初中数学200道易错题集锦附答案
初中数学经典易错题集锦及答案
亲爱的同学们:我们又见面了,一份耕耘,一份收获,上苍从来不会忘记努力学习的人!尽量去考,因为天道酬勤班别: 姓名: 座号: 分数:(试卷可以编辑)数学错题集一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是 -----------------------------( ) A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是--------------------(A 、2aB 、2bC 、2a-2bD 、2a+b 3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度-----------------( ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有---------------------------------------------------------( ) A 、1个 B 、3个 C 、4个 D 、无数个5、下列说法错误的是-------------------------------------------------------------------( ) A. 两点确定一条直线 B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6.函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是---------------------------------- ( ) A.当m ≠3时,有一个交点 B 、1±≠m 时,有两个交C 、当1±=m 时,有一个交点D 、不论m 为何值,均无交点 7.如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是---------( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是---------( )A B C D9、有理数中,绝对值最小的数是---------------------------------------------------------( ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是--------------------------------------------------------------- ( )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是------------------------------------------------------------- ( ) A 、正数 B 、非负数 C 、负数 D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为------------------- ( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为------------------------------------ ( )A 、2xB 、2(x-2)C 、x-4D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为------------- ----------------------------------- ( ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+315、如果0<a<1,那么下列说法正确的是------------------------------------------------- ( ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是----------------------------------------------------------------------------------- ( ) A 、-1 B 、0 C 、1 D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为---------- ( )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是-------------------------------------------------------------------- ( ) A 、21+ B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是-------------------------------------------------------------- ( ) A 、x 1=1, x 2=2 B 、x 1=0, x 2=1, x 3=2 C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++x x x x 时,若设y xx =+1,则原方程可化为--------------- ( )A 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=021、方程x 2+1=2|x|有----------------------------------------------------------------------- ( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为----------------------------------------------------- ( ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是----------------------------------------------- ( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是------------------------------------------- ( ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是-------------------------------------------------------------------- ( ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是------------------------------------------- ( )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是---------------------------------------- ( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是----------------------------------------- ( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形 30、已知dcb a =,下列各式中不成立的是------------------------------------------------------- ( ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于--------------------------------------- ( )A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是--------------------------------- ( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有----------------------------------------------------- ( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、平行四边形的一边长为5cm ,则它的两条对角线长可以是----------------------------------- ( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 35、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是------------ (A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定36、顺次连结四边形各边中点得到一个菱形,则原四边形必是------------------(A 、矩形B 、梯形C 、两条对角线互相垂直的四边形D 、两条对角线相等的四边形 37、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是----------------------------------------- ( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 38、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为 A 、300 B 、600 C 、1500 D 、300或150039、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则------------A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有一个等于640、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是------( )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为141、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300 (2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是---------------------------------------------------( )A 、0B 、1C 、2D 、342、不等式6322+>+x x 的解是----------------------------------------------------( )BA 、x>2B 、x>-2C 、x<2D 、x<-243、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是----------------------( ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 44、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是------------------------------( ) A B C D45、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有----------------------------------------( )A 、1个B 、2个C 、3个D 、无数个 46、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是------------------------------------------------------------------------( ) A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 2>y 1>y 3 D 、y 3>y 1>y 247、下列根式是最简二次根式的是-----------------------------------------------------------------( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a48、下列计算哪个是正确的-----------------------------------------------------------------------( ) A 、523=+ B 、5252=+ C 、b a b a +=+22 D 、212221221+=-49、把aa1--(a 不限定为正数)化简,结果为----------------------------------------------------( )A 、aB 、a- C 、-aD 、-a-50、若a+|a|=0,则22)2(a a +-等于------------------------------------------------------------( )A 、2-2aB 、2a-2C 、-2D 、251、已知02112=-+-x x ,则122+-x x 的值------------------------------------------------( ) A 、1 B 、±21 C 、21 D 、-2152、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于------------------------------------------( ) A 、18 B 、6 C 、23 D 、±2353、下列命题中,正确的个数是---------------------------------------------------------------------( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____2、a 是有理数,且a 的平方等于a 的立方,则a 是___或___3、已知有理数a 、b 满足(a+2)2+|2b-6|=0,则a-b=_______4、已知a-b=1, b+c=2, 则2a+2c+1=_________________-_____5、当x________时,|3-x|=x-36、从3点到3点30分,分针转了________度,时针转了__________度7、某种商品的标价为120元,若以标价的90%出售,仍相对进价获利20%,则该商品的进价为_______元 8、为使某项工程提前20天完成,需将原来的工作效率提高25%,则原计划完成的天数_________天 9、因式分解:-4x 2+y 2=__________________, x 2-x-6=_______________10、计算:a 6÷a 2=__________,(-2)-4=_________,-22=_________11、如果某商品降价x%后的售价为a 元,那么该商品的原价为________ 12、已知A 、B 、C 是数轴上的三个点,点B 表示1,点C 表示-3,AB=2,则AC 的长度是__________或___________ 13、甲乙两人合作一项工作a 时完成,已知这项工作甲独做需要b 时完成,则乙独做完成这项工作所需时间为__________ 14、已知(-3)2=a 2,则a=________15、P 点表示有理数2,那么在数轴上到P 点的距离等于3个单位长度的点所表示的数是_____或_____16、a 、b 为实数,且满足ab+a+b-1=0,a 2b+ab 2+6=0,则a 2-b 2=____________-_____17、已知一次函数y=(m 2-4)x+1-m 的图象在y 轴上的截距与一次函数y=(m 2-2)x+m 2-3的图象在y 轴上的截距互为相反数,则m=__________________18、关于x 的方程(m 2-1)x 2+2(m+1)x+1=0有两个实数根,则m 的取值范围是_________________ 19、关于x 的方程(m-2)x 2-2x+1=0有解,那么m 的取值范围是____________________________ 20、已知方程x 2+(4-2m)x+m 2-5=0的两根之积是两根之和的2倍,则m=_________或____________ 21、函数y=x 2+(m+2)x+m+5与x 轴的正半轴有两个交点,则m 的取值范围是___________________ 22、若抛物线y=x 2+1-k x-1与x 轴有交点,则k 的取值范围是_____________23、关于x 的方程x 2+(t-2)x+5-t=0的两个根都大于2,则t 的取值范围是___________________ 24、函数y=(2m 2-5m-3)x132--m m 的图象是双曲线,则m=___________________________25、已知方程组⎪⎩⎪⎨⎧=+-=++-01022y x a y x 的两个解为⎩⎨⎧==11y y x x 和⎩⎨⎧==22y y x x ,且x 1,x 2是两个不等的正数,则a 的取值范围是___________________26、∆Rt ABC 中,090=∠C ,AC=4,BC=3,一正方形内接于∆Rt ABC 中,那么这个正方形的边长为_______ 27、双曲线xky =上一点P ,分别过P 作x 轴,y 轴的垂线,垂足为A 、B ,矩形OAPB 的面积为2,则k=_____________ 28、在数轴上,到原点的距离等于5个单位长度的点共有____________________个 29、比-2.1大而比1小的整数共有__________个30、用简便方法计算:1-2+3-4+5-6+…+119-120=___________________-_ 31、若1a<-1,则a 取值范围是_________________________. 32、小于2的整数有______________个33、已知关于x 的一元二次方程4x-a=2x+5的解是x=1,则a=________________ 34、一个角的补角是这个余角的3倍,则这个角的大小是_____________________35、一个长方形的长是宽的3倍还多2cm ,如果设宽为xcm ,那么长方形长是__________cm ,如果设长为xcm ,那么长方形的宽是__________________cm36、如果|a|=2,那么3a-5=___________或________________37、冰箱售价2000元/台,国庆节开始季节性降低20%,则售价为___________元/台到来年五一节又季节性涨价20%,则售价为____________________元/台 38、22___________分数(填“是”或“不是”)39、16的算术平方根是__________ 40、当m=_____________时,2m -有意义 41、若|x+2|=3-2,则x=___________________42、化简aa ---51)5(=__________________43、使等式x x x x -⋅+=-+44)4)(4(成立的条件是_____________________ 44、计算)32(6+÷=_________________________________45、若方程kx 2-x+3=0有两个实数,则k 的取值范围____________________________ 46、分式4622--+x x x 的值为零,则x=_________________47、已知函数y=22)1(--m x m 是反比例函数,则m=____________________48、若方程x 2-4x+m=0与方程x 2-x-2m=0有一个根相同,那么m 的值等于____________或_______________________49、已知不等式(a+b)x+(2a-3b)<0的解为x>3,则不等式(a-3b)x+(b-2a)>0的解是________________________ 50、正比例函数y=kx 的自变量增加3,函数值就相应减少1,则k 的值为_________________________ 51、直线y=kx+b 过点P (3,2),且它交x 轴,y 轴的正半轴于A 、B 两点,若OA+OB=12,则此直线的解析式是_______________________52、已知直角三角形的两边分别为3cm 和4cm ,则该三角形的第三边长为______________________________ 53、已知等腰三角形的一外角等于1000,则该三角形的顶角等于________________ 54、等腰三角形的两条边长为3和7,则该三角形的周长为________________________55、已知点A 到x 轴的距离为2,到y 轴的距离为5,且A 点的横、纵坐标符号相反,则A 点坐标是_______________________56、矩形面积为163,其对角线与一边的夹角为300,则从此矩形中能截出最大正方形的面积为____________________________57、已知梯形上、下底长分别为6,8,一腰长为7,则另一腰a 的范围是_____________;若这腰为奇数,则此梯形为_______梯形58、已知圆O 的直径AB 为2cm ,过点A 有两条弦AC=2cm ,AD=3cm ,那么∠CAD=________——————或__________________59、如图,在△ABC 中,∠ACB=Rt ∠,∠A=300,CD ⊥AB 于D ,DE ⊥AC 于E ,则CE:AC=____________________ 60.为了搞活经济,商场将一种商品按标价9折出售,仍可获取利润10% 61.若商品的标价为330元,那么该商品的进货价为__________________62、分解因式4x 4-9=_____________________________________________ 63、化简22)23()32(x y y x -+-=___________________________64、若a 2=2,则a=_2±_;若2)(4=a ,则a=_______________65、已知a 、b 是方程x 2-2(k-1)x+k 2=0的两个实数根,且a 2+b 2=4,则k=_______________ACE66、以215+和215-为根的一元二次方程是___________________________ 67、方程01111=+--+-x xx k x 有增根,则k 的值为___________________________68、函数y=-2x 2的图像可由函数y=-2x 2+4x+3的图像经怎样平移得到?___________________________________________69、二次函数y=x 2-x+1与坐标轴有______________个交点 70、二次函数的图像与x 轴交点横坐标为-2和1,且通过点 (2,4),则其函数解析式为_________________________ 71、6与4的比例中项为_____________________________ 72、若k ba cc a b c b a =+=+=+,则k=_____________________ 73、把一个图形按1:6的比例缩小,那么缩小后的图形与原图形的面积比为_________74、如图,△ABC 中,AD 为BC 上的中线,F 为AC 上的点,BF 交AD 于E ,且AF:FC=3:5,则AE:ED=_______________75、矩形木板长10cm ,宽8cm ,现把长、宽各锯去xcm ,则锯后木板的面积y 与x 的函数关系式为_________________________76、如图,已知D 、E 和F 、G 分别在△ABC 的AB 、AC 上, DF//EG//BC ,AD:DE:EB=1:2:3,则S 梯形DEGF :S 梯形EBCG =_________________ 77.如果抛物线y=x 2-(k-1)x-k-1与x 轴交于A 、B ,与y 轴交于C , 那么△ABC 面积的最小值是______________78.关于x 的方程x 2+(m-5)x+1-m=0,当m 满足________________时,一个根小于0,另一个根大于379、在Rt △ABC 中,∠C=Rt ∠,CD ⊥AB 于D ,AB=16,CD=6,则AC-BC=_________ 80、△ABC 中,AC=6,AB=8,D 为AC 上一点,AD=2,在AB 上取一点E ,使△ADE ∽△ABC 相似,则AE=_____________________81、圆O 中,内接正三角形,正方形、正六边形的边长之比为_______________________ 82、若2x 2-ax+a+4=0有且只有一个正根,则1682+-a a =___________________83、已知抛物线y=2x 2-6x+m 的图像不在x 轴下方,则m 的取值范围是_________________ 84、a 、b 、10c 是△ABC 的三边长,已知a 2-4ac+3c 2=0,b 2-4bc+3c 2=0,则△ABC 是_____________ 三角形三、解答题1、解方程:1253=+--x xEACDF AB E G DF BD2、解方程组2221 494(3)3x yx y⎧+=⎪⎪⎨⎪=+⎪⎩3、解方程(x2-2x+2)(x2-2x-7)+8=04、一艘船以25千米/时的速度向正北方向航行,在A处看灯塔S在船的北偏东300,2小时后航行到B处,在B处看灯塔S在船的北偏东450,求灯塔S到B处的距离5、如图,在平行四边形ABCD中,∠BAD=300,AB=5cm,AD=3cm,E为CD上的一个点,且BE=2cm,求点A到直线BE的距离。
(word完整版)初中数学易错题(含参考答案)
1、 ) 12、 3、 4、 5、 6、 7、 9、 初中数学、选择题(本卷带*号的题目可以不做)A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( A 、互为相反数 B 、绝对值相等C 、是符号不同的数 有理数a 、b 在数轴上的位置如图所示,则化简 |a-b|-|a+b|的结果是(D 、A 、2a 轮船顺流航行时m 千米/小时,逆流航行时 A 、2千米/小时 方程2x+3y=20的正整数解有( A 、1个B 、3个 下列说法错误的是( ) A 、两点确定一条直线C 、一条直线不是平角10、11、 B 、2b B 、3千米/小时 )都是负数 ) -2a+b (m-6)千米/小时,则水流速度( ) 6千米/小时 D 、不能确定 C 、2a-2b■e—bD 、无数个 函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( A 、当m z 3时,图像有一个交点 C 、当m 1时,只有一个交点 如果两圆的半径分别为 A 、内切 在数轴上表示有理数 --------- © ------- 0 -------- O ------------ ABC 线段是直线的一部分 D 、把线段向两边延长即是直线 ) B 、m 1时,肯定有两个交点 D 、图像可能与x 轴没有交点 R 和r ( R>r ),圆心距为d ,且(d-r )2=R 2,则两圆的位置关系是 B 、外切 a 、b 、c 的小点分别是 心 ------- A C 、内切或外切 A 、B 、C 且 b<a<c , ---------- 0 --------- O --------- 0 --------------- CAB有理数中,绝对值最小的数是( A 、-1 1的倒数的相反数是( A 、-2 D 、不能确定 则下列数轴中正确的是 --------- 0 ------- Q B A不存在 若 |x|=x ,贝y -x A 、正数 两个有理数的和除以这两个有理数的积, A 、互为相反数 13、长方形的周长为 A 、2x ) 非负数 12、 B 、互为倒数 x ,宽为2,则这个长方形的面积为( B 、2(x-2)14、 “比x 的相反数大3的数”可表示为( A 、-X-3 B 、-(x+3) 15、 如果0<a<1,那么下列说法正确的是( A 、a 2比a 大 B 、a 2比a 小 16、 数轴上,A 点表示-1,现在A 开始移动, 动5个单位,这时,A 点表示的数是( A 、-1 17、 线段AB=4cm ,延长AB A 、 12cm18、 12的相反数是(A 、1 •、219、 方程 x(x-1)(x-2)=xA 、 X 1=1,X 2=23 <5C 、X 1= —2— , X 2=C 、负数 其商为 0,则这两个有理数为( C 、互为相反数且不为 ) 非正数 ) 有一个为 C 、x-4 ) C 、3-x )C 、a 2与a 相等2 • (x-2)/2 x+3 先向左移动 3个单位,再向右移动 ) C 、1 D 、a 2与a 的大小不能确定 9个单位,又向左移 0 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为() B 、10cm )B 、 -.2 1C 、 8cmD 、 4cm C 、 1 •、2 D-2的根是()B 、 X 1=0,X 2=1,X 3=23 ■ 5D 、C3舅 3 X =0 , X = ,X =511 1解方程3(x 2) 5(x _) 4 0时,若设x _ y ,则原方程可化为() X 2X, XA 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=0方程 X 2+1=2|X |有( )A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根一次函数y=2(x-4)在y 轴上的截距为( ) A 、-4 B 、4C 、-8D 、8解关于X 的不等式 X a,正确的结论是 X a( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当 a<0时无解反比例函数y 2,X当x w 3时,y 的取值范围是( )2A、y w 32 B 、y > 32 j.C 、y > -或 y<03D 、0<y < |0.4的算术平方根是 ( )A 、0.2B 、土 0.2 10 、-5- D、 ± .105李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽 误时间,于时就加快了车速,在下列给出的四个 S-t 函数示意图象,符合以上情况的是()20、 21、22、23、24、25、26、27、 28、 29、 30、 31、 32、 33、 34、 35、36、 kX 1, kX 2, kX 3,…,kX n 的平均数与方差分别是( ) A 、k X , k 2s 2 若关于X 的方程 B 、X , s 2 12有解,则 C 、k X , ks 2 a 的取值范围是( k 2x, ks 2A 、a H 1 下列图形中既是中心对称图形,又是轴对称图形的是( A 、线段 ” a c已知匚H b da b A 、 rc d B 、正三角形,下列各式中不成立的是( c a 3c d b 3d 一个三角形的三个内角不相等,则它的最小角 A 、 300 B 、 450 已知三角形内的一个点到它的三边距离相等, A 、三角形的外心 B 、三角形的重心 下列三角形中是直角三角形的个数有( ①三边长分别为、3:1:2的三角形 ③三个内角的度数之比为 A 、1个 如图,设AB=1 , C 、平行四边形 等腰梯形C 、b d 2bD 、 ad=bc不大于( )C 、550D 、 600 那么这个点是( )C 、三角形的内心D 、 三角形的垂心 ) 1:2:3的三角形 a c 3a 3:4:5的三角形 B 、2个 S ^OAB = — cm 2,则弧 AB 长为( )4m 2 B 、— cm )②三边长之比为 ④一边上的中线等于该边一半的三角形 C 、3个A 、3 cm 平行四边形的一边长为 5cm ,则它的两条对角线长可以是(A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cm 如图,△ ABC 与厶BDE 都是正三角形,且 AB<BD ,若△ ABC 不动,将△ BDE 绕B 点旋转,则在旋转过程中, AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定C 、二 cm 6A4cm, 8cm顺次连结四边形各边中点得到一个菱形,则原四边形必是( )A 、 y 1>y 2>y 3B 、 y 1<y 2<y 3C 、 下列根式是最简二次根式的是( ) A 、 .8a B 、 .a 2 b 2C 、 下列计算哪个是正确的( ) A 、 3.2 5B 、2 5 2.5C 、 把a 1 ( a 不限定为正数)化简,结果为(r aA 、 aB 、aC 、若 a+|a|=0,则.(a 2)2.a 2 等于( )A 、2-2aB 、2a-2C 、已知,2x 1 .1 2x 0 「x 2 2x 1 的值( 1A 、1B 、土C 、设a 、b 是方程x 2-12x+9=0的两个根,则.aA 、18B 、 6C 、 下列命题中,正确的个数是( ) ①等边三角形都相似 ②直角三角形都相似 ④锐角三角形都相似 ⑤等腰三角形都全等 ⑦有一个钝角相等的两个等腰三角形相似 A 、2 个 B 、3 个C 、y 2>y 1>y 3D 、 y 3>y 1>y 2 ,0.1xD 、-.a 5••: a 2 b 2 a b1D 、、 22 . 21^22 J21)-■. aD 、■a-2D 、2)1 1―D 、-—A 、矩形B 、梯形C 、两条对角线互相垂直的四边形 在圆O 中,两段弧满足 AB=2CD ,那么弦AB 和弦CD 的关系旦 A 、AB=2CD B 、AB>2CD 在等边三角形ABC 外有一点 A 、 300 B 、 600 △ ABC 的三边a 、b 、c 满足 A 、a w 6 如图,在△ ABC 中, A 、/ B=300D ,满足 b<6/ ACB=Rt 疋v C 、AB<2CD D 、AB AD=AC ,则Z BDC 的度数为C 、1500 △ ABC 的周长为18,则( )D 、两条对角线相等的四边形 )与CD 不可能相等( )D 、300 或 15002,5 5如图,把直角三角形纸片沿过顶点 上,如果折叠后得到等腰三角形 合 (3)点E 到AB 的距离等于 A 、0 B 、1不等式,2x 2 ,3x .、6的解是( A 、 x> …2 B 、 x>- ,2 C 、斜边上的高线长为a wb wc , C 、 c>6 D 、a 、b 、c 中有一个等于 Z, AC=1 , BC=2,则下列说法正确的是( B 、斜边上的中线长为 1D 、 该三角形外接圆的半径为 1)B 的直线BE (BE 交CA 于E )折叠,直角顶点 EBA ,那么下列结论中(1)Z A=300 CE 的长,正确的个数是 已知一元二次方程(m-1)x 2-4mx+4m-2=0 A 、m<1/3 B 、m W 1/3.」k , i函数y=kx+b (b>0)和y= — (k 丰0),在同一坐标系中的 x 图象可能是右图中的( )(注:从左到右依次为 ABCD ) 在一次函数y=2x-1的图象上,到两坐标轴距离相等的 点有( ) A 、1个 B 、2个 若点(-2, y 1)、(-1, y 2 )、(1, y 3) C 、x< 2 没有实数根,则 C 、m > 1/3 C 落在斜边AB (2)点C 与AB 的中点重 C 、3个 在反比例函数yD 、无数个 1-的图像上,则下列结论中正确的是( x 37、 38、 39、 40、 41、42、43、 44、 45、 46、 47、 48、 49、 50、51、52、*53、54、顺次连结四边形各边中点得到一个菱形,则原四边形必是()2 2 •b等于()3.2 D、土 3.2③等腰三角形都相似⑥有一个角相等的等腰三角形相似⑧全等三角形相似4个D、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________________ 。
初中数学易错题(含参考答案解析)(最新整理)
A、两点确定一条直线
B、线段是直线的一部分
C、一条直线不是平角
D、把线段向两边延长即是直线
6、函数 y=(m2-1)x2-(3m-1)x+2 的图象与 x 轴的交点情况是 ( )
A、当 m≠3 时,图像有一个交点
B、 m 1时,肯定有两个交点
C、当 m 1时,只有一个交点
D、图像可能与 x 轴没有交点
ୄ
A、a≤6
B、b<6
C、c>6
D、a、b、c 中有一个等于 6
41、如图,在△ABC 中,∠ACB=Rt∠,AC=1,BC=2,则下列说法正确的是( )
ୄ ୄ
A、∠B=300 C、斜边上的高线长为 2 5
5
B、斜边上的中线长为 1 D、该三角形外接圆的半径为 1
ୄ
ୄ
42、如图,把直角三角形纸片沿过顶点 B 的直线 BE(BE 交 CA 于 E)折叠,直角顶点 C 落在斜边 AB 上,
范文 范例 指导 学习
初中数学 易错题专题
一、选择题(本卷带*号的题目可以不做)
1、A、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )
A、互为相反数
B、绝对值相等 C、是符号不同的数 D、都是负数
2、有理数 a、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( )
A、2a
A、AE=CD
B、AE>CD
C、AE>CD
D、无法确定
B
ୄ ୄ
ୄ
ୄ ୄ
ୄ
word 版本整理分享
范文 范例 指导 学习
37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( )
A、矩形
(word完整版)初中数学易错题集锦及答案
初中数学易错题及答案(A)2 (B(C)2±(D)解:2,2的平方根为2.若|x|=x,则x一定是()A、正数B、非负数C、负数D、非正数答案:B(不要漏掉0)3.当x_________时,|3-x|=x-3。
答案:x-3≥0,则x34.22___分数(填“是”或“不是”)答案:22是无理数,不是分数。
5.16的算术平方根是______。
答案:16=4,4的算术平方根=26.当m=______时,2m-有意义答案:2m-≥0,并且2m≥0,所以m=07分式4622--+xxx的值为零,则x=__________。
答案:226040x xx⎧+-=⎪⎨-≠⎪⎩∴122,32x xx==-⎧⎨≠±⎩∴3x=-8.关于x的一元二次方程2(2)2(1)10k x k x k---++=总有实数根.则K_______答案:[]2202(1)4(2)(1)0kk k k-≠⎧⎪⎨----+≥⎪⎩∴3k≤且2k≠9.不等式组2,.xx a>-⎧⎨>⎩的解集是x a>,则a的取值范围是.(A)2a<-,(B)2a=-,(C)2a>-,(D)2a≥-.答案:D10.关于x 的不234a ≤<等式40x a -≤的正整数解是1和2;则a 的取值范围是_________。
答案:234a ≤< 11.若对于任何实数x ,分式214x x c++总有意义,则c 的值应满足______. 答案:分式总有意义,即分母不为0,所以分母240x x c ++=无解,∴C 〉412.函数y 中,自变量x 的取值范围是_______________. 答案:1030x x -≥⎧⎨+≠⎩∴X ≥1 13.若二次函数2232y mx x m m =-+-的图像过原点,则m =______________.2020m m m ≠⎧⎨-=⎩∴m =2 14.如果一次函数y kx b =+的自变量的取值范围是26x -≤≤,相应的函数值的范围是119y -≤≤,求此函数解析式________________________.答案:当26119x x y y =-=⎧⎧⎨⎨=-=⎩⎩时,解析式为:26911x x y y =-=⎧⎧⎨⎨==-⎩⎩时,解析式为 15.二次函数y=x 2-x+1的图象与坐标轴有______个交点。
初中数学易错题(含参考答案)
文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。
初中数学 易错题专题一、选择题(本卷带*号的题目可以不做)1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定4、方程2x+3y=20的正整数解有( )A 、1个B 、3个C 、4个D 、无数个5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线不是平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( )A 、当m ≠3时,图像有一个交点B 、1±≠m 时,肯定有两个交点C 、当1±=m 时,只有一个交点D 、图像可能与x 轴没有交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( )A 、内切B 、外切C 、内切或外切D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列数轴中正确的是( )9、有理数中,绝对值最小的数是( )A 、-1B 、1C 、0D 、不存在10、21的倒数的相反数是( ) A 、-2 B 、2 C 、-21 D 、21 11、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( )A 、互为相反数B 、互为倒数C 、互为相反数且不为0D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( )A 、2xB 、2(x-2)C 、x-4D 、2·(x-2)/214、“比x 的相反数大3的数”可表示为( )A 、-x-3B 、-(x+3)C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( )A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=253+, x 3=253-b20、解方程04)1(5)1(322=-+++x x x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=021、方程x 2+1=2|x|有( )A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>a x a x ,正确的结论是( ) A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数x y 2=,当x ≤3时,y 的取值范围是( ) A 、y ≤32 B 、y ≥32 C 、y ≥32或y<0 D 、0<y ≤32 25、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个S-t 函数示意图象,符合以上情况的是( )27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-a x x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( ) A 、线段 B 、正三角形 C 、平行四边形D 、等腰梯形 30、已知d c b a =,下列各式中不成立的是( ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、b d a c b a 23++= D 、ad=bc31、一个三角形的三个内角不相等,则它的最小角不大于( )A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形A 、1个B 、2个C 、3个D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( ) A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定B37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( )A 、矩形B 、梯形C 、两条对角线互相垂直的四边形D 、两条对角线相等的四边形38、在圆O 中,两段弧满足AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、300B 、600C 、1500D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( ) A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有一个等于6 41、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为1 42、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300 (2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( )A 、0B 、1C 、2D 、3 43、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0没有实数根,则m 的取值范围是( ) A 、m<1/3 B 、m ≤1/3 C 、m ≥1/3 D 、m ≥1/3且m ≠145、函数y=kx+b(b>0)和y=x k -(k ≠0),在同一坐标系中的 图象可能是右图中的( )(注:从左到右依次为ABCD)46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数x y 1=的图像上,则下列结论中正确的是( ) A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 2>y 1>y 3 D 、y 3>y 1>y 248、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a 49、下列计算哪个是正确的( ) A 、523=+ B 、5252=+ C 、b a b a +=+22 D 、212221221+=- 50、把a a1--(a 不限定为正数)化简,结果为( ) A 、a B 、a - C 、-a D 、-a - 51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2aB 、2a-2C 、-2D 、2 52、已知02112=-+-x x ,则122+-x x 的值( ) A 、1 B 、±21 C 、21 D 、-21 53*、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个A BC D E E AB C二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。
初中数学七年级下册易错题汇总大全附答案带解析
初中数学七年级下册易错题相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。
正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC ∥AD.A.1个;B.2个;C.3个;D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数.错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3.第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组.错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.3.将方程变形时忽略常数项3.利用加减法解方程组.错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m³,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组.错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果. 正解:0.2二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与十位上的数个位上的数对应的两位数相等关系 原两位数 x y 10x+y 10x+y=x+y+9 新两位数yx10y+x10y+x=10x+y+27数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.。
(完整)初三数学易错题集锦及答案
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。
初一数学错题整理
初一数学错题整理
一、有理数运算类
1. 计算:
错误答案:
解析:
- 去括号法则错误。
减去一个负数等于加上它的相反数。
- 正确的计算过程是:。
2. 计算:
错误答案:
- 原式
解析:
- 对于幂运算的符号理解错误。
表示的平方的相反数,应该是,而不是。
- 正确计算过程:
- 原式。
二、整式加减类
1. 化简:
错误答案:
- 原式
解析:
- 合并同类项时系数计算错误,正确,但是,而不是。
- 正确答案是:。
2. 先化简,再求值:,其中
错误答案:
- 化简得:
- 原式
- 当时,代入得:
解析:
- 去括号时出现错误,计算正确,但是
,在化简过程中与前面的合并同类项时计算错误。
- 正确化简过程:
- 原式。
- 当时,代入得:(虽然结果相同,但是化简过程存在错误)。
三、一元一次方程类
1. 解方程:
错误答案:
- 移项得:,即,解得
解析:
- 移项错误,移项要变号。
正确的移项应该是。
- 正确答案:。
2. 解方程:
错误答案:
- 去分母得:
- 展开括号得:
- 移项得:
- 合并同类项得:,解得
解析:
- 去分母时错误,等式两边同时乘以6,右边的1也要乘以6。
- 正确的去分母得:
- 展开括号得:
- 移项得:
- 合并同类项得:,解得。
中考数学易错题集锦及答案 [整理版]
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( )A B C D 9、有理数中,绝对值最小的数是( ) A 、-1 B 、1 C 、0 D 、不存在10、21的倒数的相反数是( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( ) A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=353+, x 3=253- 20、解方程04)1(5)1(322=-+++xx x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=0 21、方程x 2+1=2|x|有( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax ax ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±510 26、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( ) A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s2B 、x , s2C 、k x , ks2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形 30、已知dcb a =,下列各式中不成立的是( )A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、30B 、45C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、30B 、60C 、150D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=30B 、斜边上的中线长为1C 、斜边上的高线长为552 D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥31且m ≠1C 、m ≥1D 、-1<m ≤1 45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( )ABA B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( ) A 、a B 、a - C 、-a D 、-a -51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21 C 、21 D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
最新初中数学易错题(选择、填空、判断)含答案
初中数学易错题(选择、填空、判断)含答案------------------------------------------作者xxxx------------------------------------------日期xxxx2 / 5初中数学易错题分类汇编 第2页(共5页)初中数学易错题一、容易漏解的题目1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身.(5±,非负数) 2._________的倒数是它本身;_________的立方是它本身.(1±,1±和0)3.关于x 的不等式40x a -≤的正整数解是1和2;则a 的取值范围是_________.(412a ≤<) 4.不等式组213,.x x a ->⎧⎨>⎩的解集是2x >,则a 的取值范围是_________.(2a ≤)5.若()2211a a a +--=,则a =_________.(2-,2,1-,0) 6.当m 为何值时,函数21(3)45m y m x x +=++-是一个一次函数.(0m =或3m =-)7.若一个三角形的三边都是方程212320x x -+=的解,则此三角形的周长是_________.(12,24或20) 8.若实数a 、b 满足221a a =+,221b b =+,则a b +=________.(2,2±9.在平面上任意画四个点,那么这四个点一共可以确定_______条直线.10.已知线段AB =7cm ,在直线AB 上画线段BC =3cm ,则线段AC =_____.(4c m或10cm )11.一个角的两边和另一个角的两边互相垂直,且其中一个角是另一个角的两倍少30︒,求这两个角的度数.(30︒,30︒或70︒,110︒)12.三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处?(4) 13.等腰三角形一腰上的高与腰长之比为1:2,则该三角形的顶角为_____.(30︒或150︒)14.等腰三角形的腰长为a,一腰上的高与另一腰的夹角为30︒,则此等腰三角形底边上的高为_______.(2a或)15.矩形ABCD的对角线交于点O.一条边长为1,OAB△是正三角形,则这个矩形的周长为______.(2+216.梯形ABCD中,AD BC∥,90A∠=︒,AB=7cm,BC=3cm,试在AB 边上确定P的位置,使得以P、A、D 为顶点的三角形与以P、B、C为顶点的三角形相似.(AP=1cm,6cm或145cm)17.已知线段AB=10cm,端点A、B到直线l的距离分别为6cm和4cm,则符合条件的直线有___条.(3条)18.过直线l外的两点A、B,且圆心在直线l的上圆共有_____个.(0个、1个或无数个)19.在Rt ABC△中,90C∠=︒,3AC=,5AB=,以C为圆心,以r为半径的圆,与斜边AB只有一个交点,求r的取值范围.( 2.4r=或34r<≤)20.直角坐标系中,已知(1,1)P,在x轴上找点A,使AOP△为等腰三角形,这样的点P共有多少个?(4个)21.在同圆中,一条弦所对的圆周角的关系是______________.(相等或互补)22.圆的半径为5cm,两条平行弦的长分别为8cm和6cm,则两平行弦间的距离为_______.(1cm或7cm)23.两同心圆半径分别为9和5,一个圆与这两个圆都相切,则这个圆的半径等于多少?(2或7)24.一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为多少?(2或8)3 / 5初中数学易错题分类汇编第3页(共5页)4 / 5初中数学易错题分类汇编 第4页(共5页)25.PA 切⊙O 于点A ,AB 是⊙O的弦,若⊙O的半径为1,AB ,则PA 的长为____.(1)26.PA 、PB 是⊙O 的切线,A 、B 是切点,80APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠= ________.(50︒或130︒)27.在半径为1的⊙O 中,弦AB =AC 那么BAC ∠=________.(75︒或15︒)二、容易多解的题 28.已知()()22222215x y x y +++=,则22x y +=_______.(3) 29.在函数y 中,自变量的取值范围为_______.(1x ≥)30.已知445x x -+=,则22x x -+=_____31.当m 为何值时,关于x 的方程2(2)(21)0m x m x m ---+=有两个实数根.(14m ≥-,且2m ≠).32.当m 为何值时,函数2(1)350m m y m x x -=++-=是二次函数.(2)33.若22022(43)x x x x --=-+,则x =?.(1-)34.方程组22240,3260.x y x xy x y ⎧-=⎪⎨-+++=⎪⎩的实数解的组数是多少?(2) 35.关于x的方程2210x k +-=有实数解,求k 的取值范围.(113k -≤≤)36.k 为何值时,关于x 的方程2(2)320x k x k -++-=的两根的平方和为23? (3k =-)37.m 为何值时,关于x 的方程21202x m x m ⎛⎫-++= ⎪⎝⎭的两根恰好是一个直角三角形的两个锐角的余弦值?.(m =).38.若对于任何实数x ,分式214x x c++总有意义,则c 的值应满足______.(4c >)39.在ABC △中,90A ∠=︒,作既是轴对称又是中心对称的四边形ADEF ,使D 、E 、F 分别在AB 、BC 、CA 上,这样的四边形能作出多少个?(1)40.在⊙O中,弦AB=8cm,P为弦AB 上一点,且AP=2cm,则经过点P的最短弦长为多少?(41.两枚硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______.(2)三、容易误判的问题:1.两条边和其中一组对边上的高对应相等的两个三角形全等。
(完整)初三数学易错题集锦及答案
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。
初中数学七年级下册易错题汇总大全附答案带解析教学文稿
初中数学七年级下册易错题相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。
正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC ∥AD.A.1个;B.2个;C.3个;D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数.错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3.第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组.错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.3.将方程变形时忽略常数项3.利用加减法解方程组.错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m³,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组.错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果.正解:0.2二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x yy x x y+=++⎧⎨+=++⎩,得14xy=⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y 元,则打九折时的卖出价为0.9x元,获利(0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y-=⎧⎨-=⎩,解得200150xy=⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数. 四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量. 2012年江西省初中毕业学业考试物理试卷一、填空题(共16分,每空1分)1.请您正确填写单位:我国家庭电路电压为220_______;一个中学生的质量约为50_______.2.浸在水中的苹果受到竖直_________的浮力,浮力的大小等于苹果排开的_________所受的重力.3. 为了适应生存环境,老虎都长有尖尖的牙齿,如下图所示.当老虎用相同的力咬食食物时,受力的________越小,产生的_______越大.4. 如下图所示,比较他们运动的快慢,物理学中我们通常可以采用相同______比较_______的方法.10-N的力拉着树叶,10s内沿着拉力方向前进了10cm,则蚂蚁对5. 如下图所示,蚂蚁用3树叶做功为_________J,此时的功率为____________W.。
初中数学七年级下册易错题汇总大全附答案带解析
初中数学七年级下册易错题相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。
正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC ∥AD.A.1个;B.2个;C.3个;D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数.错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3.第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组.错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.3.将方程变形时忽略常数项3.利用加减法解方程组.错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m³,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组.错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果. 正解:0.2二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与十位上的数个位上的数对应的两位数相等关系 原两位数 x y 10x+y 10x+y=x+y+9 新两位数yx10y+x10y+x=10x+y+27数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.。
初中数学易错题(含参考答案解析)
初中数学易错题(含参考答案解析)初中数学易错题专题⼀、选择题(本卷带*号的题⽬可以不做)1、A 、B 是数轴上原点两旁的点,则它们表⽰的两个有理数是() A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数2、有理数a 、b 在数轴上的位置如图所⽰,则化简|a-b|-|a+b|的结果是()A 、2aB 、2bC 、2a-2bD 、2a+b3、轮船顺流航⾏时m 千⽶/⼩时,逆流航⾏时(m-6)千⽶/⼩时,则⽔流速度() A 、2千⽶/⼩时 B 、3千⽶/⼩时 C 、6千⽶/⼩时 D 、不能确定4、⽅程2x+3y=20的正整数解有() A 、1个 B 、3个 C 、4个 D 、⽆数个5、下列说法错误的是()A 、两点确定⼀条直线B 、线段是直线的⼀部分C 、⼀条直线不是平⾓D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( )A 、当m ≠3时,图像有⼀个交点B 、1±≠m 时,肯定有两个交点C 、当1±=m 时,只有⼀个交点D 、图像可能与x 轴没有交点7、如果两圆的半径分别为R 和r (R>r ),圆⼼距为d ,且(d-r)2=R 2,则两圆的位置关系是() A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表⽰有理数a 、b 、c 的⼩点分别是A 、B 、C 且b9、有理数中,绝对值最⼩的数是()A 、-1B 、1C 、0D 、不存在 10、21的倒数的相反数是()A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x ⼀定是() A 、正数 B 、⾮负数 C 、负数 D 、⾮正数 12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为() A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有⼀个为0 13、长⽅形的周长为x ,宽为2,则这个长⽅形的⾯积为() A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“⽐x 的相反数⼤3的数”可表⽰为() A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0A 、a 2⽐a ⼤B 、a 2⽐a ⼩C 、a 2与a 相等D 、a 2与a 的⼤⼩不能确定 16、数轴上,A 点表⽰-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,⼜向左移动5个单位,这时,A 点表⽰的数是() A 、-1 B 、0 C 、1 D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为() A 、12cm B 、10cm C 、8cm D 、4cm 18、21-的相反数是() A 、21+ B 、12- C 、21-- D 、12+- 19、⽅程x(x-1)(x-2)=x 的根是()A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=253+, x 3=253-O a bA B C C B A C A B B A C20、解⽅程04)1(5)1(322=-+++x x x x 时,若设y xx =+1,则原⽅程可化为() A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、⽅程x 2+1=2|x|有()A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根 22、⼀次函数y=2(x-4)在y 轴上的截距为() A 、-4 B 、4 C 、-8 D 、8 23、解关于x 的不等式-<>a x ax ,正确的结论是()A 、⽆解B 、解为全体实数C 、当a>0时⽆解D 、当a<0时⽆解24、反⽐例函数xy 2=,当x ≤3时,y 的取值范围是()A 、y ≤32B 、y ≥32C 、y ≥32或y<0D 、0225、0.4的算术平⽅根是() A 、0.2B 、±0.2C 、510D 、±51026、李明骑车上学,⼀开始以某⼀速度⾏驶,途中车⼦发⽣故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个S-t 函数⽰意图象,符合以上情况的是()27、若⼀数组x 1, x 2, x 3, …, x n 的平均数为x ,⽅差为s 2,则另⼀数组kx 1, kx 2, kx 3, …, kx n 的平均数与⽅差分别是()A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的⽅程21=+-ax x 有解,则a 的取值范围是()A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±1 29、下列图形中既是中⼼对称图形,⼜是轴对称图形的是() A 、线段 B 、正三⾓形 C 、平⾏四边形 D 、等腰梯形 30、已知dc ba =,下列各式中不成⽴的是()A 、dc ba d cb a ++=--B 、db c a d c 33++=C 、bd a c b a 23++=D 、ad=bc31、⼀个三⾓形的三个内⾓不相等,则它的最⼩⾓不⼤于()A 、300B 、450C 、550D 、60032、已知三⾓形内的⼀个点到它的三边距离相等,那么这个点是() A 、三⾓形的外⼼ B 、三⾓形的重⼼ C 、三⾓形的内⼼D 、三⾓形的垂⼼ 33、下列三⾓形中是直⾓三⾓形的个数有()①三边长分别为3:1:2的三⾓形②三边长之⽐为1:2:3的三⾓形③三个内⾓的度数之⽐为3:4:5的三⾓形④⼀边上的中线等于该边⼀半的三⾓形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为()A 、3πcmB 、32πcm C 、6πcmD 、2πcm35、平⾏四边形的⼀边长为5cm ,则它的两条对⾓线长可以是() A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三⾓形,且AB绕B 点旋转,则在旋转过程中,AE 与CD 的⼤⼩关系是() A 、AE=CD B 、AE>CD C 、AE>CD D 、⽆法确定O O O O OBA ABDC E37、顺次连结四边形各边中点得到⼀个菱形,则原四边形必是() A 、矩形 B 、梯形 C 、两条对⾓线互相垂直的四边形 D 、两条对⾓线相等的四边形 38、在圆O 中,两段弧满⾜AB=2CD ,那么弦AB 和弦CD 的关系是() A 、AB=2CD B 、AB>2CD C 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三⾓形ABC 外有⼀点D ,满⾜AD=AC ,则∠BDC 的度数为()A 、300B 、600C 、1500D 、300或150040、△ABC 的三边a 、b 、c 满⾜a ≤b ≤c ,△ABC 的周长为18,则() A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有⼀个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是()A 、∠B=300B 、斜边上的中线长为1C 、斜边上的⾼线长为552D 、该三⾓形外接圆的半径为142、如图,把直⾓三⾓形纸⽚沿过顶点B 的直线BE (BE 交CA 于E )折叠,直⾓顶点C 落在斜边AB 上,如果折叠后得到等腰三⾓形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合(3)点E 到AB 的距离等于CE 的长,正确的个数是() A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是() A 、x>2 B 、x>-2 C 、x<2 D 、x<-244、已知⼀元⼆次⽅程(m-1)x 2-4mx+4m-2=0没有实数根,则m 的取值范围是()A 、m<1/3B 、m ≤1/3C 、m ≥1/3D 、m ≥1/3且m ≠1 45、函数y=kx+b(b>0)和y=xk -(k ≠0),在同⼀坐标系中的图象可能是右图中的()(注:从左到右依次为ABCD)46、在⼀次函数y=2x-1的图象上,到两坐标轴距离相等的点有() A 、1个 B 、2个 C 、3个D 、⽆数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反⽐例函数xy 1=的图像上,则下列结论中正确的是() A 、y 1>y 2>y 3 B 、y 1y 1>y 3 D 、y 3>y 1>y 2 48、下列根式是最简⼆次根式的是() A 、a 8 B 、22b a + C 、x1.0 D 、5a49、下列计算哪个是正确的() A 、523=+ B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为()A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于()A 、2-2aB 、2a-2C 、-2D 、252、已知02112=-+-x x ,则122+-x x 的值()A 、1B 、±21C 、21D 、-2153*、设a 、b 是⽅程x 2-12x+9=0的两个根,则b a +等于()A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是()①等边三⾓形都相似②直⾓三⾓形都相似③等腰三⾓形都相似④锐⾓三⾓形都相似⑤等腰三⾓形都全等⑥有⼀个⾓相等的等腰三⾓形相似⑦有⼀个钝⾓相等的两个等腰三⾓形相似⑧全等三⾓形相似 A 、2个 B 、3个 C 、4个 D 、5个ABCDEEABC⼆、填空题1、如果⼀个数的绝对值等于它的相反数,那么这个数⼀定是____ _____。
初中数学易错题(含参考答案)(K12教育文档)
初中数学易错题(含参考答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学易错题(含参考答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学易错题(含参考答案)(word版可编辑修改)的全部内容。
初中数学一、选择题(本卷带*号的题目可以不做)1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b |-|a+b |的结果是( ) A 、2a B 、2b C 、2a —2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m —6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定 4、方程2x+3y=20的正整数解有( )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线不是平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2—(3m-1)x+2的图象与x 轴的交点情况是 ( )A 、当m ≠3时,图像有一个交点B 、1±≠m 时,肯定有两个交点C 、当1±=m 时,只有一个交点D 、图像可能与x 轴没有交点7、如果两圆的半径分别为R 和r(R 〉r ),圆心距为d,且(d —r )2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b 〈a<c,则下列数轴中正确的是( )9、有理数中,绝对值最小的数是( )A 、—1B 、1C 、0D 、不存在 10、21的倒数的相反数是( )A 、—2B 、2C 、—21D 、2111、若|x|=x ,则—x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x —4 D 、2·(x —2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、—x —3 B 、—(x+3) C 、3—x D 、x+3 15、如果0〈a<1,那么下列说法正确的是( )A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示—1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( ) A 、—1 B 、0 C 、1 D 、817、线段AB=4cm,延长AB 到C ,使BC=AB 再延长BA 到D,使AD=AB ,则线段CD 的长为( ) A 、12cm B 、10cm C 、8cm D 、4cm 18、21-的相反数是( ) A 、21+ B 、12- C 、21-- D 、12+- 19、方程x (x —1)(x —2)=x 的根是( )bABCCBAC ABBA C初中数学易错题(含参考答案)(word 版可编辑修改)A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=253+, x 3=253-20、解方程04)1(5)1(322=-+++x x x x 时,若设y xx =+1,则原方程可化为( ) A 、3y 2+5y —4=0 B 、3y 2+5y —10=0 C 、3y 2+5y —2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( )A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根22、一次函数y=2(x-4)在y 轴上的截距为( ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>ax ax ,正确的结论是( ) A 、无解 B 、解为全体实数 C 、当a 〉0时无解 D 、当a 〈0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( )A 、y ≤32B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0。
历年中考数学易错题(含答案解析)
历年中考数学易错题(含答案解析)历年中考数学易错题汇编1、数轴上,若A、B为原点两旁的点,则它们表示的两个有理数是()。
A、互为相反数B、绝对值相等C、符号相同的数D、都是负数2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是()。
A、2aB、2bC、2a-2bD、2a+b3、轮船顺流航行时速度为m千米/小时,逆流航行时速度为(m-6)千米/小时,则水流速度为()。
A、2千米/小时B、3千米/小时C、6千米/小时D、不能确定4、方程2x+3y=20的正整数解有()。
A、1个B、3个C、4个D、无数个5、下列说法错误的是()。
A、两点确定一条直线B、线段是直线的一部分C、一条直线是一个平面D、把线段向两边延长即是直线6、函数y=(m2-1)x2-(3m-1)x+2的图象与x轴的交点情况是()。
A、当m≠3时,有一个交点B、m1时,有两个交点C、当m1时,有一个交点D、不论m为何值,均无交点7、如果两圆的半径分别为R和r(R>r),圆心距为d,且(d-r)2=R2,则两圆的位置关系是()。
A、内切B、外切C、内切或外切D、相交9、有理数中,绝对值最小的数是()。
A、-1B、1C、0D、无穷小10、1的倒数的相反数是()。
A、-1B、-2C、2D、1/211、若|x|=x,则-x一定是()。
A、正数B、非负数C、负数D、非正数12、两个有理数的和除以这两个有理数的积,其商为1,则这两个有理数为()。
A、互为相反数B、互为倒数C、互为相反数且不为0D、有一个为113、长方形的周长为x,宽为2,则这个长方形的面积为()。
A、2xB、2(x-2)C、x-4D、x-214、“比x的相反数大3的数”可表示为()。
A、-x-3B、-(x+3)C、3-xD、x+315、如果0<a<1,那么下列说法正确的是()。
A、a2比a大B、a2比a小C、a2与a相等D、a2与a的大小不能确定16、数轴上,A点表示-1,现在A开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A点表示的数是()。