浙江湖州中考数学试题解析版
2022年浙江省湖州市中考数学试卷解析版)
2022年浙江省湖州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.实数−5的相反数是()A. 5B. −5C. 15D. −15【答案】A【解析】解:实数−5的相反数是5.故选:A.直接利用相反数的定义得出答案.此题主要考查了相反数,正确掌握相关定义是解题关键.2.2022年3月23日下午,“天宫课堂”第2课在中国空间站开讲,神舟十三号乘组三位航天员翟志刚、王亚平、叶光富进行授课,某平台进行全程直播.某一时刻观看人数达到3790000人.用科学记数法表示3790000,正确的是()A. 0.379×107B. 3.79×106C. 3.79×105D. 37.9×105【答案】B【解析】解:3790000=3.79×106.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【答案】B【解析】解:观察该几何体发现:从正面看到的应该是三个正方形,上面1个左齐,下面2个,故选:B.主视图就是从主视方向看到的正面的图形,也可以理解为该物体的正投影,据此求解即可.本题考查了简单组合体的三视图,解题的关键是了解主视图的定义,属于基础题,难度不大.4.统计一名射击运动员在某次训练中10次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10.这组数据的众数是()A. 7B. 8C. 9D. 10【答案】C【解析】解:在这一组数据中9是出现次数最多的,故众数是9.故选:C.根据众数的定义求解.本题考查了众数的意义,正确掌握众数的定义是解题关键.5.下列各式的运算,结果正确的是()A. a2+a3=a5B. a2⋅a3=a6C. a3−a2=aD. (2a)2=4a2【答案】D【解析】解:A.a2+a3,无法合并,故此选项不合题意;B.a2⋅a3=a5,故此选项不合题意;C.a3−a2,无法合并,故此选项不合题意;D.(2a)2=4a2,故此选项符合题意;故选:D.直接利用合并同类项法则以及同底数幂的乘法运算法则、积的乘方运算法则,分别计算得出答案.此题主要考查了合并同类项以及同底数幂的乘法运算、积的乘方运算,正确掌握相关运算法则是解题关键.6.如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A. 2cmB. 3cmC. 4cmD. 5cm【答案】C【解析】解:∵将△ABC沿BC方向平移1cm得到对应的△A′B′C′,∴BB′=CC′=1(cm),∵B′C=2(cm),∴BC′=BB′+B′C+CC′=1+2+1=4(cm),故选:C.根据平移的性质得到BB′=CC′=1cm,即可得到BC′=BB′+B′C+CC′的长.本题考查了平移的性质,根据平移的性质得到BB′=CC′=1cm是解题的关键.7.将抛物线y=x2向上平移3个单位后所得的解析式为()A. y=x2+3B. y=x2−3C. y=(x+3)2D. y=(x−3)2【答案】A【解析】解:∵抛物线y=x2向上平移3个单位,∴平移后的解析式为:y=x2+3.故选:A.根据二次函数变化规律:左加右减,上加下减,进而得出变化后解析式.此题考查了抛物线的平移以及抛物线解析式的性质,熟练记忆平移规律是解题关键.8.如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是()A. 12B. 9C. 6D. 3√2【答案】B【解析】解:∵AB=AC,AD是△ABC的角平分线,∴BD=CD=12BC=3,AD⊥BC,在Rt△EBD中,∠EBC=45°,∴ED=BD=3,∴S△EBC=12BC⋅ED=12×6×3=9,故选:B.根据等腰三角形的性质得到BD=CD=3,AD⊥BC,根据等腰直角三角形的性质求出ED,根据三角形的面积公式计算,得到答案.本题考查的是等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.9.如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A. BD=10B. HG=2C. EG//FHD. GF⊥BC【答案】D【解析】解:∵四边形ABCD是矩形,∴∠A=90°,BC=AD,∵AB=6,BC=8,∴BD=√AB2+AD2=√62+82=10,故A选项不符合题意;∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴AB=BG=6,CD=DH=6,∴GH=BG+DH−BD=6+6−10=2,故B选项不符合题意;∵四边形ABCD是矩形,∴∠A=∠C=90°,∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴∠A=∠BGE=∠C=∠DHF=90°,∴EG//FH.故C选项不符合题意;∵GH=2,∴BH=DG=BG−GH=6−2=4,设FC=HF=x,则BF=8−x,∴x2+42=(8−x)2,∴x=3,∴CF=3,∴BFCF =53,又∵BGDG =64=32,∴BFCF ≠BGDG,若GF⊥BC,则GF//CD,∴BFCF =BGDG,故D选项不符合题意.故选:D.由矩形的性质及勾股定理可求出BD=10;由折叠的性质可得出AB=BG=6,CD= DH=6,则可求出GH=2;证出∠A=∠BGE=∠C=∠DHF=90°,由平行线的判定可得出结论;由勾股定理求出CF=3,根据平行线分线段成比例定理可判断结论.本题考查了矩形的性质,勾股定理,折叠的性质,平行线的判定,熟练掌握折叠的性质是解题的关键.10.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN 中,边PM的长的最大值是()A. 4√2B. 6C. 2√10D. 3√5【答案】C【解析】解:如图所示:△MNP为等腰直角三角形,∠MPN=45°,此时PM最长,根据勾股定理得:PM=√22+62=√40=2√10.故选:C.在网格中,以MN为直角边构造一个等腰直角三角形,使PM最长,利用勾股定理求出即可.此题考查了相似三角形的判定,以及勾股定理,熟练掌握勾股定理是解本题的关键.二、填空题(本大题共6小题,共24.0分)11.当a=1时,分式a+1a的值是______.【答案】2【解析】解:当a=1时,原式=1+11=2.故答案为:2.把a=1代入分式计算即可求出值.此题考查了分式的值,熟练掌握运算法则是解本题的关键.12.命题“如果|a|=|b|,那么a=b.”的逆命题是______.【答案】如果a=b,那么|a|=|b|【解析】解:命题“如果|a|=|b|,那么a=b.”的逆命题是如果a=b,那么|a|=|b|,故答案为:如果a=b,那么|a|=|b|.把一个命题的条件和结论互换就得到它的逆命题.本题考查的是逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.如图,已知在△ABC中,D,E分别是AB,AC上的点,DE//BC,ADAB =13.若DE=2,则BC的长是______.【答案】6【解析】解:∵DE//BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴ADAB =DEBC,∵ADAB =13,DE=2,∴13=2BC,∴BC=6,故答案为:6.由平行线的旋转得出∠ADE=∠B,∠AED=∠C,得出△ADE∽△ABC,由相似三角形的旋转得出ADAB =DEBC,代入计算即可求出BC的长度.本题考查了相似三角形的判定与性质,熟练掌握平行线的性质,相似三角形的判定方法是解决问题的关键.14.一个不透明的箱子里放着分别标有数字1,2,3,4,5,6的六个球,它们除了数字外其余都相同.从这个箱子里随机摸出一个球,摸出的球上所标数字大于4的概率是______.【答案】13【解析】解:∵一个不透明的箱子里放着分别标有数字1,2,3,4,5,6的六个球,∴从这个箱子里随机摸出一个球,一共有6种可能性,其中出的球上所标数字大于4的有2种可能性,∴出的球上所标数字大于4的概率是26=13,故答案为:13. 根据题目中的数据,可以计算出从这个箱子里随机摸出一个球,摸出的球上所标数字大于4的概率.本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15. 如图,已知AB 是⊙O 的弦,∠AOB =120°,OC ⊥AB ,垂足为C ,OC 的延长线交⊙O 于点D.若∠APD 是AD⏜所对的圆周角,则∠APD 的度数是______.【答案】30°【解析】解:∵OC ⊥AB ,∴AD⏜=BD ⏜, ∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =12∠AOB =60°,∴∠APD =12∠AOD =12×60°=30°, 故答案为:30°.由垂径定理得出AD⏜=BD ⏜,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =12∠AOD =30°,得出答案.本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握圆周角定理,垂径定理,圆心角、弧、弦的关系定理是解决问题的关键.16. 如图,已知在平面直角坐标系xOy 中,点A 在x 轴的负半轴上,点B 在y 轴的负半轴上,tan∠ABO =3,以AB 为边向上作正方形ABCD.若图象经过点C 的反比例函数的解析式是y =1x ,则图象经过点D 的反比例函数的解析式是______.【答案】y=−3 x【解析】解:如图,过点C作CT⊥y轴于点T,过点D作DH⊥CT交CT的延长线于点H.∵tan∠ABO=AOOB=3,∴可以假设OB=a,OA=3a,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠AOB=∠BTC=90°,∴∠ABO+∠CBT=90°,∠CBT+∠BCT=90°,∴∠ABO=∠BCT,∴△AOB≌△BTC(AAS),∴BT=OA=3a,OB=TC=a,∴OT=BT−OB=2a,∴C(a,2a),∵点C在y=1x上,∴2a2=1,同法可证△CHD≌△BTC,∴DH=CT=a,CH=BT=3a,∴D(−2a,3a),,则有−2a×3a=k,设经过点D的反比例函数的解析式为y=kx∴k=−6a2=−3,.∴经过点D的反比例函数的解析式是y=−3x故答案为:y=−3.x如图,过点C作CT⊥y轴于点T,过点D作DH⊥CT交CT的延长线于点H.由tan∠ABO=AO=3,可以假设OB=a,OA=3a,利用全等三角形的性质分别求出C(a,2a),OBD(−2a,3a),可得结论.本题考查待定系数法求反比例函数的解析式,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数,构建方程解决问题,属于中考常考题型.三、解答题(本大题共8小题,共66.0分)17.计算:(√6)2+2×(−3).【答案】解:原式=6+(−6)=0.【解析】根据(√a)2=a(a≥0),有理数的乘法和加法即可得出答案.本题考查了实数的运算,掌握(√a)2=a(a≥0)是解题的关键.18.如图,已知在Rt△ABC中,∠C=Rt∠,AB=5,BC=3.求AC的长和sinA的值.【答案】解:∵∠C=Rt∠,AB=5,BC=3,∴AC=√AB2−BC2=√52−32=4,sinA=BCAB =35.答:AC的长为4,sinA的值为35.【解析】根据勾股定理求AC的长,根据正弦的定义求sinA的值.本题考查了勾股定理,锐角三角函数的定义,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.19.解一元一次不等式组{2x<x+2①x+1<2②.【答案】解:解不等式①得:x<2,解不等式②得:x<1,∴原不等式组的解集为x<1.【解析】分别解这两个一元一次不等式,然后根据求不等式组解集的规律即可得出答案.本题考查了解一元一次不等式组,掌握同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.20.为落实“双减”政策,切实减轻学生学业负担,丰富学生课余生活,某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组,要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向,并将抽查结果绘制成如下统计图(不完整).根据统计图中的信息,解答下列问题:(1)求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数;(2)将条形统计图补充完整;(3)该校共有1600名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.【答案】解:(1)本次被抽查学生的总人数是60÷30%=200(人),=36°;扇形统计图中表示“美工制作”的扇形的圆心角度数是360°×20200(2)“音乐舞蹈”的人数为200−50−60−20−40=30(人),补全条形统计图如下:×1600=400(人).(3)估计全校选择“爱心传递”兴趣小组的学生人数为50200【解析】(1)从两个统计图中可知,在抽查人数中,“体育运动”的人数为60人,占调查人数的30%,可求出调查人数;用360°乘“美工制作”所占比例即可得出扇形统计图中表示“美工制作”的扇形的圆心角度数;(2)用抽查学生的总人数分别减去其它小组人数,即可得出“音乐舞蹈”的人数,即可将条形统计图补充完整;(3)用样本估计总体即可.本题考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量和数量之间的关系,是解决问题的前提,样本估计总体是统计中常用的方法.21.如图,已知在Rt△ABC中,∠C=Rt∠,D是AB边上一点,以BD为直径的半圆O与边AC相切,切点为E,过点O作OF⊥BC,垂足为F.(1)求证:OF=EC;(2)若∠A=30°,BD=2,求AD的长.【答案】(1)证明:连接OE,∵AC是⊙O的切线,∴OE⊥AC,∴∠OEC=90°,∵OF⊥BC,∴∠OFC=90°,∴∠OFC=∠C=∠OEC=90°,∴四边形OECF是矩形,∴OF=EC;(2)解:∵BD=2,∴OE=1,∵∠A=30°,OE⊥AC,∴AO=2OE=2,∴AD=AO−OD=2−1=1.【解析】(1)连接OE,由切线的性质可证明OE⊥AC,根据有三个角是直角的四边形OECF 是矩形,可得结论;(2)根据含30°角的直角三角形的性质可得AO的长,由线段的差可得答案.本题主要考查切线的性质,矩形的判定和性质,含30°的直角三角形的性质等知识,熟练掌握矩形的判定与性质是解题的关键.22.某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【答案】解:(1)设轿车出发后x 小时追上大巴,依题意得:40(x +1)=60x ,解得x =2.∴轿车出发后2小时追上大巴,此时,两车与学校相距60×2=120(千米),答,轿车出发后2小时追上大巴,此时,两车与学校相距120千米;(2)∵轿车出发后2小时追上大巴,此时,两车与学校相距120千米,∴大巴行驶了13小时,∴B(3,120),由图象得A(1,0),设AB 所在直线的解析式为y =kt +b ,∴{k +b =03k +b =120, 解得{k =60b ==60, ∴AB 所在直线的解析式为y =60t −60;(3)依题意得:40(a +1.5)=60×1.5,解得a =34.∴a 的值为34.【解析】(1)设轿车出发后x小时追上大巴,根据题意列出方程即可求解;(2)由图象及(1)的结果可得A(1,0),B(3,120),利用待定系数法即可求解;(3)根据题意列出方程即可求出a的值.本题考查了一元一次方程的应用,一次函数的应用,解决本题的关键根据函数图象解决问题,充分利用数形结合思想.23.如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=−x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.【答案】解:(1)①四边形OABC是边长为3的正方形,∴A(3,0),B(3,3),C(0,3);②把A(3,0),C(0,3)代入抛物线y=−x2+bx+c中得:{−9+3b+c=0 c=3,解得:{b=2 c=3;(2)∵AP⊥PM,∴∠APM=90°,∴∠APB+∠CPM=90°,∵∠B=∠APB+∠BAP=90°,∴∠BAP=∠CPM,∵∠B=∠PCM=90°,∴△MCP∽△PBA,∴PCAB =CMPB,即3−m3=nm,∴3n=m(3−m),∴n=−13m2+m=−13(m−32)2+34,∵−13<0,∴当m=32时,n的值最大,最大值是34.【解析】(1)①根据正方形的性质得出点A,B,C的坐标;②利用待定系数法求函数解析式解答;(2)根据两角相等证明△MCP∽△PBA,列比例式可得n与m的关系式,配方后可得结论.本题综合考查了二次函数,正方形的性质,待定系数法求函数解析式,相似三角形的性质和判定,根据正方形的性质求出点A、B、C的坐标是解题的关键,也是本题的突破口.24.已知在Rt△ABC中,∠ACB=90°,a,b分别表示∠A,∠B的对边,a>b.记△ABC的面积为S.(1)如图1,分别以AC,CB为边向形外作正方形ACDE和正方形BGFC.记正方形ACDE的面积为S1,正方形BGFC的面积为S2.①若S1=9,S2=16,求S的值;②延长EA交GB的延长线于点N,连结FN,交BC于点M,交AB于点H.若FH⊥AB(如图2所示),求证:S2−S1=2S.(2)如图3,分别以AC,CB为边向形外作等边三角形ACD和等边三角形CBE,记等边三角形ACD的面积为S1,等边三角形CBE的面积为S2.以AB为边向上作等边三角形ABF(点C在△ABF内),连结EF,CF.若EF⊥CF,试探索S2−S1与S之间的等量关系,并说明理由.【答案】(1)①解:∵S 1=9,S 2=16,∴b =3,a =4,∵∠ACB =90°,∴S =12ab =12×3×4=6; ②证明:由题意得:∠FAN =∠ANB =90°,∴∠FAH +∠NAB =90°,∵FH ⊥AB ,∴∠FAH +∠AFN =90°,∴∠AFN =∠NAB ,∴△AFN∽△NAB ,∴FN AN =AN NB ,即b+aa =ab , ∴ab +b 2=a 2,∴2S +S 1=S 2,∴S 2−S 1=2S ;(2)解:S 2−S 1=14S ,理由:∵△ABF 和△CBE 都是等边三角形,∴AB =FB ,CB =EB ,∠ABF =∠CBE =60°,∴∠ABF −∠CBF =∠CBE −∠CBF ,∴∠ABC =∠FBE ,在△ABC 和△FBE 中,{AB =FB∠ABC =∠FBE CB =EB ,∴△ABC≌△FBE(SAS),∴AC=FE=b,∠FEB=∠ACB=90°,∴∠FEC=90°−60°=30°,∵EF⊥CF,CE=BC=a,∴sin∠FEC=FCCE ,即sin30°=ba,∴b=asin30°=√32a,∴S=12ab=√34a2,∵△ACD和△CBE都是等边三角形,∴S1=√34b2,S2=√34a2,∴S2−S1=√34a2−√34b2=√34a2−√34(√32a)2=√316a2=14×√34a2,∴S2−S1=14S.【解析】(1)①由S1=9,S2=16,求得b=3,a=4,进而求出S=12ab=6;②先证明△AFN∽△NAB,得出FNAN =ANNB,进而得出ab+b2=a2,即可证明S2−S1=2S;(2)先证明△ABC≌△FBE(SAS),得出AC=FE=b,∠FEB=∠ACB=90°,求出∠FEC=30°,利用三角函数得出b=√32a,进而得出S=12ab=√34a2,利由等边三角形的性质求出S1=√34b2,S2=√34a2,通过计算得出S2−S1=14×√34a2,即可证明S2−S1=14S.本题考查了正方形的性质,全等三角形的判定与性质,等边三角形的性质,掌握正方形的性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形,相似三角形的判定与性质是解决问题的关键.。
2019-2020学年浙江省湖州市中考数学试题(含解析及答案)
2019-2020学年浙江省湖州市中考数学试题一、选择题(本题共10小题,每小题3分,共30分)1. 2018的相反数是()A. 2018B. ﹣2018C.D.【答案】B【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:因为与只有符号不同,的相反数是故选B.点睛:本题考查了相反数的概念,熟记相反数的定义是解题的关键.2. 计算﹣3a•(2b),正确的结果是()A. ﹣6abB. 6abC. ﹣abD. ab【答案】A【解析】分析:根据单项式的乘法解答即可.详解:-3a•(2b)=-6ab,故选:A.点睛:此题考查单项式的除法,关键是根据法则计算.3. 如图所示的几何体的左视图是()A. B. C. D.【答案】D【解析】从左边看是一个正方形,正方形的左上角是一个小正方形,故选C.4. 某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:则这一天16名工人生产件数的众数是()A. 5件B. 11件C. 12件D. 15件【答案】B【解析】分析:众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.详解:由表可知,11件的次数最多,所以众数为11件,故选:B.点睛:本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.5. 如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【答案】B【解析】分析:先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.详解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6. 如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A. (﹣1,﹣2)B. (﹣1,2)C. (1,﹣2)D. (﹣2,﹣1)【答案】A【解析】分析:直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.详解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).故选:A.点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.7. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A. B. C. D.【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8. 如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∵BD=DF,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=EF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.9. 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. rB. (1+)rC. (1+)rD. r【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG=r,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10. 在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A. a≤﹣1或≤a<B. ≤a<C. a≤或a>D. a≤﹣1或a≥【答案】A【解析】分析:根据二次函数的性质分两种情形讨论求解即可;详解:∵抛物线的解析式为y=ax2-x+2.观察图象可知当a<0时,x=-1时,y≤2时,满足条件,即a+3≤2,即a≤-1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,由,消去y得到,3ax2-2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故选:A.点睛:本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(本题共6小题,每小题4分,共24分)11. 二次根式中字母x的取值范围是_____.【答案】x≥3【解析】分析:由二次根式有意义的条件得出不等式,解不等式即可.详解:当x-3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.点睛:本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12. 当x=1时,分式的值是_____.【答案】【解析】由题意得:,解得:x=2. 故答案为:213. 如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是_____.【答案】2【解析】分析:根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC=3,BD=2OB.再解Rt△OAB,根据tan∠BAC=,求出OB=1,那么BD=2.详解:∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB.在Rt△OAB中,∵∠AOD=90°,∴tan∠BAC=,∴OB=1,∴BD=2.故答案为2.点睛:本题考查了菱形的性质,解直角三角形,锐角三角函数的定义,掌握菱形的对角线互相垂直平分是解题的关键.14. 如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是_____.【答案】70°【解析】分析:先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.详解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=∠ABC=×40°=20°,∴∠BOD=90°-∠OBD=70°.故答案为70°.点睛:本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.15. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是_____.【答案】﹣2【解析】分析:根据正方形的性质结合题意,可得出点B的坐标为(-,-),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.详解:∵四边形ABOC是正方形,∴点B的坐标为(-,-).∵抛物线y=ax2过点B,∴-=a(-)2,解得:b1=0(舍去),b2=-2.故答案为:-2.点睛:本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.16. 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【答案】9或13或49.【解析】分析:共有三种情况:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13;②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为:9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.三、解答题(本题有8个小题,共66分)17. 计算:(﹣6)2×(﹣).【答案】6【解析】分析:原式先计算乘方运算,再利用乘法分配律计算即可求出值.详解:原式=36×(-)=18-12=6.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18. 解不等式≤2,并把它的解表示在数轴上.【答案】x≤2,将不等式的解集表示在数轴上见解析.【解析】分析:先根据不等式的解法求解不等式,然后把它的解集表示在数轴上.详解:去分母,得:3x-2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:点睛:本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.19. 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.【答案】a的值是1,b的值是﹣2.【解析】分析:根据抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),可以求得a、b的值,本题得以解决.详解:∵抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),∴,解得,,即a的值是1,b的值是-2.点睛:本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.20. 某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.【答案】(1)97.2°;(2)D班选择环境保护的学生人数是15人;补全折线统计图见解析;(3)估计该校选择文明宣传的学生人数是950人.【解析】分析:(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A,B,C三个班选择环境保护的学生人数即可得出D班选择环境保护的学生人数,进而补全折线图;(3)用2500乘以样本中选择文明宣传的学生所占的百分比即可.详解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.点睛:本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.21. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.【答案】(1)证明见解析;(2)【解析】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径直定理即可证明。
2022年浙江省湖州市中考数学精选真题试卷附解析
2022年浙江省湖州市中考数学精选真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列说法正确的是( )A .tan80°<tan70°B .sin80°<sin70°C .cos80°<cos70°D .以上都不对2.如图,在△ABC 中,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E .若 BD+CE=9,则线段DE 的长为 ( )A .9B .8C .7D .63.计算:3÷6的结果是( ) A .12 B .62 C .32D .2 4.下列命题中错误的是( )A . 若25x =,则5x =B . 若a (0a ≥)为有理数,则a 是它的算术平方根C . 化简2(3)π-的结果是3π-D . 在直角三角形中,若两条直角边分别是5,25,则斜边长为 55.不等式组31413(3)024x x +<⎧⎪⎨+-<⎪⎩的最大整数解是( ) A .0 B .-1 C .-2 D .16.下面四个图形中,经过折叠能围成如图所示的立方体纸盒的是( )A .B .C .D . 7.如图所示,已知直角三角形ABC 中,∠ABC=90°,BD 平分∠ABC ,CE 平分∠ACB ,CE 、BD 相交于点F ,∠EFB=65°,则∠A=( )A .30°B .40°C .45°D .50°8.已知8m n +=,9mn =-,则22mn m n +的值是( )A . 72B . -72C .0D . 69.下列四个图形中,不是轴对称图形的是( )A .B .C .D .10.如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形( )A . 1对B .2对C .3对D .4对11.计算(18x 4-48x 3+6x )÷(-6x )的结果是( )A .3x 3-8x 2B .-3x 3+8x 2C .-3x 3+8x 2-1D .3x 3-8x 2-1 12.如图,将四边形AEFG 变换到四边形ABCD,其中E 、G 分别是AB 、AD 的中点.下列叙述不正确的是( )A .这种变换是相似变换B .对应边扩大原来的2倍C .各对应角度不变D .面积扩大到原来的2倍 13.过线段AB 的中点画直线l ⊥AB ,若AB=2 cm ,则点A 到直线l 的距离是( )A .1 cmB .3.2 cmC .4 cmD .无法计算 14.下列说法正确的是( )A .零减去一个数,仍得这个数B .减去一个数,等于加上这个数C .两个相反数相减得0D .有理数的加减法中,和不一定比加数大,差不一定比被减数小15. 下列各数中,比2-大的是( )A .|2|--B .(2)--C .(6)--D .(6)-+二、填空题16. 如图,点0是△ABC 的内心,内切圆与各边相切于点 D .E 、F ,则图中相等的线段(除半径外 )是:,,.17.2cos45°的值等于.18.如图,△ABC 内接于⊙O,A 所对弧的度数为 120°.∠ABG、∠ACB 的平分线分别交AC、AB 于点D、E,CE、BD 相交于点F,以下四个结论:①AC=12BC;②BC=BD;③EF=FD;④BF=2DF. 其中一定正确的结论的序号数是.19.在实数范围内有意义,则x的取值范围为: .20.为了了解某中学九年级250名学生升学考试的数学成绩,从中抽取了50名学生的数学成绩进行分析,下面是50名学生数学成绩的频数分布表.频数分布表根据题中给出的条件回答下列问题:(1)在这次抽样分析的过程中,样本是;(2)补全频数分布表中的空白之处;(3)在这次升学考试中,该校九年级数学成绩在90.5~100.5分范围内的人数约为人.21.若1x a=+是不等式1122x-<的解,则a.22.等腰三角形一边长为2 cm,另一边长为5cm,它的周长是 cm.23.一个盒子中有 10个完全相同的球,分别标以号码1,2,…,10,从中任意摸出一个球,则P(摸到球的标号为偶数)= .24.如图,若用整个圆代表某校的总人数1800人,则七年级大约 人,九年级大约有 人.25.41()2-表示的意义是 ,22223333⨯⨯⨯可写成 . 26. 计算:1009998976543+21-+-++-+--= .三、解答题27.已知二次函数2y ax bx c =++,当x=1 时,y=一2,当x=0时,y=一 1,当x=—1时,y= 一4,求此函数的解析式.28.如图,已知在△ABC 中,D 是边BC 上一点,且CD=AC ,∠ACB 的平分线交AD 于点E ,点F 是AB 边的中点.求证:EF ∥BC .29..有一块菜地,地形如图,试求它的面积s(单位:m).30.已知a 是7 的相反数,比a 的相反数大b 比a 大多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.B4.A5.C6.B7.D8.B9.A10.C11.CD13.A14.D15.C二、填空题16.AD =AF,BD =BE,CE=CF.17.218.③19.x≥320.(1)被抽取的50名学生的数学成绩;(2)划记:;频数:6,10,50;(3)85 21.<522.1223.1224.630,55825.4个(12)相乘,42()326.50三、解答题由已知得214a b c c a b c ++=-⎧⎪=-⎨⎪-+=-⎩,解这个方程组得211a b c =-⎧⎪=⎨⎪=-⎩ ∴ 这个函数的解析式:221y x x =-+- 28.证EF 是△ABD 的中位线即可 29.24m 230.17。
初中毕业升学考试(浙江湖州卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(浙江湖州卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】计算(﹣20)+16的结果是()A.﹣4 B.4 C.﹣2016 D.2016【答案】A【解析】试题分析:根据有理数的加法运算法则进行计算即可得解.(﹣20)+16=﹣(20﹣16)=﹣4.考点:有理数的加法【题文】为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中及时轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误;D、是轴对称图形,又是中心对称图形.故正确.考点:(1)中心对称图形;(2)轴对称图形【题文】由六个相同的立方体搭成的几何体如图所示,则它的主视图是()评卷人得分A. B. C. D.【答案】A【解析】试题分析:根据主视方向确定看到的平面图形即可.结合几何体发现:从主视方向看到上面有一个正方形,下面有3个正方形考点:简单组合体的三视图【题文】受“乡村旅游第一市”的品牌效应和2015年国际乡村旅游大会的宣传效应的影响,2016年湖州市在春节黄金周期间共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是()A.28×105 B.2.8×106 C.2.8×105 D.0.28×105【答案】B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.2800000=2.8×106考点:科学记数法—表示较大的数.【题文】数据1,2,3,4,4,5的众数是()A.5 B.3 C.3.5 D.4【答案】D【解析】试题分析:直接利用众数的定义分析得出答案.∵数据1,2,3,4,4,5中,4出现的次数最多,∴这组数据的众数是:4考点:众数【题文】如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【答案】C【解析】试题分析:过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.考点:角平分线的性质【题文】有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3, 4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A. B. C. D.【答案】C【解析】试题分析:先求出绝对值方程|x﹣4|=2的解,即可解决问题.∵|x﹣4|=2,∴x=2或6.∴其结果恰为2的概率==考点:(1)列表法与树状图法;(2)绝对值;(3)概率的意义【题文】如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°【答案】B【解析】试题分析:首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案.连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°﹣∠BOC=40°考点:(1)切线的性质;(2)圆周角定理.【题文】定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”,的图象都进过同一点,下列判断正确的是()A.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题【答案】C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax2+bx经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.考点:(1)命题与定理;(2)新定义型【题文】如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B. C.3 D.2【答案】B【解析】试题分析:只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.考点:(1)翻折变换(折叠问题);(2)四点共圆;(3)等腰三角形的性质;(4)相似三角形的判定与性质.【题文】数5的相反数是.【答案】﹣5【解析】试题分析:直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.考点:相反数.【题文】方程=1的根是x= .【答案】﹣2【解析】试题分析:把分式方程转化成整式方程,求出整式方程的解,再代入x﹣3进行检验即可.两边都乘以x﹣3,得:2x﹣1=x﹣3,解得:x=﹣2,检验:当x=﹣2时,x﹣3=﹣5≠0,故方程的解为x=﹣2考点:分式方程的解【题文】如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是.【答案】5【解析】试题分析:首先说明AD=DB,利用直角三角形斜边中线等于斜边一半,即可解决问题.由题意EF是线段AB的垂直平分线,∴AD=DB, Rt△ABC中,∵∠ACB=90°,BC=6,AC=8,∴AB==10,∵AD=DB,∠ACB=90°,∴CD=AB=5考点:(1)作图—基本作图;(2)直角三角形斜边上的中线;(3)勾股定理.【题文】如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.【答案】90【解析】试题分析:如图2,AB∥CD,∠AEC=90°,作EF∥AB,根据平行线的传递性得到EF∥CD,则根据平行线的性质得∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEC=90°如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°考点:平行线的性质【题文】已知四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是.【答案】y<a<b<x【解析】试题分析:由x+y=a+b得出y=a+b﹣x,x=a+b﹣y,求出b<x,y<a,即可得出答案.∵x+y=a+b,∴y=a+b﹣x,x=a+b﹣y,把y=a=b﹣x代入y﹣x<a﹣b得:a+b﹣x﹣x<a﹣b,2b<2x, b<x①,把x=a+b﹣y代入y﹣x<a﹣b得:y﹣(a+b﹣y)<a﹣b,2y<2a, y<a②,∵b>a③,∴由①②③得:y<a<b<x考点:有理数大小比较【题文】已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是.【答案】(1)-2;(2)3【解析】试题分析:(1)设出点P的坐标,根据平移的特性写出点Q的坐标,由点P、Q均在一次函数y=kx+b(k ,b为常数,且k<0,b>0)的图象上,即可得出关于k、m、n、b的四元一次方程组,两式做差即可得出k值;(2)根据BO⊥x轴,CE⊥x轴可以找出△AOB∽△AEC,再根据给定图形的面积比即可得出,根据一次函数的解析式可以用含b的代数式表示出来线段AO、BO,由此即可得出线段CE、AE的长度,利用OE=AE﹣AO求出OE的长度,再借助于反比例函数系数k的几何意义即可得出关于b的一元二次方程,解方程即可得出结论.考点:(1)反比例函数与一次函数的交点问题;(2)反比例函数系数k的几何意义.【题文】计算:tan45°﹣sin30°+(2﹣)0.【答案】1.5【解析】试题分析:直接利用特殊角的三角函数值以及零指数幂的性质分析得出答案.试题解析:原式=1﹣0.5+1=1.5考点:(1)实数的运算;(2)零指数幂;(3)特殊角的三角函数值【题文】当a=3,b=﹣1时,求下列代数式的值.(1)(a+b)(a﹣b);(2)a2+2ab+b2.【答案】(1)8;(2)4【解析】试题分析:(1)把a与b的值代入计算即可求出值;(2)原式利用完全平方公式变形,将a与b的值代入计算即可求出值.试题解析:(1)当a=3,b=﹣1时,原式=2×4=8;(2)当a=3,b=﹣1时,原式=(a+b)2=22=4.考点:代数式求值【题文】湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?【答案】(1)y=;(2)100米【解析】试题分析:(1)根据矩形的面积=长×宽,列出y与x的函数表达式即可;(2)把x=20代入计算求出y 的值,即可得到结果.试题解析:(1)由长方形面积为2000平方米,得到xy=2000,即y=;(2)当x=20(米)时,y==100(米),则当鱼塘的宽是20米时,鱼塘的长为100米.考点:反比例函数的应用.【题文】如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.【答案】(1)证明过程见解析;(2)π【解析】试题分析:(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案;(2)首先求出的度数,再利用弧长公式直接求出答案.试题解析:(1)∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠BAD=105°,∴∠DCB=180°﹣105°=75°,∵∠DBC=75°,∴∠DCB=∠DBC=75°,∴BD=CD;(2)∵∠DCB=∠DBC=75°,∴∠BDC=30°,由圆周角定理,得,的度数为:60°,故===π,答:lB组60≤x<70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?【答案】(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图【题文】随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从年底的万个增长到年底的万个,求该市这两年(从年底到年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共间,这三类养老专用房间分别为单人间(个养老床位),双人间(个养老床位),三人间(个养老床位),因实际需要,单人间房间数在至之间(包括和),且双人间的房间数是单人间的倍,设规划建造单人间的房间数为.①若该养老中心建成后可提供养老床位个,求的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?【答案】(1)20%;(2)①、t=25;②、最多提供养老床位260个,最少提供养老床位180个【解析】试题分析:(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)①、设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t ,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;②、设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.试题解析:(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,由题意得:t+4t+3=200,解得:t=25.答:t的值是25.②、设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3=﹣4t+300(10≤t≤30),∵k=﹣4<0,∴y随t的增大而减小.当t=10时,y的最大值为300﹣4×10=260(个),当t=30时,y的最小值为300﹣4×30=180(个).答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.考点:(1)一次函数的应用;(2)一元一次方程的应用;(3)一元二次方程的应用.【题文】如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).【答案】(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).【解析】试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,解得∴二次函数解析式为y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,∴点M的坐标为(1,5);(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得,解得:∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)∴1<5﹣m<3,解得2<m<4;(3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点①若有△PCM∽△BDC,则有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若点P在y轴右侧,作PH⊥y轴,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,则有∴CP==3∴PH=3÷=3,若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).考点:二次函数综合题【题文】数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t=.【答案】(1)证明过程见解析;(2)证明过程见解析;(3)t=【解析】试题分析:(1)①先证明△ABC,△ACD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明.(2)设DH=x,由由题意,CD=2x,CH=x,由△ACE∽△HCF,得=由此即可证明;(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得=,由AB•CM=AD•CN,AD=3AB,推出CM=3CN,所以==,设CN=a,FN=b,则CM=3a,EM=3b,想办法求出AC,AE+3AF即可解决问题.试题解析:(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM ,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a,∴==.考点:几何变换综合题.。
2022年浙江省湖州市中考数学试卷乙卷附解析
2022年浙江省湖州市中考数学试卷乙卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.sin65°与 cos26°之间的系是()A.sin65°<cos26°B.sin65°>cos26°C.sin65°= cos26°D.sin65°+cos26°= 12.下列命题中,不正确的是()A.两个三角形有两组角对应相等,则这两个三角形相似B.角三角形被斜边上的高分成的两个直角三角形和原三角形相似C.两个三角形有两组边对应成比例,则这两个三角形相似D.两个三角形有两组边对应成比例且夹角相等,则这两个三角形相似3.下列说法中正确的是()A.一组对边平行的四边形是梯形B.矩形是特殊的等腰梯形C.有两个角相等的梯形是等腰梯形D.等腰梯形是轴对称图形4.如图,a∥b,∠2是∠1的3倍,则∠ 2等于()A°45° B. 90° C. 135° D.150°5.已知a<0,若-3a n·a3的值大于零,则n的值只能是()A.n为奇数B.n为偶数C.n为正整数D.n为整数6.下面每组图形中的两个图形不是通过相似变换得到的是()7.已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB之比为()A.3:4 B.2:3 C.3:5 D.1:28.设某数为x,“比某数的12大3的数等于5的相反数”,列方程为()A.1352x-+=-B.1352x+=-C.1(3)52x-+=D.1352x-=-9.当 a=-3,b= 0,c=-4,d=9时,(a-b)×(c+d)的值是()A .10B .13C .-14D .-15二、填空题10.如图,正方形ABCD 内切圆的面积为π81,则正方形的周长为 .11.如图,⊙O 1与⊙O 2交于点 A .B 且 AO 1、AO 2分别是两圆的切线,A 是切点,若⊙O 1的半径r 1 =3 cm ,⊙O 2的半径r 2 =4 cm ,则弦 AB = ㎝.12.若θ为锐角,且sin θ=32,则tan θ= . 13.函数7y x =-的图象在第每一象限内,y 的值随x 的增大而_____________. 14.实数a 在数轴上的位置如图所示,2a = .15.4x -中,字母x 的取值范围是 .16.已知一种卡车每辆至多能载4吨货物,现有38吨黄豆,若要一次运完这批黄豆,至少需要这种卡车 辆.17.(1)要了解我国八年级学生的视力情况,你认为合适的调查方式是 .(2)为了了解一个有1名员工的集团公司所有人的平均工资,到5个分厂各抽查10名干部的工资进行统计,这种抽样办法是否合适? .理由是 . 18.在943=+y x 中,如果62=y ,那么=x .19.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才所想数字,把乙所猜数字记为b ,且a 、b 分别取0、1、2、3,若a ,b 满足1a b -≤,则称甲、乙两人“心有灵犀”,现任意找两人玩这个游戏,得出“心有灵犀”的概率为 .20.体育课上,教师让全班 54 名同学每人拿一张扑克牌进行打仗游戏,规则是以大吃小.小陈同学拿的是红桃 6,当他与对面一个同学进行交锋时,他牺牲的可能性大呢还是生存的可能性大? ;理由: .21.已知多项式539ax bx cx +++,当1x =-时,多项式的值为17,则该多项式当x=1时的值是 .22.化简:(7y - 3z)- (8y - 5z)= .三、解答题23.梯形ABCD 中,AD ∥BC ,∠B=50°,∠C=80°,AD=10 cm ,BC=18 cm ,求CD 的长.24.为了防止“传染性”病毒入侵校园,根据上级疾病控制中心的要求:每m2的教室地面,需用质量分数为0.2%的过氧乙酸溶液200g进行喷洒消毒.(1)请估算:你所在班级的教室地面面积约为 m2(精确到1m2);(2)请计算:需要用质量分数为20%的过氧乙酸溶液多少g加水稀释,才能按疾病控制中心的要求,对你所在班级的教室地面消毒一次?25.计算:(1)8x3÷(-2x)2-(3x2-x) (2)(5xy+3x2y)÷(-xy)-2x(6x-7)26.如图,先把△ABC作相似变换,放大到原来的2倍,且保持B点不动;再把所得的像向上平移6格,再向右平移2格.27.如图所示,将△ABC经相似变换、边长扩大一倍得到像△A′B′C′.(1)请你画出像△A′B′C′.(2)猜测△A′B′C′的面积是△ABC的面积的多少倍.28.明明在电脑中设计了一个有理数运算的程序:2231[2(1)]() a b a b a a bb*=----÷-.(1)求(-2)1(2)()2-*的值;(2)芳芳在运用这个程序计算时,输入数据后屏幕显示“该操作无法进行”. 请你猜想芳芳输入数据时,可能出现了什么情况?为什么?29.把下列各数填入相应的括号内:-2.5,10,0.22,0,1213-,-20,+9.78,+68,0.45,47+自然数{ };负整数{ };正分数{ };有理数{ }.30.某校八年一班的一节数学活动课安排了测量操场上悬挂国旗的旗杆的高度.甲、乙、丙三个学习小组设计的测量方案如图所示:甲组测得图中BO=60米,OD=3.4米,CD=1.7米;乙组测得图中,CD=1.5米,同一时刻影长FD=0.9米,EB=18米;丙组测得图中,EF∥AB、FH∥BD,BD=90米,EF=0.2米,人的臂长(FH)为0.6米,请你任选一种方案,利用实验数据求出该校旗杆的高度.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.C5.B6.D7.A8.B9.D二、填空题10.7211.24512..增大14.-a15.4x >16.1017.(1)抽样调查;(2)不合适,样本不具有代表性18.-119.8520. 牺牲的可能性大,大于6的牌数多于小于6的牌数21.122.2y z -+三、解答题23.CD=8 cm24.根据教室面积估算25.(1)3x -3x 2 ,(2)-12x 2+11x -526.略27.(1)图略;(2)S 4A B C ABC S S '''∆∆=28.(1)※(12)=(-2)2211121(2)()[2(81)2](2)420422454------÷--=--⨯=-; (2)有两种可能:①输入了0b =,∵0没有倒数,∴电脑无法操作;②输入的a 、b 两数相等,∵a b =,∴0a b -=,而0不能作除数,∴电脑也无法操作. 29.自然数{10,0,+68,·…};负整数{-20,…};正分数{0.22,+9.78,有理数{-2.5,10,0.22,0,1312-,-20, +9.78,+68, 0.45,47+,…} 30.该校的旗杆为30米.。
2021年浙江省湖州市中考数学试卷(解析版)
浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1.(3分)数4的算术平方根是()A.2B.﹣2C.±2D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∵4的算术平方根为2.故选:A.2.(3分)近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约991000亿元,则数991000用科学记数法可表示为()A.991×103B.99.1×104C.9.91×105D.9.91×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将991000用科学记数法表示为:9.91×105.故选:C.3.(3分)已知某几何体的三视图如图所示,则该几何体可能是()A.B.C.D.【分析】根据两个视图是长方形得出该几何体是锥体,再根据俯视图是圆,得出几何体是圆锥.【解答】解:∵主视图和左视图是三角形,∵几何体是锥体,∵俯视图的大致轮廓是圆,∵该几何体是圆锥.故选:A.4.(3分)如图,已知四边形ABCD内接于∵O,∵ABC=70°,则∵ADC的度数是()A.70°B.110°C.130°D.140°【分析】根据圆内接四边形的性质即可得到结论.【解答】解:∵四边形ABCD内接于∵O,∵ABC=70°,∵∵ADC=180°﹣∵ABC=180°﹣70°=110°,故选:B.5.(3分)数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.2【分析】根据题目中的数据,可以求得这组数据的平均数,本题得以解决.【解答】解:==2,故选:D.6.(3分)已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关【分析】先计算出判别式的值,再根据非负数的性质判断∵>0,然后利用判别式的意义对各选项进行判断.【解答】解:∵∵=b2﹣4×(﹣1)=b2+4>0,∵方程有两个不相等的实数根.故选:A.7.(3分)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∵D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.【分析】根据30°角所对的直角边等于斜边的一半可知菱形ABC′D′的高等于AB的一半,再根据正方形的面积公式和平行四边形的面积公式即可得解.【解答】解:根据题意可知菱形ABC′D′的高等于AB的一半,∵菱形ABC′D′的面积为,正方形ABCD的面积为AB2.∵菱形ABC′D′的面积与正方形ABCD的面积之比是.故选:B.8.(3分)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A 和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=x+2C.y=4x+2D.y=x+2【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【解答】解:∵直线y=2x+2和直线y=x+2分别交x轴于点A和点B.∵A(﹣1,0),B(﹣3,0)A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;C、y=4x+2与x轴的交点为(﹣,0);故直线y=4x+2与x轴的交点不在线段AB上;D、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;故选:C.9.(3分)如图,已知OT是Rt∵ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作∵O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC【分析】如图,连接OD.想办法证明选项A,B,C正确即可解决问题.【解答】解:如图,连接OD.∵OT是半径,OT∵AB,∵DT是∵O的切线,∵DC是∵O的切线,∵DC=DT,故选项A正确,∵OA=OB,∵AOB=90°,∵∵A=∵B=45°,∵DC是切线,∵CD∵OC,∵∵ACD=90°,∵∵A=∵ADC=45°,∵AC=CD=DT,∵AC=CD=DT,故选项B正确,∵OD=OD,OC=OT,DC=DT,∵∵DOC∵∵DOT(SSS),∵∵DOC=∵DOT,∵OA=OB,OT∵AB,∵AOB=90°,∵∵AOT=∵BOT=45°,∵∵DOT=∵DOC=22.5°,∵∵BOD=∵ODB=67.5°,∵BO=BD,故选项C正确,故选:D.10.(3分)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1B.1和2C.2和1D.2和2【分析】根据要求拼平行四边形矩形即可.【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)计算:﹣2﹣1=﹣3.【分析】本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可.【解答】解:﹣2﹣1=﹣3故答案为:﹣312.(4分)化简:=.【分析】直接将分母分解因式,进而化简得出答案.【解答】解:==.故答案为:.13.(4分)如图,已知AB是半圆O的直径,弦CD∵AB,CD=8,AB=10,则CD与AB 之间的距离是3.【分析】过点O作OH∵CD于H,连接OC,如图,根据垂径定理得到CH=DH=4,再利用勾股定理计算出OH=3,从而得到CD与AB之间的距离.【解答】解:过点O作OH∵CD于H,连接OC,如图,则CH=DH=CD=4,在Rt∵OCH中,OH==3,所以CD与AB之间的距离是3.故答案为3.14.(4分)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红∵,红∵,两次摸球的所有可能的结果如表所示,白红∵红∵第二次第一次白白,白白,红∵白,红∵红∵红∵,白红∵,红∵红∵,红∵红∵红∵,白红∵,红∵红∵,红∵则两次摸出的球都是红球的概率是.【分析】根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.【解答】解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt∵ABC是6×6网格图形中的格点三角形,则该图中所有与Rt∵ABC相似的格点三角形中.面积最大的三角形的斜边长是5.【分析】根据Rt∵ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt∵ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.【解答】解:∵在Rt∵ABC中,AC=1,BC=2,∵AB=,AC:BC=1:2,∵与Rt∵ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∵∵ABC∵∵DEF,∵∵DEF=∵C=90°,∵此时∵DEF的面积为:×2÷2=10,∵DEF为面积最大的三角形,其斜边长为:5.故答案为:5.16.(4分)如图,已知在平面直角坐标系xOy中,Rt∵OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若∵ACD的面积是2,则k的值是.【分析】作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S∵OCE=S∵OBD=k,根据OA的中点C,利用∵OCE∵∵OAB得到面积比为1:4,代入可得结论.【解答】解:连接OD,过C作CE∵AB,交x轴于E,∵∵ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,∵S∵COE=S∵BOD=,S∵ACD=S∵OCD=2,∵CE∵AB,∵∵OCE∵∵OAB,∵,∵4S∵OCE=S∵OAB,∵4×k=2+2+k,∵k=,故答案为:.三、解答题(本题有8小题,共66分)17.(6分)计算:+|﹣1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解答】解:原式=2+﹣1=3﹣1.18.(6分)解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解∵得x<1;解∵得x<﹣6.故不等式组的解集为x<﹣6.19.(6分)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∵AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∵AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到1cm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【分析】(1)过点B作BE∵AC于E,根据等腰三角形的性质得到∵OAC=∵OCA==30°,根据三角函数的定义即可得到结论;(2)过点B作BE∵AC于E,根据等腰三角形的性质和三角函数的定义即可得到结论.【解答】解:(1)过点B作BE∵AC于E,∵OA=OC,∵AOC=120°,∵∵OAC=∵OCA==30°,∵h=BE=AB•sin30°=110×=55;(2)过点B作BE∵AC于E,∵OA=OC,∵AOC=74°,∵∵OAC=∵OCA==53°,∵AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.20.(8分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【分析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的,即30%,因此相应的圆心角的度数为360°的30%;(3)样本中“非常满意”或“满意”的占调查人数的(+),进而估计总体中“非常满意”或“满意”的人数.【解答】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.21.(8分)如图,已知∵ABC是∵O的内接三角形,AD是∵O的直径,连结BD,BC平分∵ABD.(1)求证:∵CAD=∵ABC;(2)若AD=6,求的长.【分析】(1)由角平分线的性质和圆周角定理可得∵DBC=∵ABC=∵CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】解:(1)∵BC平分∵ABD,∵∵DBC=∵ABC,∵∵CAD=∵DBC,∵∵CAD=∵ABC;(2)∵∵CAD=∵ABC,∵=,∵AD是∵O的直径,AD=6,∵的长=××π×6=π.22.(10分)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.∵求乙车间需临时招聘的工人数;∵若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.【分析】(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得关于x和y的方程组,求解即可.(2)∵设方案二中乙车间需临时招聘m名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m的分式方程,求解并检验即可;∵用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.【解答】解:(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:,解得.∵甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)∵设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.∵乙车间需临时招聘5名工人.∵企业完成生产任务所需的时间为:=18(天).∵选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∵选择方案一能更节省开支.23.(10分)已知在∵ABC中,AC=BC=m,D是AB边上的一点,将∵B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∵C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∵C=90°,m=6,AD=7,过点D作DH∵AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B 落在AC边上两个不同的位置,请直接写出a的取值范围.【分析】(1)证明∵ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.(3)如图3中,过点C作CH∵AB于H,过点D作DP∵AC于P.求出DP=DB时AD的值,结合图形即可判断.【解答】(1)证明:∵AC=BC,∵C=60°,∵∵ABC是等边三角形,∵AC=AB,∵A=60°,由题意,得DB=DP,DA=DB,∵DA=DP,∵∵ADP使得等边三角形,∵AP=AD=AB=AC.(2)解:∵AC=BC=6,∵C=90°,∵AB===12,∵DH∵AC,∵DH∵BC,∵∵ADH∵∵ABC,∵=,∵AD=7,∵=,∵DH=,将∵B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∵DP1=DB=AB﹣AD=5,∵HP1===,∵A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=,∵AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH∵AB于H,过点D作DP∵AC于P.∵CA=CB,CH∵AB,∵AH=HB=6,∵CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵tan A==,∵=,∵x=,∵AD=AB﹣BD=,观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∵x轴时,∵已知点A的坐标是(﹣2,1),求抛物线的解析式;∵若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.【分析】(1)∵先确定出点C的坐标,再用待定系数法即可得出结论;∵先确定出抛物线的顶点坐标,进而得出DF=,再判断出∵AFD∵∵BCO,得出DF=OC,即可得出结论;(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),判断出∵AFD∵∵BCO(AAS),得出AF=BC,DF=OC,再判断出∵ANF∵∵AMC,得出=,进而求出m的值,得出点A的纵坐标为c﹣<c,进而判断出点M的坐标为(0,c﹣),N(﹣1,c﹣),进而得出CM=,DN=,FN=﹣c,进而求出c=,即可得出结论.【解答】解:(1)∵∵AC∵x轴,点A(﹣2,1),∵C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,∵,∵抛物线的解析式为y=﹣x2﹣2x+1;∵如图1,过点D作DE∵x轴于E,交AB于点F,∵AC∵x轴,∵EF=OC=c,∵点D是抛物线的顶点坐标,∵D(,c+),∵DF=DE﹣EF=c+﹣c=,∵四边形AOBD是平行四边形,∵AD=DO,AD∵OB,∵∵DAF=∵OBC,∵∵AFD=∵BCO=90°,∵∵AFD∵∵BCO(AAS),∵DF=OC,∵=c,即b2=4c;(2)如图2,∵b=﹣2.∵抛物线的解析式为y=﹣x2﹣2x+c,∵顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE∵x轴于点E,交AB于F,∵∵AFD=∵EFC=∵BCO,∵四边形AOBD是平行四边形,∵AD=BO,AD∵OB,∵∵DAF=∵OBC,∵∵AFD∵∵BCO(AAS),∵AF=BC,DF=OC,过点A作AM∵y轴于M,交DE于N,∵DE∵CO,∵∵ANF∵∵AMC,∵=,∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∵,∵,∵点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,∵AM∵x轴,∵点M的坐标为(0,c﹣),N(﹣1,c﹣),∵CM=c﹣(c﹣)=,∵点D的坐标为(﹣1,c+1),∵DN=(c+1)﹣(c﹣)=,∵DF=OC=c,∵FN=DN﹣DF=﹣c,∵=,∵,∵c=,∵c﹣=,∵点A纵坐标为,∵A(﹣,),∵存在这样的点A,使四边形AOBD是平行四边形.。
最新浙江省湖州市中考数学真题试卷附解析
浙江省湖州市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,沿 AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从 AC 上的一点B ,取ABD= 145°,BD= 500 米,D= 55°. 要使A 、C 、E 成一直线,那么开挖点 E 离点D 的距离是( )A .0500sin55米B .500cos55o 米C .500tan55o 米D .500cot55o 米2.如图,以Rt ABC △的直角边AC 所在的直线为轴,将ABC △旋转一周,所形成的几何体的俯视图是( )3.若∠A 为锐角,且3sin 5A =,则( ) A .0°<∠A<30°B .30°<∠A<45°C .45°<∠A <60°D .60°<∠A <90°4.化简20的结果是( )A .25B .52C . 210D .545. 下列化简中错误的是( )A 55599==B 0.0l 0.49⨯0.0l 0.49=0.10.70.07=⨯=C 22114777D 1111111494977=⨯= 6.点(0,1),(12,0),(-1,-2),(-1,0)中,在x 轴上的点有( )A.1个B.2个C.3个D.4个7.如图,能判定 AB∥CD 的条件是()A.∠1=∠2 B.∠1+∠2= 180°C.∠3=∠4 D.∠3+∠1=180°8.若22440a ab b-+=,则代数式23a ba b-+的值是()A.1 B.35C.45D.无法确定9.如果22129k xy x-+是一个完全平方式,那么k应为()A.2 B.4 C.22y D.44y10.如果2(1)()23x x a x x-+=+-,那么 a 的值是()A.3 B.-2 C.2 D.311.如图,可知三年中该区平均每年销售盒饭()A. 96万盒B. 95.5万盒C.112万盒D.无法判断12.绝对值大于 1小于4的所有整数的和是()A. 0 B.5 C.-5 D. 10二、填空题13.若θ为三角形的一个锐角,且2sin3θ=,则θ= .14.等腰△ABC中,AB=AC=5,BC=6,若直线BC与⊙A相切,则⊙A的半径为 . 15.放大镜中的四边形与原四边形的形状.(填“相同”或“不相同”).16.如图是某市一景点 6月份 1~10 日每天的最高温度折线统计图,由图信息可知该景点这10天的最高温度的平均数是 .17.菱形的两条对角线分别是6cm,8cm,则菱形的边长为 .18.已知正方形的面积为4,则正方形的边长为 ,对角线长为 .19.在等腰△ABC中,BC=8,AB、AC的长度是关于x的方程x2-10x+m=0的两个根,则m 的值是 .20.如图,某同学不小心把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.21.如图,AC、BC被AB所截的同旁内角是.22.某商品原价为a元,若按此价的8折出售,仍获利 b%,则此商品进价是元.23.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形……如此继续下去,结果如下表.所剪次数1234…n正三角形个数471013…na则na= (用含n的代数式表示).解答题24.华氏温度f和摄氏温度C的关系为9325f c=+,当人的体温为 37℃时,华氏温度为度.解答题三、解答题25.小明正在操场上放风筝(如图所示),风筝线拉出长度为200m,风筝线与水平地面所成的角度为62°,他的风筝飞得有多高? (精确到lm)26.如图,乐器上的一根弦AB=80cm,两个端点A、B 固定在乐器板面上,支拨点C是靠近点B的黄金分割点,支撑点 D是靠近点A的黄金分割点,试确定支撑点C到端点B的距离、支点 D到端点A 的距离以及 CD 长.27.一元二次方程2-++=有实数根,则k应满足什么条件?k x x(1)21028.已知,如图,点B,F,C,E在同一直线上,AC,DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.试说明:(1)△ABC≌△DEF;(2)GF=GC.29.某风景区的旅游路线示意图如图,B、D、C、E为风景点,F为两条路的交叉点,图中数据为相应两点间的路程(单位:km),一位同学从A处出发,以3 km/h的速度步行游览,每个景点的逗留时间均为0.5 h.(1)当他沿着路线A→D→C→F→E→A游览回到A处时,共用了3.5 h,求路程CF的长;(2)若此同学打算从A处出发后,步行速度与在景点的逗留时间保持不变,游览完B、D、C、E中的任意三个景点后,仍返回A处,使时间小于3.5 h,请你为他设计一条步行路线.并说明这样设计的理由(不考虑其它因素).30.如图,数轴上点0表示原点,点A表示-2,点B表示1,点C表示2.(1)数轴可以看作是什么图形?(2)数轴上原点及原点左边的部分是什么图形?应怎样表示?(3)射线AB和射线BA有什么不同?(4)数轴上表示绝对值不大于2的部分是什么图形?这个图形怎样表示?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.B5.D6.B7.B8.B9.D10.D11.A12.A二、填空题13.60°14.415.相同16.26.4℃17.5 cm, 24 cm 218.2,19.25或1620.③21.∠A 和∠422.80100a b+23. 31n +24.98.6三、解答题25.如图,Rt △ABC 中,00sin 62200sin 62177BC AB =⋅=⋅≈(m) 26.∵8040)AC =,8040)(120BC AD ==-=-cm∴40-(120160)CD AC AD=-=-=cm.27.k≠2k≤且128.(1)略 (2)∵△ABC≌△DEF,∴∠DFC=∠ACF29.(1)1.2 km (2)A→E→F→C→B→F→E→A30.(1)直线 (2)射线;射线OA (3)①端点不同;②方向不同 (4)线段;线段0B或BC。
2021年浙江省湖州市中考数学试卷(解析版)
A.1
B.2
C.3
D.4
【考点】二次函数图象上点的坐标特征;抛物线与 x 轴的交点
【专题】二次函数图象及其性质;推理能力 【分析】不妨假设 a > 0 ,利用图象法一一判断即可. 【解答】解:不妨假设 a > 0 . ①如图 1 中, P1 , P2 满足 x1 > x2 + 2 ,
∵ P1P2 / / AB ,
D.1,2
【考点】估算无理数的大小
【专题】二次根式;运算能力
【分析】先估算出 3 的范围,再得到 3 −1的范围即可.
【解答】解:∵1 < 3 < 4 ,
∴1 < 3 < 2 ,
第 4 页(共 43 页)
∴0 < 3 −1<1, 故选: C . 【点评】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是 解题的关键. 8.(3 分)(2021•湖州)如图,已知在 ∆ABC 中, ∠ABC < 90° , AB ≠ BC , BE 是 AC 边上 的中线.按下列步骤作图:①分别以点 B , C 为圆心,大于线段 BC 长度一半的长为半 径作弧,相交于点 M , N ;②过点 M , N 作直线 MN ,分别交 BC , BE 于点 D ,O ;③ 连接 CO , DE .则下列结论错误的是 ( )
50
【考点】概率公式
【专题】运算能力;概率及其应用
【分析】根据概率公式直接求解即可.
第 10 页(共 43 页)
【解答】解:只抽 1 张奖券恰好中奖的概率是 5 +15 = 1 .
1000 50 1
故答案为: .
A.4
B. ±4
C. 2 2
2023年浙江省湖州市中考数学试卷含答案解析
绝密★启用前2023年浙江省湖州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.下列各数中,最小的数是( )A. −2B. −1C. 1D. 02.计算a3⋅a的结果是( )A. a2B. a3C. a4D. a53.国家互联网信息办公室2023年5月23日发布的《数字中国发展报告(2022年)》显示,2022年我国数字经济规模达502000亿元.用科学记数法表示502000,正确的是( )A. 0.502×106B. 5.02×106C. 5.02×105D. 50.2×1044.已知某几何体的三视图如图所示,则该几何体可能是( )A.B.C.D.5.若分式x−1的值为0,则x的值是( )3x+1A. 1B. 0C. −1D. −36.如图,点A,B,C在⊙O上,连结AB,AC,OB,OC.若∠BAC=50°,则∠BOC的度数是( )A. 80°B. 90°C. 100°D. 110°7.某住宅小区6月1日~6月5日每天用水量情况如图所示,那么这5天平均每天的用水量是( )A. 25立方米B. 30立方米C. 32立方米D. 35立方米8.某品牌新能源汽车2020年的销售量为20万辆,随着消费人群的不断增多,该品牌新能源汽车的销售量逐年递增,2022年的销售量比2020年增加了31.2万辆.如果设从2020年到2022年该品牌新能源汽车销售量的平均年增长率为x,那么可列出方程是( )A. 20(1+2x)=31.2B. 20(1+2x)−20=31.2C. 20(1+x)2=31.2D. 20(1+x)2−20=31.29.如图,已知∠AOB,以点O为圆心,适当长为半径作圆弧,与角的两边分别交于C,D两点,分别以点C,D为圆心,大于1CD长为半径作圆弧,两条圆弧交于∠AOB内一2点P,连结OP,过点P作直线PE//OA,交OB于点E,过点P作直线PF//OB,交OA于点F.若∠AOB=60°,OP=6cm,则四边形PFOE的面积是( )A. 12√ 3cm2B. 6√ 3cm2C. 3√ 3cm2D. 2√ 3cm210.已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数y=k2x(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠−2),点C(t,m)和点D(t+2,n)在函数y=k2x的图象上.当p−m与q−n的积为负数时,t的取值范围是( )A. −72<t<−3或12<t<1 B. −72<t<−3或1<t<32C. −3<t<−2或−1<t<0D. −3<t<−2或0<t<1第II卷(非选择题)二、填空题(本大题共6小题,共24分)11.计算:(a+1)(a−1)=______ .12.在一个不透明的箱子里放有7个红球和3个黑球,它们除颜色外其余都相同.从这个箱子里随机摸出一个球,摸出的球是红球的概率是______ .13.如图,OA是⊙O的半径,弦BC⊥OA于点D,连结OB.若⊙O的半径为5cm,BC的长为8cm,则OD的长是______ cm.14.已知a,b是两个连续整数,a<√ 17<b,则a+b的值是______ .15.某数学兴趣小组测量校园内一棵树的高度,采用以下方法:如图,把支架(EF)放在离树(AB)适当距离的水平地面上的点F处,再把镜子水平放在支架(EF)上的点E处,然后沿着直线BF后退至点D处,这时恰好在镜子里看到树的顶端A,再用皮尺分别测量BF,DF,EF,观测者目高(CD)的长,利用测得的数据可以求出这棵树的高度.已知CD⊥BD于点D,EF⊥BD于点F,AB⊥BD于点B,BF=6米,DF=2米,EF=0.5米,CD=1.7米,则这棵树的高度(AB的长)是______ 米.16.如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是______ cm.(2)若DG GH=54,则tan∠DAH 的值是______ .三、解答题(本大题共8小题,共66分。
(中考精品)浙江省湖州市中考数学真题(解析版)
2022年浙江省湖州市中考数学真题一、选择题1. ﹣5的相反数是( )A. 5B. ﹣5C. 15D. 15- 【答案】A【解析】【分析】根据相反数的定义,即可求解.【详解】解:﹣5的相反数是5.故选:A.【点睛】本题主要考查了相反数的定义,熟练掌握只有符号不相同的两个数是相反数是解题的关键.2. 2022年3月23日下午,“天宫课堂”第2课在中国空间站开讲,神舟十三号乘组三位航天员翟志刚、王亚平、叶光富进行授课,某平台进行全程直播.某一时刻观看人数达到3790000人.用科学记数法表示3790000,正确的是( )A. 70.37910⨯B. 63.7910⨯C. 53.7910⨯D. 537.910⨯【答案】B【解析】a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:3790000=3.79×106.故答案为:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.3. 如图是由四个相同的小正方体组成的几何体,它的主视图是( )A. B. C. D.【答案】D【解析】【分析】主视图就是从主视方向看到的正面的图形,也可以理解为该物体的正投影,据此求解即可.【详解】解:观察该几何体发现:从正面看到的应该是三个正方形,上面左边1个,下面2个,故选:D .【点睛】本题考查了简单组合体的三视图,解题的关键是了解主视图的定义,属于基础题,难度不大.4. 统计一名射击运动员在某次训练中10次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10.这组数据的众数是( )A. 7B. 8C. 9D. 10 【答案】C【解析】【分析】根据众数的定义求解.【详解】解:在这一组数据中9出现了4次,次数是最多的,故众数是9;故选:C .【点睛】本题考查了众数的意义.众数是一组数据中出现次数最多的数.5. 下列各式运算,结果正确的是( )A. 235a a a +=B. 236a a a ⋅=C. 32a a a -=D. ()2224a a =【答案】D【解析】【分析】根据合并同类项、同底数幂相乘、积的乘方分别计算,对各项进行判断即可.【详解】解:A 、a 2和a 3不是同类项,不能合并,故该选项不符合题意;的B 、235a a a ⋅=原计算错误,故该选项不符合题意;C 、a 3和a 不是同类项,不能合并,故该选项不符合题意;D 、()2224a a =正确,故该选项符合题意;故选:D .【点睛】本题考查了合并同类项、同底数幂相乘、积的乘方,掌握相关运算法则是解题的关键.6. 如图,将△ABC 沿BC 方向平移1cm 得到对应的△A ′B ′C ′.若B ′C =2cm ,则BC ′的长是( )A. 2cmB. 3cmC. 4cmD. 5cm 【答案】C【解析】【分析】据平移的性质可得BB ′=CC ′=1,列式计算即可得解.【详解】解:∵△ABC 沿BC 方向平移1cm 得到△A ′B ′C ′,∴BB ′=CC ′=1cm ,∵B ′C =2cm ,∴BC ′= BB ′+ B ′C +CC ′=1+2+1=4(cm .故选:C .【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.7. 把抛物线y=x 2向上平移3个单位,平移后抛物线的表达式是( )A. y=2x -3B. y=2x +3C. y=2(3)x +D. y=2(3)x -【答案】B【解析】【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.【详解】∵抛物线y=x 2向上平移3个单位,∴平移后的抛物线的解析式为:y=x 2+3.故答案为:B.【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.8. 如图,已知在锐角△ABC 中,AB =AC ,AD 是△ABC 的角平分线,E 是AD 上一点,连结EB ,E C .若∠EBC =45°,BC =6,则△EBC 的面积是( )A. 12B. 9C. 6D. 【答案】B【解析】【分析】根据三线合一可得ED BC ⊥,根据垂直平分线的性质可得EB EC =,进而根据∠EBC =45°,可得BEC △为等腰直角三角形,根据斜边上的中线等于斜边的一半可得132DE BC ==,然后根据三角形面积公式即可求解. 【详解】解: AB =AC ,AD 是△ABC 的角平分线,,AD BD BD DC ∴⊥=,EB EC ∴=,∠EBC =45°,45ECB EBC ∠=∠=︒,∴BEC △为等腰直角三角形,6BC = , ∴132DE BC ==, 则△EBC 的面积是13692⨯⨯=. 故选B .【点睛】本题考查了等腰三角形的性质与判定,垂直平分线的性质,直角三角形中斜边上的中线等于斜边的一半,掌握等腰三角形的性质与判定是解题的关键.9. 如图,已知BD 是矩形ABCD 的对角线,AB =6,BC =8,点E ,F 分别在边AD ,BC 上,连结BE ,DF .将△ABE 沿BE 翻折,将△DCF 沿DF 翻折,若翻折后,点A ,C 分别落在对角线BD 上的点G ,H 处,连结GF .则下列结论不正确的是( )A. BD =10B. HG =2C. EG FH ∥D.GF ⊥BC【答案】D【解析】 【分析】根据矩形性质以及勾股定理即可判断A ,根据折叠的性质即可求得,HD BG ,进而判断B ,根据折叠的性质可得90EGB FHD ∠=∠=︒,进而判断C 选项,根据勾股定理求得CF 的长,根据平行线线段成比例,可判断D 选项【详解】 BD 是矩形ABCD 的对角线,AB =6,BC =8,8,6BC AD AB CD ∴====10BD ∴==故A 选项正确,将△ABE 沿BE 翻折,将△DCF 沿DF 翻折,6BG AB ∴==,6DH CD ==4DG ∴=,4BH BD HD =-=101042HG BH DG ∴=--=-=故B 选项正确,,EG BD HF DB ⊥⊥ ,∴EG ∥HF ,故C 正确设AE a =,则EG a =,8ED AD AE a ∴=-=-,EDG ADB ∠=∠tan tan EDG ADB ∴∠=∠ 即6384EG AB DG AD === 344a ∴= 3AE ∴=,同理可得3CF =的若FG CD ∥ 则CF BF =GD BG 342,563CF GD BF BG ===, ∴CF BF ≠GD BG, FG ∴不平行CD ,即GF 不垂直BC ,故D 不正确.故选D【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,平行线分线段成比例,掌握以上知识是解题的关键.10. 在每个小正方形边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连接PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A. B. 6C.D.【答案】C【解析】 【分析】根据同弧所对的圆周角等于所对圆心角的一半,过点M 、N 作以点O 为圆心,∠MON =90°的圆,则点P 在所作的圆上,观察圆O 所经过的格点,找出到点M 距离最大的点即可求出.【详解】作线段MN 中点Q ,作MN 的垂直平分线OQ ,并使OQ =12MN ,以O 为圆心,OM 为半径作圆,如图,的因为OQ 为MN 垂直平分线且OQ =12MN ,所以OQ =MQ =NQ ,∴∠OMQ =∠ONQ =45°,∴∠MON =90°,所以弦MN 所对的圆O 的圆周角为45°,所以点P 在圆O 上,PM 为圆O 的弦,通过图像可知,当点P 在P '位置时,恰好过格点且P M '经过圆心O ,所以此时P M '最大,等于圆O 的直径,∵BM =4,BN =2,∴MN ==,∴MQ =OQ ,∴OM =,∴2P M OM '==,故选 C .【点睛】此题考查了圆的相关知识,熟练掌握同弧所对的圆周角相等、直径是圆上最大的弦,会灵活用已知圆心角和弦作圆是解题的关键.二、填空题11. 当a =1时,分式1a a+的值是______. 【答案】2【解析】【分析】直接把a 的值代入计算即可.【详解】解:当a =1时, 11121a a ++==. 故答案为:2.【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可.12. “如果a b =,那么a b =”的逆命题是___________.【答案】如果a b =,那么a b =【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b =,那么a b =”的逆命题是:“如果a b =,那么a b =”,故答案为:如果a b =,那么a b =.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义. 13. 如图,已知在△ABC 中,D ,E 分别是AB ,AC 上的点,DE BC ∥,13AD AB =.若DE =2,则BC 的长是______.【答案】6【解析】【分析】根据相似三角形性质可得13DE AD BC AB ==,再根据DE =2,进而得到BC 长. 【详解】解:根据题意,∵DE BC ∥,∴△ADE ∽△ABC , ∴13DE AD BC AB ==, ∵DE =2, ∴213BC =, ∴6BC =;故答案为:6.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的性质进行计算.的14. 一个不透明的箱子里放着分别标有数字1,2,3,4,5,6的六个球,它们除了数字外其余都相同.从这个箱子里随机摸出一个球,摸出的球上所标数字大于4的概率是______.【答案】1 3【解析】【分析】根据概率的求法,用标有大于4的球的个数除以球的总个数即可得所标数字大于4的概率.【详解】解:∵箱子里放着分别标有数字1,2,3,4,5,6的六个球,∴球上所标数字大于4的共有2个,∴摸出的球上所标数字大于4的概率是:21 63 =.故答案为:13.【点睛】本题考查了概率的求法与运用,根据概率公式求解即可:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.15. 如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O 于点D.若∠APD是 AD所对的圆周角,则∠APD的度数是______.【答案】30°##30度【解析】【分析】根据垂径定理得出∠AOB=∠BOD,进而求出∠AOD=60°,再根据圆周角定理可得∠APD=12∠AOD=30°.【详解】∵OC⊥AB,OD为直径,∴BD AD=,∴∠AOB=∠BOD,∵∠AOB=120°,∴∠AOD =60°,∴∠APD =12∠AOD =30°,故答案为:30°.【点睛】本题考查了圆周角定理、垂径定理等知识,掌握垂径定理是解答本题的关键. 16. 如图,已知在平面直角坐标系xOy 中,点A 在x 轴的负半轴上,点B 在y 轴的负半轴上,tan 3ABO ∠=,以AB 为边向上作正方形ABCD .若图像经过点C 的反比例函数的解析式是1y x =,则图像经过点D 的反比例函数的解析式是______.【答案】3y x =-【解析】【分析】过点C 作CE ⊥y 轴于点E ,过点D 作DF ⊥x 轴于点F ,设OB x =,3OA x =,结合正方形的性质,全等三角形的判定和性质,得到ADF ∆≌BAO ∆≌CBE ∆,然后表示出点C 和点D 的坐标,求出212x =,即可求出答案. 【详解】解:过点C 作CE ⊥y 轴于点E ,过点D 作DF ⊥x 轴于点F ,如图:∵tan 3OA ABO OB∠==, 设OB x =,3OA x =,∴点A 为(3x -,0),点B 为(0,x -);∵四边形ABCD 是正方形,∴AD AB BC ==,90DAB ABC ∠=∠=︒,∴ADF DAF DAF BAO ∠+∠=∠+∠,∴ADF BAO ∠=∠,同理可证:ADF BAO CBE ∠=∠=∠,∵90AFD BOA CEB ∠=∠=∠=︒,∴ADF ∆≌BAO ∆≌CBE ∆,∴3OA FD EB x ===,OB FA EC x ===,∴2OE OF x ==,∴点C 的坐标为(x ,2x ),点D 的坐标为(2x -,3x ),∵点C 在函数1y x =的函数图像上, ∴221x =,即212x =; ∴21236632x x x -=-=-⨯=- , ∴经过点D 的反比例函数解析式为3y x =-; 故答案为:3y x=-. 函数,余角的性质等知识,解题的关键是熟练掌握所学的知识,正确的表示出点C 和点D 的坐标,从而进行解题.三、解答题17.计算:()223+⨯-.【答案】0【解析】【分析】先算乘方,再算乘法和减法,即可.【详解】()26(6)6236=+-=+--=⨯【点睛】本题考查实数的混合运算,关键是掌握2a =.18. 如图,已知在Rt △ABC 中,∠C =Rt ∠,AB =5,BC =3.求AC 的长和sin A 的值.【答案】AC =4,sin A =35 【解析】【分析】根据勾股定理求出AC ,根据正弦的定义计算,得到答案.【详解】解:∵∠C =Rt ∠,AB =5,BC =3,∴4AC ===.3sin 5BC A AB ==. 【点睛】本题考查的是勾股定理、锐角三角函数的定义,掌握正弦的定义是解题的关键.19. 解一元一次不等式组2212x x x +⎧⎨+⎩<①<② 【答案】1x <【解析】【分析】分别解出不等式①和②,再求两不等式解的公共部分,即可.【详解】解不等式①:2x <解不等式②:1x <∴原不等式组的解是1x <【点睛】本题考查解不等式组,注意最终结果要取不等式①和②的公共部分.20. 为落实“双减”政策,切实减轻学生学业负担,丰富学生课余生活,某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组,要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向,并将抽查结果绘制成如下统计图(不完整).根据统计图中的信息,解答下列问题:(1)求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数;(2)将条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)该校共有1600名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.【答案】(1)200人;36°(2)见解析(3)400人【解析】【分析】(1)从两个统计图中可知,在抽查人数中,选择“体育运动”兴趣小组的人数为60人,占调查人数的30%,可求出调查人数,样本中选择“美工制作”兴趣小组占调查人数的20200,即10%,因此相应的圆心角的度数为360°的30%;(2)求出选择“音乐舞蹈”兴趣小组的人数,即可补全条形统计图;(3)用1600乘以样本中选择“爱心传递”兴趣小组的学生所占的百分比即可.【小问1详解】解:本次被抽查学生的总人数是6030%200÷=(人),扇形统计图中表示选择“美工制作”兴趣小组的扇形的圆心角度数是2036036 200⨯︒=︒;【小问2详解】解:选择“音乐舞蹈”兴趣小组的人数为200-50-60-20-40=30(人),补全条形统计图如图所示.【小问3详解】解:估计全校选择“爱心传递”兴趣小组的学生人数为501600400200⨯=(人). 【点睛】本题考查了扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量和数量之间的关系,是解决问题的前提,样本估计总体是统计中常用的方法.21. 如图,已知在Rt △ABC 中,90C ∠=︒,D 是AB 边上一点,以BD 为直径的半圆O 与边AC 相切,切点为E ,过点O 作OF BC ⊥,垂足为F .(1)求证:OF EC =;(2)若30A ∠=︒,2BD =,求AD 的长.【答案】(1)见解析(2)1 【解析】【分析】(1)连接OE ,根据已知条件和切线的性质证明四边形OFCE 是矩形,再根据矩形的性质证明OF EC =即可;(2)根据题意,结合(1)可知112OE BD ==,再由直角三角形中“30°角所对的直角边是斜边的一般”的性质,可推导22AO OE ==,最后由AD AO DO =-计算AD 的长即可.【小问1详解】解:如图,连接OE ,∵AC 切半圆O 于点E ,∴OE ⊥A C ,∵OF ⊥BC ,90C ∠=︒,∴∠OEC =∠OFC =∠C =90°.∴四边形OFCE 是矩形,∴OF =E C ;【小问2详解】∵2BD =, ∴112122OE BD ==⨯=, ∵30A ∠=︒,OE ⊥AC ,∴2212AO OE ==⨯=,∴211AD AO DO =-=-=.【点睛】本题主要考查了切线的性质、矩形的判定与性质以及含30°角的直角三角形性质等知识,正确作出辅助线并灵活运用相关性质是解题关键.22. 某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【答案】(1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米(2)点B 的坐标是()3,120,s =60t -60(3)34小时 【解析】【分析】(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时,根据路程两车行驶的路程相等得到()60401x x =+即可求解;(2)由(1)中轿车行驶的时间求出点B 的坐标是()3,120,进而求出直线AB 的解析式;(3)根据大巴车行驶路程与小轿车行驶路程相等即可得到()40 1.560 1.5a +=⨯,进而求出a 的值【小问1详解】解:设轿车行驶时间为x 小时,则大巴行驶的时间为()1x +小时.根据题意,得:()60401x x =+,解得x =2.则60602120x =⨯=千米,∴轿车出发后2小时追上大巴,此时,两车与学校相距120千米.【小问2详解】解:∵轿车追上大巴时,大巴行驶了3小时,∴点B 的坐标是()3,120.由题意,得点A 的坐标为()1,0.设AB 所在直线的解析式为s kt b =+,则:3120,0,k b k b +=⎧⎨+=⎩解得k =60,b =-60.∴AB 所在直线的解析式为s =60t -60.【小问3详解】解:由题意,得()40 1.560 1.5a +=⨯, 解得:34a =, 故a 的值为34小时. 的【点睛】本题考查了一次函数的实际应用、待定系数法求一次函数的解析式,解题的关键是读懂题意,明确图像中横坐标与纵坐标代表的含义.23. 如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)①求点A ,B ,C 的坐标;②求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM ⊥AP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.【答案】(1)①A (3,0),B (3,3),C (0,3);②23b c =⎧⎨=⎩(2)2133324n m ⎛⎫=--+ ⎪⎝⎭;34【解析】【分析】(1)①根据坐标与图形的性质即可求解;②利用待定系数法求解即可;(2)证明Rt △ABP ∽Rt △PCM ,根据相似三角形的性质得到n 关于m 的二次函数,利用二次函数的性质即可求解.【小问1详解】解:①∵正方形OABC 的边长为3,∴点A ,B ,C 的坐标分别为A (3,0),B (3,3),C (0,3);②把点A (3,0),C (0,3)的坐标分别代入y =−x 2+bx +c , 得9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩; 【小问2详解】解:由题意,得∠APB =90°-∠MPC =∠PMC ,∠B =∠PCM =90°,∴Rt △ABP ∽Rt △PCM , ∴AB BP PC CM =,即33m m n=-. 整理,得213n m m =-+,即2133324n m ⎛⎫=--+ ⎪⎝⎭. ∴当32m =时,n 的值最大,最大值是34. 【点睛】本题综合考查了正方形的性质,相似三角形的判定和性质,二次函数的性质,待定系数法求函数解析式,根据正方形的性质求出点A ,B ,C 的坐标是解题的关键. 24. 已知在Rt △ABC 中,∠ACB =90°,a ,b 分别表示∠A ,∠B 的对边,a b >.记△ABC 的面积为S .(1)如图1,分别以AC ,CB 为边向形外作正方形ACDE 和正方形BGF C .记正方形ACDE 的面积为1S ,正方形BGFC 的面积为2S .①若19S =,216S =,求S 的值;②延长EA 交GB 的延长线于点N ,连结FN ,交BC 于点M ,交AB 于点H .若FH ⊥AB(如图2所示),求证:212S S S -=.(2)如图3,分别以AC ,CB 为边向形外作等边三角形ACD 和等边三角形CBE ,记等边三角形ACD 的面积为1S ,等边三角形CBE 的面积为2S .以AB 为边向上作等边三角形ABF (点C 在△ABF 内),连结EF ,CF .若EF ⊥CF ,试探索21S S -与S 之间的等量关系,并说明理由.【答案】(1)①6;②见解析(2)2114S S S -=,理由见解析 【解析】【分析】(1)①将面积用a ,b 的代数式表示出来,计算,即可②利用AN 公共边,发现△FAN ∽△AN B ,利用FA AN AN NB =,得到a ,b 的关系式,化简,变形,即可得结论(2)等边ABF 与等边CBE △共顶点B ,形成手拉手模型,△ABC ≌△FBE ,利用全等的对应边,对应角,得到:AC =FE =b ,∠FEB =∠ACB =90°,从而得到∠FEC =30°,再利用Rt CFE △,cos30FE b CE a ︒===,得到a 与b 的关系,从而得到结论 【小问1详解】∵19S =,216S =∴b =3,a =4∵∠ACB =90° ∴11S ab 34622==⨯⨯= ②由题意得:∠FAN =∠ANB =90°,∵FH ⊥AB∴∠AFN =90°-∠FAH =∠NAB∴△FAN ∽△AN B ∴FA AN AN NB= ∴a b a a b +=, 得:22ab b a +=∴122S S S +=.即212S S S -=【小问2详解】2114S S S -=,理由如下: ∵△ABF 和△BEC 都是等边三角形∴AB =FB ,∠ABC =60°-∠FBC =∠FBE ,CB =EB∴△ABC ≌△FBE (S A S )∴AC =FE =b∠FEB =∠ACB =90°∴∠FEC =30°∵EF ⊥CF ,CE =BC =a∴cos30b FE a CE ==︒=∴b =∴212S ab ==由题意得:21S =,22S =∴2221S S a -=-= ∴2114S S S -= 【点睛】本题考查勾股定理,相似,手拉手模型,代数运算,本题难点是图二中的相似和图三中的手拉手全等。
2021年浙江省湖州市中考数学真题(解析版)
浙江省2021年初中学业水平考试(湖州市)数学试题卷卷I一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1.实数﹣2的绝对值是A .﹣2B .2C .12D .12-【答案】B【解析】22-=,故选B2A .4B .±4C .D .±【答案】C【解析】===,故选C .3.不等式315x ->的解集是A .2x >B .2x <C .43x >D .43x <【答案】A【解析】315x ->,移项得36x >,解得2x >,故选A .4.下列事件中,属于不可能事件的是A .经过红绿灯路口,遇到绿灯B .射击运动员射击一次,命中靶心C .班里的两名同学,他们的生日是同一天D .从一个只装有白球和红球的袋中摸球,摸出黄球【答案】D【解析】从一个只装有白球和红球的袋中摸球,可能摸出白球或红球,不可能摸出黄球,故选D .5.将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是【答案】A【解析】本题考查长方体的展开图问题,属于基础题,选项A符合题意.6.如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是A.60°B.70°C.80°D.90°【答案】C【解析】本题考查同弧所对圆周角与圆心角的关系,∠BOC=2∠A=80°,选C.7.已知a,b是两个连续整数,a1<b,则a,b分别是A.﹣2,﹣1B.﹣1,0C.0,1D.1,2【答案】C-≈,与0.7相邻的连续整数是0和1,选C.10.78.如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线,按下列步骤作图:①分别以点B,C为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连结CO,DE.则下列结论错误的是A.OB=OC B.∠BOD=∠COD C.DE∥AB D.DB=DE【答案】D【解析】∵OD垂直平分BC,所以OB=OC,故A正确;根据三线合一可知OD平分∠BOC,故B正确;易知DE是三角形的中位线,所以有DE∥AB,故C正确.综上,选D.9.如图,已知在矩形ABCD中,AB=1,BC点P是AD边上的一个动点,连结BP,点C 关于直线BP 的对称点为C 1,当点P 运动时,点C 1也随之运动.若点P 从点A 运动到点D ,则线段CC 1扫过的区域的面积是A .πB .πCD .2π【答案】B【解析】如图,C 1运动的路径是以B 120°的弧上运动,故线段CC 1扫过的区域是一个圆心角为120°的扇形+一个以故S =22120(3)33336044ππ+=+,故选B .10.已知抛物线2y ax bx c =++(a ≠0)与x 轴的交点为A(1,0)和B(3,0),点P 1(1x ,1y ),P 2(2x ,2y )是抛物线上不同于A ,B 的两个点,记△P 1AB 的面积为S 1,△P 2AB 的面积为S 2.有下列结论:①当122x x >+时,12S S >;②当122x x <-时,12S S <;③当1x 2221x ->->时,12S S >;④当12221x x ->+>时,12S S <.其中正确结论的个数是A .1B .2C .3D .4【答案】A【解析】由于1S ,2S 的底相同,当1x 2221x ->->时,P 1到AB 的距离>P 2到AB 的距离,故③正确,其他选项无法比较P 1,P 2与x 轴距离的远近,故选A .卷II二、填空题(本题有6小题,每小题4分,共24分)11.计算:122-⨯=.【答案】1【解析】111022221--⨯===.12.如图,已知在Rt △ABC 中,∠ACB =90°,AC =1,AB =2,则sinB 的值是.【答案】12【解析】sinB =AC 1AB 2=.13.某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是.【答案】150【解析】设恰好中奖为时间A ,则P(A)=5151100050+=.14.为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A ,B ,C ,D ,E 是正五边形的五个顶点),则图中∠A 的度数是度.【答案】36【解析】首先根据正五边形的内角和计算公式,求出每个内角的度数为108°,即∠ABC =∠BAE =108°,那么等腰△ABC 的底角∠BAC =36°,同理可求得∠DAE =36°,故∠CAD =∠BAE ﹣∠BAC ﹣∠EAD =108°﹣36°﹣36°=36°.其实正五角星的五个角是36°,可以作为一个常识直接记住.15.已知在平面直角坐标系xOy 中,点A 的坐标为(3,4),M 是抛物线22y ax bx =++(a ≠0)对称轴上的一个动点,小明经探究发现:当ba的值确定时,抛物线的对称轴上能使△AOM 为直角三角形的点M 的个数也随之确定.若抛物线22y ax bx =++(a ≠0)的对称轴上存在3个不同的点M ,使△AOM 为直角三角形,则ba的值是.【答案】2或﹣8【解析】由题意知,以OA 的直径的圆与直线2b x a =-相切,则35222b a --=,解得b a =2或﹣8.16.由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB 的长应是.1【解析】如图,CD =1,DG ,则求得CG CDG ∽△DEG ,可求得DE=22,∴AE =1﹣22,∴AB ﹣1.三、解答题(本题有8小题,共66分)17.(本小题6分)计算:(2)(1)(1)x x x x +++-.【答案】21x +【解析】解:原式2221x x x =++-21x =+.18.(本小题6分)解分式方程:2113x x -=+.【答案】4x =【解析】解:213x x -=+4x =.经检验,4x =是原方程的解.19.(本小题6分)如图,已知经过原点的抛物线22y x mx =+与x 轴交于另一点A(2,0).(1)求m 的值和抛物线顶点M 的坐标;(2)求直线AM 的解析式.【答案】(1)﹣4,(1,﹣2);(2)24y x =-.【解析】解:(1)∵抛物线22y x mx =+过点()2,0A ,22220m ∴⨯+=,解得4m =-,224y x x ∴=-,22(1)2y x ∴=--∴顶点M 的坐标是()1,2-.(2)设直线AM 的解析式为()0y kx b k =+≠,∵图象过()()2,0,1,2A M -,202k b k b +=⎧∴⎨+=-⎩,解得24k b =⎧⎨=-⎩,∴直线AM 的解析式为24y x =-.20.(本小题8分)为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了:A .党史宣讲;B .歌曲演唱;C .校刊编撰;D .诗歌创作等四个小组,团支部将各组人数情况制成了如下统计图表(不完整).根据统计图表中的信息,解答下列问题:(1)求a 和m 的值;(2)求扇形统计图中D 所对应的圆心角度数;(3)若在某一周各小组平均每人参与活动的时间如下表所示:小组类别A B C D 平均用时(小时)2.5323求这一周四个小组所有成员平均每人参与活动的时间.【答案】(1)20,20;(2)36°;(3)2.6小时.【解析】解:(1)由题意可知四个小组所有成员总人数是1530%50÷=(人).501015520a ∴=---=,%1050100%20%m =÷⨯=.20m ∴=.(2)55036036÷⨯︒=︒ ,∴扇形统计图中D 所对应的圆心角度数是36︒.(3)1(10 2.520315253) 2.650x =⨯⨯+⨯+⨯+⨯= (小时),∴这一周四个小组所有成员平均每人参与活动的时间是2.6小时.21.(本小题8分)如图,已知AB 是⊙O 的直径,∠ACD 是 AD所对的圆周角,∠ACD =30°.(1)求∠DAB 的度数;(2)过点D 作DE ⊥AB ,垂足为E ,DE 的延长线交⊙O 于点F .若AB =4,求DF 的长.【答案】(1)60°;(2).【解析】解:(1)连结BD ,30ACD ∠=︒ ,30B ACD ∴∠=∠=︒,AB 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒.(2)90,30,4ADB B AB ∠=︒∠=︒= ,122AD AB ==,60,DAB DE AB ∠=︒⊥ ,且AB 是直径,sin 60EF DE AD ︒∴===2DF DE =∴=.22.(本小题10分)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有A ,B 两个景点,售票处出示的三种购票方式如下表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收人;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)①798;②24,817.6【解析】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x +=解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,得()()()()1002100.06803100.0416*******.06100.04⨯-⨯+⨯-⨯+-⨯+⨯+⨯798=(万元)答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-< ,∴当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元.23.(本小题10分)已知在△ACD 中,P 是CD 的中点,B 是AD 延长线上的一点,连结BC ,AP .(1)如图1,若∠ACB =90°,∠CAD =60°,BD =AC ,AP =BC 的长;(2)过点D 作DE ∥AC ,交AP 延长线于点E ,如图2所示,若∠CAD =60°,BD =AC ,求证:BC =2AP ;(3)如图3,若∠CAD =45°,是否存在实数m ,当BD =m AC 时,BC =2AP ?若存在,请直接写出m 的值;若不存在,请说明理由.【答案】(1)(2)略;(3.【解析】(1)解:90,60ACB CAD ∠=∠=︒︒ ,2cos60ACAB AC ︒==,BD AC = ,AD AC ∴=,ADC ∴ 是等边三角形,60ACD ∴∠=︒Р 是CD 的中点,AP CD ∴⊥,在Rt APC 中,AP =,2sin 60APAC ∴==︒,tan 60BC AC =︒=∴(2)证明:连结BE ,DE AC ∥,CAP DEP ∴∠=∠,,CP DP CPA DPE =∠=∠ ,()CPA DPE AAS ∴ ≌,1,2AP EP AE DE AC ∴===,BD AC = ,BD DE ∴=,又DE AC ∥,60BDE CAD ∴∠=∠=︒,BDE ∴ 是等边三角形,,60BD BE EBD ∴=∠=︒BD AC = ,AC BE ∴=,又60,CAB EBA AB BA ∠=∠=︒= ,()CAB EBA SAS ∴ ≌,AE BC ∴=,2BC AP ∴=.(3)存在这样的,m m =.24.(本小题12分)已知在平面直角坐标系xOy 中,点A 是反比例函数1y x=(x >0)图象上的一个动点,连结AO ,AO 的延长线交反比例函数ky x=(k >0,x <0)的图象于点B ,过点A 作AE ⊥y 轴于点E .(1)如图1,过点B 作BF ⊥x 轴于点F ,连结EF .①若k =1,求证:四边形AEFO 是平行四边形;②连结BE ,若k =4,求△BOE 的面积.(2)如图2,过点E 作EP ∥AB ,交反比例函数ky x=(k >0,x <0)的图象于点P ,连结OP .试探究:对于确定的实数k ,动点A 在运动过程中,△POE 的面积是否会发生变化?请说明理由.【答案】(1)①略;②1;(2)不变.【解析】解:(1)①证明设点A 的坐标为1(,a a ,则当1k =时,点B 的坐标为1(,a a --,AE OF a ∴==,AE y ⊥ 轴,AE OF ∴∥,∴四边形AEFO 是平行四边形.②解过点B 作BD y ⊥轴于点D ,AE y ⊥ 轴,AE BD ∴∥,AEO BDO ∴ ∽,2()AEO BDO SAO S BO∴= ,∴当4k =时,212()2AOBO =,即12AO BO =.21BOE AOE S S ∴== .(2)解:不改变.理由如下:过点P 作PH x ⊥轴于点,H PE 与x 轴交于点G ,设点A 的坐标为1(,a a ,点P 的坐标为(,k b b,则1,,,k AE a OE PH a b===-,由题意,可知AEO GHP ∽,四边形AEGO 是平行四边形,,AE EO GH b a GH PH=--=,即1a a kb a b=---,1b a k a b+=2(0b b k a a∴+-=,解得12b a -=,,a b 异号,0k ≥,12b a -∴=,1111()224POE b S b a a ∴=⨯⨯-=-⨯= .∴对于确定的实数k ,动点A 在运动过程中,POE 的面积不会发生变化.。
2021年浙江省湖州市中考数学试卷附解析
2021年浙江省湖州市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在四边形 ABCD 中,∠A=60°,∠B=∠D= 90°,BC= 2,CD=3,则 AB=( )A .4B .5C .23D .832.关于二次函数y=ax 2+bx+c 的图象有下列命题:① 当c=0时,函数的图象经过原点② 当c >0且函数的图象开口向下时,方程ax 2+bx+c=0必有两个不等实根③ 函数图象最高点的纵坐标是4ac -b 24a④ 当b=0时,函数的图象关于y 轴对称.其中正确的命题的个数有 ( )A .1个B .2个C .3个D .4个 3. 在反比例函数3k y x -=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( )A .k >3B .k >0C .k <3D .k <04.如图,在Rt ABC △中,90BAC ∠=,3AB =,4AC =,将ABC △沿直线BC 向右平移2.5个单位得到DEF △,连结AD AE ,,则下列结论中不成立...的是( ) A .AD BE ∥B .ABE DEF ∠=∠C .ED AC ⊥D .ADE △为等边三角形5.若梯形的面积为28cm ,高为2cm ,则此梯形的中位线长是( ) A .2cmB .4cmC .6cmD .8cm 6.下列条件,不能识别四边形是平行四边形的条件的是( )A .两组对边分别平行B .两组对边分别相等C .一组对边平行,另一组对边相等D .一组对边平行且相等7.如图,在△ABC 中,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E .若 BD+CE=9,则线段DE 的长为 ( )A .9B .8C .7D .68.下列各点在函数12y x =-的图象上的是( ) A . (2,-1) B .(0,2) C .(1,-1)D .(1,0) 9.如图,AB ∥CD ,则∠α,∠β,∠γ之间的关系为( )A .∠α+∠β+∠γ=360°B .∠α-∠β+∠γ=180°C .∠α+∠β-∠γ=180°D .∠α+∠β+∠γ=180°10.如图,a ∥b ,则∠1=∠2 的依据是( )A .两直线平行,同位角相等B .两直线平行,内错角相等C .同位角相等,两直线平行D . 内错角相等,两直线平行11.若2x <,则2|2|x x --的值为( ) A .-1 B .0 C .1 D . 212.下列图形绕某点旋转后,不能与原来图形重合的是(旋转度数不超过180°) ( )13.已知a 、b 两数在数轴上的对应点的位置如图所示,那么化简代数式12a b a b +--++结果是( )A . 1B .23b +C .23a -D .-114.运用分配律计算:(-3)×(-8+2-3),有下列四种不同的结果,其中正确的是( )A .-3×8-3×2-3×3B .-3×(-8)-3×2-3×3C .(-3)×(-8)+3×2-3×3D .(-3)×(-8)-3×2+3×3 15. 在 0.25,14-,13-,0,3,+4,-3 这几个数中,互为相反数的有( ) A .0 对 B .1 对 C .2 对 D . 3 对二、填空题16. 已知点(2,一6)在抛物线22y ax =-的图象上,则a= .17. 如图,反比例函数y =5x的图象与直线y =kx(k>0)相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位.18.如图是一个几何体的三视图,根据图示,可计算出该几何体的侧面积为 .19.某居民所在区域电的单价为0.53元/度,所付电费y(元)与用电度数x(度)之间的关系 式是y=0.53x ,其中常量是 ,变量是 .20.在平面直角坐标系中,点A(-2,-3)关于x 轴对称的点的坐标是 .21.学校组织学生去剧院看元旦文艺会演,小王的座位是3排5号,小林的座位是5排3 号.(1)如果3排5号记作(3,5),那么5排3号记作 .(2)(9,12)表示 ,(12,9)表示 .22.按下列要求,写出仍能成立的不等式:(1)63>,两边都减去3,得 ;(2)50x +<,两边都加上 (— 5),得 ;(3)3253n m >,两边都乘 15,得 ; (4)718x -≥,两边都乘87-,得 . 23.如图,在Rt △ABC 中,CD 是斜边上的中线,CE 是高.已知AB=10cm ,DE=2.5 cm,则∠BDC= 度,S △BCD = cm 224.网①是一个三角形.分别连结这个三角形三边的中点得到图乙;再分别连结图②中间的小三角形三边的中点,得到图③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题:(1)将下表填写完整:图形编号12345…三角形个数159(2)在第n个图形中有个三角形 (用含n的式子表示).25.如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为_________米.三、解答题26.如图,在四边形ABCD中,AB∥CD,AD∥BC,点E,F在对角线AC上,且AE=CF,请你以 F为一端点,和图中已标字母的某点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连结;(2)猜想: = ;(3)证明:27.两个正方形的面积的和为l06 cm2,它们的周长的差是l6 cm,问这两个正方形的边长各是多少?28.计算:(1)2(21)(322)⋅+;(2)21(23)2323+(3)(231)(52)29.如图,从山下到山上的一个小亭子修了138级台阶,每级台阶的高大约是24 cm,宽大约是32 cm,从山下到小亭子大约要走多远(精确至0.1 m)?30.如图,AB、CD相交于点0,∠FOC=90°,∠1=100°,∠2=20°,求∠3、∠4、∠5、∠6的度数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.A4.D5.B6.C7.A8.C9.C10.B11.AB13.B14.D15.C二、填空题16.- 117.1018.8π19.0.53;x、y20.(-2,3)21.(1)(5,3);(2)9排12号,l2排9号22.>;(2)x<-5;(3)9m>10n;(4)87 x≤-23.6024.(1)13,17 (2)4n-3 25.22.5三、解答题26.27.5 cm,9 cm28.(1)1;(2)5;(3)29.55.2 m30.∠3=∠6=60°,∠4=30°,∠5=90°。
浙江省湖州市中考数学真题试题(含解析)
2018~2019学年湖州中考数学真题一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分. 1.数2的倒数是 A. -2 B. 2C. 21-D.21【答案】D【解析】因为互为倒数的两个数之积为1,所以2的倒数是12,故选D.2.据统计,龙之梦动物世界在2019年“五一”小长假期间共接待游客约238000人次用科学记数法可将238000表示为 A.238×103B.23.8×104C.2.38×105D.0.238×106【答案】C【解析】238000=2.38×105,故选C. 3.计算aa a 11+-,正确的结果是 A.1B.21C. aD.a 1【答案】A 【解析】a a a 11+-=111==+-aaa a ,故选A.4.已知∠α=60°32’,则∠α的余角是 A.29°28’B.29°68’C.119°28’D.119°68’【答案】A【解析】解:∠α的余角为90°-60°32′=29°28′,故选:A .5.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的侧面积是 A. 60πcm 2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】圆锥的侧面积=21×13×2×π×5=65πcm 2.6.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是 A.101B.109C.51D.54【答案】C【解析】∵10瓶饮料中有2瓶已过了保质期,∴从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是210= 15. 故选C.7.如图,已知正五边形ABCDE 内接于⊙O ,连结BD ,则∠ABD 的度数是(第7题图) A.60°B. 70°C.72°D.144°【答案】C【解析】∵五边形ABCDE 为正五边形,∴∠ABC =∠C =15(5−2)×180°=108°,∵CD =CB ,∴∠CBD =12(180°−108°)=36°,∴∠ABD =∠ABC -∠CBD =72°, 故选:C .8.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,则四边形ABCD 的面积是(第8题图)A.24B.30C. 36D. 42【答案】B【解析】如图,过点D 作DE ⊥AB 于E ,由BD 平分∠ABC 可知,DC =DE ,BC =BE ,∴四边形ABCD 的面积BC ∙CD -12(BE -AB )∙DE =36-6=30. 故选B.9.在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是(第9题图)A.22B.5C.253D.10【答案】D【解答】如下图,EF 为剪痕,过点F 作FG ⊥EM 于G .∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点, ∴AF =CN ,BF =DN .易证△PME ≌PDN ,∴EM =DN , 而AF =MG ,∴EG =EM +MG =DN +AF =DN +CN =DC =1.在Rt △FGE 中,EF =10132222=+=+EG FG . 故选:D.10.已知a ,b 是非零实数,b a >,在同一平面直角坐标系中,二次函数y 1=ax 2+bx 与一次函数y 2=ax +b 的大致图象不可能是A. B. C. D.【答案】D【解析】解答本题可采用赋值法. 取a=2,b=1,可知A选项是可能的;取a=2,b=-1,可知B选项是可能的;取a=-2,b=-1,可知C选项是可能的,那么根据排除法,可知D选项是不可能的.故选D.二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:x2-9=_____________.【答案】(x+3)(x-3)【解析】根据平方差公式,有x2-9=(x+3)(x-3).12.已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是__________.【答案】30°【解析】根据圆周角定理:是一条弧所对圆周角等于它所对圆心角的一半,可知它所对的圆心角的度数是30°.13.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是________分.【答案】9.1【解析】该班的平均得分= 5×8+8×9+7×105+8+7= 9.1.14.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α. 若AO =85cm ,BO =DO =65cm .问:当α=74°,较长支撑杆的端点A 离地面的高度h 约为________cm .(参考数据:sin 37≈0.6,cos 3≈0.8,sin 53≈0.8,cos 53≈0.6.)图1 图2【答案】12015.如图,已知在平面直角坐标系xoy 中,直线121-=x y 分别交x 轴,y 轴于点A 和点B ,分别交反比例函数()0,01>>=x k x ky ,()022<=x xk y 的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是_________.【答案】2【解答】如下图,过点D 作DF ⊥y 轴于F .由反比例函数比例系数的几何意义,可得S △COE=12k ,S △DOF =k.∵S △DOB =S △COE =12k ,∴S △DBF =S △DOF -S △DOB =12k=S △DOB ,∴OB=FB.易证△DBF ≌ABO ,从而DF =AO =2,即D 的横坐标为-2,而D 在直线AC 上, ∴D (-2, -2),∴k =12∙(-2)∙(-2)=2.16.七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4√2的正方形ABCD 可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH 内拼成如图2所示的“拼搏兔”造型(其中点Q 、R 分别与图2中的点E 、G 重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是__________.图1图2【答案】4 5【解析】如图3,连结CE 交MN 于O .观察图1、图2可知,EN =MN =4,CM =8,∠ENM =∠CMN =90°.图3∴△EON ∽△COM , ∴EN CN = ON OM = 12, ∴ON =13MN =43,OM =23MN =83.在Rt △ENO 中,OE =ON 2+EN 2=4103,同理可求得OG =8103, ∴GF =22(OE +OG )=2,即“拼搏兔”所在正方形EFGH 的边长是4 5.三、解答题(本题有8小题共66分) 17.(本小题6分)计算:()82123⨯+-. 【答案】8【解答】原式=-8+4=-4.18.(本小题6分)化简:(a +b )2-b (2a +b ).【答案】a 2【解答】原式=a 2+2ab +b 2-2ab -b 2=a 2.19.(本小题6分)已知抛物线y =2x 2-4x +c 与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线y =2x 2-4x +c 经过点A (2,m )和点B (3,n ),试比较m 与n 的大小,并说明理由.【答案】略【解答】(1) b2-4ac=(-4)2-8c=16-8c.由题意,得b2-4ac>0,∴16-8c>0∴c的取值范围是c<2.(2) m<n. 理由如下:∵抛物线的对称轴为直线x=1,又∵a=2>0,∴当x≥1时,y随x的增大而增大.∵2<3,∴m<n.20.(本小题8分)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表某校抽查的学生文章阅读的篇数情况统计图文章阅读的篇数(篇) 3 4 5 6 7及以上人数(人) 20 28 m16 12请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果估计该校学生在这一周内文章阅读的篇数为4篇的人数.【答案】略【解答】(1) 被抽查的学生人数是16÷16%=100(人),m=100-20-28-16-12=24(人).(2) 中位数是5(篇),众数是4(篇).(3) ∵被抽查的100人中,文章阅读篇数为4篇的人数是28人, ∴800×28100=224(人),∴估计该校学生在这一周内文章阅读的篇数为4篇的人数是224人.21.(本小题8分)如图,已知在△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,连结DF ,EF ,BF.(1)求证:四边形BEFD 是平行四边形;(2)若∠AFB =90°,AB =6,求四边形BEFD 的周长.(1)证明:∵D ,E ,F 分别是AB ,BC ,AC 的中点, ∴DF ∥BC ,FE ∥AB ,∴四边形BEFD 是平行四边形.(2)解:∵∠AFB =90°,D 是AB 的中点,AB =6,∴DF =DB =DA =12AB =3.∴四边形BEFD 是菱形.∵DB =3,∴四边形BEFD 的周长为12.22.(本小题10分)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B -C -D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)图1图2【答案】略【解答】(1)由题意,得:甲步行的速度是2400÷30=80(米/分),∴乙出发时甲离开小区的路程是80×10=800(米).(2)设直线OA的解析式为: y=kx(k≠0),∵直线OA过点A(30,2400),∴30k=2400,解得k=80,∴直线OA的解析式为:y=80x.∴当x=18时,y=80×18=1440,∴乙骑自行车的速度是1440÷(18-10)=180(米/分).∵乙骑自行车的时间为25-10=15(分),∴乙骑自行车的路程为180×15=2700(米).当x=25时,甲走过的路程是y=80x=80×25=2000(米),∴乙到达还车点时,甲、乙两人之间的距离是2700-2000=700(米).(3)图象如图所示:23.(本小题10分)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x-3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动2为半径画圆.点,以Q为圆心,2①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点, 连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.图1 图2【答案】略【解答】(1)如图1,连结BP,过点P作PH⊥OB于点H,图3则BH =OH .∵AO =BO =3,∴∠ABO =45°,BH =12OB =2, ∵⊙P 与直线l 1相切于点B ,∴BP ⊥AB ,∴∠PBH =90°-∠ABO =45°.∴PB =2BH =322,从而⊙P 的直径长为3 2. (2)证明:如图4过点C 作CE ⊥AB 于点E ,图4将y =0代入y =3x -3,得x =1,∴点C 的坐标为(1,0).∴AC =4,∵∠CAE =45°,∴CE =22AC =2 2. ∵点Q 与点C 重合,又⊙Q 的半径为22,∴直线l 1与⊙Q 相切.②解:假设存在这样的点Q,使得△QMN是等腰直角三角形,∵直线l1经过点A(-3,0),B(0,3),∴l的函数解析式为y=x+3.记直线l2与l1的交点为F,情况一:如图5,当点Q在线段CF上时,由题意,得∠MNQ=45°.如图,延长NQ交x轴于点G,图5∵∠BAO=45°,∴∠NGA=180°-45°-45°=90°,即NG⊥x轴,∴点Q与N有相同的横坐标,设Q(m,3m-3),则N(m,m+3),∴QN=m+3-(3m-3).∵⊙Q的半径为22,∴m+3-(3m-3)=22,解得m=3-2,∴3m-3=6-22,∴Q的坐标为(3-2,6-22).情况二:当点Q 在线段CF 的延长线上时,同理可得m =3+2,Q 的坐标为(3+2,6+32). ∴存在这样的点Q 1(3-2,6-32)和Q 2(3+2,6+32),使得△QMN 是等腰直角三角形.24.(本小题12分)如图1,已知在平面直角坐标系xoy 中,四边形OABC 是矩形点A ,C 分别在x 轴和y 轴的正半轴上,连结AC ,OA =3,tan ∠OAC =∠3,D 是BC 的中点.(1)求C 的长和点D 的坐标;(2)如图2,M 是线段OC 上的点,OM =OC ,点P 是线段OM 上的一个动点,经过P ,D ,B 三点的抛物线交x 轴的正半轴于点E ,连结DE 交AB 于点F①将△DBF 沿DE 所在的直线翻折,若点B 恰好落在AC 上,求此时BF 的长和点E 的坐标; ②以线段DF 为边,在DF 所在直线的右上方作等边△DFG ,当动点P 从点O 运动到点M 时,点G 也随之运动,请直接写出点G 运动路径的长.图1图2【答案】略【解答】(1)解:∵A =3,t an ∠OAC =OC OA =33, ∴OC = 3.∵四边形OABC 是矩形,∴BC =A 0=3.∵D 是BC 的中点,∴CD =12BC =32,∴点D 的坐标为(32,3). (2) ①∵t an ∠OAC =33, ∴∠OAC =30°,∴∠ACB =∠OAC =30°.设将△DBF 翻折后,点B 落在AC 上的B ’处, 则DB ’=DB =DC ,∠BDF =∠BD ’F , ∴∠DB ’C =∠ACB =30°,∴∠BDB =60°,∴∠BDF =∠B ’DF =30°.∵∠B =90°,∴BF =BD ∙t an 30=32. ∵AB =3,∴AF =BF =32, ∵∠BFD =∠AFE ,∠B =∠FAE =90°, ∴△BFD ≌△AFE .∴AE =BD =32. ∴OE =OA +AE =92,∴点E 的坐标为(92,0). ②36.。
最新浙江省湖州市中考数学测试试卷附解析
浙江省湖州市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知⊙O 的半径为 r ,圆心0到直线l 的距离为 d. 若直线l 与⊙O 有交点,则下列结论正确的是( )A .d=rB .d ≤rC . d ≥rD . d <r2.如图所示,折叠直角三角形纸片的直角,使点C 落在 AB 上的点E 处,已知 BC=12, ∠B=30°,则 DE 的长是( )A .6B .4C .3D .23.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A .21B .31C .41D .51 4.二次函数28y x x c =-+的最小值是( )A .4B .8C .-4D .16 5.在对100个数据进行整理的频率分布表中,各组的频数之和、频率之和分别等于 ( )A .100,1B .100,100C .1,100D .1.1 6.下列事件中,不可能事件是( )A .掷一枚六个面分别刻有1~6数码的均匀正方体骰子,•向上一面的点数是“5”B .任意选择某个电视频道,正在播放动画片C .肥皂泡会破碎D .在平面内,度量一个三角形的内角度数,其和为360°7.计算器按键顺序为的相应算式是( )A .22545⨯-÷B .2(2.54)5-÷C .242.5()5-D .242.55- 8.下列语句正确的是( )A .不相交的两条直线叫平行线B .在同一平面内,两条直线的位置关系只有相交、平行两种C .如果线段AB 、CD 不相交,那么AB ∥CDD .如果a ∥b ,b ∥c ,那么a 不一定平行c9.将0.36×45×105的计算结果用科学记数来表示,正确的是 ( )A .16.2×105B . 1.62×106C .16.2×106D .16.2×10000010.下列说法正确的是( )A .零减去一个数,仍得这个数B .减去一个数,等于加上这个数C .两个相反数相减得0D .有理数的加减法中,和不一定比加数大,差不一定比被减数小二、填空题11.如图是某班全体学生身高的频数分布直方图,该班共有 位学生;如果随机地选出一人. 其身高在 160 cm 到 170 cm 之间的概率是 .12.A 、B 两地一天有4班车,甲、乙两人同一天从A 地去B 地,各自选一班车,则他们同 车的概率是 .13.如图.创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在五环(阴影)内的概率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为 米2(精确到0.01米2).14.某体育训练小组有2名女生和3名男生,现从中任选1人去参加学校组织的“我为奥运添光彩”志愿者活动,则选中女生的概率为 .15.如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222AB CD,再顺次连结四边形2222AB CD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是 .16.已知:如图,正方形ABCD 中,对角线AC 和BD 相交于点O ,E 、F 分别是边AB 、BC 上的点,若AE =4cm ,CF =3cm ,且OE ⊥OF ,则EF 的长为 cm. 17.在□ABCD 中,∠A :∠B :∠C=2:3:2,则∠D= .18.当2a =-时,2(1)a a +-= . 19.用等腰直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转 28°,则三角板的斜边与射线 OA 的夹角α为 . D B C FO20.若甲数为x,乙数为y,则“甲数的12与乙数的23差是 6”可列方程为 .21.请写出一个大于 3 而小于 4 的无理数.三、解答题22.如图,某幢大楼顶部有一块广告牌CD,甲、乙两人分别在相距8m的A、B两处测得D 点和C点的仰角分别为45°和60°,且A、B、E三点在一条直线上.若BE=15m,求这块广告牌的高度.(取3≈1.73,计算结果保留整数)23.如图,在半径为27m的圆形广场中央点 0的上空安装一个照明光源S,S射向地面的光束呈圆锥形,其轴截面△SAB 的顶角为 120°,求光源离地面的垂直高度 SO.24.如图①所示的是我国工商银行的标志,它是轴对称图形.(1)观察我国其它几家银行的标.志,找出是轴对称的标志,把它画在图②中;(2)自己设计一种与圆有关的轴对称图形的漂亮图案,把它画在图③中.25.两个正方形的面积的和为l06 cm2,它们的周长的差是l6 cm,问这两个正方形的边长各是多少?26.在长度为3的线段上取一点,使此点到线段两端点的距离的乘积为2,求此点所分得的两线段长.27.(1)在图①,②,③中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),写出图①,②,③中的顶点C的坐标,它们分别是,,;(2)在图④中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);(3)通过对图①,②,③,④的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图④)时,四个顶点的横坐标a,c,m,e之间的等量关系为;纵坐标b,d,n,f之间的等量关系为.(不必证明).28.某教室里有9排5列座位,请根据下面四个同学的描述,在图冲标出5号小明的位置.l号同学说:“小明在我的右后方.”2号同学说:“小明在我的左后方.”3号同学说:“小明在我的左前方.”4号同学说:“小明离1号同学和3号同学的距离一样远.”29.已知不等式组3(2)821132x x x x x -+>⎧⎪+-⎨≥-⎪⎩的整数解满足方程62ax x a +=-,求a 的值.30.试判断:三边长分别为222n n +,21n +、2221n n ++(n>O)的三角形是否是直角三角形?并说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.D5.A6.D7.D8.B9.B10.D二、填空题50,1212.1413. 1.8814.52 15. 142n - 16.517.108°18.119.28°20.12623x y -=21.答案不唯一)三、解答题22.解:∵AB=8,BE=15,∴AE=23.在R t △ADE 中,︒=∠45DAE ,∴DE=AE=23.在R t △BCE 中,︒=∠60CBE ,∴31560tan ·=︒=BE CE , ∴395.223315≈≈-=-=DE CE CD .∴这块广告牌的高度约为3米. 23.由已知得:SA=SB ,∠ASB= 120°,∴∠A=∠B=30°,∵SO ⊥AB ,∴tan SO A OA=,∴tan 27SO OA A === 答:光源离地面的垂直高度为 9m .(1)如图②是中国农业银行的标志;(2)略.25.5 cm ,9 cm26.1,227.(1)(5,2),(e+c ,d),(c+e-a ,d);(2)C(e+c-a ,f+d-6);(3)m=c+e-a,n=d+f- 28.略29.解原不等式组,得21x -<≤.∴原不等式组的整数解是1x =-.∴612a a -+=--,∴7a =-.30.是直角三角形,理由略。
2021年中考数学试题及解析:浙江湖州-解析版
浙江省湖州市2021年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1、(2021•湖州)﹣5的相反数是()A、5B、C、﹣5D、考点:相反数。
专题:计算题。
分析:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.解答:解:﹣5的相反数是5.故选A.点评:本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.2、(2021•湖州)计算a2•a3,正确的结果是()A、2a6B、2a5C、a6D、a5考点:同底数幂的乘法。
专题:计算题。
分析:根据同底数幂的乘法法则,底数不变,指数相加.解答:解:a2•a3=a2+3=a5.故选D.点评:本题考查了同底数幂的乘法,理清指数的变化是解题的关键.3、(2021•湖州)根据全国第六次人口普查统计,湖州市常住人口约为2890000人,近似数2890000用科学记数法可表示为()A、2.89×104B、2.89×105C、2.89×106D、2.89×107考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2890000用科学记数法表示为2.89×106.故选C.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4、(2021•湖州)如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为()A、2B、C、D、考点:锐角三角函数的定义。
2023年浙江省湖州市中考数学真题 (解析版)
浙江省2023年初中学业水平考试(湖州市)数学试题卷友情提示:1.全卷分卷Ⅰ与卷Ⅱ两部分,考试时间为120分钟,试卷满分为120分.2.试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效.3.请仔细审题,细心答题,相信你一定会有出色的表现!4.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭卷Ⅰ一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1.下列各数中,最小的数是()A.2- B.1- C.1 D.0【答案】A【解析】【分析】正数大于一切负数;0大于负数,小于正数;两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小.【详解】解:|2|2-= ,|1|1-=,21>,2101∴-<-<<,∴最小的数是2-.故选:A .【点睛】本题考查有理数的大小比较,掌握有理数大小比较的方法是解题关键.2.计算3a a ⋅的结果是()A.2a B.3a C.4a D.5a 【答案】C【解析】【分析】利用同底数幂的乘法法则解题即可.【详解】解:34a a a ⋅=,故选C .【点睛】本题考查同底数幂的乘法,掌握运算法则是解题的关键.3.国家互联网信息办公室2023年5月23日发布的《数字中国发展报告(2022年)》显示,2022年我国数字经济规模达502000亿元.用科学记数法表示502000,正确的是()A.60.50210⨯ B.65.0210⨯ C.55.0210⨯ D.450.210⨯【答案】C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:用科学记数法表示502000为55.0210⨯.故选:C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.4.已知某几何体的三视图如图所示,则该几何体可能是()A. B. C. D.【答案】D【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.【详解】解:∵主视图和左视图是长方形,∴几何体是柱体,∵俯视图是圆,∴该几何体是圆柱,故D 正确.故选:D .【点睛】本题主要考查了由三视图确定几何体的形状,主要考查学生空间想象能力.5.若分式131x x -+的值为0,则x 的值是()A.1B.0C.1-D.3-【答案】A【解析】【分析】分式的值等于零时,分子等于零,且分母不等于零.【详解】解:依题意得:10x -=且310x +≠,解得1x =.故选:A .【点睛】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.6.如图,点A ,B ,C 在O 上,连接AB AC OB OC ,,,.若50BAC ∠=︒,则BOC ∠的度数是()A.80︒B.90︒C.100︒D.110︒【答案】C【解析】【分析】根据圆周角定理解答即可.【详解】解:∵50BAC ∠=︒,∴2110BOC BAC ∠=∠=︒;故选:C .【点睛】本题考查了圆周角定理,熟知在同圆或等圆中,同弧所对的圆周角等于它所对圆心角的一半是解题关键.7.某住宅小区6月1日~6月5日每天用水量情况如图所示,那么这5天平均每天的用水量是()A.25立方米B.30立方米C.32立方米D.35立方米【答案】B【解析】【分析】根据平均数的计算公式将上面的值代入进行计算即可.【详解】解:平均每天的用水量是3040203030305++++=立方米,故选B.【点睛】本题考查从统计图中获取信息及平均数的计算方法,解题的关键是从图中获取确定这组数据中的数据.8.某品牌新能源汽车2020年的销售量为20万辆,随着消费人群的不断增多,该品牌新能源汽车的销售量逐年递增,2022年的销售量比2020年增加了31.2万辆.如果设从2020年到2022年该品牌新能源汽车销售量的平均年增长率为x ,那么可列出方程是()A.()201231.2x += B.()20122031.2x +-=C.()220131.2x += D.()22012031.2x +-=【答案】D【解析】【分析】设年平均增长率为x ,根据2020年销量为20万辆,到2022年销量增加了31.2万辆列方程即可.【详解】解:设年平均增长率为x ,由题意得()22012031.2x +-=,故选:D .【点睛】本题考查了一元二次方程的应用—增长率问题,准确理解题意,熟练掌握知识点是解题的关键.9.如图,已知AOB ∠,以点O 为圆心,适当长为半径作圆弧,与角的两边分别交于C ,D 两点,分别以点C ,D 为圆心,大于12CD 长为半径作圆弧,两条圆弧交于AOB ∠内一点P ,连接OP ,过点P 作直线PE OA ,交OB 于点E ,过点P 作直线PF OB ∥,交OA 于点F .若60AOB ∠=︒,6cm OP =,则四边形PFOE 的面积是()A.2B.2C.2D.2【答案】B【解析】【分析】过P 作PM OB ⊥于M ,再判定四边形PFOE 为平行四边形,再根据勾股定理求出边和高,最后求出面积.【详解】解:过P 作PM OB ⊥于M ,由作图得:OP 平分AOB ∠,∴1302POB AOP AOB ∠=∠=∠=︒,∴13cm 2PM OP ==,∴OM ==∵PE OA ,PF OB ∥,∴四边形PFOE 为平行四边形,30EPO POA ∠=∠=︒,∴POE OPE ∠=∠,∴OE PE =,设OE PE x ==,在Rt PEM 中,222PE MP EM -=,即:()2223x x-=,解得:x =∴)·3cm OEPF S OE PM ===四边形.故选:B .【点睛】本题考查了基本作图,掌握平行四边形的判定定理,勾股定理及平行四边形的面积公式是解题的关键.10.已知在平面直角坐标系中,正比例函数()110y k x k =>的图象与反比例函数()220k y k x=>的图象的两个交点中,有一个交点的横坐标为1,点()A t p ,和点()2B t q +,在函数1y k x =的图象上(0t ≠且2t ≠-),点()C t m ,和点()2D t n +,在函数2k y x =的图象上.当p m -与q n -的积为负数时,t 的取值范围是()A.372t -<<-或112t << B.372t -<<-或312t <<C.32t -<<-或10t -<< D.312-<<-或01t <<【答案】D【解析】【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得12k k =.令12k k k ==,代入两个函数表达式,并分别将点A 、B 的坐标和点C 、D 的坐标代入对应函数,进而分别求出p m -与q n -的表达式,代入解不等式()()0p m q n --<并求出t 的取值范围即可.【详解】解:∵()110y k x k =>的图象与反比例函数()220k y k x =>的图象的两个交点中,有一个交点的横坐标为1,∴12k k =.令()120k k k k =>=,则1y k x kx ==,2k k y x x==.将点()A t p ,和点()2B t q +,代入y kx =,得()2p kt q k t =⎧⎨=+⎩;将点()C t m ,和点()2D t n +,代入k y x =,得2k m t k n t ⎧=⎪⎪⎨⎪=⎪+⎩.∴1k p mp m kt k t t t ⎛⎫--=-=- ⎪⎝⎭,()1(2222k q n k t t k t t t ⎛⎫-=-+-=+- ⎪++⎝⎭,∴()()211202p m q n k t t t t ⎛⎫⎛⎫--=-+-< ⎪⎪+⎝⎭⎝⎭,∴11202t t t t ⎛⎫⎛⎫-+-< ⎪⎪+⎝⎭⎝⎭.∵()()()()()2222111311120 222t t t t t t t t t t t t t +-+-+-⎛⎫⎛⎫-+-=⋅=< ⎪⎪+++⎝⎭⎝⎭,∴()()()1302t t t t -+<+,∴()()()1230t t t t -++<.①当3t <-时,()()()1230t t t t -++>,∴3t <-不符合要求,应舍去;②当32t -<<-时,()()()1230t t t t -++<,∴32t -<<-符合要求;③当20t -<<时,()()()1230t t t t -++>,∴20t -<<不符合要求,应舍去;④当01t <<时,()()()1230t t t t -++<,∴01t <<符合要求;⑤当1t >时,()()()1230t t t t -++>,∴1t >不符合要求,应舍去.综上,t 的取值范围是32t -<<-或01t <<.故选:D .【点睛】本题考查反比例函数与一次函数的交点,解不等式是本题的关键.卷Ⅱ二、填空题(本题有6小题,每小题4分,共24分)11.计算:(a +1)(a ﹣1)=_____.【答案】a 2﹣1【解析】【分析】符合平方差公式结构,直接利用平方差公式计算即可.【详解】(a +1)(a ﹣1)=a 2﹣1,故答案为:a 2﹣1.【点睛】此题主要考查平方差公式的运用,熟练掌握,即可解题.12.在一个不透明的箱子里放有7个红球和3个黑球,它们除颜色外其余都相同.从这个箱子里随机摸出一个球,摸出的球是红球的概率是______.【答案】710##0.7【解析】【分析】利用概率公式进行计算即可.【详解】解:从袋中任意摸出一个球有7310+=种等可能的结果,其中从袋中任意摸出一个球是红球的结果有7种,∴710P =故答案为:710.【点睛】本题考查概率.熟练掌握概率公式,是解题的关键.13.如图,OA 是O 的半径,弦BC OA ⊥于点D ,连接OB .若O 的半径为5cm ,BC 的长为8cm ,则OD 的长是______cm .【答案】3【解析】【分析】根据垂径定理可得AD 的长,根据勾股定理可得结果.【详解】解:∵BC OA ⊥,∴118422BD BC ==⨯=,∴3OD ===,故答案为:3.【点睛】此题主要考查了垂径定理和勾股定理.垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.14.已知a 、b 为两个连续整数,且a <<b ,则a+b=___.【答案】9【解析】【详解】解∵16<17<25,∴45<<∴a=4,b=5.∴a+b=9,故答案为:9.15.某数学兴趣小组测量校园内一棵树的高度,采用以下方法:如图,把支架()EF 放在离树()AB 适当距离的水平地面上的点F 处,再把镜子水平放在支架()EF 上的点E 处,然后沿着直线BF 后退至点D 处,这时恰好在镜子里看到树的顶端A ,再用皮尺分别测量BF ,DF EF ,,观测者目高()CD 的长,利用测得的数据可以求出这棵树的高度.已知CD BD ⊥于点D ,EF BD ⊥于点F ,AB BD ⊥于点B ,6BF =米,2DF =米,0.5EF =米, 1.7CD =米,则这棵树的高度(AB 的长)是______米.【答案】4.1【解析】【分析】过点E 作水平线交AB 于点G ,交CD 于点H ,根据镜面反射的性质求出CHE AGE ∽,再根据对应边成比例解答即可.【详解】过点E 作水平线交AB 于点G ,交CD 于点H ,如图,∵DB 是水平线,,,CD EF AB 都是铅垂线.∴0.5DH EF GB ===米,2EH DF ==米,6EG FB ==米,∴ 1.70.5 1.2CH CD DH =-=-=(米),又根据题意,得90,CHE AGE CEH AEG ∠=∠=︒∠=∠,∴CHE AGE ∽,EH CH EG AG ∴=,即2 1.26AG=,解得: 3.6AG =米,∴ 3.60.5 4.1AB AG GB =+=+=(米).故答案为:4.1.【点睛】本题考查的是相似三角形的应用,通过作辅助线构造相似三角形,并利用相似三角形的对应边成比例是解答此题的关键.16.如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD ,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt ABE △和等腰Rt BCF ,③和④分别是Rt CDG △和Rt DAH V ,⑤是正方形EFGH ,直角顶点E ,F ,G ,H 分别在边BF CG DH AE ,,,上.(1)若3cm EF =,11cm AE FC +=,则BE 的长是______cm .(2)若54DG GH =,则tan DAH ∠的值是______.【答案】①.4②.3【解析】【分析】(1)将AE 和FC 用BE 表示出来,再代入11cm AE FC +=,即可求出BE 的长;(2)由已知条件可以证明DAH CDG ∠=∠,从而得到tan tan DAH CDG ∠=∠,设AH x =,5DG k =,4GH k =,用x 和k 的式子表示出CG ,再利用tan tan DAH CDG ∠=∠列方程,解出x ,从而求出tan DAH ∠的值.【详解】解:(1)∵Rt ABE △和Rt BCF 都是等腰直角三角形,∴AE BE BF CF ==,,∵11cm AE FC +=,∴11cm BE BF +=,即11cm BE BE EF ++=,即211cm BE EF +=,∵3cm EF =,∴4cm BE =,故答案为:4;(2)设AH x =,∵54DG GH =,∴可设5DG k =,4GH k =,∵四边形EFGH 是正方形,∴4HE EF FG GH k ====,∵Rt ABE △和Rt BCF 都是等腰直角三角形,∴45AE BE BF CF ABE CBF ==∠=∠=︒,,,∴481212CG CF GF BF k BE k AH k x k =+=+=+=+=+,454590ABC ABE CBF ∠=∠+∠=︒+︒=︒,∵四边形ABCD 对角互补,∴90ADC ∠=︒,∴90ADH CDG ∠+∠=︒,∵四边形EFGH 是正方形,∴90AHD CGD ∠=∠=︒,∴90ADH DAH ∠+∠=︒,∴DAH CDG ∠=∠,∴tan tan DAH CDG ∠=∠,∴DH CG AH DG =,即54125k k x k x k++=,整理得:2212450x kx k +-=,解得13x k =,215x k =-(舍去),∴9tan 33DH k DAH AH k∠===.故答案为:3.【点睛】本题考查正方形的性质,等腰直角三角形的性质,三角函数定义,一元二次方程的解法等,弄清图中线段间的关系是解题的关键.三、解答题(本题有8小题,共66分)17.计算:243-⨯.【答案】2-【解析】【分析】根据实数的运算顺序进行计算即可.【详解】解:原式423=-⨯46=-2=-.【点睛】本题考查实数的运算,掌握二次根式的性质是解题的关键.18.解一元一次不等式组2138x x x x +>⎧⎨<-+⎩①②【答案】12x -<<【解析】【分析】根据不等式的性质,分别解一元一次不等式,然后求出两个解集的公共部分即可.【详解】解:2138x x x x +>⎧⎨<-+⎩①②,解不等式①,得1x >-,解不等式②,得2x <,所以原不等式组的解是12x -<<.【点睛】本题主要考查解一元一次不等式组,掌握不等式的性质,解一元一次不等式的方法是解题的关键.19.如图,在ABC 中,AB AC =,AD BC ⊥于点D ,点E 为AB 的中点,连结DE .已知10BC =,12AD =,求BD ,DE的长.【答案】135,2BD DE ==【解析】【分析】先根据等腰三角形三线合一性质求出BD 的长,再根据勾股定理求得AB 的长,最后根据条件可知DE 是ABC 的中位线,求得DE 的长.【详解】解,∵AB AC =,AD BC ⊥于点D ,∴12BD BC =.∵10BC =,∴5BD =.∵AD BC ⊥于点D ,∴90ADB ∠=︒,∴在Rt △ABD 中,222AB AD BD =+.∵12AD =,∴13AB ===,∵E 为AB 的中点,∴11322DE AB ==.【点睛】此题考查了三角形中位线的判定与性质、等腰三角形的性质,熟记三角形中位线的判定与性质、等腰三角形的性质是解题的关键.20.4月23日是世界读书日.为了解学生的阅读喜好,丰富学校图书资源,某校将课外书籍设置了四类:文学类、科技类、艺术类、其他类,随机抽查了部分学生,要求每名学生从中选择自己最喜欢的类,将抽查结果绘制成如下统计图(不完整).被抽查学生最喜欢的书籍种类的条形统计图被抽查学生最喜欢的书籍种类的扇形统计图请根据图中信息解答下列问题:(1)求被抽查的学生人数,并求出扇形统计图中m 的值.(2)请将条形统计图补充完整.(温馨提示:请画在答题卷相对应的图上)(3)若该校共有1200名学生,根据抽查结果,试估计全校最喜欢“文学类”书籍的学生人数.【答案】(1)200人,40(2)见解析(3)360人【解析】【分析】(1)根据其它类的人数和所占的百分比求出调查的总人数,用科技类的人数比上总人数,即可得出科技类的学生人数占抽样人数的百分比;(2)用总人数减去文学类、科技类和其他的人数,求出艺术类的人数,补条形统计图即可;(3)用1200乘以文学类书籍所占的百分比,即可得出答案.【小问1详解】被抽查的学生人数是4020%200÷=(人)∵80100%40%200⨯=,∴扇形统计图中m 的值是40.【小问2详解】∵20060804020---=(人),∴补全的条形统计图如图所示【小问3详解】∵601200360200⨯=(人),∴估计全校最喜欢“文学类”书籍的学生人数共有360人.【点睛】本题考查的是条形统计图及其应用与用样本估计总体的知识,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,能够根据各个数据进行正确计算.21.如图,在Rt ABC △中,90ACB ∠=︒,点O 在边AC 上,以点O 为圆心,OC 为半径的半圆与斜边AB 相切于点D ,交OA 于点E ,连结OB .(1)求证:BD BC =.(2)已知1OC =,30A ∠=︒,求AB 的长.【答案】(1)见解析(2)【解析】【分析】(1)连结OD ,根据切线的性质得OD AB ⊥,再根据“HL ”证明Rt Rt ODB OCB ≌△△,可得答案;(2)先求出60ABC ∠=︒,可得CBO ∠,根据特殊角三角函数求出BC ,进而求出答案.【小问1详解】如图,连结OD ,∵半圆O 与AB 相切于点D ,∴OD AB ⊥.∵90ACB ∠=︒,∴90ODB OCB ∠=∠=︒.∵OD OC =,OB OB =,∴()Rt Rt ODB OCB HL ≌.∴BD BC =.【小问2详解】如图,∵30A ∠=︒,90ACB ∠=︒,∴60ABC ∠=︒.∵Rt Rt ODB OCB ≌△△,∴1302CBO DBO ABC ∠=∠=∠=︒.∵1OC =,在Rt BCO △中,tan 30CO BC︒=,∴tan30OC BC ==︒在Rt ABC △中,sin 30BC AB ︒=,∴sin30BC AB ==︒.【点睛】本题主要考查了切线的性质,全等三角形的性质和判定,特殊角的三角函数值等,构造全等三角形是解题的关键.22.某水产经销商以每千克30元的价格购进一批某品种淡水鱼,由销售经验可知,这种淡水鱼的日销售量y (千克)与销售价格x (元/千克)()3060x ≤<存在一次函数关系,部分数据如下表所示:销售价格x (元/千克)5040日销售量y (千克)100200(1)试求出y 关于x 的函数表达式.(2)设该经销商销售这种淡水鱼的日销售利润为W 元,如果不考虑其他因素,求当销售价格x 为多少时,日销售利润W 最大?最大的日销售利润是多少元?【答案】(1)10600y x =-+(2)销售价格为每千克45元时,日销售利润最大,最大日销售利润是2250元【解析】【分析】(1)设y 与x 之间的函数关系式为y kx b =+,由表中数据即可得出结论;(2)根据每日总利润=每千克利润×销售量列出函数解析式,根据函数的性质求最值即可.【小问1详解】解:设y 关于x 的函数表达式为()0y kx b k =+≠.将50100x y ==,和40200x y ==,分别代入,得:5010040200k b k b +=⎧⎨+=⎩,解得:10600k b =-⎧⎨=⎩,∴y 关于x 的函数表达式是:10600y x =-+;【小问2详解】解:()()230106001090018000W x x x x =--+=-+-,∵100-<,∴当9004520x =-=-时,在3060x ≤<的范围内,W 取到最大值,最大值是2250.答:销售价格为每千克45元时,日销售利润最大,最大日销售利润是2250元.【点睛】本题考查一次函数、二次函数的应用,关键是根据等量关系写出函数解析式.23.如图1,在平面直角坐标系xOy 中,二次函数24y x x c =-+的图象与y 轴的交点坐标为()0,5,图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为()1,5.(1)求c 的值及顶点M 的坐标,(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位()03t <<得到对应的矩形A B C D ''''.已知边C D '',A B ''分别与函数24y x x c =-+的图象交于点P ,Q ,连接PQ ,过点P 作PG A B ''⊥于点G .①当2t =时,求QG 的长;②当点G 与点Q 不重合时,是否存在这样的t ,使得PGQ △的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)5c =,顶点M 的坐标是()2,1(2)①1;②存在,12t =或52【解析】【分析】(1)把()0,5代入抛物线的解析式即可求出c ,把抛物线转化为顶点式即可求出顶点坐标;(2)①先判断当2t =时,D ¢,A '的坐标分别是()2,0,()3,0,再求出3x =,2x =时点Q 的纵坐标与点P 的纵坐标,进而求解;②先求出2QG =,易得P ,Q 的坐标分别是()2,45t t t -+,()21,22t t t +-+,然后分点G 在点Q 的上方与点G 在点Q 的下方两种情况,结合函数图象求解即可.【小问1详解】∵二次函数24y x x c =-+的图象与y 轴的交点坐标为()0,5,∴5c =,∴()224521y x x x -=+=-+,∴顶点M 的坐标是()2,1.【小问2详解】①∵A 在x 轴上,B 的坐标为()1,5,∴点A 的坐标是()1,0.当2t =时,D ¢,A '的坐标分别是()2,0,()3,0.当3x =时,()23212y =-+=,即点Q 的纵坐标是2,当2x =时,()22211y =-+=,即点P 的纵坐标是1.∵PG A B ''⊥,∴点G 的纵坐标是1,∴211QG =-=.②存在.理由如下:∵PGQ △的面积为1,1PG =,∴2QG =.根据题意,得P ,Q 的坐标分别是()2,45t t t -+,()21,22t t t +-+.如图1,当点G 在点Q 的上方时,()224522322QG t t t t t =-+--+=-=,此时12t =(在03t <<的范围内),如图2,当点G 在点Q 的下方时,()222245232QG t t t t t =-+--+=-=,此时52t =(在03t <<的范围内).∴12t =或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.24.【特例感知】(1)如图1,在正方形ABCD 中,点P 在边AB 的延长线上,连接PD ,过点D 作DM PD ⊥,交BC 的延长线于点M .求证:DAP DCM ≌△△.【变式求异】(2)如图2,在Rt ABC △中,90ABC ∠=︒,点D 在边AB 上,过点D 作DQ AB ⊥,交AC 于点Q ,点P 在边AB 的延长线上,连接PQ ,过点Q 作QM PQ ⊥,交射线BC 于点M .已知8BC =,10AC =,2AD DB =,求PQ QM的值.【拓展应用】(3)如图3,在Rt ABC △中,90BAC ∠=︒,点P 在边AB 的延长线上,点Q 在边AC 上(不与点A ,C 重合),连接PQ ,以Q 为顶点作PQM PBC ∠=∠,PQM ∠的边QM 交射线BC 于点M .若AC mAB =,CQ nAC =(m ,n 是常数),求PQ QM 的值(用含m ,n 的代数式表示).【答案】(1)见解析;(2)83;(3【解析】【分析】(1)根据ASA 证明DAP DCM ≌△△即可;(2)证明DQP NQM ∽△△,得出PQ DQ DQ QM QN DB==,根据勾股定理6AB ==,根据DQ BC ,得出ADQ ABC ∽△△,求出23DQ AD BC AB ==,得出163DQ =,求出83PQ DQ QM DB ==;(3)BC ==,作QN BC ⊥于点N ,证明QAP QNM ∽△△,得出PQ AQQM NQ =.证明QCN BCA ∽△△,得出QN CQ BA CB ===,求出PQ AQ QM NQ ==.【详解】(1)证明:在正方形ABCD 中,A ADC BCD 90∠=∠=∠=︒,AD DC =,∴90A DCM ∠=∠=︒,∵DM PD ⊥,∴90ADP PDC CDM PDC ∠+∠=∠+∠=︒,∴ADP CDM ∠=∠,∴()ASA DAP DCM ≌.(2)如图1,作QN BC ⊥于点N ,如图所示:∵90ABC ∠=︒,DQ AB ⊥,∴四边形DBNQ 是矩形,∴90DQN ∠=︒,QN DB =,∵QM PQ ⊥,∴90DQP PQN MQN PQN ∠+∠=∠+∠=︒,∴DQP MQN ∠=∠,∵90QDP QNM ∠=∠=︒,∴DQP NQM ∽△△,∴PQ DQ DQ QM QN DB==,∵8BC =,10AC =,90ABC ∠=︒,∴6AB ==,∵2AD DB =,∴2DB =,∵90ADQ ABC ∠=∠=︒,∴DQ BC ,∴ADQ ABC ∽△△,∴23DQ AD BC AB ==,∴163DQ =,∴83PQ DQ QM DB ==;(3)∵AC mAB =,CO nAC =,∴CQ mnAB =,∴()AQ AC CQ m mn AB =-=-.∵90BAC ∠=︒,∴BC ==,如图2,作QN BC ⊥于点N ,∵360A ABN BNQ AQN ∠+∠+∠+∠=︒,∴180ABN AQN ∠+∠=︒,∴AQN PBN ∠=∠.∵PQM PBC ∠=∠,∴PQM AQN ∠=∠,∴AQP NQM ∠=∠,∵90A QNM ∠=∠=︒,∴QAP QNM ∽△△,∴PQ AQ QM NQ =.。
2022年浙江省湖州市中考数学原题试卷附解析
2022年浙江省湖州市中考数学原题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题 1.计算(2232128)3-+⨯的结果是( )A .63B . 66C .6D . 622.某公司市场营销部的营销人员的个人收入与其每月的销售业绩满足一次函数关系.其图象如图所示.由图中给出的信息可知,营销人员的销售业绩为1.5万件时的收入是( )A . 300元B .500元C .750元D .1050元3.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .84.根据下列条件,能判断△ABC 是等腰三角形的是( )A .∠A=50°,∠B=70°B .∠A=48°,∠B=84°C .∠A=30°,∠B=90°D .∠A=80°,∠B=60° 5.如图所示,在下列给出的条件中,不能判定 AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠AD .∠1=∠46.在下列方程:①1-2x=2x-1;②12(1)2x x -=--;③-2x=-1 中,解为12x =的方程有0.30.3ax -( )A .0 个B .1 个C .2 个D .3 个 7.不改变代数式22a a b c --+的值,下列添括号错误..的是( ) A .2(2)a a b c +--+B .2(2)a a b c -+-C .2(2)a a b c --+D .2(2)()a a b c -+-+二、填空题8. 如图所示,是一个几何体的俯视图和左视图,则这个几何体是 . 如图,5个边长为1cm 的立方体摆在桌子上,则露在表面的部分的面积为 2cm .10.如图,∠BAD=∠CAE ,AB = 2AD ,∠B=∠D ,BC=3 cm ,则 DE= cm .11.二次函数2y ax bx c =++图象的一部分如图所示,则a+b= .12.仓库里现有粮食l200 t ,每天运出60 t ,x 天后仓库里剩余粮食y(t),则y 与x 之间的函数解析式为 ,自变量x 的取值范围是 .13.有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为 0;乙:分式有意义时x 的取值范围是1x ≠±;丙:当2x =-时,分式的值为 1,请你写出满足上述全部特点的一个分式: .14.写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义) .15.图形的相似变换不改变图形中 的大小;图形中 的都扩大或缩小相同的倍数.16.某足协举办了一次足球比赛,记分规则为:胜一场积3 分,平一场积 1 分,负一场 积0分,若甲队比赛了 5 场后共积 7 分,则甲队平 场.17.如图,AC=1.5 cm ,BC=2.5 cm,那么AB= + = .18.如图,已知直线上四点A 、B 、C 、D .那么,AD=BC+ + =AB+ =AC+ ;BC=AC- = -CD=AD- - .19.请写出一个比0.1小的有理数: .20.在数轴上距原点2.5个单位长度的点所表示的数是 .21.a、b是两个自然数,如果100+=,那么a与b 的积最大是.a b三、解答题22.如图是某工件的三视图,求此工件的全面积.23.如图,已知有一腰长为2 cm的等腰直角△ABC余料,现从中要截下一个半圆,半圆的直径要在三角形的一边上,且与另两边相切.请设计两种裁截方案,画出示意图,并计算出半圆的半径.方案1 方案224.已知:如图,BC是等腰△BED底边ED上的高,四边形ABEC是平行四边形.求证:四边形ABCD是矩形.25.化简:=-2)3(π .26.如图,分别以Rt ABC ∆的直角边AC ,BC 为边,在Rt ABC ∆外作两个等边三角形ACE ∆和BCF ∆,连结BE ,AF.求证:BE=AF.27.如图,一块三角形模具的阴影部分已破损.(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A B C '''?请简要说明理由.(2)作出模具A B C '''△的图形.(要求:尺规作图,保留作图痕迹,不写作法和证明)28.上海到北京的航线全程为 s(km),飞行时间需 a(h). 而上海到北京的铁路全长为航线 长的m 倍,乘车时间需 b(h). 问飞机的速度是火车速度的多少倍?(用含 a ,b ,s ,m 的 分式表示)29.解下列方程:(1)223x x =;(2)2(1)40x +-=;(3)2690x x -+=;(4)22(2)(21)x x +=+BA30.计算下列各题:(1)331(1)222-⨯+;(2)22332(2)2(2)----+-;.(3)4231(5)()0.815-÷-⨯-+- .【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.B5.C6.D7.C二、填空题8.圆柱9.16 cm210.1.5-112.y=1200-60x ,0≤x ≤2013. 答案不唯一,如231x - 14.211x +(答案不惟一) 15.每一个角;每一条边16.1 或 417.AC ,BC ,4cm18.AB ,CD ,BD ,CD ;AB ,BD ,AB ,CD19.答案不唯一,如0、-1等20.2.5±21.2500三、解答题22.π)101(100+cm 2 .23.如图的两种裁截方案:方案一:作△CAB 的角平分线交CB 于点0.以0为圆心,以OC 为半径画半圆.作OE ⊥AB .则CO=EO ,设⊙O 半径为r,则22=+r r , 解得222-=r .方案二:作∠ACB 的角平分线交AB 于点0,作0D ⊥AC ,以0为圆心,以OD 为半径画作OE ⊥CB ,则0D=OE ,设⊙O 半径为r, 则2=+r r , 解得1=r .24.提示:易证AB //CE ,即AB //CD ,∴四边形ABCD 是平行四边形,∵BC 是等腰△BED 底边ED 上的高,∴∠BCD=90 o ,∴四边形ABCD 是矩形.25.3-π 26.证明△ACF ≌△ECB27.(1)只要度量残留的三角形模具片的B C ∠∠,的度数和边BC 的长, 因为两角及其夹边对应相等的两个三角形全等;(2)略28.b am倍 29.(1)10x =,232x =;(2)11x =,23x =-;(3)123x x ==;(4)11x =-,21x = 30.(1)-25;(2)-24;(3)415。
2023年浙江省湖州市中考数学真题合集试卷附解析
2023年浙江省湖州市中考数学真题合集试卷附解析一、选择题1. 题目解析:根据题意,利用等边三角形的性质可知三角形ABC是等边三角形。
所以∠ABC = ∠ACB = ∠BAC = 60°。
选项B正确。
2. 题目解析:根据题意,若二次函数图像经过点(1,1),则代入x = 1得到a + b + c + 1 = 1。
根据题意,若函数图像与x轴垂直,则其判别式Δ = b² - 4ac = 0。
代入x轴与函数图像的交点(-1,0)得到a + b - c - 1 = 0。
解以上联立方程可得a = -1,b = 1,c = 1。
所以二次函数的表达式为f(x) = -x² + x + 1。
选项D正确。
3. 题目解析:根据题意,数列的首项a = 1,公差d = 3,n = 30。
利用数列求和公式Sn = n/2 * (2a + (n - 1)d),代入n = 30,a = 1,d = 3,计算可得Sn = 30/2 * (2 * 1 + (30 - 1) * 3) = 30/2 * (2 + 87) = 15 * 89 = 1335。
选项A正确。
二、解答题1. 题目解析:根据题意,花园的周长等于半径r的圆的周长。
设花园的周长为C,半径为r,根据题意可列方程C = 2πr,即C = 2 * 3.14 * r。
代入已知条件C = 62.8得到62.8 = 2 * 3.14 * r,解以上方程可得r = 10。
所以花园的半径为10米。
选项D正确。
2. 题目解析:根据题意,将1200完全分成m份,每份是n元,所以mn = 1200。
根据题意,分成的份数最多且每份最少是多少元,则使用贪心算法,令m = 2,n = 600,即分成2份,每份600元。
所以m最大值为2。
选项B正确。
3. 题目解析:根据题意,枚举正整数x的值,使m + 2n = 3x。
由于篮球比足球多5个,所以m = n + 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江湖州中考数学试题解析版Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】浙江省湖州市2011年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1、(2011?湖州)﹣5的相反数是()A、5B、15C、﹣5 D、﹣15考点:相反数。
专题:计算题。
分析:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.解答:解:﹣5的相反数是5.故选A.点评:本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.2、(2011?湖州)计算a2?a3,正确的结果是()A、2a6B、2a5C、a6D、a5考点:同底数幂的乘法。
专题:计算题。
分析:根据同底数幂的乘法法则,底数不变,指数相加.解答:解:a2?a3=a2+3=a5.故选D.点评:本题考查了同底数幂的乘法,理清指数的变化是解题的关键.3、(2011?湖州)根据全国第六次人口普查统计,湖州市常住人口约为2890000人,近似数2890000用科学记数法可表示为()A、×104B、×105C、×106D、×107考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:将2890000用科学记数法表示为×106.故选C.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、(2011?湖州)如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为()A、2B、12 C、√55D、2√55考点:锐角三角函数的定义。
分析:根据tanA是角A的对边比邻边,直接得出答案tanA的值.解答:解:∵∠C=90°,BC=1,AC=2,∴tanA=BCAC=12.故选B.点评:此题主要考查了锐角三角函数的定义,熟练记忆锐角三角函数的定义是解决问题的关键.5、(2011?湖州)数据1,2,3,4,5的平均数是()A、1B、2C、3D、4考点:算术平均数。
分析:根据平均数求法所有数据的和除以总个数即可,直接求出即可.解答:解:(1+2+3+4+5)÷5=3.故选C.点评:此题主要考查了平均数的求法,此题比较简单注意认真计算即可得出答案.6、(2011?湖州)下列事件中,必然事件是()A、掷一枚硬币,正面朝上B、a是实数,|a|≥0C、某运动员跳高的最好成绩是米D、从车间刚生产的产品中任意抽取一个,是次品考点:随机事件。
专题:应用题。
分析:一定会发生的事情称为必然事件.依据定义即可解答.解答:解:A、是随机事件,故不符合题意,B、是必然事件,符合题意,C、是不可能事件,故不符合题意,D、是随机事件,故不符合题意.故选B.点评:本题主要考查了必然事件为一定会发生的事件,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养,难度适中.7、(2011?湖州)下列图形中,经过折叠不能围成一个立方体的是()A、B、C、D、考点:展开图折叠成几何体。
专题:几何图形问题。
分析:由平面图形的折叠及正方体的展开图解题.解答:解:选项A、B、C经过折叠均能围成正方体;D、有“田”字格,不能折成正方体.故选D.点评:本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.8、(2011?湖州)如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是()A、150°B、120°C、90°D、60°考点:旋转的性质;等边三角形的性质;等腰直角三角形。
分析:∠AOC就是旋转角,根据等边三角形的性质,即可求解.解答:解:旋转角∠AOC=∠AOB+∠BOC=60°+90°=150°.故选A.点评:本题主要考查了旋转的性质,正确理解旋转角是解题的关键.9、(2011?湖州)如图,已知AB是⊙O的直径,C是AB延长线上一点,BC=OB,CE是⊙O的切线,切点为D,过点A作AE⊥CE,垂足为E,则CD:DE的值是()A、12B、1 C、2 D、3考点:切线的性质;相似三角形的判定与性质。
专题:计算题。
分析:连接OD,设⊙O的半径为r,可证得△COD∽△CAE,则OCAC=ODAE=CDCE=23,从而得出CD:DE的值.解答:解:如图,连接OD,∵AB是⊙O的直径,BC=OB,∴OA=OB=BC,∵CE是⊙O的切线,∴OD⊥CE,∵AE⊥CE,∴OD∥AE,∴△COD∽△CAE,∴OCAC=CDCE=23,∴CDDE=2.故选C.点评:本题考查了切线的性质,相似三角形的判定和性质,是基础知识要熟练掌握.10、(2011?湖州)如图,已知A、B是反比例函数y=kx(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A、B、C、D、考点:反比例函数综合题;动点问题的函数图象。
专题:综合题。
分析:当点p在OA上运动时,此时S随t的增大而增大,当点P在AB上运动时,S不变,当点P 在BC上运动时,S随t的增大而减小,根据以上判断做出选择即可.解答:解:当点p在OA上运动时,此时S随t的增大而增大,当点P在AB上运动时,S不变,∴B、D淘汰;当点P在BC上运动时,S随t的增大而逐渐减小,∴C 错误.故选A .点评:本题考查了反比例函数的综合题和动点问题的函数图象,解题的关键是根据点的移动确定函数的解析式,从而确定其图象.二、填空题(本题有6小题,每小题4分,共24分)11、(2011?湖州)当x=2时,分式1x ﹣1的值是 1 . 考点:分式的值。
专题:计算题。
分析:将x=2代入分式,即可求得分式的值.解答:解:当x=2时,原式=12﹣1=1. 故答案为:1.点评:本题是一个基础题,考查了分式的值,要熟练掌握.12、(2011?湖州)如图:CD 平分∠ACB ,DE ∥AC 且∠1=30°,则∠2= 60 度.考点:平行线的性质;角平分线的定义。
专题:计算题。
分析:已知CD 平分∠ACB ,DE ∥AC ,可推出∠ACB=∠2,易求解.解答:解:∵CD 平分∠ACB ,∴∠ACB=2∠1;∵DE ∥AC ,∴∠ACB=∠2;又∵∠1=30°,∴∠2=60°.点评:本题应用的知识点为两直线平行,同位角相等;角平分线的定义.13、(2011?湖州)某校对初三(2)班40名学生体育考试中“立定跳远”项目的得分情况进行了统得 分 10分 9分 8分 7分 6分以下 人数(人) 2012 5 2 1 根据表中数据,若随机抽取该班的一名学生,则该学生“立定跳远”得分恰好是10分的概率是12.考点:概率公式。
专题:计算题。
分析:先求出该班人数,再根据概率公式既可求出“立定跳远”得分恰好是10分的概率.解答:解:由表可知,共有学生20+12+5+2+1=40人;“立定跳远”得分恰好是10分的概率是2040=12.故答案为:12.点评:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .14、(2011?湖州)如图,已知梯形ABCD ,AD ∥BC ,对角线AC ,BD 相交于点O ,△AOD 与△BOC 的面积之比为1:9,若AD=1,则BC 的长是 3 .考点:相似三角形的判定与性质。
专题:计算题。
分析:根据AD∥BC,求证△AOD∽△BOC,再利用相似三角形面积的比等于相似比的平方即可求得答案.解答:解:∵AD∥BC,∴△AOD∽△BOC,∵△AOD与△BOC的面积之比为1:9,∴ADBC=13,∵AD=1,∴BC=3.故答案为:3.点评:此题主要考查学生对相似三角形的判定与性质的理解和掌握,解答此题的关键是利用相似三角形面积的比等于相似比的平方.15、(2011?湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是﹣1 2.考点:抛物线与x轴的交点。
专题:计算题。
分析:把(0,﹣3)代入抛物线的解析式求出c的值,在(1,0)和(3,0)之间取一个点,把它的坐标代入解析式即可求出答案.解答:解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx﹣3,∵确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,假如过(2,0),代入得:0=4+2b﹣3,∴b=﹣1 2.故答案为:﹣1 2.点评:本题主要考查对抛物线与X轴的交点的理解和掌握,能理解抛物线与X轴的交点的坐标特点是解此题的关键.16、(2011?湖州)如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片4张才能用它们拼成一个新的正方形.考点:完全平方公式的几何背景。
专题:几何图形问题。
分析:根据构成的新正方形的面积一定是一个完全平方数,根据三张纸片的面积即可确定.解答:解:甲类纸片1张,乙类纸片4张,总面积是4+4=8,大于8的完全平方数依次是9,16,25…,而丙的面积是2,因而不可能;当总面积是16时,取的丙纸片的总面积是8,因而是4张.因而应至少取丙类纸片4张才能用它们拼成一个新的正方形.故答案为:4.点评:本题主要考查了完全平方公式的几何背景,正确理解新正方形的面积是完全平方数是解题的关键.三、解答题(本题共有8小题,共66分)17、(2011?湖州)计算:|﹣2|﹣2sin30°+|17、(2011?湖州)计算:|﹣2|﹣2sin30°+|17、(2011?湖州)计算:|﹣2|﹣2sin30°+sin30°+√4+(√2﹣π)0.考点:特殊角的三角函数值;零指数幂。