2016年春季学期新版北师大版八年级数学下册期末复习试卷20
北师大版八年级数学(下)期末复习试卷及参考答案
八年级数学(下)期末复习试卷一、解答题1.已知ABC ,按下列要求:(尺规作图,保留痕迹,不写作法) (1)作BC 边上的高AD ;(2)作ABC 的平分线BE .(尺规作图) (3)作出线段AB 的垂直平分线MN .(尺规作图)2.如图,在ABC ∆中,AB AC =,请你利用尺规在BC 边上求一点P ,使得ABC PAC ∆∆∽.3.如图,在Rt ABC 中.()1利用尺规作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长; ()2利用尺规作图,作出()1中的线段PD .4.尺规作图: 已知:∠AOB ,点M 、N求作:点P ,使点P 满足:PM=PN ,且P 到OA 、OB 的距离相等.5.如图,已知△ABC ,按要求做图.(1)过点 A 作 BC 的垂线段 AD (无需尺规作图,直接画出).(2)过点 C 作 AB 的平行线(尺规作图,不写作法,保留作图痕迹).6.如图,在等腰ABC 中,,36AB AC A ︒=∠=,点D E 、分别为AB AC 、上的点,将A ∠沿直线DE 翻折,使点A 落在点C 处.(1)用尺规作图作出直线DE ;(要求:尺规作图,保留作图痕迹,不写作法) (2)若AD =,求BC 的长.7.如图,已知△ABC 与△A′B′C′关于点O 成中心对称,点A 的对称点为点A′,请你用尺规作图的方法,找出对称中心O ,并作出△A′B′C′.(要求:尺规作图,保留作图痕迹,不写作法).8.如图,已知△ABC ,AC <BC ,(1)尺规作图:作△ABC 的边BC 上的高AD (2)试用尺规作图的方法在线段BC 上确定一点P ,使PA+PC =BC ,并说明理由.9.如图,ABC ∆为一钝角三角形,且90BAC ∠>︒(1)分别以AB ,AC 为底向外作等腰Rt DAB ∆和等腰 Rt EAC (要求:尺规作图,不写作法,保留作图痕迹)(2)已知P 为BC 上一动点,通过尺规作图的方式找出一点P ,连接PD ,PE ,使得 PD PE ⊥并证明.10.如图已知△ABC .(1)请用尺规作图法作出BC 的垂直平分线DE ,垂足为D ,交AC 于点E, (2)请用尺规作图法作出∠C 的角平分线CF ,交AB 于点F,(保留作图痕迹,不写作法); (3)请用尺规作图法在BC 上找出一点P ,使△PEF 的周长最小.(保留作图痕迹,不写作法).10.已知:如图,直线l 极其同侧两点A ,B .(1)在图1直线l 上求一点P ,使到A 、B 两点距离之和最短;(不要求尺规作图) (2)在图2直线l 上求一点O ,使OA=OB .(尺规作图,保留作图痕迹) 12.先尺规作图,后进行计算:如图,△ABC 中,∠A =105°.(1)试求作一点P ,使得点P 到B 、C 两点的距离相等,并且到∠ABC 两边的距离相等(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若∠ACP =30°,求∠PBC 的度数.13.如图,在平面直角坐标系xOy 中,点A 的坐标为(﹣2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD .(1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是 个单位长度; (2)△AOC 与△BOD 关于直线对称,则对称轴是 ;(3)△AOC 绕原点O 顺时针旋转可以得到△DOB ,则旋转角度是 度,在此旋转过程中,△AOC 扫过的图形的面积是 .14.如图,在平面直角坐标系内,ABC 的顶点坐标分别为()4,4A -,()2,5B -,()2,1C -.(1)平移ABC ,使点C 移到点()12,2C ,画出平移后的111A B C △; (2)将ABC 绕点()0,0旋转180︒,得到222A B C △,画出旋转后的222A B C △; (3)连接12A C ,21A C ,求四边形1221A C A C 的面积.15.如图,每个小正方形的边长都是1个单位长度,Rt ABC ∆的三个顶点(2,2)A -,(0,5)B ,(0,2)C . (1)将ABC ∆以点C 为旋转中心旋转180︒,得到△11A B C ,请画出△11A B C 的图形;(2)平移ABC ∆,使点A 的对应点2A 坐标为(2,6)--,请画出平移后对应的△222A B C 的图形;(3)若将△11A B C 绕某一点旋转180︒可得到△222A B C ,请直接写出旋转中心的坐标.16.如图1,ABC 中(2)A -,3,(31)B -,,(12)C -,.(1)将ABC 向右平移4个单位长度,画出平移后的111A B C △;(2)画出ABC 关于x 轴对称的222A B C △(3)将ABC 绕原点O 旋转180,画出旋转后的333A B C △; (4)在111A B C △,222A B C △,333A B C △中,______与______成轴对称,对称轴是______;______与______成中心对称,对称中心的坐标是____.17.综合题。
2016北师大版八年级数学第二学期期末试题
北师大版八年级数学期末复习试题一.选择题1. 下列从左边到右边的变形,是因式分解的是( )A.322842(42)m n mn mn m n +=+B.))((2233n mn m n m n m ++-=-C.)1)(3()3)(1(+--=-+y y y yD.z yz z y z z yyz +-=+-)2(22422.下列变形中,错误的是( ). A .若3a+5>2,则3a >2-5 B .若213x ->,则23x <- C .若115x -<,则x >-5 D .若1115x >,则511x > 3. 在平面直角坐标系内,点P(3-m ,5-m )在第三象限,则m 的取值范围是( )A.5<mB.53<<mC.3<mD.3-<m4. 若分式4242--x x 的值为零,则x 等于( ) A.2 B.-2 C.±2 D.05.若解分式方程441+=+-x m x x 产生增根,则( ) A. B. C.D.6.如图,在ABC ∆中,75CAB ∠= ,在同一平面内,将ABC ∆绕点A 旋转到''ABC ∆的位置,使得'//CC AB ,则'BAB ∠=( )A.30 B.35 C.40D.506题图 7题图 8题图 9题图7. 如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )A.1.5cmB. 2cmC. 2.5cmD. 3cm8. 如图,在周长为20cm 的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为DA.4cmB.6cmC.8cmD.10cm9.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为A.32B.52 C.3 D.410. 已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是() A. 65a -<<- B. 65a -≤<- C. 65a -<≤- D.65a -≤≤-11.一个多边形的每个内角均为108°,则这个多边形是().A .七边形B .六边形C .五边形D .四边形12. 如图,ABC ∆中,AB 边的垂直平分线交AB 于点E ,交BC 于点D ,已知5AC =cm ,ADC ∆的周长为17cm ,则BC 的长为()A B CO EA. 7cmB.10cmC.12cmD. 22cm12题图 13题图 14题图13.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为( )A.24B.36C.40D.4814.如图3,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P ,则12∠+∠的度数是( ).A .045B .055C .060D .07515.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四个条件:①AD ∥BC ②AD =BC ③OA =OC④OB =OD 。
北师大八年级(下)数学期末考试题(含答案)
八年级下期末试题 姓名 班级一、选择题(本大题共15小题,每小题3分,共45分)1.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a 一2<b 一2;C .a 2>b 2D .-2a >-2b 2.下面式子从左边到右边豹变形是因式分解的是( )A .x 2-x -2=x (x 一1)-2B .x 2—4x +4=(x 一2)2C .(x +1)(x —1)=x 2 - 1D .x -1=x (1-1x) 3下列所培图形中·既是中心对称图形又是轴对称图形的是()A B C D4.多项式x 2-1与多项式x 2一2x +1的公因式是( )A .x 一1B .x +1C .x 2一1D .(x -1)25己知一个多边形的内角和是360°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形6. 下列多项式能用完全平方公式分解因式的有 ( )A .m 2-mn +n 2B .x 2+4x – 4 C. x 2-4x +4 D. 4x 2-4x +47.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( )A .60°B .90°C .120°D .150°8.运用分式的性质,下列计算正确的是( )A .x 6x 2 =x 3 B .-x +y x -y =-1 C .a +x b +x =a b D .x +y x +y=0 9.如图,若平行四边形ABCD 的周长为40cm ,BC =23AB ,则BC =( ) A .16crn B .14cm C .12cm D .8cmCD10.若分式方程x -3x -1=m x -1有增根,则m 等于( ) A .-3 B .-2 C .3 D .211.如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC 的长为( )A .18B .14C .12D .6D B CA12.如图,己知直线y 1=x +m 与y 2=kx —1相交于点P (一1,2),则关于x 的不等式x +m <kx —1的解集在数轴上表示正确的是( )A .B .C .D .13.如图,在菱形ABCD 中,对角线AC 、BD 相较于点O ,BD =8,BC =5,AE ⊥BC 于点E ,则AE 的长为( )A .5B .125C .245D .185A DB E14.定义一种新运算:当a >b 时,a ○+b =ab +b ;当a <b 时,a ○+b =ab -b .若3○+(x +2)>0,则x 的取值范围是( )A .-1<x <1或x <-2B .x <-2或1<x <2C .-2<x <1或x >1D .x <-2或x >215.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB =90°,直角边AO 在x 轴上,且AO =1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO ,再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O ……,依此规律,得到等腰直角三角形A 2017OB 2017.则点B 2017的坐标( )A .(22017,-22017)B .(22016,-22016)C .(22017,22017)D .(22016,22016)二、填空题(本大题共5小题,每小题4分,共20分)16.若分式1x -1有意义,则x 的取值范围是_______________. 17.若m =2,则m 2-4m +4的值是_________________.18.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP //OB ,交OA于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_____________.19.不等式组⎩⎨⎧x >4x >m(m ≠4)的解集是x >4,那么m 的取值范围是_______________. 20.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为________________.21.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG //CF ;④S △EFC =125.其中正确结论的是____________(只填序号).22.(本小题满分7分)(1)分解因式:ax 2-ay 2;(2)解不等式组⎩⎨⎧x -1<2 ①2x +3≥x -1 ②,并把不等式组的解集在数轴上表出来.23(本小题满分7分)(1)如图,在〉ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .(2)先化简,再求值:(1a +2-1a -2)÷1a -2,其中a =624.(本小题满分8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2、C2的坐标.25.(本小题满分8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(本小题满分9分)探索发现:11×2=1-12;12×3=12-13;13×4=13-14…… 根据你发现的规律,回答下列问题:(1) 14×5=___________,1n ×(n +1)=___________; (2)利用你发现的规律计算:11×2+12×3+13×4+……+1n ×(n +1) (3)灵活利用规律解方程:1x (x +2)+1(x +2)(x +4)+……+1(x +98)(x +100)=1x +100.27.(本小最满分9分)如图1,已知四边形ABCD 是正方形,对角线AC 、BD 相交于点E ,以点E 为顶点作正方形EFGH .(1)如图1,点A 、D 分别在EH 和EF 上,连接BH 、AF ,直接写出BH 和AF 的数量关系:(2)将正方形EFGH 绕点E 顺时针方向旋转①如图2,判断BH 和 AF 的数量关系,并说明理由;②如果四边形ABDH 是平行四边形,请在备用图中不劝图形;如果四方形ABCD 的边长为\R (,2),求正方形EFGH 的边长.28.(本小题满分9分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(一6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标:若不存在,请说明理由.。
北师大版八年级下学期数学期末试卷含答案(共5套)
北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。
新北师大版八年级下数学期末考试卷(答案)
新北师⼤版⼋年级下数学期末考试卷(答案)新北师⼤版⼋年级下数学期末考试卷(答案)新北师⼤版⼋年级下数学期末考试试卷全卷满分120分,考试时间120分钟.⼀、选择题(本⼤题共10⼩题,每⼩题3分,共30分。
每⼩题只有⼀个正确答案,请将正确答案的序号填在题后的括号内)1、不等式x+l>2的解奖是() A. x > 1 r < 1 C. x > 1 D, x < 1 2. 下列多项式中'能⽤完全平⽅公式分解的是() A, x" -x+1 B. l-2x>? + x 2y" C. 1 +』+ — D. a" -b'+2ab■3.⼀个正多边形的每个外⾓都等于36⽓那么它是()A.正六边形B.正⼋边形 C 正⼗边形 D 「正⼗⼆边形J Y + ?L 在函数⼫⼆业d 中.⾃变量*的取值范围是()3.vD- x>-2A. SrABCD=4S^0B B ? AC=BD C. AC-BD D. 3ABCD 是轴对称图形 7、在 A ABC中,ZA : ZB : NC = 1 : 2 : 3,若 AC=4?则 AB 的长为()A. o£J . □C. -------- U.3 3⼟如图,ZkABC 中,AB=AC=10, BC=8「AD 平分ZBAC 交 BC 于点 D,点 E 为AC 的中点,建接DE, fflACDE 的周长为()& 5、如? 在3CD 中,EF//AB, GH7AD, EF QH 交⼲点0,则该图中的平⾏四边形共有()个,A. 6B. 8 C, % D. 10第5题图第6题图第8题图6,虹图,平⾏四边形ABCD 的对⾓线AC.BD 相交于点5下列结沦正确拘是()A. 12B. 14 C15. D. 209、⼀次函数巧=⼥尊与巧=*⼗"村图象如图所⽰,则下列结论:①上v 0 ; @ C? > 0 :③当贰v 3时.中/正确的个数是()A. 0B. 1C. 2D. 310. 为了抢修⼀段长12。
(完整)新北师版大八年级下期末数学试卷(有答案)
新北师大版八年级(下)期末数学试卷一、选择题(共12 小题,每题 3 分,满分 36 分)1.以下是节水、回收、低碳、绿色包装四个标记,此中是中心对称图形的是()A.B.C. D .2.若 a< b,则以下各式中必定建立的是()A.﹣ a<﹣ b B . ac< bc C. a﹣ 1< b﹣ 1D.>3.使分式存心义的x 的取值范围是()A. x≥ 1 B . x≤ 1 C. x> 1 D . x≠ 14.以下从左边到右边的变形,因式分解正确的选项是()A. 2a2﹣ 2=2( a+1)( a﹣ 1)B.( a+3)( a﹣ 3) =a2﹣ 9C.﹣ ab2+2ab﹣ 3b=﹣b( ab﹣ 2a﹣ 3)D. x2﹣ 2x﹣ 3=x(x﹣ 2)﹣ 35.如图, ? ABCD中, AB=4,BC=6, AC的垂直均分线交AD于点 E,则△ CDE的周长是()A. 6B. 8C. 10D. 125 题图6题图6.如图,直线 l 1的分析式为y1=k1x+b1,直线 l 2的分析式为y2=k2x+b2,则不等式k1x+b1> k2x+b2的解集是()A. x> 2 B . x< 2 C. x>﹣ 2D. x<﹣ 27.若 x2﹣ kx+9 是一个完整平方式,则k 的值为()A.﹣ 3 B.﹣ 6 C.± 3D.± 68.对分式,通分时,最简公分母是()A. 4( a﹣ 3)( a+3)2 B. 4( a2﹣ 9)( a2+6a+9) C . 8(a2﹣ 9)( a2+6a+9) D. 4(a﹣ 3)2( a+3)2 9.一个长为2、宽为 1 的长方形以下边的四种“姿态”从直线l 的左边水平平移至右边(以下图中的虚线都是水平线).此中,所需平移的距离最短的是()A.B.C.D.10.以下说法错误的选项是()A. x=4 是方程的增根B.一组对边平行,另一组对边相等的四边形是平行四边形C.命题“平行四边形的对角线相互均分”和它的抗命题是以对互逆定理D.把点 A 的横坐标不变,纵坐标乘以﹣ 1 后获得点 B,则点 A 与点 B 对于11.如图, ? ABCD与 ? DCFE的周长相等,且∠ BAD=60°,∠ F=100°,则∠y 轴对称DAE的度数为()A.20° B .25°C.30°D.35°12.以下图,△ABC的两条外角均分线AP、 CP订交于点P, PH⊥ AC于H.若∠ ABC=60°,则下边的结论:①∠ ABP=30°;②∠ APC=60°;③PB=2PH;④∠ APH=∠ BPC,此中正确结论的个数是()A. 1 个B. 2 个C. 3 个D. 4 个11题图12题图16题图二、填空题(共 4 小题,每题 3 分,满分12 分)13.七边形的内角和是.14.化简+的结果是.15.若 x=5 是对于 x 的不等式2x+5> a 的一个解,但x=4 不是它的解,则 a 的取值范围是.16.以下图,长方形ABCD绕点于点 M,若 AB=4, BC=1,则 AM=C 顺时针旋转.90°后获得长方形CEFG,连结DG交EF 于H 连结AF 交DG三、解答题(共7 小题,满分52 分)17.分解因式:( 1) 3x2﹣ 12xy+12y 2;(2)(x﹣y)2+16(y﹣x).18.先化简,再求值:(﹣)?(a+3),此中a=3+2.19.以下图,点P 的坐标为( 4, 3),把点P 绕坐标原点O逆时针旋转90°后获得点Q.( 1)写出点Q的坐标是;( 2)若把点Q向右平移m个单位长度,向下平移2m个单位长度后,获得的点Q′恰巧落在第三象限,求m 的取值范围.20.解方程:.21.如图,△ ABC和△ BEF都是等边三角形,点D在BC边上,点F在AB边上,且∠ EAD=60°,连结ED、CF.(1)求证:△ ABE≌△ ACD;(2)求证:四边形 EFCD是平行四边形.22.给点燃的蜡烛加上一个特质的外罩后,蜡烛焚烧的时间会更长,为了丈量蜡烛在有、无外罩条件下的焚烧时长,某天,小明同时点燃了A、B、C 三只相同质地、相同长的蜡烛,他给此中的A、B 两只加了外罩,C没加外罩,一段时间后,小明发现自己忘了记录开始时间,于是,他立刻请来了小聪,小聪依据现场状况采纳了以下的挽救举措,在 C 恰巧焚烧完时,他立刻拿掉了 B 的外罩,但没有拿掉 A 的外罩,结果发现:B 在 C 焚烧完此后12 分钟才焚烧完, A 在B 焚烧完此后8 分钟焚烧完(假设蜡烛在“有罩”或“无罩”条件下都是平均焚烧)设无外罩时,已知蜡烛能够焚烧x 分钟,则:( 1)填空:把已知蜡烛的总长度记为单位1,当蜡烛 B 焚烧完时,它在“有罩”条件下焚烧的长度为;在“无罩”条件下焚烧的长度为;(两个空都用含有x 的代数式表示)(2)求无外罩时,已知蜡烛能够焚烧多少分钟;(3)假如一支点燃的蜡烛起码能够焚烧40 分钟,则无罩焚烧至多几分钟后就要给这支蜡烛加上外罩?23.如图 1、2,A、B 是 y 轴上的两点(点 A 在点 B 的上面), C、D 是 x 轴上的两点(点C在点 D的左边),E、 F 分别是 BC、 AD的中点.(1)如图 1,过点 C 作 x 轴的垂线交 AE的延伸线于点 P,求证: AB=PC;(2)如图 1,连结 EF,若 AB=4, CD=2,求 EF 的长;( 3)如图 2,若 AB=CD,当线段AB、CD分别在 y 轴、 x 轴上滑动时,直线EF 与 x 轴正方向的夹角∠α的大小能否会发生变化?若变化,请你说明原因;若不变,请你求出∠α的大小.八年级(下)期末数学试卷参照答案与试题分析一、选择题(共12 小题,每题 3 分,满分36 分)1.以下是节水、回收、低碳、绿色包装四个标记,此中是中心对称图形的是(D)A.B.C. D .2.若 a< b,则以下各式中必定建立的是( C )A.﹣ a<﹣ b B . ac< bc C. a﹣ 1< b﹣ 1D.>3.使分式存心义的 x 的取值范围是( D) A. x≥1B. x≤ 1 C . x> 1 D. x≠ 14.以下从左边到右边的变形,因式分解正确的选项是( A )A. 2a2﹣ 2=2( a+1)( a﹣ 1)B.( a+3)( a﹣ 3) =a2﹣ 9C.﹣ ab2+2ab﹣ 3b=﹣b( ab﹣ 2a﹣ 3)D. x2﹣ 2x﹣ 3=x(x﹣ 2)﹣ 35.如图, ? ABCD中, AB=4,BC=6, AC的垂直均分线交 AD于点 E,则△ CDE的周长是(C.)A. 6B. 8C. 10 D. 12k1x+b1>k2x+b2的解集是(D)6.如图,直线 l 1的分析式为y1=k1x+b1,直线 l 2的分析式为 y2=k 2x+b2,则不等式A. x> 2 B . x< 2 C. x>﹣ 2D. x<﹣ 22A.﹣ 3 B.﹣ 6 C.± 3D.± 68.对分式,通分时,最简公分母是(A)A. 4( a﹣ 3)( a+3)2 B. 4( a2﹣ 9)( a2+6a+9) C . 8(a2﹣ 9)( a2+6a+9) D. 4(a﹣ 3)2( a+3)2 9.一个长为2、宽为 1 的长方形以下边的四种“姿态”从直线l 的左边水平平移至右边(以下图中的虚线都是水平线).此中,所需平移的距离最短的是(C)A.B.C.D.【解答】解:A、平移的距离 =1+2=3, B、平移的距离=2+1=3, C、平移的距离 ==,D、平移的距离=2,因此选C.10.以下说法错误的选项是(C)A. x=4 是方程的增根B.一组对边平行,另一组对边相等的四边形是平行四边形C.命题“平行四边形的对角线相互均分”和它的抗命题是以对互逆定理D.把点 A 的横坐标不变,纵坐标乘以﹣ 1 后获得点B,则点 A 与点B 对于y 轴对称11.如图, ? ABCD与 ? DCFE的周长相等,且∠BAD=60°,∠ F=100°,则∠DAE的度数为()A.20° B .25°C.30°D.35°【解答】解:∵? ABCD与 ? DCFE的周长相等,且CD=CD,∴ AD=DE,∵∠ DAE=∠ DEA,∵∠ BAD=60°,∠ F=100°,∴∠ ADC=120°,∠CDE═∠ F=100°,∴∠ ADE=360°﹣ 120°﹣ 100°=140°,∴∠ DAE=(180°﹣ 140°)÷ 2=20°,应选: A.12.以下图,△ABC的两条外角均分线AP、 CP订交于点P, PH⊥ AC于 H.若∠ ABC=60°,则下边的结论:①∠ ABP=30°;②∠ APC=60°;③PB=2PH;④∠ APH=∠ BPC,此中正确结论的个数是()A. 1 个B. 2 个C. 3 个D. 4 个【解答】解:如图作,PM⊥ BC于 M, PN⊥BA 于 N.∵∠ PAH=∠ PAN, PN⊥ AD,PH⊥ AC,∴PN=PH,同理 PM=PH,∴ PN=PM,∴ PB均分∠ ABC,∴∠ ABP= ∠ABC=30°,故①正确,∵在 Rt △ PAH和 Rt△ PAN中,,∴△ PAN≌△ PAH,同理可证,△PCM≌△ PCH,∴∠ APN=∠APH,∠ CPM=∠ CPH,∵∠ MPN=180°﹣∠ ABC=120°,∴∠ APC= ∠MPN=60°,故②正确,在Rt △ PBN中,∵∠ PBN=30°,∴ PB=2PN=2PH,故③正确,∵∠ BPN=∠CPA=60°,∴∠ CPB=∠APN=∠ APH,故④正确.【评论】本题考察角均分线的判断定理和性质定理.全等三角形的判断和性质等知识,解题的重点是灵巧运用所学知识,属于中考常考题型.二、填空题(共 4 小题,每题 3 分,满分 12 分)13.七边形的内角和是900°.14.化简+的结果是 a .【解答】解:原式 =﹣===a,15.若 x=5 是对于 x 的不等式 2x+5> a 的一个解,但x=4 不是它的解,则 a 的取值范围是13≤a< 15 .16.以下图,长方形ABCD绕点 C 顺时针旋转 90°后获得长方形CEFG,连结 DG交 EF 于 H 连结 AF 交DG于点 M,若 AB=4, BC=1,则 AM=.【解答】解:如图,连结AC、 CF.∵长方形 ABCD绕点 C顺时针旋转90°后获得长方形CEFG,∴ DC=GC, AC=FC,∠ ACF=90°,∴△ACF是等腰直角三角形.∵在R t △ABC中,∠ B=90°, AB=4, BC=1,∴ AC==,∴ FC=AC=.在 Rt △ CAF中,由勾股定理得,AF==.∵DC=GC,∠ DCG=90°,∴∠ DGC=45°,∴∠ FGH=90°﹣∠ DGC=45°,∴△ FHG是等腰直角三角形,∴FH=FG,∵ FG=AD,∴ FH=AD.在△ ADM与△ FHM中,∴△ ADM≌△ FHM,∴ AM=FM,∵ AM+FM=AF=,∴ AM=.故答案为.三、解答题(共7 小题,满分52 分)17.分解因式:(1) 3x2﹣ 12xy+12y 2;(2)( x﹣y)2+16(y﹣ x).【解答】解:(1)原式 =3(x2﹣4xy+4y 2)=3( x﹣ 2y)2;18.先化简,再求值:(﹣)?(a+3),此中a=3+2.【解答】解:原式=[﹣] ? ( a+3)=? ( a+3) =,当 a=3+2时,原式=.19.以下图,点P 的坐标为( 4, 3),把点P 绕坐标原点O逆时针旋转90°后获得点Q.( 1)写出点Q的坐标(﹣ 3, 4);是m个单位长度,向下平移2m个单位长度后,获得的点Q′恰巧落在第三象限,求m ( 2)若把点Q向右平移的取值范围.【解答】解:(1)点 Q的坐标为(﹣ 3, 4);故答案为(﹣3, 4);( 2)把点 Q(﹣ 3,4)向右平移m个单位长度,向下平移2m个单位长度后,获得的点Q′的坐标为(﹣3+m, 4﹣ 2m),而 Q′在第三象限,2< m< 3.因此,解得2<m< 3,即m的范围为20.解方程:.【解答】解:方程的两边同乘(x﹣ 2),得: 1﹣x=﹣ 1﹣ 2( x﹣ 2),解得: x=2.查验:当x=2 时,( x﹣ 2) =0,即 x=2 不是原分式方程的解.则原方程无解.21.如图,△ ABC和△ BEF都是等边三角形,点D在BC边上,点F在AB边上,且∠ EAD=60°,连结ED、CF.(1)求证:△ ABE≌△ ACD;(2)求证:四边形 EFCD是平行四边形.【解答】证明:( 1)∵△ ABC和△ BEF都是等边三角形,∴ AB=AC,∠ EBF=∠ ACB=∠BAC=60°,∵∠ EAD=60°,∴∠ EAD=∠ BAC,∴∠ EAB=∠ CAD,在△ ABE和△ ACD中,∴△ ABE≌△ ACD.(2)由( 1)得△ ABE≌△ ACD,∴ BE=CD,∵△ BEF、△ ABC是等边三角形,∴BE=EF,∴∠ EFB=∠ABC=60°,∴ EF∥ CD,∴ BE=EF=CD,∴ EF=CD,且 EF∥ CD,∴四边形 EFCD是平行四边形.22.给点燃的蜡烛加上一个特质的外罩后,蜡烛焚烧的时间会更长,为了丈量蜡烛在有、无外罩条件下的焚烧时长,某天,小明同时点燃了A、B、C 三只相同质地、相同长的蜡烛,他给此中的A、B 两只加了外罩,C没加外罩,一段时间后,小明发现自己忘了记录开始时间,于是,他立刻请来了小聪,小聪依据现场状况采纳了以下的挽救举措,在 C 恰巧焚烧完时,他立刻拿掉了 B 的外罩,但没有拿掉 A 的外罩,结果发现:在 C 焚烧完此后12 分钟才焚烧完, A 在 B 焚烧完此后8 分钟焚烧完(假设蜡烛在“有罩”或“无罩”条件下都是平均焚烧)设无外罩时,已知蜡烛能够焚烧x 分钟,则:( 1)填空:把已知蜡烛的总长度记为单位1,当蜡烛 B 焚烧完时,它在“有罩”条件下焚烧的长度为B 1﹣;在“无罩”条件下焚烧的长度为;(两个空都用含有x 的代数式表示)(2)求无外罩时,已知蜡烛能够焚烧多少分钟;(3)假如一支点燃的蜡烛起码能够焚烧 40 分钟,则无罩焚烧至多几分钟后就要给这支蜡烛加上外罩?【考点】一元一次不等式的应用;列代数式.【解答】解:( 1)把已知蜡烛的总长度记为单位1,当蜡烛 B 焚烧完时,在“无罩”条件下焚烧的长度为,它在“有罩”条件下焚烧的长度为1﹣,故答案为:1﹣,;( 2)设无外罩时,一支蜡烛能够焚烧x 分钟,由题意得:=,解得:x=30,经查验x=30 是原分式方程的解,答:无外罩时,一支蜡烛能够焚烧30 分钟.( 3)设无罩焚烧 a 分钟后就要给这支蜡烛加上外罩,由题意得:+≥ 1,解得:a≤ 15,答:无罩焚烧至多15 分钟后就要给这支蜡烛加上外罩.【评论】本题考察分式方程与不等式的实质运用,找出题目包含的等量关系和不等关系是解决问题的重点.23.如图 1、2,A、B 是 y 轴上的两点(点 A 在点 B 的上面), C、D 是 x 轴上的两点(点C在点 D的左边),E、 F 分别是 BC、 AD的中点.(1)如图 1,过点 C 作 x 轴的垂线交 AE的延伸线于点 P,求证: AB=PC;(2)如图 1,连结 EF,若 AB=4, CD=2,求 EF 的长;x 轴正方向的夹角∠α的( 3)如图 2,若 AB=CD,当线段 AB、CD分别在 y 轴、 x 轴上滑动时,直线 EF 与大小能否会发生变化?若变化,请你说明原因;若不变,请你求出∠α 的大小.【解答】( 1)证明:∵ OA⊥OD, PC⊥ OD,∴ AB∥ PC,∴∠ EAB=∠ EPC,在△ ABE和△ PCE中,∴△ ABE≌△ PCE,∴ AE=EP.( 2)如图 1 中,连结DP,∵△ AEB≌△ PEC,∴ AE=EP,∵ CP=AB=4, CD=2,∴ DP==2,∵ E、F分别是AP、AD中点,∴EF= DP= .( 3)结论:∠α的大小不变,∠α =45°原因:如图 2 中,过点 C 作 x 轴的垂线交AE的延伸线于点P,由( 1)可知, CP=AB=CD,∴∠ CDP=45°,∵EF∥ DP,∴∠α =∠CDP=45°.【评论】本题考察三角形综合题、全等三角形的判断和性质、勾股定理、三角形中位线定理等知识,解题的重点是学会利用( 1)的证明方法,增添协助线结构全等三角形解决问题,属于中考常考题型.。
2016~2017学年北师大版八年级数学第二学期期末测试卷及答案(精选2套)
第5题图 2016~2017学年度第二学期期末测试题八年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是因式分解的是( )A.(a +3)(a —3)=a 2-9B.()2241026x x x ++=++ C.()22693x x x -+=- D.()()243223x x x x x -+=-++ 2. 分式293x x --的值为零,则x 的取值( ).A .3B .3-C .3±D .03. 下列变形正确的是( ).A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=--D .22()1()a b a b --=-+ 4. 有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为( ) A .5 BC .5D .不确定5. 如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425B .525C .625D .9256. 下列命题中正确的是 ( )A .有两条边相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .两角对应相等的两个等腰三角形全等D .一边对应相等的两个等边三角形全等 7. 如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )8. 下列说法中,正确的是( )设 ( )A .∠A =∠B B .AB =BC C .∠B =∠CD .∠A =∠C10.如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位11. 随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘乘轿车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .x x 5.28158=+ B .155.288+=x xC .x x 5.28418=+D .415.288+=x x12 . 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13. 当x 时,分式x-31有意义 14. 在△ABC 中,∠A:∠B:∠C =1:2:3,AB =6cm ,则BC = cm . 15. 分解因式:3223x y 2x y +xy =- 16. 若关于x 的方程2222x m x x++=--有增根,则m 的值是______ 17..两个连续整数的积为42,这两个数分别为18. 如图4,正方形ABCD 中,点E 在BC 的延长线上,AC=CE,则下列结论: (1)∠ACE=1350.(2)∠E=22.50,(3)∠2=112.50.(4)AF 平分∠DAC. (5)DF=FC. 其中正确的有三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)(1)因式分解 m 3n -9mn . (2)计算 2111a a a a -++-20. (本小题满分8分)(1)解方程 )12(3)12(4+=+x x x ;(2)解分式方程22121--=--xx x21. (本小题满分8分)某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?23(本小题满分8分)如图,在平行四边形ABCD 中,对角线AC,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F .求证:OE =OF .B小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25. (本小题满分9分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26. (本小题满分10分)如图,在Rt △ABC 中,∠C =90°,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连结DE .(1)证明DE ∥CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形.一.选择CBBCD D C C CA DB二.填空13.≠3, 14. 3 15.a+b 16.0 17 6\7 或-6\-7 18. (1)(2)(3)(4)(5)19.20. -1\2 3\423. 解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD ……………2′∴∠OAE=∠OCF ……………4′∵∠AOE=∠COF ……………6′∴△OAE≌△OCF(ASA)∴OE=OF ……………8′25x1=即正方形的边长为中,,=AC= AC=2016—2017学年期末测试八年级数学试卷一、选择题(每小题3分,共30分请把正确选项填在相应题号下的空格里。
北师大版八年级数学(下册)期末试卷含答案及复习提纲+练习题
北师大版八年级第二学期期末数学复习试卷一、选择题:(每小题3分,共30分)1.在相同时刻物高与影长成比例,如果高为1米的测竿的影长为80厘米,那么影长为9.6米的旗杆的高为( )(A)15米 (B)13米 (C)12米 (D)10米2.商品的原售价为m 元,若按该价的8折出售,仍获利n%,则该商品的进价为( )元.(A)0.8m ×n% (B)0.8m (1+n%) (C)%18.0n m + (D)%8.0n m3.人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下:2212128686259186.x x s s ====,,, 则成绩较为稳定的班级是( ) (A)八(1)班 (B)八(2)班 (C)两个班成绩一样稳定 (D)无法确定.4.下列命题是真命题的是( )(A)相等的角是对顶角 (B)两直线被第三条直线所截,内错角相等 (C)若n m n m ==则,22 (D)有一角对应相等的两个菱形相似. 5.若16)3(22+-+x m x 是完全平方式,则m 的值是( ) (A)-1 (B)7 (C)7或-1 (D)5或1. 6.下列长度的各组线段中,能构成比例的是( ) (A)2,5,6,8 (B)3,6,9,18 (C)1,2,3,4 (D)3,6,7,9. 7.如图,1l 反映的是某公司产品的销售收入与销售量的 关系,2l根据图象判断该公司盈利时销售量为 ( )(A)小于4件 (B)等于4件 (C)大于4件 (D)大于或等于4件 8.解关于x 的方程113-=--x mx x 产生增根,则常数m 的值等于( ) (A)-1 (B)-2 (C)1 (D)29.有旅客m 人,如果每n 个人住一间客房,还有一个人无房间住,则客房的间数为( )(A)n m 1- (B)n m 1+ (C)n m -1 (D)nm+1 10.若m >-1,则多项式123+--m m m 的值为( )(A)正数 (B)负数 (C)非负数 (D)非正数 二、填空题:(每题3分,共30分)11.看图填空:(1)x=_____;(2)y=_______;(3)z=______;(4)m =_______.12.如图所示:∠A=50°,∠B=30°,∠BDC=110°,则∠C=______°;13.若分式23x x-的值为正数,则x 应满足的条件是_______________________. 14.当x=1时,分式nx mx -+2无意义,当x=4分式的值为零, 则n m +=__________.15.两个相似三角形面积比为2,周长比为K ,则k2=__________.16.若用一个2倍放大镜去看△ABC ,则∠A 的大小______;面积大小为______. 17.如图,点C 是线段AB 的黄金分割点,AC=2, 则AB·BC=_________.A18.某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过____________元.19.已知两个一次函数x y x y -=-=3,4321,若21y y <,则x 的取值范围是:_______. 20.若4x-3y=0,则yyx +=___________. 三、(4分)根据题意填充理由: 22、已知:如下图所示,∠1=∠2.11(1)图. 11(2)图. 11(3)图. 11(4)图. 12题图A求证:∠3+∠4=180°.证明:∵∠5=∠2.( ). 又∠1=∠2.(已知).∴∠5=∠1( ). ∴AB∥CD.( ). ∴∠3+∠4=180°.( ). 四、解答题:(40分) 23、分解因式:(6分)(1)a a -3; (2)1222-+-y xy x ;24、解下列不等式和不等式组:(12分) (1)1 1.24x x---≤(2)3(1)5123x x x x -<-⎧⎪-⎨<⎪⎩并把解集在数轴上表示出来.25、(8分)先化简,再求值:3116871419422-÷⎪⎭⎫ ⎝⎛+--+⋅--m m m m m m .其中m=5.26、(8分)解分式方程:.41622222-+-+=+-x x x x x27、应用题(6分)我市出租车在3km 以内,起步价为12.5元,行程达到或超过3km 后,每增加1km 加付2.4元(不足1km 亦按1km 计价),昨天汪老师乘坐这种出租车从长城大厦到莲花北,恰巧沿途未遇红灯,下车时支付车费19.7元,问汪老师乘出租车走了多远的路?五、几何题:(8分)28、如图所示,已知:点D 在△ABC 的边AB 上,连结CD ,∠1=∠B,AD=4,AC=5, 求 BD 的长.29、如图,∠MON=90°,点A 、B 分别在射线OM 、ON 上移动,BD 是∠NBA 的平分线,BD 的反向延长线与∠BAO 的平分线相交于点C.试猜想:∠ACB 的大小是否随A 、B 的移动发生变化?如果保持不变,请给出证明;如果随点A 、B 的移动发生变化,请给出变化范围.B参考答案1、C ;提示:908.01x = 2、C ;提示:%18.0n m+3、B ;提示:方差小的较稳定4、D ;提示:菱形的对应边成比例,对应较相等,两个菱形相似5、C ;提示:2(m-3)=8或2(m-3)=-86、B ;提示:18963= 7、C ;提示:观察图象知大于4件8、B ;提示:解方程得x=m+3,m+3=1有增根 9、A ;提示:nm 1- 10、C ;提示:123+--m m m =(m-1)2(m+1)二、11、(1)41°;(2)81°;(3)47°;(4)48; 12、30°;提示:连结AD13、x<3且x≠0; 14、-1;提示:由题意n=1,m=-2 15、2;根据比例的性质16、不变;4倍; 17、4;提示:AC 2=BC.AB 18、26.25; 19、x<47; 20、47; 三、22、对顶角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补。
八年级下数学期末测试题及答案北师大版
2016-2017 学年度八年级数学第二学期期末测试题一、选择题(本大题共12 个小题,每题 3 分,共 36 分.)1. 以下从左到右的变形是分解因式的是()A、 ( x- 4)( x+4)=x2- 16B、x2-y2+2=(x+y)(x-y)+2C、 2ab+2ac=2a( b+c)D、(x-1)(x-2)=(x-2)(x-1).2.在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有()A.1 个B.2 个C.3 个D.4 个3. 分式 a , b ,b2 的最简公分母是()a 2 2ab b2 a 2 b 2 a2 2ab b 2A、( a2- 2ab+b2)( a2- b2)(a2+2ab+b2)B、( a+b)2( a- b)22C、( a+b) 2( a-b ) 2( a2- b2)D、a4b44. 以下多项式中不可以用公式分解的是()A. a2+a+ 1B 、 - a2+b2-2 abC 、a2 25b2D 、 4 b2 45. 以下命题中正确的选项是().A.对角线相等的四边形是矩形B.对角线相互垂直的四边形是菱形C.对角线相互均分的四边形是平行四边形D.对角线均分每一组对角的四边形是正方形6.如图,矩形 ABCD,对角线 AC、BD交于点 O,AE⊥ BD于点 E,∠ AOB=45°,则∠ BAE的大小为(A) . D BEOCA. 15 °B.°C.30°D.45°7. 若一个正多边形的每个内角等于120°,则这个多边形的边数是()A.8B.7C.6D.58. 分式方程有增根,则m的值为()和3和-29. 正方形ABCD在座标系中的地点以下图,将正方形ABCD绕D 点顺时针方向旋转90o后,B点的坐标为()A.( 2,2) B.(4,1) C .(31),AD.(4,0)F B10. 以以下图左:∠ A+∠B+∠C+∠D+∠E+∠F等于(E )C DA 、 180o B、360o C 、 540o D 、720o11. 如图,已知□ABCD中,点M是BC的中点,且AM=6, BD=12, AD=45,A D 则该平行四边形的面积为() .B CMA.245B.36C.48D.7212.如图, E、 F 分别是正方形 ABCD的边 CD、 AD上的点,且 CE=DF, AE、 BF订交于点 O,以下结论:(1)AE=BF;(2)AE⊥ BF;(3)AO=OE;(4)S AOB S 四边形DEOF中正确的有()A.4 个B.3 个C.2 个D.1 个第Ⅱ卷(非选择题共84分)二、填空题 ( 本大题共 6 个小题 . 每题 3 分 , 共 18 分 . 把答案填在题中横线A上.) E13. 分解因式:a3b+2a2b2+a b3=B FC 。
北师大版八年级下册数学期末考试试题含答案
北师大版八年级下册数学期末考试试卷一、单选题1.若m n >,则下列不等式中不成立...的是()A .22m n +>+B .22m n->-C .2>2m n --D .22m n>2.下列图形:平行四边形、等腰三角形、线段、正六边形、圆,其中既是中心对称图形又是轴对称图形的有()A .1个B .2个C .3个D .4个3.下列各式从左到右的变形中,是因式分解的是()A .()()2339a a a +-=-B .()()2211a b a b a b -+=+-+C .()()2422m m m -=+-D .2211m m m m ⎛⎫+=+ ⎪⎝⎭4.下列各式中x 、y 的值均扩大为原来的2倍,则分式的值一定保持不变的是()A .2x y B .1x x y-+C .2x y-D .y x y+5.若关于x 的分式方程311-=-m x 的解为2x =,则m 的值为()A .5B .4C .3D .26.如图,在ABC 中,AB AC =,AD AB ⊥交BC 于点D ,120BAC ∠=︒,4=AD ,则BC 的长()A .8B .10C .11D .127.如图,将ABC 绕点A 按逆时针方向旋转80°,得到ADE ,连接BE ,若//AD BE ,CAE ∠的度数为()A .20°B .30°C .25°D .35°8.如图,一次函数1y kx b =+图象经过点()2,0A ,与正比例函数22y x =的图象交于点B ,则不等式02kx b x <+<的解集为()A .0x >B .1x >C .01x <<D .12x <<9.如图,在ABC 中,AB AC =,46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF ,将C ∠沿EF 折叠,点C 与点O 恰好重合时,则OEC ∠的度数()A .90°B .92°C .95°D .98°二、填空题10x 的取值范围是______.11.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.12.若1n m -=,则22242m mn n -+的值为______.13.如图:在ABC 中,90ACB ∠=︒,AD 平分CAB ∠交BC 于点D ,且2BD CD =,9BC cm =,则点D 到AB 的距离为______.14.不等式5132x x -+>-的正整数解为______.15.如图,ABC ∆,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若10AB =,8BC =,则EF 的长是______.16.关于x 的分式方程2433x m mx x++=--的解为非负数,则实数m 的取值范围______.17.如图,四边形ABCD 中,//AB DC ,6DC =cm ,9AB =cm ,点P 以1cm/s 的速度由A 点向B 点运动,同时点Q 以2cm/s 的速度由C 点向D 点运动,其中一点到达终点时,另一点也停止运动,当线段PQ 将四边形ABCD 截出一个平行四边形时,此时的运动时间为______s .18.如图,BD 是ABC 的内角平分线,CE 是ABC 的外角平分线,过A 分别作AF BD ⊥、AG CE ⊥,垂足分别为F 、G ,连接FG ,若6AB =,5AC =,4BC =,则FG 的长度为____三、解答题19.(1)因式分解:32231212x x y xy -+(2)解不等式组:()3241213x x x x ⎧--<⎪⎨+>-⎪⎩,并把解集表示在数轴上.20.(1)先化简,再求值:236214422m m m m m m+-÷++++-,其中5m =.(2)解方:2231111x x x +=+--21.如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,ABC 的顶点均落在格点上.(1)将ABC 先向右平移6个单位长度再向下平移1个单位长度,得到111A B C △,在网格中画出111A B C △;(2)作ABC 关于x 轴的轴对称图形,得到222A B C △,在网格中画出222A B C △.22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,E 、F 分别是AB ,AC 上的点,且BE AF =,连接AD 、DE 、DF 、EF .求证:①BED ≌AFD V ②DE DF⊥23.某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,求该厂原来每天加工多少套运动服.24.如图,在ABCD 中,过点B 作BM AC ⊥,交AC 于点E ,交CD 于点M ,过点D 作DN AC ⊥,交AC 于点F ,交AB 于点N .(1)求证:四边形BMDN 是平行四边形;(2)已知125AF EM ==,,求AN 的长.25.甲、乙两家商场以相同的价格出售同样的商品,为了吸引顾客各自推出不同的优惠方案:在甲商场购买商品超过300元之后,超过部分按8折优惠;在乙商场购买商品超过200元之后,超过部分按8.5折优惠,设甲商场实际付费为1y 元,乙商场实际付费为2y 元,顾客购买商品金额为x 元()300x >.(1)分别求出1y ,2y 与x 的函数关系式;(2)比较顾客到哪个商场更优惠,并说明理由.26.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D 、E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC 、DC 、DE 分别相交于点I 、F 、G ,过点C 作//CH BG 交DE 于点H .①求证:IBC ≌HCE ②若DF CF =,求DG 的长;(2)如图2,将直线BD 绕点O 逆时针旋转()90αα<︒,与线段AD 、BC 分别交于点P 、Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由;(3)在(2)的旋转过程中,AOP 能否为等腰三角形,若能,请直接写出PQ 的长,若不能,请说明理由.参考答案1.B 【详解】解:A .∵m n >,不等式两边同时加2,不等号方向不变,∴22m n +>+,故A 不符合题意;B .∵m n >,不等式两边同时乘以-2,-2<0,不等号方向改变,∴22m n -<-,故B 符合题意;C .∵m n >,不等式两边同时加-2,不等号方向不变,∴22m n ->-,故C 不符合题意;D .∵m n >,不等式两边同时乘以12,12>0,不等号方向不变,∴22m n>,故D 不符合题意;故选B .2.C 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:平行四边形不是轴对称图形,但是中心对称图形;等腰三角形是轴对称图形,不是中心对称图形;线段、正六边形、圆既是中心对称图形又是轴对称图形,所以既是中心对称图形又是轴对称图形的有3个.故选:C .3.C 【分析】将多项式写成几个整式的积的形式,叫做将多项式分解因式,也叫因式分解,根据定义解答.【详解】解:A 、()()2339a a a +-=-不是因式分解;B 、()()2211a b a b a b -+=+-+不是因式分解;C 、()()2422m m m -=+-是因式分解;D 、2211m m m m ⎛⎫+=+ ⎪⎝⎭不是因式分解;故选:C .【点睛】此题考查因式分解,掌握因式分解的定义及因式分解的方法是解题的关键.4.D 【解析】【分析】根据分式的基本性质,分子分母同时乘除同一个不为零的数或式,分式的值不发生改变进行变形即可求解.【详解】解:根据题意,将x 变成2x,y 变成2y 化简求解:A.2x y 变成22222(2)4x x xy y y =≠,该选项不符合题意,B.1x x y -+变成21122x x x y x y --≠++,该选项不符合题意,C.2x y -变成2222x y x y ≠--,该选项不符合题意,D.yx y+变成22()y y x y x y =++,该选项符合题意,【点睛】本题考查了分式的基本性质,属于基础题,掌握分式的性质是解题关键. 5.B【解析】【详解】分析:直接解分式方程进而得出答案.详解:解分式方程311mx-=-得,x=m-2,∵关于x的分式方程311mx-=-的解为x=2,∴m-2=2,解得:m=4.故选B.点睛:此题主要考查了分式方程的解,正确解方程是解题关键.6.D【解析】【分析】依据等腰三角形的内角和,即可得到∠C=∠B=30°,依据AD⊥AB交BC于点D,即可得到BD=2AD=8,∠CAD=30°=∠B,CD=AD=4,进而得出BC的长.【详解】解:∵△ABC中,AB=AC,∠BAC=120°,∴∠C=∠B=30°,∵AD⊥AB交BC于点D,∴BD=2AD=8,∠CAD=30°=∠B,∴CD=AD=4,∴BC=BD+CD=8+4=12.故选:D.【点睛】本题主要考查了含30°角的直角三角形的性质以及等腰三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.【解析】【分析】由旋转的性质可知AB AE =,CAD BAE ∠=∠,即可求出50AEB ABE ∠=∠=︒.再由平行线的性质可知EAD AEB ∠=∠,最后由CAE CAD EAD ∠=∠-∠,即可求出CAE ∠的大小.【详解】∵ADE 是由ABC 绕点A 按逆时针方向旋转80︒得到,∴AB AE =,80CAD BAE ∠=∠=︒,∴1(180)502AEB ABE BAE ∠=∠=︒-∠=︒.∵//AD BE ,∴50EAD AEB ∠=∠=︒,∴805030CAE CAD EAD ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查旋转的性质,等腰三角形的判定和性质,平行线的性质.利用数形结合的思想是解答本题的关键.8.D 【解析】【分析】当x >1时,直线y=2x 都在直线y=kx+b 的上方,当x <2时,直线y=kx+b 在x 轴上方,于是可得到不等式0<kx+b <2x 的解集.【详解】解:当x >1时,2x >kx+b ,∵函数y=kx+b (k≠0)的图象经过点B (2,0),∴x <2时,kx+b >0,∴不等式0<kx+b <2x 的解集为1<x <2.故选D .【点睛】本题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.B 【解析】【分析】连接OB 、OC .由角平分线和垂直平分线的性质可求出1232ABO BAC ∠=∠=︒,再由等腰三角形的性质可求出67ABC ACB ∠=∠=︒,由OBC ABC ABO ∠=∠-∠,即可求出OBC ∠的大小.在AOB 和AOC △中,利用“SAS”易证AOB AOC ≅ ,即得出OB=OC ,从而可求出44OBC OCB ∠=∠=︒.再由题意折叠可知OE=CE ,即得出44EOC ECO ∠=∠=︒,最后由180OEC EOC ECO ∠=︒-∠-∠,即可求出OEC ∠的大小.【详解】如图,连接OB 、OC.∵46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,∴1232OAB OAC ABO BAC ∠=∠=∠=∠=︒.∵AB=AC ,∴1(180)672ABC ACB BAC ∠=∠=︒-∠=︒,∴44OBC ABC ABO ∠=∠-∠=︒.在AOB 和AOC △中,AB AC OAB OAC AO AO =⎧⎪∠=∠⎨⎪=⎩,∴()AOB AOC SAS ≅ ,∴OB=OC ,∴44OBC OCB ∠=∠=︒.由题意将C ∠沿EF 折叠,点C 与点O 恰好重合,∴OE=CE ,∴44EOC ECO ∠=∠=︒,∴18092OEC EOC ECO ∠=︒-∠-∠=︒.故选:B .【点睛】本题考查角平分线、线段垂直平分线的性质,等腰三角形的性质,全等三角形的判定和性质,折叠的性质.作出辅助线构造等腰三角形是解答本题的关键.综合性强,较难.10.1≥x 且3x ≠【解析】【分析】直接利用二次根式有意义被开方数是非负数、分式有意义则分母不为零,进而得出答案.【详解】由题意知:x−1≥0且x−3≠0,解得:x≥1且x≠3.故答案为:x≥1且x≠3.【点睛】此题主要考查了二次根式有意义、分式有意义,正确掌握相关有意义的条件是解题关键.11.6【解析】【详解】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:外角是180-120=60度,360÷60=6,则这个多边形是六边形.故答案为六.12.2【解析】先把所求式子的前三项分解因式得到()2222422m mn n m n -+=-,然后整体代入计算即得答案.【详解】解:∵1m n -=,∴()22222422212m mn n m n -+=-=⨯=.故答案为:2.【点睛】本题考查了多项式的因式分解和代数式求值,属于常考题型,熟练掌握分解因式的方法和整体的数学思想是解题的关键.13.3cm【解析】【分析】先求出CD 的长,再根据角平分线的性质证得DE=CD 即可.【详解】解:∵2BD CD =,9BC cm =,∴133CD BC ==cm ,过点D 作DE ⊥AB 于E ,∵AD 平分CAB ∠交BC 于点D ,90ACB ∠=︒,∴DE=CD=3cm ,故答案为:3cm .【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质定理是解题的关键.14.1,2【解析】【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.解:去分母得:x−5+2>2x−6,移项得:x−2x >−6+5−2,合并同类项得:−x >−3,系数化为1得:x <3.故不等式的正整数解是1,2,故答案为1,2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.1.【解析】【分析】根据三角形中位线定理得到DE ∥AB ,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF ,计算即可.【详解】解:D Q 、E 分别是BC 、AC 的中点,152DE AB ∴==,//DE AB ,142BD BC ==,ABF DFB ∴∠=∠,BF 平分ABC ∠,ABF DBF ∴∠=∠,DBF DFB ∠=∠,4DF DB ∴==,1EF DE DF ∴=-=,故答案为1.【点睛】本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.16.12m ≤且3m ≠【分析】先解得分式方程的解为43m x =-,再由题意可得43m -≥0,又由x≠3,即可求m 的取值范围.【详解】解:2433x m m x x ++=--,方程两边同时乘以x−3,得x +m−2m =4(x−3),去括号得,x−m =4x−12,移项、合并同类项得,3x =12−m ,解得:43m x =-,∵解为非负数,∴43m -≥0,∴m≤12,∵x≠3,∴m≠3,∴m 的取值范围为m≤12且m≠3,故答案为为:m≤12且m≠3.【点睛】本题考查分式方程的解,熟练掌握分式方程的解法,注意增根的情况是解题的关键.17.2或3【解析】【分析】设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,然后分当四边形APQD 是平行四边形时,DQ=AP 和当四边形BPQC 是平行四边形时,CQ=BP ,进行求解即可.【详解】解:设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,∵AB ∥CD∴当四边形APQD 是平行四边形时,DQ=AP ,解得t=2;当四边形BPQC 是平行四边形时,CQ=BP ,∴9-t=2t ,解得t=3,∴当t=2或3时,线段PQ 将四边形ABCD 截出一个平行四边形,故答案为:2或3.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握相关知识进行求解.18.32【解析】【分析】延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,由BD 平分∠ABC ,AF ⊥BF ,可得∠CBF=∠ABF ,∠HFB=∠AFB=90°,可证△HBF ≌△ABF (ASA ),可得BH=BA=6,HF=AF ,由CE 平分∠ACI ,AG ⊥CE ,可得∠ICG=∠ACG ,∠IGC=∠AGC=90°,可证△ICG ≌△ACG (ASA ),可得CI=CA=5,IG=AG,可证FG 为△AHI 的中位线即可.【详解】解:延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,∵BD 平分∠ABC ,AF ⊥BF ,∴∠CBF=∠ABF ,∠HFB=∠AFB=90°,在△HBF 和△ABF 中,HBF ABF BF BF HFB AFB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBF ≌△ABF (ASA ),∴BH=BA=6,HF=AF ,∵CE 平分∠ACI ,AG ⊥CE ,∴∠ICG=∠ACG ,∠IGC=∠AGC=90°,在△ICG 和△ACG 中,ICG ACG CG CG IGC AGC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ICG ≌△ACG (ASA ),∴CI=CA=5,IG=AG ,∴IH=BC+CI-BH=4+5-6=3,∵HF=AF ,IG=AG ,∴FG 为△AHI 的中位线,∴FG=1133222HI =⨯=.故答案为32.【点睛】本题考查角平分线定义,垂线定义,三角形全等判定与性质,三角形中位线性质,线段和差,本题难度不大,训练画图构思能力,通过辅助线画出准确图形是解题关键.19.(1)()232x x y -;(2)14x <<,图见解析【解析】【分析】(1)先提公因式3x ,再利用完全平方公式进行因式分解即可;(2)先分别求出每一个不等式的解集,进而求出其公共解即可.【详解】解:(1)原式2223(44)3(2)x x xy y x x y =-+=-;(2)()3241213x x x x ⎧--<⎪⎨+>-⎪⎩①②解不等式①,得1x >,解不等式②,得4x <,在同一数轴上表示不等式①②的解集如下:∴不等式组的解集为:14x <<.【点睛】本题考查提公因式法、公式法分解因式,解一元一次不等式组,熟练掌握因式分解的方法以及解一元一次不等式组的基本步骤是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)22m -,23;(2)0x =【解析】【分析】(1)先利用完全平方公式和分式混合运算法则进行化简,然后代值计算即可;(2)先把方程两边同时乘以()()11x x +-化为整式方程,然后求解即可.【详解】解:(1)236214422m m m m m m+-÷++++-()()23221222m m m m m ++=⨯---+3122m m =---22m =-,当5x =时,原式22523==-.(2)2231111x x x +=+--方程两边同时乘以()()11x x +-得()()21311x x -++=,整理得22331x x -++=,解得0x =.检验:将0x =代入原方程,左边1=-=右边,∴原方程的根是0x .【点睛】本题主要考查了分式的化简求值,解分式方程,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)见解析;(2)见解析【解析】【分析】(1)利用点平移的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)利用关于x 轴对称的点的坐标特征写出A 2、B 2、C 2的坐标,然后描点即可.【详解】解:(1)由图可得:A (-4,5)、B (-5,2)、C (-3,1)∴平移后的坐标:A 1(2,4)、B 1(1,1)、C 1(3,0)如图,111A B C △即为所求.(2)对称后的坐标:A 2(-4,-5)、B 2(-5,-2)、C 2(-3,-1)如图,222A B C △即为所求.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.①见解析;②见解析【解析】【分析】①证明:根据等腰直角三角形的性质推出1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,BD AD =,即可证得结论;②根据全等的性质证得BDE ADF ∠=∠,利用AD BC ⊥证得结论.【详解】解:①证明:在ABC 中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,∴1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,∵B DAB ∠=∠,∴BD AD =,∵B DAF ∠=∠,BE AF =,∴BED ≌AFD V ;②证明:由①可知,BED ≌AFD V ,∴BDE ADF ∠=∠,∵AB AC =,点D 是BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,∴90ADE BDE ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定及性质,熟记等腰直角三角形的性质及全等三角形的判定定理是解题的关键.23.该厂原来每天加工20套运动服.【解析】【分析】设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服,由题意:某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,列出分式方程,解方程即可.【详解】解:设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服.根据题意得:602606082x x-+=解这个方程得20x =,经检验:20x =是原方程的根.答:该厂原来每天加工20套运动服.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)见解析;(2)13【解析】【分析】(1)只要证明DN ∥BM ,DM ∥BN 即可;(2)只要证明△CEM ≌△AFN ,可得FN =EM =5,在Rt △AFN 中,根据勾股定理AN =.【详解】(1)∵四边形ABCD 是平行四边形,∴CD AB .∵BM AC DN AC ⊥⊥,,∴DN BM ,∴四边形BMDN 是平行四边形.(2)∵四边形ABCD ,BMDN 都是平行四边形,∴AB CD DM BN CD AB ==,,∥,∴CM AN MCE NAF =∠=∠,.又∵90CEM AFN ∠=∠=︒,∴()CEM AFN AAS ≌,∴5FN EM ==.在Rt AFN 中,13AN =.【点睛】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)10.860y x =+,20.8530y x =+;(2)当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【解析】【分析】(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:200+0.85×超过200元的部分;(2)根据(1)中解析式的费用分类讨论即可.【详解】(1)由题意得,()13000.8300y x =+-,即10.860y x =+,22000.85(200)y x =+-,即20.8530y x =+(2)当300x >时,由12y y <得:0.8600.8530x x +<+,解得:x 600>,由12y y =得:0.8600.8530x x +=+,解得:600x =,由12y y >得:0.8600.8530x x +>+,解得:600x <.∴当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【点睛】本题考查了一次函数以及一元一次不等式的应用,根据题意列出正确的甲、乙两家商场的实际费用与购买商品金额x 之间的函数关系式是本题的关键.26.(1)①见解析;②2;(2)不变,12;(3)能,5PQ =或6【解析】【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可;(3)按OP =OA 、PA =OA 、OP =AP 分类讨论,分别求出相应的PQ 的长,其中,当PA =OA 时,作OL ⊥AP 于点L ,构造直角三角形,用面积等式列方程求OL 的长,再用勾股定理求出OP 的长即可.【详解】(1)证明:①如图1,∵DCE 是由ABC 平移得到的,∴//AC DE BC CE =,∴ACB DEC ∠=∠,∵//CH BG ,∴GBC HCE∠=∠∴IBC ≌HCE②如图1,由①可知:IBC ≌HCE ,∴IC HE =,∵//AC DE ,//CH BG ,∴CI //GH ,CH //GH ,∴四边形ICHG 是平行四边形,∴IC GH =,∵//AC DE ,∴CDG DCI∠=∠∵CFI DFG ∠=∠,DF CF =,∴DFG ≌CFI △,∴DG IC =,∴DG GH HE ==,∴11233DG DE AC ===.(2)面积不变;如图2:由平移可知//AB CD ,AB CD =,∴四边形ABCD 是平行四边形,∴OA OC =,∵//AD BC ,∴APO CQO ∠=∠,∵AOP COQ ∠=∠,∴APO △≌CQO ,∴APO CQO S S =△△,APO CQO ABC ABQP AOQB AOQB S S S S S S =+=+=四边形四边形四边形△△△,∴四边形ABQP 的面积不变.∵5AB BC ==132OA OC AC ===,∴OB AC ⊥,∴90AOB ∠=︒,在Rt BOC 中222OB OC BC +=∴4OB ==,∴11641222ABC S AC OB ==⨯⨯= ,∴12ABQP S =四边形(3)如图3,OP =OA =3,由(2)得,△AOP ≌△COQ ,∴OQ =OP =3,∴PQ =3+3=6;如图4,PA =OA =3,作OL ⊥AP 于点L ,则∠OLA =∠OLP =90°,由(2)得,四边形ABCD是平行四边形,OA=3,∠AOB=90°,∴OD=OB=4,∠AOD=180°−∠AOB=90°,∵AO⊥BD,OD=OB,∴AO垂直平分BD,∴AD=AB=5,由12AD•OL=12OA•OD=AODS得,1 2×5OL=12×3×4,解得,OL=12 5,∴2222129355 AL OA OL⎛⎫=-=-=⎪⎝⎭,∴96355 PL=-=,∴222212665555OP OL PL⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,∴PQ=2OP 125 5如图5,OP=AP,∵AD=AB,AC⊥BD,∴∠DAC=∠BAC,∴∠POA =∠DAC =∠BAC ,∴PQ //AB ,∵AP //BQ ,∴四边形ABQP 是平行四边形,∴PQ =AB =5,综上所述,5PQ 或6或5.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题.。
北师大版2016-2017学年八年级数学(下册)期末测试卷及答案
2016-2017学年八年级(下)期末数学试卷一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2D.﹣4﹣b23.若分式的值为0,则()A.x=±1 B.x=1 C.x=﹣1 D.x=04.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.85.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.427.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.28.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=39.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4C.4 D.8二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2=.12.函数的自变量x的取值范围是.13.若=,则=.14.关于x的方程x2﹣mx+4=0有两个相等实根,则m=.15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.17.先化简,再求值已知:,求的值.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)=.22.若关于x的分式方程﹣1=无解,则m的值.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第象限.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC=.25.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF 同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.参考答案与试题解析一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的基本性质判断.【解答】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a﹣3<b﹣3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,<不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b成立;D、﹣a<﹣b.故选C.【点评】不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2D.﹣4﹣b2【考点】因式分解-运用公式法.【专题】计算题.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式=(a+)2,不合题意;B、原式=(a﹣b)2,不合题意;C、原式=(5b+a)(5b﹣a),不合题意;D、原式不能分解,符合题意.故选D.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.3.若分式的值为0,则()A.x=±1 B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式值为零的条件是分式的分子等于0,分母不等于0.【解答】解:∵分式的值为0,∴|x|﹣1=0,x+1≠0.∴x=±1,且x≠﹣1.∴x=1.故选:B.【点评】本题主要考查的是分式值为零的条件,明确分式值为零时,分式的分子等于0,分母不等于0是解题的关键.4.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【解答】解:根据题意,得:(n﹣2)×180=360×3,解得n=8.故选D.【点评】解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.5.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.42【考点】规律型:图形的变化类.【分析】仔细观察发现第n个图案中,黑色正三角形的个数分别是4n.【解答】解:第1个图案中,黑色正三角形的个数分别是4;第2个图案中,黑色正三角形的个数分别是2×4=8;第3个图案中,黑色正三角形的个数分别是3×4=12;…第n个图案中,黑色正三角形的个数分别是4n.故当n=10时,4n=4×10=40.故选C.【点评】本题考查了图形的变化类问题,找规律的题,应以第一个图象为基准,细心观察,得到第n个图形与第一个图形之间的关系.7.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.2【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解;方程两边都乘(x﹣1),得x﹣3=m,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=﹣2.故选:B.【点评】增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=3【考点】一元二次方程的解.【专题】压轴题.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解.把x=0代入方程式即可解.【解答】解:关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,把x=0代入得到m2﹣2m﹣3=0,解得m=3或﹣1,因为m+1≠0,则m≠﹣1,因而m=3.故本题选D.【点评】本题主要考查了方程的根的定义,就是能使方程左右两边相等的未知数的值,本题特别要注意一元二次方程的二次项系数不等于0.9.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对【考点】相似三角形的判定.【分析】已知平行四边形的对边平行,平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似.【解答】解:∵AD∥BC∴△ADG∽△ECG,△ADG∽△EBA,△ABC∽△CDA,△EGC∽△EAB;所以共有四对故选C.【点评】本题考虑平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似,注意要找全,不可漏掉任何一个.10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4C.4 D.8【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2=.【考点】因式分解-提公因式法.【分析】直接提取公因式xy,进而分解因式,将已知代入求出即可.【解答】解:∵2x﹣y=,xy=2,∴2x2y﹣xy2=xy(2x﹣y)=2×=.故答案为:.【点评】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.12.函数的自变量x的取值范围是x>2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2>0,解得x>2.故答案为:x>2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.若=,则=.【考点】比例的性质.【分析】根据比例的性质,即可解答.【解答】解:∵,∴7m=11n,∴,故答案为:.【点评】本题考查了比例的性质,解决本题的关键是熟记比例的性质.14.关于x的方程x2﹣mx+4=0有两个相等实根,则m=±4.【考点】根的判别式.【专题】探究型.【分析】先根据一元二次方程有两个相等的实数根得出△=0即可得到关于m的方程,求出m的值即可.【解答】解:∵关于x的方程x2﹣mx+4=0有两个相等实根,∴△=(﹣m)2﹣4×4=0,解得m=±4.故答案为:±4.【点评】本题考查的是根的判别式,根据题意得出关于m的方程是解答此题的关键.15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为81.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】压轴题.【分析】作PE⊥AD与E,过点P作FG⊥CD于G,交AB于F,根据已知条件以及正方形ABCD 的性质,易证明四边形AEPF是正方形,则其边长是2,易证得△PQG≌△BPF,则QG=PF=2,则大正方形的边长是9,进而可得其面积.【解答】解:作PE⊥AD与E,过点P作PF⊥AB于F,延长FP交CD于G,∵正方形ABCD,∴∠DAC=∠BAC=45°,∠DAB=90°=∠PEA=∠PFA,∴PE=PF,∴四边形AEPF是正方形,∴AE=PE=PF=AF,∵AP=2,由勾股定理得:AE2+PE2=,∴AE=PE=PF=AF=2,∴PG=BF,且∠PFB=∠PGQ=90°;∵∠FBP+∠FPB=90°,∴∠FBP=∠GPQ,在△PQG和△BPF中,∴△PQG≌△BPF,则QG=PF=2,∴AB=BC=CD=2+2+5=9,则大正方形的边长是9,即面积是81;故答案为81.【点评】此题主要是通过作辅助线构造正方形和全等三角形,然后求得大正方形的边长.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.【考点】解一元一次不等式组;因式分解-提公因式法;解一元二次方程-公式法;一元一次不等式组的整数解.【分析】(1)利用提公因式法分解,然后利用公式法即可分解;(2)利用求根公式即可求解;(3)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:(1)原式=4a(a﹣1)2+(a﹣1)=(a﹣1)【4a(a﹣1)+1】=(a﹣1)(4a2﹣4a+1)=(a﹣1)(2a﹣1)2;(2)∵a=2,b=4,c=﹣1,b2﹣4ac=16+8=24>0,∴x=,则x1=,x2=;(3),解①得x<,解②得:x≥﹣5.则不等式组的解集是﹣5≤x<.则整数解是:﹣5,﹣4,﹣3,﹣2,﹣1,0,1.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.17.先化简,再求值已知:,求的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再=,设x=2k,y=3k(k≠0),再代入进行计算即可.【解答】解:原式=[﹣]×=×==;解法一:∵=,不妨设x=2k,y=3k(k≠0),∴原式==;解法二:=∵=,∴原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.【考点】作图-旋转变换;平行四边形的性质.【专题】作图题.【分析】(1)根据关于原点对称的点的坐标特征,画出点A、B、C的对应点A′、B′、C′,即可得到△A′B′C′;(2)利用网格特点,根据旋转的性质画出点A、B、C旋转后的对应点A″,B″、C″,即可得到△A″B″C″;(3)分类讨论:分别以AB、BC和AC为对角线作出平行四边形,然后写出第四个顶点D的坐标.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,△A″B″C″为所作,点B的对应点B″的坐标的坐标为(0,﹣6);(3)如图,四边形ABCD′、四边形ADBC和四边形ABD″C为所作,第四个顶点D的坐标为(3,3)或(﹣7,3)或(﹣5,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的性质.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.【考点】菱形的性质.【专题】计算题.【分析】(1)菱形的四边相等,周长是20,则边长为5;根据菱形对角线互相垂直平分,可得OC= AC,OD=3.运用勾股定理求出OC便可求出AC.(2)利用等积法求解:S△ABD=AB•DE=BD•OA.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC.∵菱形的周长是20,∴DC=.∵BD=6,∴OD=3.在Rt△DOC中==4.∴AC=2OC=8.(2)∵S△ABD=AB•DE=BD•OA,∴5•DE=6×4∴DE=.【点评】此题考查了菱形的性质:对角线互相垂直平分;四边相等.问题(2)亦可运用菱形面积的两种表达式求解.菱形的面积有两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.【考点】菱形的判定;矩形的判定.【分析】(1)由直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,易证得OE=OC,同理可证OC=OF,则可证得OE=OF=OC;(2)根据平行四边形的判定以及矩形的判定得出即可.(3)菱形的判定问题,若使菱形,则必有四条边相等,对角线互相垂直,进而分析求出即可.【解答】(1)证明:∵CE是∠ACB的平分线,∴∠1=∠2,∵MN∥BC,∴∠1=∠3,∴∠2=∠3,∴OE=OC,同理可证OC=OF,∴OE=OF;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由是:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,∴平行四边形AECF是矩形.(3)解:不可能.理由如下:如图,连接BF,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△DFC中,不可能存在两个角为90°,所以不存在其为菱形.【点评】本题考查了平行线的性质,角平分线的定义,等腰三角形的判定,正方形、菱形的判定,难度适中,注意掌握数形结合思想的应用.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)=15.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a变形后求出a+=3,两边平方求出a2+的值,原式第一个因式利用平方差公式化简,变形后将各自的值代入计算即可求出值.【解答】解:∵a2﹣3a+1=0,∴a+=3,两边平方得:(a+)2=a2++2=9,即a2+=7,则原式=(a+)(a﹣)2=3(a2+﹣2)=15.故答案为:15.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.若关于x的分式方程﹣1=无解,则m的值﹣或﹣.【考点】分式方程的解.【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得m的值.【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.【点评】本题考查了分式方程的解,把分式方程转化成整式方程,把分式方程的增根代入整式方程,求出答案.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第三象限.【考点】一次函数与一元一次不等式.【分析】根据关于x的一元一次不等式组有解即可得到b的范围,即可判断直线经过的象限.【解答】解:根据题意得:b+2<3b﹣2,解得:b>2.当b>2时,直线经过第一、二、四象限,不过第三象限.故填:三.【点评】根据不等式组的解集的确定方法首先确定b的范围是解决本题的关键.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC=.【考点】相似三角形的判定与性质;梯形.【分析】在梯形ABCD中,由于AD∥BC,于是得到△ADO∽△BCO,求出,即可得到结论.【解答】解:在梯形ABCD中,∵AD ∥BC ,∴△ADO ∽△BCO ,∴,∴,∴==,故答案为:【点评】本题考查了梯形的性质,相似三角形的判定和性质,知道等高三角形的面积的比等于底的比是解题的关键.25.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是 ﹣1 .【考点】菱形的性质;翻折变换(折叠问题).【分析】根据题意,在N 的运动过程中A ′在以M 为圆心、AD 为直径的圆上的弧AD 上运动,当A ′C取最小值时,由两点之间线段最短知此时M 、A ′、C 三点共线,得出A ′的位置,进而利用锐角三角函数关系求出A ′C 的长即可.【解答】解:如图所示:∵MA ′是定值,A ′C 长度取最小值时,即A ′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM ×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.【考点】根与系数的关系;根的判别式;勾股定理;矩形的性质.【分析】(1)根据一元二次方程根的判别式,方程有两个实数根,则判别式△≥0,得出关于k的不等式,求出k的取值范围.(2)根据勾股定理和根与系数的关系得出关于k的方程,求出k的值并检验.【解答】解:(1)设方程的两根为x1,x2则△=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵方程有两个实数根,∴△≥0,即2k﹣3≥0,∴k≥∴当k≥,方程有两个实数根.(2)由题意得:,又∵x12+x22=5,即(x1+x2)2﹣2x1x2=5,(k+1)2﹣2(k2+1)=5,整理得k2+4k﹣12=0,解得k=2或k=﹣6(舍去),∴k的值为2.【点评】解决本题的关键是利用一元二次方程根与系数的关系和勾股定理,把问题转化为解方程求得k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?【考点】分式方程的应用.【分析】(1)本题可根据两车的辆数的数量关系来列方程.等量关系为:装270台需A型车的数量=装300台需B型车的数量+1.由此可得出方程求出未知数.(2)可先根据(1)求出单独用两种车分别要多少费用,然后让同时用两种车时花的费用小于单独用一种车的最少的费用.得出车的数量的取值范围,然后判断出有几种运输方案,然后根据运输方案求出运费.【解答】解:(1)设A型汽车每辆可装计算机x台,则B型汽车每辆可装计算机(x+15)台.依题意得:=+1.解得:x=45,x=﹣90(舍去).经检验:x=45是原方程的解.则x+15=60.答:A型汽车每辆可装计算机45台,B型汽车每辆可装计算机60台.(2)由(1)知.若单独用A型汽车运送,需6辆,运费为2100元;若单独用B型汽车运送,需车5辆,运费为2000元.若按这种方案需同时用A,B两种型号的汽车运送,设需要用A型汽车y辆,则需B型汽车(y+1)辆.根据题意可得:350y+400(y+1)<2000.解得:y<.因汽车辆数为正整数.∴y=1或2.当y=1时,y+1=2.则45×1+60×2=165<270.不同题意.当y=2时,y+1=3.则45×2+60×3=270.符合题意.此时运费为350×2+400×3=1900元.答:需要用A型汽车2辆,则需B型汽车3辆.运费1900元【点评】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程或不等式,再求解.28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF 同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.【考点】相似三角形的判定与性质;根的判别式.【专题】综合题;分类讨论.【分析】(1)由于EF∥x轴,则S△PEF=EF•OE.t=15时,OE=15,关键是求EF.易证△BEF∽△BOA,则,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于160,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.【解答】解:(1)∵EF∥OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴当t=15时,OE=BE=15,OA=40,OB=30,∴∴S△PEF=EF•OE=(平方单位)(2)∵△BEF∽△BOA,∴∴整理,得t2﹣30t+240=0∵△=302﹣4×1×240=﹣60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于160(平方单位)的t值(3)当∠EPO=∠BAO时,△EOP∽△BOA∴,即解得,t=12当∠EPO=∠ABO时,△EOP∽△AOB∴,即解得,∴当t=12或时,△EOP∽△BOA【点评】本题主要考查了相似三角形的判定和性质,一元二次方程根的判别式等知识点,要注意最后一问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.不要忽略掉任何一种情况.。
北师大版2016年八年级下数学期末测试卷及参考答案(最新整理)
B A马场中学2015-2016学年度第二学期期末学生学业水平检测试卷八年级 数学学校: 考号: 班级: 姓名: .一、选择题:1.下列各式中,是分式的是 ( )A. B. C. D. 2x 231x 312-+x x 2-πx 2.下列等式从左到右的变形是因式分解的是( )A . B .32632a b a ab =⋅2(2)(2)4x x x +-=-C . D. 22432(2)3x x x x +-=+-()ax ay a x y -=-3. 如图,中, =,是中点,下列结论中不正确的是( )ABC ∆AB AC D BC A . B. C. 平分 D. B C ∠=∠AD BC ⊥AD CAB ∠2AB BD=4.不等式组的解集在数轴上表示正确的是()312840x x ->⎧⎨-≤⎩5. 如图,□中,对角线、交于点,点是的中点.若ABCD AC BD O E BC cm ,则的长为( )3OE =AB A .cm B .cm C .cm D .cm369126. 以下命题的逆命题为真命题的是( )A .对顶角相等 B. 同旁内角互补,两直线平行C. 若则D. 若则a b =22a b =0,0a b >>220a b +>7. 如图,在中,,在同一平面内,将绕点旋转到的位置,使得ABC ∆75CAB ∠= ABC ∆A ''AB C ∆,则( )'//CC AB 'BAB ∠=A. B. C. D.30 35 40 508. 若解分式方程产生增根,则( )441+=+-x m x x m =A. B. C. D. 104-5-9. 将 因式分解后的结果是( )201320142(2)-+-A . B . C . D .201322-20132-1-10. 如图,中,边的垂直平分线交于点,交于点,已知ABC ∆AB AB E BC D cm ,的周长为cm ,则的长为( )5AC =ADC ∆17BC A. cm B. cm C. cm D. cm710122211. 已知关于的不等式组的整数解共有6个,则的取值范围是( )x 0220x a x ->⎧⎨->⎩a A. B. C. D. 65a -<<-65a -≤<-65a -<≤-65a -≤≤-12. 如图1,在平面直角坐标系中,将□放置在第一象限,且轴.直线从原点出发ABCD //AB x y x =-沿轴正方向平移,在平移过程中直线被平行四边形截得的线段长度与直线在轴上平移的距离的函x l x m 数图象如图2,那么□的面积为( )ABCDA.C.D. 48二、填空题:本题共4小题,每小题3分,共12分,把答案填在答题卡上13. 分解因式:= .2216ax ay -14. 如图,已知函数和的图象交于点,则不等式的解集13y x b =+23y ax =-(2,5)P --33x b ax +>-第16题图3ax -15. 已知是完全平方式,则的值是______224x mxy y ++m17.(1)(4分)解不等式 (2)(5分)解方程: 5132x x -+>-2213311x x x x -=---18.(6分)先化简,然后从的范围内选取一个合适的整数作为22122121x x x x x x x x ---⎛⎫-÷ ⎪+++⎝⎭11x -≤≤x 的值代入求值.19.(6分)在平面直角坐标系中的位置如图所示.ABC ∆xoy (1)作关于点成中心对称的,并写出点的坐标ABC ∆C 111A B C ∆1A (2)将向右平移4个单位,作出平移后的,并写出点的坐标111A B C ∆222A B C ∆2A20.(9分)由于受到手机更新换代的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每yx132GDFC EB A ÐJKL = 59.95°台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?21.(7分)如图,在□中,是高,,交于点.ABCD AE AF 、30,2,1BAE BE CF ∠=== DE AF G (1)求□的面积ABCD (2)求证:是等边三角形AEG ∆。
北师大版八年级下册数学期末考试试卷含答案
北师大版八年级下册数学期末考试试题一、单选题1.下列垃圾分类标识中,是中心对称图形的是()A .B .C .D .2.如果x y <,那么下列不等式正确的是()A .22x y<B .22x y-<-C .11x y ->-D .11x y +>+3.若分式242x x -+的值为0,则x 的值为()A .-2B .0C .2D .±24.如图,在平行四边形ABCD 中,∠A =40°,则∠C 大小为()A .40°B .80°C .140°D .180°5.下列各式从左到右的变形一定正确的是()A .n m=11n m ++B .22x y x y--=x ﹣yC .b a =22b aD .b a=2a b a 6.下列多项式能直接用完全平方公式进行因式分解的是()A .x 2+2x ﹣1B .x 2﹣x +14C .x 2+xy +y 2D .9+x 2﹣3x7.下列命题不正确的是()A .等腰三角形的两底角相等B .平行四边形的对角线互相平分C .角平分线上的点到角两边的距离相等D .三个角分别对应相等的两个三角形全等8.下列条件不能判定四边形ABCD 是平行四边形的是()A .,AD BC AB CD ==B .,AC BD ∠=∠∠=∠C .//,AB CD BC AD=D .//,AD BC B D∠=∠9.如图,一次函数1y kx b =+的图象与直线2y m =相交于点P (-1,3),则关于x 的不等式0kx b m +->的解集为()A .3x >B .1x <-C .1x >-D .3x <10.如图,已知∠ABC ,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP .他这样做的依据是()A .在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .测量垂直平分线上的点到这条线段的距离相等二、填空题11.若一个多边形的每一个外角都等于30°,则这个多边形的边数为_________.12.如图,在△ABC 中,BC =8cm ,D 是BC 的中点,将△ABC 沿BC 向右平移得△A′DC′,则点A 平移的距离AA′=___cm .13.计算:223211a a a +-=--______________.14.实验初中初二(1)班同学参加社会实践活动,几名同学打算包租一辆车前往,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加实践活动的学生原有x 人,则可列方程为_______.15.如图,四边形ABCD 中,∠B +∠D =180°,AC 平分∠DAB ,CM ⊥AB 于点M ,若AM =4cm ,BC =2.5cm ,则四边形ABCD 的周长为_____cm.16.如图,▱ABCD 中,∠ABC =45°,EF 是BC 的垂直平分线,EB =AB ,若BD =6,则AB =_______.三、解答题17.分解因式:(1)2242x x -+(2)22()9()a x yb y x -+-18.利用数轴求出不等式组的解集.3212125x x x x <+⎧⎪++⎨>⎪⎩.19.先化简:(7211a a a +--+)÷2231a aa +-,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a 的值代入求值.20.解分式方程:21133x xx x -=++21.如图所示,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),画出△A 1B 1C 1;(2)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 2B 2C 2,则点A 2的坐标为,点C 2的坐标为.(3)点D是平面直角坐标系内一点,若以A、B、C、D为顶点的四边形为平行四边形,直接写出满足条件的D点坐标.22.如图,在▱ABCD中,对角线AC、BD相交于点O,E、F为直线BD上的两个动点(点E、F始终在▱ABCD的外面),且DE=12OD,BF=12OB,连接AE、CE、CF、AF.(1)求证:四边形AFCE为平行四边形.(2)若AC=6,EF=10,AF=4,则平行四边形AFCE的周长为.23.某网店预测一种时尚T恤衫能畅销,用4800元购进这种T恤衫,很快售完,接着又用6600元购进第二批这种T恤衫,第二批T恤衫数量是第一批T恤衫数量的1.5倍,且每件T恤衫的进价第二批比第一批的少5元.(1)求第一批T恤衫每件的进价是多少元?(2)若第一批T恤衫的售价是80元/件,老板想让这两批T恤衫售完后的总利润不低于4060元,则第二批T恤衫每件至少要售多少元?(T恤衫的售价为整数元)24.如图,在四边形ABCD中,∠B=60°,AB=DC=4,AD=BC=8,延长BC到E,使CE =4,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 运动的时间为t 秒(t >0).(1)当t =3时,BP =;(2)当t =时,点P 运动到∠B 的角平分线上;(3)当0<t <6时,请用含t 的代数式表示△ABP 的面积S ;(4)当0<t <6时,直接写出点P 到四边形ABED 相邻两边距离相等时t 的值.25.如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD ∆绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE ∆.(1)请求出旋转角的度数;(2)请判断AE 与BD 的位置关系,并说明理由;(3)若2AD =,3CD =,试求出四边形ABCD 的对角线BD 的长.26.思维启迪(1)如图,△ABC 中,AB =4,AC =2,点在AB 上,AD =AC ,AE ⊥CD 垂足为E ,点F 是BC 中点,则EF 的长度为.思维探索(2)如图2,等边三角形ABC 的边长为4,AD ⊥BC 垂足为D ,点E 是AC 的中点,点M 是AD 的中点,点N 是BE 的中点,求MN 的长.(3)将(2)中的△CDE 绕C 点旋转,其他条件不变,当点D 落在直线AC 上时,画出图形,并直接写出MN长.参考答案1.B【分析】利用中心对称图形的定义进行解答即可.【详解】解:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:B.【点睛】此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.A【解析】【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【详解】解:A 、由x <y 可得:22x y <,故选项成立;B 、由x <y 可得:22x y ->-,故选项不成立;C 、由x <y 可得:11x y -<-,故选项不成立;D 、由x <y 可得:11x y +<+,故选项不成立;故选A.【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.C 【解析】【详解】由题意可知:24020x x =⎧-⎨+≠⎩,解得:x=2,故选C.4.A 【解析】【分析】由平行四边形的性质:对角相等,得出∠C=∠A .【详解】解:∵四边形ABCD 是平行四边形,∴∠C=∠A=40°,故选A .【点睛】本题考查了平行四边形的性质,解答本题的关键是掌握平行四边形的对角相等.5.D 【解析】【分析】根据分式的基本性质(分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变)逐个判断即可.【详解】解:A.11n m m n ++≠,故本选项不符合题意;B.22x y x y--=()()x y x y x y +--=x +y ,故本选项不符合题意;C.当b =﹣2,a =1时,22bb a a ≠,故本选项不符合题意;D.2b ab a a =,故本选项符合题意;故选:D .【点睛】本题考查了分式的基本性质,解题的关键是正确理解并运用分式的基本性质.6.B 【解析】【分析】根据能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍进行分析即可.【详解】解:A 、x 2+2x ﹣1不能直接用完全平方公式进行因式分解,故此选项不合题意;B 、x 2﹣x +14=(x ﹣12)2,能直接用完全平方公式进行因式分解,故此选项符合题意;C 、x 2+xy +y 2不能直接用完全平方公式进行因式分解,故此选项不合题意;D 、9+x 2﹣3x 不能直接用完全平方公式进行因式分解,故此选项不合题意;故选:B .【点睛】本题考查了公式法分解因式,解题的关键是掌握完全平方公式:()2222a ab b a b ±+=±.7.D 【解析】【分析】利用等腰三角形的性、平行四边形的性质、角平分线的性质及全等三角形的判定分别判断后即可确定正确的选项.【详解】解:A、等腰三角形的两底角相等,正确,不符合题意;B、平行四边形的对角线互相平分,正确,不符合题意;C、角平分线上的点到角两边的距离相等,正确,不符合题意;D、三个角分别对应相等的两个三角形不一定全等,故错误,符合题意,故选:D.【点睛】本题考查了判断命题的正误,等腰三角形的性、平行四边形的性质、角平分线的性质及全等三角形的判定,掌握相关的性质定理是解题的关键.8.C【解析】【分析】根据平行四边形的判定逐一判断即可.【详解】解:A.由AD=BC,AB=CD可根据两组对边分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;B.由∠A=∠C,∠B=∠D可根据两组对角分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;C.由AB∥CD,BC=AD不能判定四边形ABCD是平行四边形,此选项符合题意;D.由AD∥BC知∠A+∠B=180°,结合∠B=∠D知∠A+∠D=180°,所以AB∥CD,此时可根据两组对边分别平行的四边形是平行四边形知四边形ABCD是平行四边形,此选项不符合题意;故选:C.【点睛】本题主要考查平行四边形的判定,解题的关键是掌握两组对边分别平行的四边形是平行四边形、两组对边分别相等的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形.9.B【解析】【分析】把点P (-1,3)与点(0,1)求出一次函数1y kx b =+与2y m =的解析式,然后利用解不等式的方法求解即可;也可以通过观察图象,比较函数值大小来确定x 的的取值范围.【详解】解法一:依据题意有点P (-1,3)与点(0,1)在一次函数1y kx b =+的图象上,∴13b x b=⎧⎨=-+⎩,解得12b k =⎧⎨=-⎩,点P (-1,3)在直线2y m =的图象上,∴m=3,∴0kx b m +->即为220x -->,解得1x <-.解法二:∵0kx b m +->,∴kx b m +>,∵1y kx b =+,2y m =,∴12y y >,即一次函数1y kx b =+的图象在直线2y m =的上面部分,观察图象,这部分图象对应的x 的取值范围是:1x <-.故选:B .【点睛】本题主要考查了一次函数与一元一次不等式,数形结合是解题关键.10.A 【解析】【分析】根据角平分线判定得出BP 平分∠DPE ,根据平行线的性质推出∠DBP =∠EBP ,即可得出答案.【详解】解:∵∠M =∠N =90°,BM =BN ,∴BP 平分∠DPE ,∴∠DPB =∠EPB ,∵DP∥BC,PE∥BD,∴∠DPB=∠PBE,∠EPB=∠DBP,∴∠DBP=∠EBC,即在一个角的内部,到角的两边距离相等的点在角的平分线上,故选:A.【点睛】本题主要考查了角平分线的判定,平行线的性质的应用,注意:角的内部到角的两边距离相等得点在角的平分线上.11.12【解析】【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的外角,关键是明确多边形的外角和为360°.12.4【解析】【分析】利用平移的性质(平移前后两图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等)解决问题即可.【详解】解:∵D 是BC 的中点,∴BD =12BC =4(cm),由平移的性质可知,AA′∥BD ,AA′=BD ,∴AA′=4(cm),故答案为:4.【点睛】本题考查了平移的性质,解题的关键是熟练掌握平移的性质.13.11a a -+【解析】【分析】先通分,再进行分式的加减即可得到答案.【详解】解:223211a a a +---=()()()()()22131111a a a a a a ++-+-+-=()()232211a a a a +--+-=()()()2111a a a -+-=11a a -+故答案为:11a a -+.【点睛】此题考查的是分式的加减运算,掌握其运算法则是解决此题关键.14.18018032x x -=+【解析】【分析】设原参加游览的同学共x人,则原有的几名同学每人分担的车费为:180x元,出发时每名同学分担的车费为:180x2+,根据每个同学比原来少摊了3元钱车费即可得到等量关系.【详解】解:设原参加游览的同学共x人,根据题意得:1801803 x x2-=+,故答案为:1801803 x x2-=+.【点睛】本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.15.13【解析】【分析】过C作CE⊥AD的延长线于点E,由条件可证△AEC≌△AMC,得到AE=AM.证明△ECD≌△MBC,由全等的性质可得DE=MB,BC=CD,则问题可得解.【详解】解:如图,过C作CE⊥AD的延长线于点E,∵AC平分∠BAD,∴∠EAC=∠MAC,∵CE⊥AD,CM⊥AB,∴∠AEC=∠AMC=90°,CE=CM,在Rt△AEC和Rt△AMC中,AC=AC,CE=CM,∴Rt△AEC≌Rt△AMC(HL),∴AE=AM=4cm,∵∠ADC +∠B =180°,∠ADC +∠EDC =180°,∴∠EDC =∠MBC ,在△EDC 和△MBC 中,DEC CMB EDC MBC CE CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EDC ≌△MBC (AAS ),∴ED =BM ,BC =CD =2.5cm ,∴四边形ABCD 的周长为AB +AD +BC +CD =AM +BM +AE ﹣DE +2BC =2AM +2BC =8+5=13(cm ),故答案为:13.【点睛】本题考查全等三角形的判定与性质,掌握常用的判定方法是解题的关键.16.3【解析】【分析】连接CE ,过C 作CG ⊥DE 于G ,由线段垂直平分线的性质得EB =EC ,则∠EBC =∠ECB ,再证EC =CD ,则∠CED =∠CDE ,设∠EBC =∠ECB =α,则∠CDE =∠CED =∠EBC +∠ECB =2α,然后由三角形内角和定理求出α=15°,则∠CDE =∠CED =30°,设AB =EB =EC =CD =x ,则DE =BD ﹣EB =6﹣x ,最后由含30°角的直角三角形的性质和等腰三角形的性质得EG,EG =12DE =12(6﹣x ),则2x =12(6﹣x ),解方程即可.【详解】解:连接CE ,过C 作CG ⊥DE 于G,如图所示:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABC +∠BCD =180°,∴∠BCD =180°﹣45°=135°,∵EF 是BC 的垂直平分线,∴EB =EC ,∴∠EBC =∠ECB ,∵EB =AB ,∴EC =CD ,∴∠CED =∠CDE ,设∠EBC =∠ECB =α,则∠CDE =∠CED =∠EBC +∠ECB =2α,在△BCD 中,∠DBC +∠CDB =180°﹣135°=45°,即α+2α=45°,解得:α=15°,∴∠CDE =∠CED =30°,设AB =EB =EC =CD =x ,则DE =BD ﹣EB =6﹣x ,∵CG ⊥DE ,∴CG =12EC =12x ,EG ,又∵EC =DC ,CG ⊥DE ,∴EG =DG =12DE =12(6﹣x ),=12(6﹣x ),解得:x =3,即AB =3,故答案为: 3.【点睛】此题主要考查了平行四边形、直角三角形以及等腰三角形的有关性质,熟练掌握相关基础知识是解题的关键.17.(1)22(1)x -;(2)()(3)(3)x y a b a b -+-【解析】【分析】(1)先提公因式,再由完全平方公式进行因式分解,即可得到答案;(2)先整理,然后提公因式,再由平方差公式进行分解因式,即可得到答案.解:(1)2242x x -+=22(21)x x -+=22(1)x -;(2)22()9()a x yb y x -+-=22()9()a x yb x y ---=22()(9)x y a b --=()(3)(3)x y a b a b -+-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握分解因式的方法进行解题.18.﹣3<x <1【解析】【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】解:3212125x x x x <+⎧⎪⎨++>⎪⎩①②,解不等式①得:x <1,解不等式②得:x >﹣3,在数轴上表示不等式①、②的解集,得:,∴不等式组的解集是:﹣3<x <1.【点睛】本题主要考查了解一元一次不等式组,解题的关键是要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.19.3a a+;12-.【解析】先把括号内的两项通分后利用同分母分式的加减法法则进行计算,同时把除法转化为乘法,最后约分化成最简分式,根据分式有意义的条件选择一个a 值代入求值即可.【详解】解:22723111a a aa a a ++⎛⎫-÷ ⎪-+-⎝⎭=()()()()()()()()712111113a a a a a a a a a ++--+-⋅-++=()2693a a a a +++=()()233a a a ++=3a a+当a=-3、-1、1、0时,原式没有意义,舍去,当a=-2时,原式=23122-+=--.【点睛】本题考查分式的化简求值,熟练掌握分式的基本性质及分式有意义的条件是解题关键.20.32x =-【解析】【分析】先将分式方程化为整式方程,然后解整式方程并验根即可.【详解】解:方程两边都乘以()31x +,得:()3312x x x -+=,解得:32x =-,经检验,32x =-是原方程的解.【点睛】此题考查的是解分式方程,掌握分式方程的解法是解题关键.21.(1)见解析;(2)(5,3),(3,1);(3)(﹣4,3),(﹣2,7),(0,1).【解析】【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)利用旋转变换的性质分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.(3)根据平行四边形的判定画出图形,可得结论.【详解】解:(1)∵C (﹣1,3),C 1的坐标为(4,0)∴△ABC 向右平移了五个单位,向下平移了三个单位,∴A 1(2,2),B 1(3,-2),C 1(4,0)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求,点A 2的坐标为(5,3),点C 2的坐标为(3,1).故答案为:(5,3),(3,1).(3)分别过、、A B C 作BC AC AB 、、的平行线,分别相交于点D D D '''、、,如上图所示,∵A (﹣3,5),C (﹣1,3)∴点B 向左移动两个单位,向上移动两个单位,可得点D又∵B (﹣2,1),∴D 点坐标为(﹣4,3),同理可以求得1)(0D ',,27)(D ''﹣,满足条件的D 点坐标(﹣4,3),(﹣2,7),(0,1).故答案为:(﹣4,3),(﹣2,7),(0,1).【点睛】此题主要考查了图形的变换,涉及了平移变换、旋转变换以及平行四边形的性质,熟练掌握相关基础知识是解题的关键.22.(1)见解析;(2)8+.【解析】【分析】(1)由平行四边形的性质得OA =OC ,OB =OD .再证OE =OF ,即可得出结论;(2)由勾股定理的逆定理证明△AOF 是直角三角形,∠OAF =90°,再由勾股定理得CF =【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵DE =12OD ,BF =12OB ,∴DE =BF ,∴OD +DE =OB +BF ,即OE =OF ,∴四边形AFCE 为平行四边形;(2)解:如图所示:由(1)得:OA =OC =12AC =3,OE =OF =12EF =5,∵AF =4,∴OA 2+AF 2=OF 2,∴△AOF是直角三角形,∠OAF=90°,∴CF∵四边形AFCE是平行四边形,∴CE=AF=4,AE=CF=∴平行四边形AFCE的周长=2(AF+CF)=8+故答案为:8+【点睛】本题主要考查了平行四边形的判定和性质、勾股定理和勾股定理逆定理的应用;熟练掌握平行四边形的判定和性质及勾股定理及逆定理是解题的关键.23.(1)60元;(2)76元【解析】【分析】(1)已知金额设出进价,表示出数量,根据数量关系列出方程;(2)在(1)的基础上,根据求出的两次进价求出两次进货数量,列出关于总利润的不等式.【详解】解:(1)设第一批T恤衫每件的进价为x元,根据题意得:480066001.55 x x⨯=-,解得x=60,经检验,x=60是原方程的解,答:第一批T恤衫的进价为60元.(2)设第二批T恤衫的售价为y元,根据题意,得。
八年级下学期北师大版数学期末考试试卷
2015——2016第二学期期末模拟测试卷八年级数学一.选择题(每小题3分,共12题,36分)1、下列命题中,正确的是()A.若a>b,则ac2>bc2B.若a>b,c=d,则ac>bdC.若ac2<bc2,则a<bD.若a>b,c<d,则ac>bd2、如图1,一次函数y=2x和y=ax+4的图像相交于点A(m,4),则不等式2x<ax+4的解集为()A.x<2B.x<4C.x>2D.x>43、如图的图形是天气预报使用的图标,从上到下分别代表“霾”、“浮尘”、“扬沙”和“阴”,其中是中心对称图形的是()A. B. C. D.4、下列各式分解正确的是()A.12xyz-9x2y2=3xyz(4-3xy)B.3a2y-3ay+3y=3y(a2-a+1)C.-x2+xy-xz=-x(x+y-z)D.x2-y2=(x+y)(-x-y)5、若x2+x-2=0,则x2+x-21x x+的值为()A.32B.12C.2D. -326、若把分式x yxy+中的x,y都扩大两倍,那么分式的值()A.扩大2倍B.不变C.缩小2倍D.缩小4倍7、将△ABC DEFG按如图2所示放置,点D、G分别在边AB,AC上,点E,F在边BC上,已知BE=DE,CF=FG,则∠A的度数为()A.80oB.90oC.100oD.条件不足,无法判断8、某小区为了排污,需铺设一段全长为米的排污管道,为减少施工对居民生活图2 A图1的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高,结果提前天完成任务。
设原计划每天铺设米,下面所列方程正确的是( )。
A.1207202(120%)x x-=+ B. 7201202(120%)x x -=- C.7201202(120%)x x -=+ D.7207202(120%)x x =++9、如图3,在△ABC 中,∠C=90o ,∠B=30o ,以为圆心,任意长为半径画弧分交AB 、AC 与点M 和N ,再分别以M 、N 为圆心,大于的长为半径画弧,两弧交于点P ,连结AP 并延长BC 交于点D ,则下列说法中:①AD 是∠BAC 的平分线;②∠ADC=60o ;③点D 在AB 的垂直平分线上;④AB=2AC ,正确的个数是( )A.1B.2C.3D.410、如图5,在△ABC 中,AB=4,AC=7,M 为BC 中点,AD 平分∠BAC ,过M 作 MF ∥AD ,交AC 于点F ,则FC 的长为( )A.4.5B.5.5C.4D.3.511、一个正多边形,它的每一个外角都等于45o ,则该正多边形是( )A.正六边形B.正七边形C.正八边形D.正九边形12、如图6,Rt △ABC 中,∠ACB=90o ,AC=3,BC=4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ’处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ’F 的长为 ( )A.35B.45C.233二.填空题(每小题3分,共4题,12分)13、若不等式组122x a x x +--≥0>有解,则a 的取值范围是14、如图7,点A 在线段BG 上,四边形ABCD 与DEFG 都是正方形,面积分别为7cm 2,11cm 2,则△CDE 的面积为15、分解因式:ab 2-2ab+a=16、如图8,边长为a 的正方形ABCD 绕点A 逆时针旋转30o 得到正方形A ’B ’C ’D ’,图中阴影部分的面积为图4图5 图6 图8图7三、解答题(7小题,52分)17、解不等式组1032(5)6(1)x x x ++->≥并把解集在数轴上表示出来(6分)18、先化简,再求值(6分)22222116()2444x x x x x x x x x+---÷--++,其中2x =19、解方程23112x x x x -=-+-(6分)20、仔细阅读下面例题,解答问题:(5分)例题:已知二次三项式24x x m -+有一个因式是(x+3),求另一个因式以及m 的解:设另一个因式为(x+n ),得:24x x m -+=(x+3)(x+n ) 则24x x m -+=2(3)3x n x n ++=所以 343n m n+=-= 解得n=-7 m=-21所以另一个因式为(x-7),m 的值为-21问题:仿照以上方法......解答下面问题: 已知二次三项式223x x k +-有一个因式是(2x-5),求另一个因式以及k 的值21、如图9,在▱ABCD 中, ∠DAB=60o ,点E 、F 分别在CD 、AB 的延长线上,且AE=AD,CF=CB.(8分)(1)求证:四边形AFCE 是平行四边形;(4分)(2)若去掉已知条件的“∠DAB=60o ”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.(4分)图922、某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了10元.(10分)(1)该商家购进的第一批衬衫是多少件?(5分)(2)若两批衬衫按相同的标价销售,最后剩下50件按8折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少为多少元?(5分)23、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发。
北师大版八年级数学下册期末试卷含答案
八年级数学下册期末试卷(北师大版)一.选择题(共10小题,满分30分,每小题3分)1.(3分)剪纸是潍坊特有的民间艺术,在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)把多项式﹣4a3+4a2﹣16a分解因式()A.﹣a(4a2﹣4a+16)B.a(﹣4a2+4a﹣16)C.﹣4(a3﹣a2+4a)D.﹣4a(a2﹣a+4)3.(3分)如图,在平行四边形ABCD中,BD为对角线,点E、O、F分别是AB、BD、BC的中点,且OE=3,OF=2,则平行四边形ABCD的周长为()A.10B.12C.15D.204.(3分)关于x的方程=2+无解,则k的值为()A.±3B.3C.﹣3D.无法确定5.(3分)如图,在平行四边形ABCD中,对角线AC⊥BD,且AC=8,BD=6,DH ⊥AB于H,则AH等于()A.B.C.D.6.(3分)使不等式4x+3<x+6成立的最大整数解是()A.﹣1B.0C.1D.以上都不对7.(3分)如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.3B.4C.4.5D.58.(3分)某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程﹣=6.则方程中未知数x所表示的量是()A.实际每天铺设管道的长度B.实际施工的天数C.原计划施工的天数D.原计划每天铺设管道的长度9.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD 的面积是()A.15B.30C.45D.6010.(3分)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A (﹣1,﹣2),4x+2<kx+b<0的解集为()A.x<﹣2B.﹣2<x<﹣1C.x<﹣1D.x>﹣1二.填空题(共8小题,满分24分,每小题3分)11.(3分)若直角三角形的一个锐角为50°,则另一个锐角的度数是度.12.(3分)若一个多边形的内角和比外角和大360°,则这个多边形的边数为.13.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE 垂直平分AB,垂足是D,如果EC=3cm,则AE等于.14.(3分)不等式组的解集是.15.(3分)化简÷(﹣)的结果是.16.(3分)如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.(1)若AB=DC,则四边形ABCD的面积S=;(2)若AB>DC,则此时四边形ABCD的面积S′S(用“>”或“=”或“<”填空).17.(3分)如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.18.(3分)如图,在直角坐标系中,直线y=﹣分别与x轴、y轴交于点M、N,点A、B分别在y轴、x轴上,且∠B=60°,AB=2,将△ABO绕原点O 顺时针转动一周,当AB与直线MN平行时点A的坐标为.三.解答题(共6小题,满分47分)19.(7分)先化简,再求值:﹣÷,其中x=﹣1.20.(8分)在实数范围内分解因式:(1)9a 4﹣4b 4;(2)x 2﹣2 x+3.21.(7分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?22.(8分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,AE=CF,连接AF,BF,DE,CE,分别交于H、G.求证:(1)四边形AECF是平行四边形.(2)EF与GH互相平分.23.(8分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A (1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2.(2)求点C1在旋转过程中所经过的路径长.24.(9分)如图,在平面直角坐标系中,直线L1:y=﹣x+6 分别与x轴、y轴交于点B、C,且与直线L2:y=x交于点A.(1)分别求出点A、B、C的坐标;(2)直接写出关于x的不等式﹣x+6>x的解集;(3)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.2017八年级数学下册期末试卷(北师大版)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2017•开江县一模)剪纸是潍坊特有的民间艺术,在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【解答】解:A、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°能与原图形重合,是中心对称图形,故此选项正确;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.2.(3分)(2016春•西安校级期中)把多项式﹣4a3+4a2﹣16a分解因式()A.﹣a(4a2﹣4a+16)B.a(﹣4a2+4a﹣16)C.﹣4(a3﹣a2+4a)D.﹣4a(a2﹣a+4)【考点】因式分解﹣提公因式法.【分析】根据公因式的定义,确定出公因式是﹣4a,然后提取公因式整理即可选取答案.【解答】解:﹣4a3+4a2﹣16a=﹣4a(a2﹣a+4).故选D.【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键,要注意符号的处理.3.(3分)(2017春•工业园区期中)如图,在平行四边形ABCD中,BD为对角线,点E、O、F分别是AB、BD、BC的中点,且OE=3,OF=2,则平行四边形ABCD 的周长为()A.10B.12C.15D.20【考点】平行四边形的性质.【分析】首先根据三角形的中位线定理求得AD、CD的长,再根据平行四边形的性质求解.【解答】解:∵点E、O、F分别是AB、BD、BC的中点,∴AD=2OE=6,CD=2OF=4,又四边形ABCD是平行四边形,∴AB=2CD=4,BC=2AD=6,∴▱ABCD的周长是(6+4)×2=20.故选D.【点评】此题考查了平行四边形的性质及三角形的中位线定理,属于基础题,熟记三角形中位线的性质解题的关键.4.(3分)(2017•东方模拟)关于x的方程=2+无解,则k的值为()A.±3B.3C.﹣3D.无法确定【考点】分式方程的解.【专题】计算题;分式方程及应用.【分析】先将分式方程去分母转化为整式方程,由分式方程无解,得到x﹣3=0,即x=3,代入整式方程计算即可求出k的值.【解答】解:去分母得:x=2x﹣6+k,由分式方程无解,得到x﹣3=0,即x=3,把x=3代入整式方程得:3=2×3﹣6+k,k=3,故选B.【点评】本题考查了分式方程的解,注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,利用这一结论可知:分式方程无解,则有增根,求出增根,增根就是使分式方程分母为0的值.5.(3分)(2017•东光县一模)如图,在平行四边形ABCD中,对角线AC⊥BD,且AC=8,BD=6,DH⊥AB于H,则AH等于()A.B.C.D.【考点】平行四边形的性质.【分析】易证四边形ABCD是菱形,根据菱形的性质得出BO、CO的长,在RT △BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于AB×DH,再利用勾股定理求出AH即可.【解答】解:∵平行四边形ABCD中,AC⊥BD,∴平行四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC=5cm,∴S=AC•BD=×6×8=24cm2,菱形ABCD=AB×DH,∵S菱形ABCD∴AB×DH=24,∴DH=cm,∴AH==故选D.【点评】此题考查了菱形的判定与性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.6.(3分)(2017春•诸城市校级月考)使不等式4x+3<x+6成立的最大整数解是()A.﹣1B.0C.1D.以上都不对【考点】一元一次不等式的整数解.【分析】移项、合并同类项、系数化为1得出不等式的解集,总而得出答案.【解答】解:∵4x﹣x<6﹣3,∴3x<3,∴x<1,则不等式的最大整数解为0,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.(3分)(2017•章丘市二模)如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.3B.4C.4.5D.5【考点】三角形中位线定理.【分析】根据三角形中位线定理可知EF=DN,求出DN的最大值即可.【解答】解:如图,连结DN,∵DE=EM,FN=FM,∴EF=DN,当点N与点B重合时,DN的值最大即EF最大,在RTABD中,∵∠A=90°,AD=3,AB=3,∴BD===6,∴EF的最大值=BD=3.故选A.【点评】本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.8.(3分)(2016秋•高邑县期末)某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程﹣=6.则方程中未知数x所表示的量是()A.实际每天铺设管道的长度B.实际施工的天数C.原计划施工的天数D.原计划每天铺设管道的长度【考点】分式方程的应用.【分析】小宇所列方程是依据相等关系:原计划所用时间﹣实际所用时间=6,可知方程中未知数x所表示的量.【解答】解:设原计划每天铺设管道x米,则实际每天铺设管道(1+10%)x,根据题意,可列方程:﹣=6,所以小宇所列方程中未知数x所表示的量是原计划每天铺设管道的长度,故选:D.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系.9.(3分)(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60【考点】角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.10.(3分)(2016•商河县二模)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为()A.x<﹣2B.﹣2<x<﹣1C.x<﹣1D.x>﹣1【考点】一次函数与一元一次不等式.【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故选B.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2016•邳州市一模)若直角三角形的一个锐角为50°,则另一个锐角的度数是40度.【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余解答.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故答案为:40°.【点评】本题利用直角三角形两锐角互余的性质.12.(3分)(2017•无锡一模)若一个多边形的内角和比外角和大360°,则这个多边形的边数为6.【考点】多边形内角与外角.【专题】应用题.【分析】根据多边形的内角和公式(n﹣2)•180°,外角和等于360°列出方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.【点评】本题考查了多边形的内角和公式与外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.13.(3分)(2017春•崇仁县校级月考)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于6cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故答案为:6cm.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.14.(3分)(2017•阿城区一模)不等式组的解集是﹣2<x≤2.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解不等式①得:x>﹣2,解不等式②得:x≤2.则不等式组的解集是:﹣2<x≤2.故答案是:﹣2<x≤2.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.15.(3分)(2017春•启东市校级月考)化简÷(﹣)的结果是.【考点】分式的混合运算.【分析】先算减法,再分子分母分解因式,同时把除法变成乘法,最后求出即可.【解答】解:原式=÷=•=,故答案为:.【点评】本题考查了分式的混合运算,能熟记分式的运算法则是解此题的关键,注意运算顺序.16.(3分)(2016•泉州)如图,在四边形ABCD中,AB∥DC,E是AD中点,EF ⊥BC于点F,BC=5,EF=3.(1)若AB=DC,则四边形ABCD的面积S=15;(2)若AB>DC,则此时四边形ABCD的面积S′=S(用“>”或“=”或“<”填空).【考点】平行四边形的判定与性质.【专题】推理填空题.【分析】(1)若AB=DC,则四边形ABCD是平行四边形,据此求出它的面积是多少即可.(2)连接EC,延长CD、BE交于点P,证△ABE≌△DPE可得S△ABE =S△DPE、BE=PE,由三角形中线性质可知S△BCE =S△PCE,最后结合S四边形ABCD=S△ABE+S△CDE+S△BCE可得答案.【解答】解:(1)∵AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴四边形ABCD的面积S=5×3=15,故答案为:15.(2)如图,连接EC,延长CD、BE交于点P,∵E是AD中点,∴AE=DE,又∵AB∥CD,∴∠ABE=∠P,∠A=∠PDE,在△ABE和△DPE中,∵,∴△ABE ≌△DPE (AAS ),∴S △ABE =S △DPE ,BE=PE ,∴S △BCE =S △PCE ,则S 四边形ABCD =S △ABE +S △CDE +S △BCE=S △PDE +S △CDE +S △BCE=S △PCE +S △BCE=2S △BCE=2××BC ×EF=15,∴当AB >DC ,则此时四边形ABCD 的面积S′=S ,故答案为:=.【点评】此题主要考查了平行四边形的判定和性质的应用及全等三角形的判定与性质,通过构建全等三角形将梯形面积转化为三角形面积去求是解题的关键.17.(3分)(2016•邯郸二模)如图所示,已知△ABC 的周长是20,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 30 .【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等(即OE=OD=OF ),从而可得到△ABC 的面积等于周长的一半乘以3,代入求出即可.【解答】解:如图,连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是22,OD⊥BC于D,且OD=3,=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3∴S△ABC=20×3=30,故答案为:30.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.18.(3分)(2016春•江阴市月考)如图,在直角坐标系中,直线y=﹣分别与x轴、y轴交于点M、N,点A、B分别在y轴、x轴上,且∠B=60°,AB=2,将△ABO绕原点O顺时针转动一周,当AB与直线MN平行时点A的坐标为(﹣,)或(,﹣).【考点】作图﹣旋转变换;坐标与图形变化﹣旋转.【专题】计算题.【分析】先确定∠NMO=60°,再计算出OA=,然后利用AB与直线MN平行画出图形,直线AB交x轴于点C,作AH⊥x轴于H,则∠OCB=60°,再利用含30度的直角三角形三边的关系求AH、OH,从而确定A点坐标.【解答】解:当x=0时,y=﹣=5,则N(0,5),当y=0时,﹣=0,解得x=5,则M(5,0),在Rt△OMN中,∵tan∠NMO==,∴∠NMO=60°,在Rt△ABO中,∵∠B=60°,AB=2,∴∠OAB=30°,∴OB=1,OA=,∵AB与直线MN平行,∴直线AB与x轴的夹角为60°,如图1,直线AB交x轴于点C,作AH⊥x轴于H,则∠OCB=60°,∵∠OCB=∠COA+∠A,∴∠COA=60°﹣30°=30°,在Rt△OAH中,AH=OA=,OH=AH=,∴A点坐标为(,﹣);如图2,直线AB交x轴于点C,作AH⊥x轴于H,则∠OCB=60°,∵∠OCB=∠COA+∠A,∴∠COA=60°﹣30°=30°,在Rt△OAH中,AH=OA=,OH=AH=,∴A点坐标为(﹣,);综上所述,A点坐标为(﹣,)或(,﹣).故答案为(﹣,)或(,﹣).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.解决本题的关键是正确画出旋转后的图形.三.解答题(共6小题,满分47分)19.(7分)(2017•潮阳区模拟)先化简,再求值:﹣÷,其中x=﹣1.【考点】分式的化简求值.【分析】先化简分式,再把x=﹣1代入求解即可.【解答】解:﹣÷=﹣•,=﹣,=,当x=﹣1时原式=.【点评】本题主要考查了分式的化简求值,解题的关键是正确的化简.20.(8分)(2017春•钦州月考)在实数范围内分解因式:(1)9a 4﹣4b 4;(2)x 2﹣2 x+3.【考点】实数范围内分解因式.【分析】(1)利用平方差公式即可分解;(2)利用完全平方公式即可分解.【解答】解:(1)原式=(3a2+2b2)(3a2﹣2b2)=(3a2+2b2)(a+b)(a ﹣b);(2)原式=(x﹣)2.【点评】本题考查了实数范围内分解因式,正确理解完全平方公式和平方差公式的结构是关键.21.(7分)(2017•临沂模拟)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【考点】分式方程的应用.【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.【解答】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.【点评】本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.22.(8分)(2017春•灌云县月考)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,AE=CF,连接AF,BF,DE,CE,分别交于H、G.求证:(1)四边形AECF是平行四边形.(2)EF与GH互相平分.【考点】平行四边形的判定与性质.【专题】证明题.【分析】(1)由平行四边形的性质得出AB∥CD,AB=CD,由AE=CF,即可得出结论;(2)由平行四边形的性质得出AF∥CE,再证明四边形BFDE是平行四边形,得出BF∥DE,证出四边形EGFH是平行四边形,即可得出结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴四边形AECF是平行四边形.(2)由(1)得:四边形AECF是平行四边形,∴AF∥CE,∵AE=CF,AB∥CD,AB=CD,∴BE∥DF,BE=DF,∴四边形BFDE是平行四边形,∴BF∥DE,∴四边形EGFH是平行四边形,∴EF与GH互相平分.【点评】本题考查了平行四边形的判定与性质;熟记一组对边平行且相等的四边形是平行四边形,证明四边形是平行四边形是解决问题的关键.23.(8分)(2017•慈溪市模拟)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2.(2)求点C1在旋转过程中所经过的路径长.【考点】作图﹣旋转变换;作图﹣平移变换.【专题】计算题;作图题.【分析】(1)①利用点平移的坐标规律,分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A2、B2、C2即可;(2)根据弧长公式计算.【解答】解:(1)①如图,△A1B1C1为所作;②如图,△A2B2C2为所作;(2)点C1在旋转过程中所经过的路径长==2π.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.24.(9分)(2016春•乐业县期末)如图,在平面直角坐标系中,直线L1:y=﹣x+6 分别与x轴、y轴交于点B、C,且与直线L2:y=x交于点A.(1)分别求出点A、B、C的坐标;(2)直接写出关于x的不等式﹣x+6>x的解集;(3)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.【考点】一次函数与一元一次不等式;待定系数法求一次函数解析式.【分析】(1)两直线有公共点即可求得点A,与x、y轴交点即为直线1与坐标轴的交点;(2)找到直线L1:y=﹣x+6在直线L2:y=x上面的部分即为所求;(3)由题意三角形COD的面积为12,并利用列出式子,求得点D的横坐标,代入直线1求得点D的纵坐标,现在有两点C,D即能求得直线CD.【解答】解:(1)直线L1:y=﹣x+6,当x=0时,y=6,当y=0时,x=12,则B(12,0),C(0,6),…(3分)解方程组:得:,则A(6,3),故A(6,3),B(12,0),C(0,6).(2)关于x的不等式﹣x+6>x的解集为:x<6;(3)设D(x,x),∵△COD的面积为12,∴×6×x=12,解得:x=4,∴D(4,2),设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:.∴直线CD的函数表达式为:y=﹣x+6.【点评】本题考查了一次函数与一元一次不等式,两直线相交即为求两直线方程组,解即为交点,直线与坐标轴的交点容易求得.同时考查了待定系数法求一次函数.。
2016年北师大版八年级(下)期末数学常考试题100题(解析版)
北师大版八年级(下)期末数学常考试题100题参考答案与试题解析一、选择题(共30小题)1.(常考指数:49)四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q考点:一元一次不等式组的应用.专题:压轴题;图表型.分析:由三个图分别可以得到,由①式可得Q+S>Q+P,代入③式得到P+R>Q+P,所以Q.所以它们的大小关系为S>P>R>Q.解答:解:观察前两幅图易发现S>P>R,再观察第一幅和第三幅图可以发现R>Q,所以S>P>R>Q.故选:D.点评:本题考查了不等式的相关知识,利用“跷跷板”的不平衡来判断四个数的大小关系,体现了“数形结合”的数思想.2.(常考指数:61)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤13考点:勾股定理的应用.专题:压轴题.分析:最短距离就是饮料罐的高度,最大距离可根据勾股定理解答.解答:解:a 的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a 的取值范围是12≤a ≤13.故选:A .点评: 主要是运用勾股定理求得a 的最大值,此题比较常见,难度不大. 3.(常考指数:40)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A .B .C .D .考点: 相似三角形的判定. 专题: 网格型.分析: 首先求得△ABC 三边的长,然后分别求得A ,B ,C ,D 各三角形的三边的长,然后根据三组对应边的比等的两个三角形相似,即可求得答案.解答:解:如图:AB==,AC==,BC=2,A 、∵DE==,DF==,EF=1,∴,∴△DEF ∽△BAC , 故A 选项正确; B 、∵MN==,MK==,NK=3,∴,=1,,∴△MNK 与△ABC 不相似, 故B 选项错误; C 、∵PQ==2,PR==,QR=1,∴==,=,=,∴△PQR与△ABC不相似,故C选项错误;D、∵GH==,GL==,HL=2,∴=,=,=,∴△GHL与△ABC不相似,故D选项错误.故选:A.点评:此题考查了相似三角形的判定.此题难度适中,三组对应边的比相等的两个三角形相似定理的应用是解题的关键.4.(常考指数:59)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折考点:一元一次不等式的应用.专题:压轴题.分析:本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200×﹣800≥800×5%,解出x的值即可出打的折数.解答:解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.点评:本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.5.(常考指数:62)化简的结果为()A.B.C.D.﹣b考点:约分.分析:把分式进行化简就是对分式进行约分,首先要对分子、分母进行分解因式,把互为相反数的因式化为相的因式.解答:解:=.故选:B.点评:本题考查了约分,主要考查分式的基本性质及变号法则,正确地分解因式是分式化简的关键.6.(常考指数:73)如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是()A.1:2 B.1:4 C.1:5 D.1:6考点:位似变换;三角形中位线定理;相似三角形的性质.专题:压轴题.分析:图形的位似就是特殊的相似,满足相似的性质,且位似图形上任意一对对应点到位似中心的距离之比等相似比.因为D、E、F分别是OA、OB、OC的中点,根据三角形的中位线定理可知:DF=AC,即△D与△ABC的相似比是1:2,所以面积的比是1:4.解答:解:∵D、F分别是OA、OC的中点,∴DF=AC,∴△DEF与△ABC的相似比是1:2,∴△DEF与△ABC的面积比是1:4.故选:B.点评:本题主要考查了三角形中位线定理,位似的定义及性质:面积的比等于相似比的平方.7.(常考指数:44)图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是()A.y=4n﹣4 B.y=4n C.y=4n+4 D.y=n2考点:函数关系式.专题:规律型.分析:根据图示可知,第一层是4个,第二层是8个,第三层是12,…第n层是4n,所以,即可确定y与n的系.解答:解:由图可知:n=1时,圆点有4个,即y=4;n=2时,圆点有8个,即y=8;n=3时,圆点有12个,即y=12;∴y=4n.故选:B.点评:主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y 有唯一确定的值与之对应,则y是x的函数,x叫自变量.解题关键是根据图象找到点的排列规律.8.(常考指数:75)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm考点:线段垂直平分线的性质;平行四边形的性质.分析:根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.解答:解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,∴根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10m.故选:D.点评:此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查积较广,有一定的综合性.9.(常考指数:43)已知a>b,则下列不等式中正确的是()C.3﹣a>3﹣b D.a﹣3>b﹣3A.﹣3a>﹣3b B.﹣>﹣考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)什么数得到的,再判断用不用变号.解答:解:A、不等式两边都乘以﹣3,不等号的方向改变,﹣3a<﹣3b,故A错误;B、不等式两边都除以﹣3,不等号的方向改变,﹣<﹣,故B错误;C、同一个数减去一个大数小于减去一个小数,3﹣a<3﹣b,故C错误;D、不等式两边都减3,不等号的方向不变,故D正确.故选:D.点评:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.10.(常考指数:54)下列调查工作需采用的普查方式的是()A.环保部门对淮河某段水域的水污染情况的调查B.电视台对正在播出的某电视节目收视率的调查C.质检部门对各厂家生产的电池使用寿命的调查D.企业在给职工做工作服前进行的尺寸大小的调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答:解:A、环保部门对淮河某段水域的水污染情况的调查不必全面调查,大概知道水污染情况就可以了,适抽样调查,故A选项错误;B、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查,故B选项错误;C、质检部门对各厂家生产的电池使用寿命的调查,如果普查,所有电池都报废,这样就失去了实际意故C选项错误;D、企业在给职工做工作服前进行的尺寸大小的调查是精确度要求高的调查,适于全面调查,故D选项确.故选:D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精度要求高的调查,事关重大的调查往往选用普查.11.(常考指数:82)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.专题:工程问题.分析:关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时=18.解答:解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.点评:列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题注意采用新技术前后工作量和工作效率的变化.12.(常考指数:42)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B.C.D.=考点:由实际问题抽象出分式方程.专题:应用题.分析:本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前天”找到等量关系,然后列出方程.解答:解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:D.点评:这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.13.(常考指数:50)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍考点:分式的基本性质.分析:把分式中的x和y都扩大2倍,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简可.解答:解:把分式中的x和y都扩大2倍后得:==2•,即分式的值扩大2倍.故选:B.点评:根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、母中的任何一项.14.(常考指数:38)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:本题应该先求出各个不等式的解集,然后在数轴上分别表示出这些解集,它们的公共部分就是不等式组解集.解答:解:不等式组可化为:所以不等式组的解集在数轴上可表示为:故选:C.点评:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空圆点表示.15.(常考指数:43)某地统计部门公布最近5年国民消费指数增长率分别为:8.5%、9.2%、9.9%、10.2%、9.8%,业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据()比较小.A.方差B.平均数C.众数D.中位数考点:方差.专题:应用题.分析:根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大即波动越大,反之也成立.故从统计角度看,“增长率相当平稳”说明这组数据方差比较小.解答:解:根据方差的意义知,数据越稳定,说明方差越小.故选:A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,波动越小,数据越稳定.16.(常考指数:62)下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y) B.x2+6x+9=(x+3)2C.x2+xy=x(x+y)D.x2+y2=(x+y)2考点:因式分解的意义.分析:根据公式特点判断,然后利用排除法求解.解答:解:A、是平方差公式,故A选项正确;B、是完全平方公式,故B选项正确;C、是提公因式法,故C选项正确;D、(x+y)2=x2+2xy+y2,故D选项错误;故选:D.点评:本题主要考查了对于学习过的两种分解因式的方法的记忆与理解,需熟练掌握.17.(常考指数:63)从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.分析:分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式解答:解:阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.点评:本题主要考查了平方差公式,运用不同方法表示阴影部分面积是解题的关键.本题主要利用面积公式求明a2﹣b2=(a+b)(a﹣b).18.(常考指数:47)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9考点:因式分解-运用公式法.分析:能用平方差公式分解因式的式子特点是:两项平方项,符号相反.解答:解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.点评:本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.19.(常考指数:48)下列多项式能分解因式的是()A.x2﹣y B.x2+1 C.x2+xy+y2D.x2﹣4x+4考点:因式分解的意义.分析:根据多项式特点结合公式特征判断.解答:解:A、x2﹣y不能提公因式也不能运用公式,故A选项错误;B、x2+1两项同号不能运用平方差公式,故B选项错误;C、x2+xy+y2不符合完全平方公式,故C选项错误;D、x2﹣4x+4符合完全平方公式,可分解因式为:(x﹣2)2,故D选项正确.故选:D.点评:本题主要考查了公式法分解因式的公式结构特点,熟记公式是解题的关键.20.(常考指数:48)一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A.x>0 B.x<0 C.x>2 D.x<2考点:一次函数的图象.专题:压轴题;数形结合.分析:根据函数图象可知,此函数为减函数,图象与x轴的交点坐标为(2,0),由此可得出答案.解答:解:根据图象和数据可知,当y<0即直线在x轴下方时,x的取值范围是x>2.故选:C.点评:本题考查一次函数的图象,考查学生的分析能力和读图能力.21.(常考指数:56)如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°考点:三角形的外角性质;平行线的性质.专题:计算题.分析:先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出的度数.解答:解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠E=70°﹣40°=30°.故选:A.点评:本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.22.(常考指数:43)某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为甲=82分,乙=82分,S甲2=245,S乙2=190,那么成绩较为整齐的是()A.甲班B.乙班C.两班一样整齐D.无法确定考点:方差.分析:根据方差的意义知,方差越小,波动性越小,故成绩较为整齐的是乙班.解答:解:由于乙的方差小于甲的方差,故成绩较为整齐的是乙班.故选:B.点评:本题考查方差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2+…+(xn﹣)23.(常考指数:45)设“●”、“▲”、“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“■”、“▲”、“●”这三种物体按质量从大到小的排列顺序为()A.■●▲B.■▲●C.▲●■D.▲■●考点:一元一次不等式的应用.专题:压轴题.分析:设▲、●、■的质量为a、b、c,根据图形,可列出不等式和等式,由此可将质量从大到小排列.解答:解:设▲、●、■的质量为a、b、c,由图形可得:,由①得:c>a,由②得:a=2b,故可得c>a>b.所以这三种物体按质量从大到小的排列顺序为■▲●.故选:B.点评:本题考查了不等式的性质及等式的性质,解答本题关键是根据图形列出不等式和等式,难度一般.24.(常考指数:38)“5•12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.若原计划每天修x米,则所列方程正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:工程问题.分析:关键描述语为:提前4天开通了列车;等量关系为:计划用的时间﹣实际用的时间=4.解答:解:题中原计划修天,实际修了天,可列得方程﹣=4,故选:B.点评:本题考查了用方程的思想来求解实际生活中的未知量,从关键描述语找到等量关系是解决问题的关键.25.(常考指数:39)如图,直线m∥n,∠1=55°,∠2=45°,则∠3的度数为()A.80°B.90°C.100°D.110°考点:平行线的性质;三角形的外角性质.专题:计算题.分析:要求∠3的度数,结合图形和已知条件,先求由两条平行线所构成的同位角或内错角,再利用三角形的外的性质就可求解.解答:解:∵∠4=∠1+∠2=55°+45°=100°,又∵m∥n,∴∠3=∠4=100°.故选:C.点评:本题考查了三角形的外角的性质和平行线的性质;三角形的外角的性质:三角形的外角等于和它不相邻两个内角的和;平行线的性质:两直线平行,同位角相等.26.(常考指数:62)下列二次根式中与是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:根据同类二次根式的定义,先化简,再判断.解答:解:A、=2,与的被开方数不同,不是同类二次根式,故A选项错误;B、=,与的被开方数不同,不是同类二次根式,故B选项错误;C、=,与的被开方数不同,不是同类二次根式,故C选项错误;D、=3,与的被开方数相同,是同类二次根式,故D选项正确.故选:D.点评:此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做类二次根式.27.(常考指数:61)如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条考点:相似三角形的判定.分析:过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.解答:解:由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故选:C.点评:本题主要考查三角形相似判定定理及其运用.解题时,运用了两角法(有两组角对应相等的两个三角形似)来判定两个三角形相似.28.(常考指数:56)如果一个多边形的内角和等于它的外角和,则这个多边形是()A.三角形B.四边形C.五边形D.六边形考点:多边形内角与外角.分析:利用多边形的外角和以及四边形的内角和定理即可解决问题.解答:解:∵多边形的内角和等于它的外角和,多边形的外角和是360°,∴内角和是360°,∴这个多边形是四边形.故选:B.点评:本题考查了多边形的外角和定理以及四边形的内角和定理,解题的关键是利用多边形的内角和公式并熟多边形的外角和为360°.29.(常考指数:38)若2y﹣7x=0(xy≠0),则x:y等于()A.7:2 B.4:7 C.2:7 D.7:4考点:等式的性质.专题:计算题.分析:本题需利用等式的性质对等式进行变形,从而解决问题.解答:解:根据等式性质1,等式两边同加上7x得:2y=7x,∵7y≠0,∴根据等式性质2,两边同除以7y得,=.故选:C.点评:本题考查的是等式的性质:等式性质1:等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2:等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.30.(常考指数:86)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数C.平均数D.极差考点:统计量的选择.专题:应用题.分析:由于有13名同学参加百米竞赛,要取前6名参加决赛,故应考虑中位数的大小.解答:解:共有13名学生参加竞赛,取前6名,所以小梅需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小梅知道这组数据的中位数,才能知道自己是否进入决赛.故选:A.点评:本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两数据的平均数就是这组数据的中位数.二、填空题(共30小题)31.(常考指数:51)如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S=4.考点:平行四边形的性质;等边三角形的性质.专题:压轴题;规律型.分析:根据题意,可以证明S与S1两个平行四边形的高相等,长是S1的2倍,S3与S的长相等,高是S3的一这样就可以把S1和S3用S来表示,从而计算出S的值.解答:解:根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,∴AB∥HF∥DC∥GN,设AC与FH交于P,CD与HG交于Q,∴△PFC、△QCG和△NGE是正三角形,∵F、G分别是BC、CE的中点,∴BF=MF=AC=BC,CP=PF=AB=BC∴CP=MF,CQ=BC,QG=GC=CQ=AB,∴S1=S,S3=2S,∵S1+S3=10,∴S+2S=10,∴S=4.故答案为:4.点评:此题主要考查了等边三角形的性质及平行四边形的面积求法,平行四边形的面积等于平行四边形的边长该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对的高.32.(常考指数:27)若不等式组有解,那么a必须满足a>﹣2.考点:解一元一次不等式组.分析:利用求不等式组解集的口诀,即可求出答案.解答:解:原不等式组可化为,∴>﹣1,∴a>﹣2.故答案为:a>﹣2.点评:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.33.(常考指数:32)点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与△ABC相似.满足这样条件的直线最多有4条.考点:相似三角形的判定.专题:常规题型;压轴题.分析:过点P作BC的平行线,作AC的平行线,都可使截得的三角形与原三角形相似;过点P可作直线交边于点F,使得公共角的两边对应成比例,则AP:AC=AF:AB,可得△APF∽△ACB,同理截BC边也可相似三角形.解答:解:过P作PE∥BC,则△APE∽△ABC;同理:△BPG∽△BAC;过P作PF使得PA:AC=AF:AB,则△APF∽△ACB;同理:△BPH∽△BCA;所以共有4条满足条件的直线.故答案为:4.点评:此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.34.(常考指数:28)请你将一根细长的绳子,沿中间对折,再沿对折后的绳子中间再对折,这样连续对折5次,最后用剪刀沿对折5次后的绳子的中间将绳子剪断,此时绳子将被剪成33段.考点:规律型:图形的变化类.分析:此题主要考查二个内容,一是对折后的段数问题,即对折几次,段数就是2的几次方;二是剪的次数与数问题,即剪的次数的平方+1=段数.解答:解:根据题意分析可得:连续对折5次后,共有25段,即32段;剪刀沿对折5次后的绳子的中间将绳子断,此时绳子将被剪成32+1=33段.故答案为:33.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了化,是按照什么规律变化的.35.(常考指数:35)两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm2,那么较小的多边形的面积是40cm2.考点:相似多边形的性质.分析:利用相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方可得.解答:解:两个相似多边形的一组对应边分别为3cm和4.5cm,则相似比是3:4.5=2:3,面积的比等于相似比的平方,即面积的比是4:9,因而可以设较小的多边形的面积是4x(cm2),则较大的是9x(cm2),根据面积的和是130(cm2),得到4x+9x=130,解得:x=10,则较小的多边形的面积是40cm2.故答案为:40.点评:本题考查了相似多边形面积的比等于相似比的平方的性质,熟记性质是解题的关键.36.(常考指数:31)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出它们的中点M、N.若测得MN=15m,则A,B两点间的距离为30m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013—2014学年(下)八年级期末测试题
招贤乡一中 陈艳慧
一、选择题(每小题3分,共24分)
1. 若a<0,则下列不等式不成立的是( )
A . a+5<a+7
B .5a >7a
C .5-a <7-a
D .7
5
a a > 2.下列从左到右的变形是因式分解的是( ) A.(x+1)(x-1)=x 2-1 B.(a-b)(m-n)=(b-a)(n-m) C.ab-a-b+1=(a-1)(b-1) D.m 2-2m-3=m(m-2-m
3) 3.方程1
3
2+=
x x
的解为( ) A .2 B .1 C .-2 D .-1
4.不等式3(2x+5)> 2(4x+3)的解集为( )
A.x>4.5
B.x<4.5
C.x=4.5
D.x>9新 课 标 第 一5.下面的图形是天气预报的图标,其中既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D .
6.在△ABC 中,∠C=90°,AC=BC,AD 平分∠CAB,交BC 于点D,DE⊥AB 于点E ,且AB=10,则△EDB 的周长是( ) A.4 B.6 C.8 D.10
B
A
C
D
E
7.在△ABC 中,∠ACB=90° ,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D ,E ,F 分别为垂足,且AB=10,BC=8,则点O 到三边AB,AC,BC 的距离分别是( ) A.2,2,2 B.3,3,3 C.4,4,4 D.2,3,5
C
B
O A
E F
F
8.如图,平行四边形ABCD
的对角线相交于点O ,且AB≠AD,过O 作OE⊥BD 交BC 于点E .若△CDE 的周长为10,则AB+AD 的值是( ) A.10 B.15 C.25 D.30
二.填空题(每题3分,共24分)
9.分解因式: x 2y-y 3= .
10.当x 时,分式1
12-x x 值为0.
11.如图,已知函数y = 3x + b 和y = ax - 3的图象交于点P( -2,-5) ,则根据图象可得不等式3x + b >ax - 3的解集是 .
12.如图,面积为12cm 2的△ABC 沿BC 方向平移至△DEF 位置,平移的距离是边BC 长的两倍,则图中的四边形ACED 的面积是______cm 2.
13. 已知两个分式:X X B X A -++=-=
21
21,4
42
.其中x ≠2且x ≠-2,则A 与B 的关系是 .
14.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,现在平均每天生产 台机器.
15. 如图,平行四边形ABCD 的周长为36,对角线AC ,BD 相交于点O ,点E 是CD 的中点,BD=12,则⊿DOE 的周长为 .
B
C
A
D
E
16. 如图,Rt △ABC 中,∠ABC=90°,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长线于点E,则CE 的长为 .
C
B
E
A
D
三、解答题(本大题7个小题,共72分) 17.(12分)分解因式:
(1)-4a 2x+12ax -9x (2) (2x+y)2 – (x+2y)2
18.(9分)解不等式组⎪⎩
⎪⎨
⎧+-≤〉+2320
1x x x ,并写出该不等式组的最大整数解.
19.(9分)先化简a
a a a a a 1
12112÷+---+,然后给a 选择一个你喜欢的数
代入求值.
20.(9分)解方程14
222=-+-x x x
21.(10分)如图,OC是∠AOB的平分线,点P为OC上一点,若∠POD+∠PEO=180°,试判断PD和PE的大小关系,并说明理由.
A
O
B
C
P
D
E
22.(11分)我国沪深股市交易中,如果买、卖一次股票均需要付交易金额的0.5%作费用.张先生以每股5元的价格买入“陕西电力”股票1000股,若他期望获利不低于1000元,问至少要等到该股涨到每股多少元时才能卖出?(精确到0.01元)
23.(12分)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB 的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;
(2
)在图②中,若AP1=2,则CQ等于多少?
参考答案
一、1.D 2.C 3.A 4.B 5.A 6.D 7.A 8.A
二、9.y(x+y)(x-y) 10.x=-1 11.x>-2 12.36
7
13.互为相反数 14.200 15.15 16.
6三、17.(1)-x(2a-3)2 (2).3(x+y)(x-y)
3最大整数解:1.
18.-1<x≤
2
1代入求值略.
19.-
1-a
20.x=-3.(注意:分式方程要检验)
21.PD=PE.(提示:作PF⊥OA于点F,PG⊥OB于点G.)
22. 解:设至少涨到每股x元时才能卖出.
1000x-(5000+1000x)×0.5%≥5000+1000,
1205,x≥6.06
解这个不等式x≥
199
答:至少要涨到每股6.06时才能卖出.
23.(1)提示证明:∴△B1CQ≌△BCP1(ASA).
(2)提示作如下辅助线:。