡后,下列说法正确的是()A.球壳B内空腔处的场强为零B.球壳外部空间的场强为零C.球壳B的内表面上无感应电荷D.若将球壳B接地则带负电【解析】空腔内有带电小球A,由于静电感应,在空腔的内表面感应出负电荷,外表面感应出等量的正电荷,所以在空腔B的内、外空间电场强度均不为零.球壳接地后离带电体A较远的球壳外表面的电荷入地(实质是大地上的电子通过接地线跟球壳外表面的正电荷中和),使空腔B只带负电.空腔B接地后,空腔外的电场强度为零,即球壳内的电场被接地的金属球壳罩住,对壳外不产生影响,这种现象也是静电屏蔽.接地的空腔导体或金属网罩可以使其外部不受内部带电体电场的影响.正确选项为D.5、如图所示,带电体Q靠近一个接地空腔导体,空腔里面无电荷.在静电平衡后,下列物理量中等于零的是().A.导体空腔内任意点的场强B.导体空腔内任意点的电势C.导体外表面的电荷量D.导体空腔内表面的电荷量解析静电平衡状态下的导体内部场强处处为零,且内表面不带电,故选项A、D正确.由于导体接地,故整个导体的电势为零,选项B正确.导体外表面受带电体Q的影响,所带电荷量不为零,故选项C不正确.答案ABD 6.如图所示,P是一个带电体,N是一个不带电的金属空腔,在下列情况中,放在绝缘板上的小纸屑(图中S)不会被吸引的是().解析 小纸屑是绝缘体,当处于电场中时,虽不会像导体一样出现电荷的定向移动,但内部的极性分子也会在电场力的作用下转动,使异种电荷一端更靠近施感电荷,因而也会受到施感电荷的吸引力.A 中由于静电屏蔽,P 的电场影响不到导体N 的内部,即N 内部无电场,所以S 不会被吸引,A 正确.B 中N 没有接地,P 的电场会影响到N 外部,即S 处有电场,S 会被吸引.C 中P 和S 都处于导体N 的外部,S 处有电场,会被吸引.D 中N 被接地,内部电场不影响导体外部,即S 处无电场,不会被吸引,D 正确.答案 AD7、如图5所示,一个带正电的粒子先后分别沿1、2、3、4条不同路径到达同一带负电的导体上(导体与地绝缘),电场力对该带电粒子做功分别为W 1、W 2、W 3和W 4,则它们间的关系正确的是( D )A. W 1>W 2>W 3>W 4B. W 1>W 2=W 3>W 4C. W 1<W 2=W 3<W 4D. W 1=W 2=W 3=W 48.如图所示,金属圆筒左侧接在电源的正极上,电源的负极接在金属板B 上(B 板接地),AB 间为匀强电场。
高考物理最新电磁学知识点之传感器易错题汇编及答案解析(3)
高考物理最新电磁学知识点之传感器易错题汇编及答案解析(3)一、选择题1.为了儿童安全,布绒玩具必须检测其中是否存在金属断针,可以先将玩具放置强磁场中,若其中有断针,则断针被磁化,用磁报警装置可以检测到断针的存在,如图所示是磁报警装置中的一部分电路示意图,其中R B是磁敏传感器,它的电阻随断针的出现而减小,a、b接报警器,当传感器R B所在处出现断针时,电流表的电流I、ab两端的电压U将()A.I变大,U变小B.I变小,U变小C.I变大,U变大D.I变小,U变大2.科学家研究发现,磁敏电阻(GMR)的阻值随所处空间磁场的增强而增大,随所处空间磁场的减弱而变小,如图所示电路中GMR为一个磁敏电阻,R和为滑动变阻器,和为定值电阻,当开关和闭合时,电容器中一带电微粒恰好处于静止状态.则A.只调节电阻,当向下端移动时,电阻消耗的电功率不变B.只调节电阻,当向下端移动时,带电微粒向下运动C.只调节电阻R,当向右端移动时,电阻消耗的电功率变小D.只调节电阻R,当向右端移动时,带电微粒向下运动3.图甲是在温度为10℃左右的环境中工作的某自动恒温箱原理简图,箱内的电阻R1="20" kΩ,R2 ="10" kΩ,R3="40" kΩ,R t为热敏电阻,它的电阻随温度变化的图线如图乙所示.当a、b 端电压U ab ≤ 0时,电压鉴别器会令开关S接通,恒温箱内的电热丝发热,使箱内温度升高;当a、b端电压U ab>0时,电压鉴别器会令开关S断开,停止加热,则恒温箱内的温度可保持在()A.10℃B.20℃C.35℃D.45℃4.近年来,酒驾几乎成为一种“社会公害”, 2011年我国首次将醉酒驾车规定为犯罪,并于5月1日正式实施。
交警用来检测酒驾的酒精测试仪的工作原理如图所示,其中是半导体型酒精气体传感器,该传感器的电阻的倒数与酒精气体的浓度成正比,为定值电阻。
高中物理法拉第电磁感应定律易错题知识点及练习题及答案解析
高中物理法拉第电磁感应定律易错题知识点及练习题及答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m3.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m 的金属棒ab 垂直于MN 、PQ 放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
法拉第电磁感应定律易错题知识点及练习题含答案解析
法拉第电磁感应定律易错题知识点及练习题含答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。
线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l vQ R=(3)43cd Blv U =【解析】 【详解】(1)线框离开磁场的过程中,则有:2E B lv = E I R =q It =l t v=联立可得:22Bl q R=(2)线框中的产生的热量:2Q I Rt=解得:234B l vQ R=(3) cd 间的电压为:23cd U IR = 解得:43cd BlvU =2.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α=︒,两侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高(2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q【答案】(1) 1V ;a 端电势高;(2) 0.1kg ;0.5J 【解析】 【详解】解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;ab 杆加速度为:a gsin α=2s t =时刻速度为:10m/s v at ==ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1E I R ===⨯ 对cd 杆有:30mgsin BIL ︒= 解得cd 杆的质量:0.1kg m = 则知ab 杆的质量为0.1kg放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热根据能量守恒定律则有:300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=3.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀速向上运动;当金属杆受到平行于斜面向下大小为2F的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:(1)金属杆的质量;(2)金属杆在磁场中匀速向上运动时速度的大小。
高考物理最新电磁学知识点之静电场易错题汇编及答案(1)
高考物理最新电磁学知识点之静电场易错题汇编及答案(1)一、选择题1.如图所示的实验装置中,平行板电容器的极板A与一灵敏静电计相连,极板B接地.若极板B稍向上移动一点,由观察到的静电计指针变化作出平行板电容器电容变小的结论的依据是()A.两极板间的电压不变,极板上的电荷量变大B.两极板间的电压不变,极板上的电荷量变小C.极板上的电荷量几乎不变,两极板间电压变小D.极板上的电荷量几乎不变,两极板间电压变大2.真空中静电场的电势φ在x正半轴随x的变化关系如图所示,x1、x2、x3为x轴上的三个点,下列判断正确的是()A.将一负电荷从x1移到x2,电场力不做功B.该电场可能是匀强电场C.负电荷在x1处的电势能小于在x2处的电势能D.x3处的电场强度方向沿x轴正方向3.如图所示,足够长的两平行金属板正对竖直放置,它们通过导线与电源E、定值电阻R、开关S相连。
闭合开关后,一个带电的液滴从两板上端的中点处无初速度释放,最终液滴落在某一金属板上。
下列说法中正确的是()A.液滴在两板间运动的轨迹是一条抛物线B.电源电动势越大,液滴在板间运动的加速度越大C.电源电动势越大,液滴在板间运动的时间越长D.定值电阻的阻值越大,液滴在板间运动的时间越长4.如图所示,某电场中的一条电场线,一电子从a点由静止释放,它将沿电场线向b点运动,下列有关该电场的判断正确的是()A.该电场一定是匀强电场B.场强E a一定小于E bC.电子具有的电势能E p a一定大于E p bD.电势φa>φb5.如图所示,三条平行等间距的虚线表示电场中的三个等势面,电势分别为10V、20V、30V,实线是一带电粒子(不计重力)在该区域内的运动轨迹,a、b、c是轨迹上的三个点,下列说法正确的是()A.粒子在三点所受的电场力不相等B.粒子必先过a,再到b,然后到cC.粒子在三点所具有的动能大小关系为E kb>E ka>E kcD.粒子在三点的电势能大小关系为E pc<E pa<E pb6.如图所示,在空间坐标系Oxyz中有A、B、M、N点,且AO=BO=MO=NO;在A、B两点分别固定等量同种点电荷+Q1与+Q2,若规定无穷远处电势为零,则下列说法正确的是()A .O 点的电势为零B .M 点与N 点的电场强度相同C .M 点与N 点的电势相同D .试探电荷+q 从N 点移到无穷远处,其电势能增加7.空间存在平行于纸面方向的匀强电场,纸面内ABC 三点形成一个边长为1cm 的等边三角形。
高考物理电磁感应现象易错题培优题附答案解析
高考物理电磁感应现象易错题培优题附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。
垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。
现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量【答案】(1)3245ab U BL gL =;(2)32244532m g R Q mgL B L =-【解析】 【详解】(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得214sin 30(4)2mgL mgL m m v =++,25v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332445ab U E BL gL == (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22mB L v mg R=,从ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知2143sin 3(4)2m mg L mgL m m v Q θ=+++,32244532m g R Q mgL B L=-2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求:(1)线圈进入磁场时的速度 v 。
(2)线圈中的电流大小。
高中物理电磁感应现象易错题知识点及练习题含答案解析
高中物理电磁感应现象易错题知识点及练习题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯=解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L=-3.如图甲所示,两根足够长的光滑平行直导轨固定在水平面上,导轨左侧连接一电容器,一金属棒垂直放在导轨上,且与导轨接触良好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一道易错题引发的实验
一、对一道习题的思考
当教学进行到物理选修3-1·1.1节时,遇到这样一道易错题:当带正电导体A靠近一个绝缘导体B时,由于静电感应,B两端感应出等量异种电荷。
将B左端接地,绝缘导体B 带何种电荷?错解:多数学生认为,由于静电感应导体B左端带负电,右端带正电。
左端接地电荷被导走,导体B带正电。
正解:接地后B相当于近端,大地为远端,所以B带负电。
解答完此题后脑海闪出一个问题,导体一端接地及分离时电荷在导体上究竟是如何分布的?通过理论分析后,为验证分析制定了以下实验过程,并在教学时进行了演示。
二、实验验证
(一)实验器材
J2310感应起电机(一个)、带有金属箔片的绝缘导体A与B(一对)、绝缘球形导体C(一个)、验电器(一个)、橡胶棒(一个)、毛皮(一片)。
(二)实验过程
1.使绝缘球形导体C带负电。
方法:摇动起电机,使起电机一极与C接触。
用毛皮摩擦过的橡胶棒与验电器的小球接触,使它带上负电。
使球形导体接触验电器,发现验电器金属铂片张开的角度变大,说明球形导体带的是负电荷。
?
2.探究当导体一端接地时,电荷在导体的分布情况。
(1)使B端接地,观察现象。
过程:当绝缘导体A与B靠在一起,放在带负电的绝缘导体C旁边,发现AB两端箔片都张开。
用手摸一下B端,发现B端
C A B
箔片合拢,A端箔片仍张开,如图1。
移开手指,发现AB两端箔片没有变化。
移去C发现A端箔片张角减小,B端箔片张开。
分开AB,发现AB两端箔片仍张开。
用验电器检验枕形导体AB两端带的都是正电。
当用手摸A端时,以上观察结果没有变化。
分析:用手摸一下导体B端,人便把导体与大地连通,使大地参与了电荷转移。
因此,导体本身的电荷不再守恒,而是导体与大地构成的系统中电荷守恒。
由于静电感应,A端仍为正电荷,大地远处感应出等量负电荷,则B端的负电荷通过人体流走,B端不带电,即此时电荷只分布在A端。
移开手指,大地与导体分离,由于异种电荷相互吸引,正电荷仍分布在A端。
移去C后,A端电荷在AB上重新分配,使得AB都带上正电荷。
当用手摸A端时,分析相同。
图解:如图2。
(2)用手摸一下A端,移去手指,分开AB,发现A端箔片仍张开,B端箔片仍合拢,移去C,A端箔片仍张开,B端箔片仍合拢。
用验电器检验A带的是正电。
当用手摸B端时,以上观察结果没有变化。
分析:用手摸一下导体A端时,由于静电感应,A端仍为正电荷,大地远处感应出等量负电荷,则B端的负电荷经A端通过人体流走,B端不带电,所以B端箔片合拢。
先分开AB,后移去C,则A端电荷不能重新分配给B,所以A带正电,B不带电。
图解:如图3。
(3)使C带上正电荷重复以上实验过程,现象同上。
分析:C带正电荷,由于静电感应则A端感应出负电荷,大地远端感应出正电荷,负电荷会通过手指流入B端中和其上正电荷,使得B端不带电。
三、小结
通过此实验把微观世界宏观展现。
明确了枕形导体静电感应时,当导体一端接地,导体带上异种电荷,但电荷只分布在靠近带电体的一端。
移去带电体后,电荷才重新分布在整个导体上。
如果接地后分开枕形导体,则使得电荷只分布在靠近带电体的一端。
同时使学生对静电感应及电荷守恒定律有了更进一步认识,处理此类习题时,能够快速的选择出正确答案,为讲解习题找到一种新的方法──实验法。