2015年高考数学小题训练

合集下载

2015年全国各地高考数学试题及解答分类汇编大全(09 解三角形)

2015年全国各地高考数学试题及解答分类汇编大全(09 解三角形)

2015年全国各地高考数学试题及解答分类汇编大全(09解三角形)一、选择题:1.(2015广东文)设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos A =b c <,则b =( )A B .2 C . D .3【答案】B【解析】试题分析:由余弦定理得:2222cos a b c bc =+-A ,所以(22222b b =+-⨯⨯2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B .考点:余弦定理.二、填空题:1.(2015安徽文)在ABC ∆中,6=AB , 75=∠A , 45=∠B ,则=AC .2、(2015北京文)在C ∆AB 中,3a =,b =23π∠A =,则∠B = . 【答案】4π 【解析】试题分析:由正弦定理,得sin sin a b A B =sin 2B=,所以sin B =4B π∠=. 考点:正弦定理.3. (2015北京理)在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1 【解析】试题分析:222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯ 考点:正弦定理、余弦定理4.(2015福建文)若ABC ∆中,AC =045A =,075C =,则BC =_______.【答案】2 【解析】试题分析:由题意得018060B A C =--=.由正弦定理得sin sin AC BC B A =,则sin sin AC ABC B=,所以23223BC ⨯==.考点:正弦定理.5.(2015福建理)若锐角ABC ∆的面积为103 ,且5,8AB AC == ,则BC 等于________. 【答案】7 【解析】试题分析:由已知得ABC ∆的面积为1sin 20sin 2AB AC A A ⋅=103=,所以3sin 2A =,(0,)2A π∈,所以3A π=.由余弦定理得2222cos BC AB AC AB AC A =+-⋅=49,7BC =.考点:1、三角形面积公式;2、余弦定理.6.(2015广东理)设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =, 1sin 2B =,6C =π,则b = 【答案】1. 【考点定位】本题考查正弦定理解三角形,属于容易题. 7. (2015湖北文、理)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.【答案】1006.【考点定位】本题考查解三角形的实际应用举例,属中档题.【名师点睛】以实际问题为背景,将抽象的数学知识回归生活实际,凸显了数学的实用性和重要性,体现了“数学源自生活,生活中处处有数学”的数学学科特点,能较好的考查学生识记和理解数学基本概念的能力和基础知识在实际问题中的运用能力.考点:1.三角形三内角和定理,2.三角函数的定义,3.有关测量中的的几个术语,4.正弦定理.8.(2015全国新课标Ⅰ卷理)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 【答案】(62-,6+2) 【解析】试题分析:如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BEE C=∠∠,即o o2sin 30sin 75BE =,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o 2sin 30sin 75BF =,解得BF=62-,所以AB 的取值范围为(62-,6+2).考点:正余弦定理;数形结合思想9.(2015天津理)在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 .【答案】8【解析】试题分析:因为0A π<<,所以215sin 1cos A A =-=, 又115sin 315,2428ABC S bc A bc bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.考点:1.同角三角函数关系;2.三角形面积公式;3.余弦定理.10. (2015重庆文) 设ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,且12,cos ,4a C ==-3sin 2sin A B =,则c=________. 【答案】4 【解析】试题分析:由3sin 2sin A B =及正弦定理知:3a=2b,又因为a=2,所以b=3; 由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以c=4; 故填:4.考点:正弦定理与余弦定理.11.(2015重庆理)在ABC 中,B =120o,AB =2,A 的角平分线AD =3,则AC =_______.【答案】6【考点定位】解三角形(正弦定理,余弦定理)三、解答题:1.(2015安徽理)在ABC ∆中,3,6,324A AB AC π===点D 在BC 边上,AD BD =,求AD 的长.2. (2015江苏)在ABC ∆中,已知60,3,2===A AC AB .(1)求BC 的长; (2)求C 2sin 的值.【答案】(17243【解析】考点:余弦定理,二倍角公式3、(2015全国新课标Ⅰ卷文)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B (II )若90B =,且2,a = 求ABC ∆的面积.【答案】(I )14(II )1(II )由(1)知22b ac =.因为B =90°,由勾股定理得222a cb +=.故222a c ac +=,得2c a =所以D ABC 的面积为1.【考点定位】正弦定理;余弦定理;运算求解能力【名师点睛】解三角形问题的主要工具就是正弦定理、余弦定理,在解题过程中要注意边角关系的转化,根据题目需要合理选择合理的变形复方向,本题考查利用正余弦定理解三角形和计算三角形面积,是基础题.4.(2015全国新课标Ⅱ卷文)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(I )求sin sin BC∠∠ ;(II )若60BAC ∠=,求B ∠.【答案】(I )12;30.考点:解三角形试题解析:(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()31sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 考点:解三角形 5.(2015全国新课标Ⅱ卷理)ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍. (Ⅰ) 求sin sin BC∠∠;(Ⅱ)若1AD =,DC =BD 和AC 的长. 【答案】(Ⅰ)12;(Ⅱ)1. (Ⅱ)因为::ABD ADC S S BD DC ∆∆=,所以BD =ABD ∆和ADC ∆中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠. 222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =.考点:1、三角形面积公式;2、正弦定理和余弦定理.6. (2015山东文)ABC ∆中,角A ,B ,C 所对的边分别为a,b,c.已知cos ()B A B ac =+==。

2015年高考理科数学(新课标全国卷1)(含解析)

2015年高考理科数学(新课标全国卷1)(含解析)

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1z-=i ,则|z|= ( )A .1BCD .2 2.sin 20cos10cos160sin10︒︒︒︒-=( )A.BC .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2nn n ∀∈N 2,> B .2nn n ∃∈N 2,≤ C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212 xC y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A.( B.( C.( D.( 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+B .1433AD AB AC =-C .4133AD AB AC =+D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )A .3[)21,e -B .43[,)23e -C .3[,)234e D .3[,)21e--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数()=(ln f x x x 为偶函数,则a =________.14.一个圆经过椭圆22=1164x y +的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式; (Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i ωω=8i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围.1sin20cos10cos20sin10sin302+==,故选10<数学试卷第7页(共21页)数学试卷第8页(共21页)数学试卷第9页(共21页)数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)2exy,AB 的取值范围是(62,62)-+.11111111=235572123n b n n ⎡⎤⎛⎫⎛⎫⎛⎫++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=AC FG G=,⊥平面AFC⊂平面AEC3数学试卷第13页(共21页)数学试卷第14页(共21页)数学试卷第15页(共21页)数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)60(Ⅰ)连接AE 90, 90,90,∴DE 是圆1AE =,CE BE ,212x -,解得∴60ACB ∠=.90,可得1sin45=2.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。

2015全国数学高考题及答案

2015全国数学高考题及答案

2015年新课标全国高考数学(理科)及答案第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率7.执行下图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=9.不等式组的解集记为D.有下面四个命题:其中真命题是第Ⅱ卷本卷包括必考题和选考题两个部分。

第(13)题-第(21)题为必考题,每个考生都必须作答。

第(22)题-第(24)题为选考题,考生根据要求作答。

二.填空题:本大题共四小题,每小题5分。

14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为.三.解答题:解答应写出文字说明,证明过程或演算步骤。

18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.(Ⅰ) 求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由2014年普通高等学校招生全国统一考试(课标I文科卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱A.-5B.3C.-5或3D.5或-31.填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.(14)甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品学科网符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?(19)(本题满分12分)请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.(22)(本小题满分10分)选修4-1,几何证明选讲1.填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.(14)甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品学科网符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?(19)(本题满分12分)请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.(22)(本小题满分10分)选修4-1,几何证明选讲20.(本小题13分)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.(考生务必将答案答在答题卡上,在试卷上作答无效)。

2015年全国各地高考数学试题及解答分类汇编大全(05-不等式)

2015年全国各地高考数学试题及解答分类汇编大全(05-不等式)

2015年全国各地高考数学试题及解答分类汇编大全(05不等式)一、选择题:1.(2015安徽文)已知x,y满足约束条件,则的最大值是()(A)-1 (B)-2(C)-5 (D)12.(2015北京理)若,满足则的最大值为()A.0 B.1 C. D.2【答案】D【解析】试题分析:如图,先画出可行域,由于,则,令,作直线,在可行域中作平行线,得最优解,此时直线的截距最大,取得最小值2.考点:线性规划;3.(2015福建文)若直线过点,则的最小值等于()A.2 B.3 C.4 D.5【答案】C考点:基本不等式.4.(2015福建理)若变量满足约束条件则的最小值等于 ( )A. B. C. D.2【答案】A【解析】试题分析:画出可行域,如图所示,目标函数变形为,当最小时,直线的纵截距最大,故将直线经过可行域,尽可能向上移到过点时,取到最小值,最小值为,故选A.考点:线性规划.5.(2015福建文)变量满足约束条件,若的最大值为2,则实数等于()A. B.C. D.【答案】C【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为,当取最大值,则直线纵截距最小,故当时,不满足题意;当时,画出可行域,如图所示, 其中.显然不是最优解,故只能是最优解,代入目标函数得,解得,故选C .考点:线性规划.6.(2015广东文)若变量,满足约束条件,则的最大值为( )A .B .C .D .【答案】C考点:线性规划.7.(2015广东理)若变量,满足约束条件则的最小值为()A . B. 6 C. D. 4【答案】.【解析】不等式所表示的可行域如下图所示,由得,依题当目标函数直线:经过时,取得最小值即,故选【考点定位】本题考查二元一次不等式的线性规划问题,属于容易题.8.(2015广东文)不等式的解集为.(用区间表示)【答案】【解析】试题分析:由得:,所以不等式的解集为,所以答案应填:.考点:一元二次不等式.9、(2015湖南文)若变量x、y满足约束条件,则z=2x-y的最小值为( )A、-1B、0C、1D、2【答案】AxyOAl考点:简单的线性规划10. (2015湖南理)若变量,满足约束条件,则的最小值为()A.-7B.-1C.1D.2【答案】A.而可知当,时,的最小值是,故选A.【考点定位】线性规划.【名师点睛】本题主要考查了利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的范围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.11、(2015湖南文)若实数a,b满足,则ab的最小值为( )A、 B、2 C、2 D、4【答案】C考点:基本不等式12.(2015山东理)已知满足约束条件,若的最大值为4,则()(A)3 (B)2 (C)-2 (D)-3【答案】B【解析】不等式组在直角坐标系中所表示的平面区域如下图中的阴影部分所示,若的最大值为4,则最优解可能为或,经检验,是最优解,此时;不是最优解.故选B.【考点定位】简单的线性规划问题.【名师点睛】本题考查了简单的线性规划问题,通过确定参数的值,考查学生对线性规划的方法理解的深度以及应用的灵活性,意在考查学生利用线性规划的知识分析解决问题的能力.13.(2015陕西理)设,若,,,则下列关系式中正确的是()A. B. C. D.【答案】C考点:1、基本不等式;2、基本初等函数的单调性.14.(2015陕西文)设,若,,,则下列关系式中正确的是()A.B.C.D.【答案】【解析】试题分析:;;因为,由是个递增函数,所以,故答案选考点:函数单调性的应用.15. (2015陕西文)某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元【答案】当直线过点时,取得最大值故答案选考点:线性规划.16. (2015陕西理)某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元 B.16万元 C.17万元 D.18万元【答案】D【解析】试题分析:设该企业每天生产甲、乙两种产品分别为、吨,则利润由题意可列,其表示如图阴影部分区域:当直线过点时,取得最大值,所以,故选D.考点:线性规划.17. (2015上海文)下列不等式中,与不等式解集相同的是().A. B.C. D.【答案】B18、(2015上海理)记方程①:,方程②:,方程③:,其中,,是正实数.当,,成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根 B.方程①有实根,且②无实根C.方程①无实根,且②有实根 D.方程①无实根,且②无实根【答案】B【解析】当方程①有实根,且②无实根时,,从而即方程③:无实根,选B.而A,D由于不等式方向不一致,不可推;C推出③有实根【考点定位】不等式性质19.(2015重庆文)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()(A)-3 (B) 1 (C) (D)3【答案】B【解析】试题分析:如图,;由于不等式组,表示的平面区域为三角形ABC,且其面积等于,再注意到直线AB:x+y-2=0与直线BC:x-y+2m=0互相垂直,所以三角形ABC是直角三角形;易知,A(2,0),B(1-m,m+1),C();从而=,化简得:,解得m=-3,或m=1;检验知当m=-3时,已知不等式组不能表示一个三角形区域,故舍去;所以m=1;故选B.考点:线性规划.20、(2015四川文)设实数x,y满足,则xy的最大值为( )(A) (B) (C)12 (D)14【答案】A【考点定位】本题主要考查线性规划与基本不等式的基础知识,考查知识的整合与运用,考查学生综合运用知识解决问题的能力.【名师点睛】本题中,对可行域的处理并不是大问题,关键是“求xy最大值”中,xy已经不是“线性”问题了,如果直接设xy=k,,则转化为反比例函数y=的曲线与可行域有公共点问题,难度较大,且有超出“线性”的嫌疑.而上面解法中,用基本不等式的思想,通过系数的配凑,即可得到结论,当然,对于等号成立的条件也应该给以足够的重视.属于较难题.21.(2015天津文)设变量满足约束条件,则目标函数的最大值为()(A) 7 (B) 8 (C) 9 (D)14【答案】C考点:线性规划22.( 2015天津理)设变量满足约束条件,则目标函数的最大值为()(A)3 (B)4 (C)18 (D)40【答案】C864224681510551015AB考点:线性规划.23、(2015浙江文)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:)分别为,,,且,三种颜色涂料的粉刷费用(单位:元/)分别为,,,且.在不同的方案中,最低的总费用(单位:元)是()A.B.C.D.【答案】B考点:1.不等式性质;2.不等式比较大小.二、填空题:1、(2015北京文)如图,及其内部的点组成的集合记为,为中任意一点,则的最大值为.【答案】7考点:线性规划.2.(2015湖北文)若变量满足约束条件则的最大值是_________.【答案】.【考点定位】本题考查线性规划的最值问题,属基础题.【名师点睛】这是一道典型的线性规划问题,重点考查线性规划问题的基本解决方法,体现了数形结合的思想在数学解题中重要性和实用性,能较好的考查学生准确作图能力和灵活运用基础知识解决实际问题的能力.3、(2015全国新课标Ⅰ卷文)若x,y满足约束条件 ,则z=3x+y的最大值为.【答案】4【解析】作出可行域如图中阴影部分所示,作出直线:,平移直线,当直线:z=3x+y 过点A时,z取最大值,由解得A(1,1),∴z=3x+y的最大值为4.【考点定位】简单线性规划解法【名师点睛】对线性规划问题,先作出可行域,在作出目标函数,利用z的几何意义,结合可行域即可找出取最值的点,通过解方程组即可求出做最优解,代入目标函数,求出最值,要熟悉相关公式,确定目标函数的意义是解决最优化问题的关键,目标函数常有距离型、直线型和斜率型.4.(2015全国新课标Ⅰ卷理)若x,y满足约束条件,则的最大值为 .【答案】3【解析】试题分析:作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故的最大值为3.考点:线性规划解法5. (2015全国新课标Ⅱ卷文)若x,y满足约束条件,则z=2x+y的最大值为.【答案】8考点:线性规划6.(2015全国新课标Ⅱ卷理)若x,y满足约束条件,则的最大值为____________.【答案】【解析】试题分析:画出可行域,如图所示,将目标函数变形为,当取到最大时,直线的纵截距最大,故将直线尽可能地向上平移到,则的最大值为.考点:线性规划.xy–1–2–3–41234–1–2–3–41234DCBO7. (2015山东文)若x,y满足约束条件则的最大值为 .【答案】【解析】试题分析:画出可行域及直线,平移直线,当其经过点时,直线的纵截距最大,所以最大为.考点:简单线性规划.8. (2015山东文)定义运算“”:().当时,的最小值是 .【答案】【解析】试题分析:由新定义运算知,,因为,,所以,,当且仅当时,的最小值是.考点:1.新定义运算;2.基本不等式.9. (2015上海文)若满足,则目标函数的最大值为 .【答案】3【考点定位】不等式组表示的平面区域,简单的线性规划.10. (2015天津文)已知则当a的值为时取得最大值.【答案】4【解析】试题分析:当时取等号,结合可得考点:基本不等式.11.(2015重庆文)设,则的最大值为________.【答案】考点:基本不等式.12、(2015浙江文)已知实数,满足,则的最大值是.【答案】15【解析】试题分析:由图可知当时,满足的是如图的劣弧,则在点处取得最大值5;当时,满足的是如图的优弧,则与该优弧相切时取得最大值,故,所以,故该目标函数的最大值为.考点:1.简单的线性规划;13. (2015浙江理)若实数满足,则的最小值是.三、解答题。

2015年高考数学试题专题练习:函数概念与基本初等函数doc

2015年高考数学试题专题练习:函数概念与基本初等函数doc

2015年高考数学试题专题练习:函数概念与基本初等函数1.函数f(x)=ln(x 2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.已知函数f(x)=5|x|,g(x)=ax 2-x(a∈R).若f[g(1)]=1,则a=( )A.1B.2C.3D.-1 3.函数f(x)=1)(log 122-x 的定义域为( )A. B.(2,+∞) C.∪(2,+∞) D.∪[2,+∞) 4.已知函数f(x)=则下列结论正确的是( )A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)5.若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a 的值为( )A.5或8B.-1或5C.-1或-4D.-4或86.设函数f(x)=若f(f(a))≤2,则实数a 的取值范围是 .7.下列函数中,在区间(0,+∞)上为增函数的是( ) A.1+=x y B.y=(x-1)2 C.y=2-xD.y=log 0.5(x+1) 8.已知实数x,y 满足a x <a y (0<a<1),则下列关系式恒成立的是( )A.111122+>+y x B.ln(x 2+1)>ln(y 2+1) C.sin x>sin y D.x 3>y 3 9.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是( )A.f(x)=B.f(x)=x 3C.f(x)=D.f(x)=3x10.已知偶函数f(x)在[0,+∞)上单调递减, f(2)=0.若f(x-1)>0,则x的取值范围是.11.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数12.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=( )A.-3B.-1C.1D.313.设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时, f(x)=0,则 f=( )A. B. C.0 D.-14.已知函数f(x)是定义在R上的奇函数,当x≥0时, f(x)=(|x-a2|+|x-2a2|-3a2).若∀x∈R, f(x-1)≤f(x),则实数a的取值范围为( )A. B. C. D.15.设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时, f(x)=则f= .16.已知函数f(x)=e x+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-+3x0)成立.试比较e a-1与a e-1的大小,并证明你的结论.17.对于c>0,当非零实数a,b 满足4a 2-2ab+4b 2-c=0且使|2a+b|最大时, - + 的最小值为 .18.若函数f(x)=cos 2x+asin x 在区间是减函数,则a 的取值范围是 . 19.在同一直角坐标系中,函数f(x)=x a (x>0),g(x)=log a x 的图象可能是( )20.已知a=,b=log 2,c=lo ,则( ) A.a>b>c B.a>c>bC.c>a>bD.c>b>a21.函数f(x)=)4(log 221-x 的单调递增区间为( )A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)22.若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是( )23.已知f(x)=ln(1+x)-ln(1-x),x∈(-1,1).现有下列命题:①f(-x)=-f(x);②f =2f(x);③|f(x)|≥2|x|. 其中的所有正确命题的序号是( )A.①②③B.②③C.①③D.①② 24.已知4a =2,lg x=a,则x= .25.函数f(x)=)2(log log 22x x ⋅的最小值为 .26.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 作直线OA 的垂线,垂足为M,将点M 到直线OP 的距离表示成x 的函数f(x),则y=f(x)在[0,π]上的图象大致为( )27.已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k 的取值范围是( ) A. B. C.(1,2) D.(2,+∞)28.已知函数f(x)=x 2+e x 21 (x<0)与g(x)=x 2+ln(x+a)的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A. B.(-∞,) C. D.29.已知f(x)是定义在R 上且周期为3的函数,当x∈[0,3)时, f(x)=.若函数y=f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是 .30.已知函数f(x)=|x 2+3x|,x∈R.若方程f(x)-a|x-1|=0恰有4个互异的实数根,则实数a 的取值范围为 .31.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为( ) A. B. C. D.-1 32.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P,需计算由点A 观察点P 的仰角θ的大小.若AB=15 m,AC=25 m,∠BCM=30°,则tan θ的最大值是 .(仰角θ为直线AP 与平面ABC 所成角)33.已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)-f(y)|<|x-y|.若对所有x,y∈[0,1],|f(x)-f(y)|<k恒成立,则k的最小值为( )A. B. C. D.34.设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a, f(a)),(b,-f(b))的直线与x轴的交点为(c,0),则称c为a,b关于函数f(x)的平均数,记为M f(a,b).例如,当f(x)=1(x>0)时,可得M f(a,b)=c=,即M f(a,b)为a,b的算术平均数.(1)当f(x)= (x>0)时,M f(a,b)为a,b的几何平均数;(2)当f(x)= (x>0)时,M f(a,b)为a,b的调和平均数.(以上两空各只需写出一个符合要求的函数即可)35.已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是.36.以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D, f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)参考答案1. C2. A3. C4. D5. D6. (-∞,]7. A 8. D 9. D 10. (-1,3)11. C 12. C 13. A 14. B 15. 116.解析(1)证明:因为对任意x∈R,都有f(-x)=e-x+e-(-x)=e-x+e x=f(x),所以f(x)是R上的偶函数.(2)由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立,令t=e x(x>0),则t>1,所以m≤-=-对任意t>1成立.因为t-1++1≥2+1=3,所以-≥-,当且仅当t=2,即x=ln 2时等号成立.因此实数m的取值范围是.(3)令函数g(x)=e x+-a(-x3+3x),则g'(x)=e x-+3a(x2-1).当x≥1时,e x->0,x2-1≥0,又a>0,故g'(x)>0,所以g(x)是[1,+∞)上的单调增函数,因此g(x)在[1,+∞)上的最小值是g(1)=e+e-1-2a.由于存在x0∈[1,+∞),使+-a(-+3x0)<0成立,当且仅当最小值g(1)<0,故e+e-1-2a<0,即a>.令函数h(x)=x-(e-1)ln x-1,则h'(x)=1-.令h'(x)=0,得x=e-1.当x∈(0,e-1)时,h'(x)<0,故h(x)是(0,e-1)上的单调减函数;当x∈(e-1,+∞)时,h'(x)>0,故h(x)是(e-1,+∞)上的单调增函数.所以h(x)在(0,+∞)上的最小值是h(e-1).注意到h(1)=h(e)=0,所以当x∈(1,e-1)⊆(0,e-1)时,h(e-1)≤h(x)<h(1)=0;当x∈(e-1,e)⊆(e-1,+∞)时,h(x)<h(e)=0.所以h(x)<0对任意的x∈(1,e)成立.①当a∈⊆(1,e)时,h(a)<0,即a-1<(e-1)ln a,从而e a-1<a e-1;②当a=e时,e a-1=a e-1;③当a∈(e,+∞)⊆(e-1,+∞)时,h(a)>h(e)=0,即a-1>(e-1)ln a,故e a-1>a e-1.综上所述,当a∈时,e a-1<a e-1;当a=e时,e a-1=a e-1;当a∈(e,+∞)时,e a-1>a e-1.17. -2 18. (-∞,2] 19. D 20. C21. D 22. B 23. A 24. 25. -26. C 27. B 28. B 29.30. (0,1)∪(9,+∞) 31. D 32. 33. B 34. (1)(2)x 35. (2,+∞) 36. ①③④。

2015年江苏高考数学试题及参考答案

2015年江苏高考数学试题及参考答案
标系xOy.
圆C的极坐标方程为,
化简,得.
则圆C的直角坐标方程为, 即,所以圆C的半径为. D. [选修4−5:不等式选讲] 本小题主要考查含绝对值不等式的解法,考查分类讨论的能力.满 分10分. 解:原不等式可化为或.
解得或. 综上,原不等式的解集是.
22.【必做题】本小题主要考查空间向量、二面角和异面直线所成角等 基础知识,考查运用空间
解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5). 将其分别入,得, 解得.
(2)①由(1)知,(),则点P的坐标为, 设在点P处的切线l交,轴分别于A,B点,, 则的方程为,由此得,. 故,. ②设,则.令,解得. 当时,,是减函数;
当时,,是增函数. 从而,当时,函数有极小值,也是最小值,所以, 此时. 答:当时,公路的长度最短,最短长度为千米.
如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F 到左准线l的距离为3. (1)求椭圆的标准方程; (2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l 和AB于点P,C,若PC = 2AB,求直线AB的方程. 19. 已知函数f (x) = x3 + ax2 + b (a,b∈R)。 (1)试讨论f (x)的单调性; (2)若b = c − a(实数c是a与无关的常数),当函数f (x)有三个不同的零 点时,a的取值范围恰好是(−∞,−3)∪(1, )∪(,+∞),求c的值。 20. 设a1,a2,a3,a4是各项为正数且公差为d(d≠0)的等差数列. (1)证明: ,,,依次成等比数列; (2)是否存在a1,d,使得a1,a22,a33,a44依次成等比数列?并说明理 由; (3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3 n+2k,a4 n+3k依次成 等比数列?并说明理由.

2015年高考数学试卷附详细答案

2015年高考数学试卷附详细答案

2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•原题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2] C.(1,2)D.[1,2]2.(5分)(2015•原题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•原题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•原题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•原题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•原题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•原题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinxB.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|8.(5分)(2015•原题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•原题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•原题)已知函数f(x)=,则f(f(﹣3))= ,f(x)的最小值是.11.(6分)(2015•原题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•原题)若a=log43,则2a+2﹣a= .13.(4分)(2015•原题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•原题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•原题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0= ,y0= ,|= .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•原题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•原题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•原题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•原题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•原题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年高考数学试卷(理科)答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(原题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由析:已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。

2015高考数学函数应用题精选试题(附详细答案)

2015高考数学函数应用题精选试题(附详细答案)

高考文科数学函数应用题精选5题(1)一元二次函数与分段函数模型1.(本小题满分12分)永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x 元。

(1)写出该特产店一天内销售这种蜜饯所获得的利润y (元)与每盒蜜饯的销售价格x 的函数关系式;(2)当每盒蜜饯销售价格x 为多少时,该特产店一天内利润y (元)最大,并求出这个最大值.2、通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设)(t f 表示学生注意力随时间t (分钟)的变化规律()(t f 越大,表明学生注意力越集中),经过实验分析得知:⎪⎩⎪⎨⎧≤<+-≤<≤<++-=40203807201024010010024)(2t t t t t t t f (1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中? (3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?ABCDMN P(3)指数函数模型3. (12分)某企业拟共用10万元投资甲、乙两种商品. 已知各投入x 万元,甲、乙两种商品可分别获得21,y y 万元的利润,利润曲线11:nP y ax =, 22:P y bx c =+如图.(1)求函数12,y y 的解析式;(2)为使投资获得最大利润,应怎样分配投资额,才能获最大利润.(4)分式函数模型4.(本小题12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求M 在AB 的延长线上,N 在AD 的延长线上,且对角线MN 过C 点。

2015高考数学真题及答案

2015高考数学真题及答案

2015高考数学真题及答案高三数学 (文科)本试卷共5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项) (1)在复平面内,复数12i z =-对应的点的坐标为(A )(1,2) (B )(2,1) (C ) (1,2)- (D )(2,1)-(2)双曲线2214x y -=的渐近线方程为(A )12y x =±(B )y =(C )2y x =± (D )y =(3)记函数)(x f 的导函数为)(x f ',若()f x 对应的曲线在点))(,(00x f x 处的切线方程为1y x =-+,则(A )0()=2f x ' (B )0()=1f x ' (C )0)(0='x f(D )0()=1f x '-(4)已知命题p :直线a ,b 不相交,命题q :直线a ,b 为异面直线,则p 是q 的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(5)在区间[0,2]上随机取一个实数x ,则事件“310x -<”发生的概率为(A )12 (B )13(C )14(D )16(6)执行如图所示的程序框图,若输出的b 的值为4,则图中判断框内①处应填(A )2 (B )3(C )4 (D )5(7)设集合1,(,) 1.x y D x y x y ⎧⎫+≥⎧⎪⎪=⎨⎨⎬-≤,则下列命题中正确的是(A )(,)x y ∀D ∈,20x y -≤ (B )(,)x y ∀D ∈,22x y +≥- (C )(,)x y ∀D ∈,2x ≥(D )(,)x y ∃D ∈,1y ≤-(8)某学校餐厅每天供应500名学生用餐,每星期一有A ,B 两种菜可供选择.调查资料表明,凡是在星期一选A 种菜的学生,下星期一会有20%改选B 种菜;而选B 种菜的学生,下星期一会有30%改选A 种菜.用n a ,n b 分别表示在第n 个星期的星期一选A 种菜和选B 种菜的学生人数,若1300a =,则+1n a 与n a 的关系可以表示为 (A )111502n n a a +=+ (B )112003n n a a +=+ (C )113005n n a a +=+ (D )121805n n a a +=+第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2015年陕西高考数学(含答案word版)

2015年陕西高考数学(含答案word版)

一、选择题1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = A .[0,1] B .(0,1] C .[0,1) D .(,1]-∞2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为A .167B .137C .123D .933.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为 A .5 B .6 C .8 D .104.二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =A .4 B .5 C .6 D .75.一个几何体的三视图如图所示,则该几何体的表面积为A .3π B .4π C .24π+ D .34π+6.“sin cos αα=”是“cos 20α=”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要7.对任意向量,a b,下列关系式中u 恒成立的是A .||||||a b a b ∙≤B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-8.根据右边框图,当输入x 为2005时,输出的y =A28 B10 C4 D29.设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是A .q r p =< B .q r p => C .p r q =< D .p r q =>10.某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为A .12万元B .16万元C .17万元D .18万元11.设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率 A .3142π+ B .1142π- C .112π- D .112π+ 12.对二次函数2()f x ax bx c =++(a 为非零整数..),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是A .-1是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值 D.点(2,8)在曲线()y f x =上 二、填空(本大题共4小题,每小题5分)13.中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 14.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p= 15.设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点p 处的切线垂直,则P 的坐标为 16.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为三、解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤.)17、(本小题满分12分)C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量()m a =与()cos ,sin n =A B平行.()I 求A ; ()II 若a =2b =求C ∆AB 的面积.18、(本小题满分12分)如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图2.()I 证明:CD ⊥平面1C A O ;()II 若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值.19、(本小题满分12分)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:I 求T 的分布列与数学期望ET ;()II 刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.20、(本小题满分12分)已知椭圆:E 22221x y a b +=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .()I 求椭圆E 的离心率;()II 如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.21、(本小题满分12分)设()n f x 是等比数列1,x ,2x ,⋅⋅⋅,n x 的各项和,其中0x >,n ∈N ,2n ≥.()I 证明:函数()()F 2n n x f x =-在1,12⎛⎫⎪⎝⎭内有且仅有一个零点(记为n x ),且11122n n n x x +=+; ()II 设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()n g x ,比较()n f x 与()n g x 的大小,并加以证明.请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲如图,AB 切O 于点B ,直线AO 交O 于D ,E 两点,C D B ⊥E ,垂足为C .()I 证明:C D D ∠B =∠BA ;()II 若D 3DC A =,C B =,求O 的直径.23、(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x y O 中,直线l的参数方程为1322x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,C的极坐标方程为ρθ=.()I 写出C 的直角坐标方程;()II P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.24、(本小题满分10分)选修4-5:不等式选讲 已知关于x 的不等式x a b +<的解集为{}24x x <<.()I 求实数a ,b 的值; ()II的最大值.。

2015高考数学压轴题

2015高考数学压轴题

2015高考数学压轴题 2015高考数学压轴题1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分) 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,()()222122112114222a MF MF =+=+++-+=+ ()222222212123222221322222a a b a c x y ∴=+∴=+=+∴=-=+∴+=++ 椭圆方程为: ………………………………(4分) 对于双曲线,122222a MF MF '=-=-222222213222221322222a a b c a x y '∴=-'∴=-'''∴=-=-∴-=-- 双曲线方程为: ………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分) ()()22111111322312322DC AP x y x CH a x a ∴==-++=-=-+。

2015年高考真题——文科数学(北京卷)含解析

2015年高考真题——文科数学(北京卷)含解析

0

a
//b
.
而当
a
//b
时,
a,b 还可能是
,此时
a
b
|
a
||
b
|
,故“
a
b
a
b
”是“ a//b

的充分而不必要条件. 考点:充分必要条件、向量共线. 7、某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )
A.1
B. 2
C. 3
D. 2
【答案】C 【解析】 试题分析:四棱锥的直观图如图所示:
2015 年 5 月15 日
48
35600
注:“累计里程“指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100 千米平均耗
油量为( )
A. 6 升
B. 8 升
C.10 升 D.12 升
【答案】B
【解析】
试题分析:因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量
V 48 升. 而这段时间内行驶的里程数 S 35600 35000 600 千米. 所以这段时间内,该 车每 100 千米平均耗油量为 48 100 8 升,故选 B.
一、选择题(本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项 中,选出符合题目要求的一项.)
1、若集合 x 5 x 2 , x 3 x 3 ,则 ( )
A.x 3 x 2
B.x 5 x 2
C.x 3 x 3
D.x 5 x 3
【答案】A
考点:集合的交集运算.

【答案】 log2 5
【解析】
试题分析: 23
1
1
1 , 32

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【考点】1D:并集及其运算.【专题】5J:集合.【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【考点】85:等差数列的前n项和.【专题】35:转化思想;4A:数学模型法;54:等差数列与等比数列.【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【考点】6B:利用导数研究函数的单调性.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【考点】36:函数解析式的求解及常用方法.【专题】11:计算题;51:函数的性质及应用.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为8.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【考点】KB:双曲线的标准方程.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【考点】6H:利用导数研究曲线上某点切线方程.【专题】26:开放型;53:导数的综合应用.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【考点】HP:正弦定理.【专题】58:解三角形.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,P(C A),P(C B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B 地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(C A)=(0.01+0.02+0.03)×10=0.6得P(C B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【考点】LF:棱柱、棱锥、棱台的体积;LJ:平面的基本性质及推论.【专题】15:综合题;5F:空间位置关系与距离.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】26:开放型;53:导数的综合应用.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

2015年全国高考数学试卷

2015年全国高考数学试卷

高考数学试卷一、单选题1.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .102.在三棱锥B ACD -中,若AB AC AD BC BD CD =====,则异面直线AB 与CD 所成角为( )A .30°B .60°C .90°D .120°下3.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位5.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.306.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞7.已知函数()11f x x =-,在下列区间中,包含()f x 零点的区间是( )A .14 ,12⎛⎫ ⎪⎝⎭ B .12 ,1⎛⎫ ⎪⎝⎭ C .(1,2) D .(2,3) 8.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( )A.[)(]0,11,2B.[)(]0,11,4C.[0,1)D.(1,4]9.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=-10.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( )A.D.11.函数21x y x +=-的定义域为( )A .{|21}x x x >-≠且B .{|21}x x x ≥-≠且C .)[(21,1,)-⋃+∞D .)((21,1,)-⋃+∞二、填空题12.某班统计考试成绩,数学得90分以上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人.则两科都在90分以上的人数为( ).13.某校高一、高二、高三年级的学生人数之比为4:4:3,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生数为15,则抽取的样本容量为_______14.足尖虽未遍及美景,浪漫却从未停止生长.清风牵动裙摆,处处彰显着几何的趣味.下面的几何图形好似平铺的一件裙装,①②③⑤是全等的等腰梯形,④⑥是正方形,其中12AB AA ==,114A B =,若沿图中的虚线折起,围成一个封闭几何体Ω,则Ω的体积为 ;Ω的外接球的表面积为 .三、解答题15.如果函数()y f x =满足以下两个条件,我们就称()y f x =为L 型函数.①对任意的()0,1x ∈,总有()0f x >; ②当10x >20x >121x x +<时,总有()()()1212f x x f x f x +<+成立.(1)记()212g x x =+,求证:()y g x =为L 型函数;(2)设b R ∈,记()()ln p x x b =+,若()y p x =是L 型函数,求b 的取值范围; (3)是否存在L 型函数()y r x =满足:对于任意的()0,4m ∈,都存在()00,1x ∈,使得()0r x m =等式成立?请说明理由.16.已知函数1()2f x x x =+- (1)用定义证明函数()f x 在(0,1]上是减函数,在[1,)+∞上是增函数;(2)当函数()lg y f x k =-有两个大于0的零点时,求实数k 的取值范围(3)若不等式f (2x )≧m ·2x 对x ЄR 恒成立,求实数m 的取值范围。

2015年全国统一高考数学试卷(理科)(新课标ⅰ)

2015年全国统一高考数学试卷(理科)(新课标ⅰ)

2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1 B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2015•新课标Ⅰ)设复数z满足=i,则|z|=()A.1 B.C.D.2【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.2.(5分)(2015•新课标Ⅰ)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.3.(5分)(2015•新课标Ⅰ)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.4.(5分)(2015•新课标Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.5.(5分)(2015•新课标Ⅰ)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣x0,﹣y0)•(﹣﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.6.(5分)(2015•新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.7.(5分)(2015•新课标Ⅰ)设D为△ABC所在平面内一点,,则()A.B.C.D.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.8.(5分)(2015•新课标Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos (πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.9.(5分)(2015•新课标Ⅰ)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.8【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C10.(5分)(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.11.(5分)(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.12.(5分)(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D二、填空题(本大题共有4小题,每小题5分)13.(5分)(2015•新课标Ⅰ)若函数f(x)=xln(x+)为偶函数.则a= 1.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴,∴lna=0,∴a=1.故答案为:1.14.(5分)(2015•新课标Ⅰ)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.15.(5分)(2015•新课标Ⅰ)若x,y满足约束条件.则的最大值为3.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则k OA==3,即的最大值为3.故答案为:3.16.(5分)(2015•新课标Ⅰ)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).三、解答题:17.(12分)(2015•新课标Ⅰ)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.18.(12分)(2015•新课标Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F 是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE 丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF=,从而EG2+FG2=EF2,则EG⊥FG,AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.19.(12分)(2015•新课标Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu 的斜率和截距的最小二乘估计分别为:=,=﹣.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.20.(12分)(2015•新课标Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.21.(12分)(2015•新课标Ⅰ)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f (x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.选修4一1:几何证明选讲22.(10分)(2015•新课标Ⅰ)如图,AB是⊙O的直径,AC是⊙O的切线,BC 交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°选修4一4:坐标系与参数方程23.(10分)(2015•新课标Ⅰ)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.选修4一5:不等式选讲24.(10分)(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f (x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).。

2015年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2015年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C.D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数,则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=i,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1B.C.D.2【考点】A8:复数的模.【专题】11:计算题;5N:数系的扩充和复数.【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.【点评】本题考查复数的运算,考查学生的计算能力,比较基础.2.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【考点】GP:两角和与差的三角函数.【专题】56:三角函数的求值.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.【点评】本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n【考点】2J:命题的否定.【专题】5L:简易逻辑.【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.【点评】本题主要考查椎体的体积的计算,比较基础.7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.【考点】96:平行向量(共线).【专题】5A:平面向量及应用.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【考点】HA:余弦函数的单调性.【专题】57:三角函数的图像与性质.【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos (πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.8【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8【考点】L!:由三视图求面积、体积.【专题】5Q:立体几何.【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】2:创新题型;53:导数的综合应用.【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g (0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D.【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数,则a=1.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解.【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴ln(+x)(﹣x)=0,∴lna=0,∴a=1.故答案为:1.【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.【点评】本题考查椭圆的简单性质的应用,圆的方程的求法,考查计算能力.15.(5分)若x,y满足约束条件.则的最大值为3.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),k OA==3,即的最大值为3.故答案为:3.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及直线的斜率,利用数形结合的数学思想是解决此类问题的基本方法.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【考点】HT:三角形中的几何计算.【专题】15:综合题;2:创新题型;58:解三角形.【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).【点评】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.三、解答题:17.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【考点】8E:数列的求和;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【考点】LM:异面直线及其所成的角;LY:平面与平面垂直.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF==,从而EG2+FG2=EF2,则EG⊥FG,(或由tan∠EGB•tan∠FGD=•=•=1,可得∠EGB+∠FGD=90°,则EG⊥FG)AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.【点评】本题考查空间直线和平面的位置关系和空间角的求法,主要考查面面垂直的判定定理和异面直线所成的角的求法:向量法,考查运算能力,属于中档题.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i ﹣)(w i ﹣)(y i ﹣)46.6563 6.8289.8 1.61469108.8表中w i =i ,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.【考点】BK:线性回归方程.【专题】5I:概率与统计.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.【点评】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【考点】KH:直线与圆锥曲线的综合.【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】2:创新题型;53:导数的综合应用.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:a<时,函数h(x)有一个零点.当时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【考点】N9:圆的切线的判定定理的证明.【专题】5B:直线与圆.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x 值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【考点】Q4:简单曲线的极坐标方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f(x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2015年高考理科数学试题汇编(含答案):数列 小题

2015年高考理科数学试题汇编(含答案):数列 小题

(江苏)11.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{n a 的前10项和为 【答案】2011【解析】 试题分析:由题意得:112211(1)()()()1212n n n n n n n a a a a a a a a n n ---+=-+-++-+=+-+++= 所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++ 考点:数列通项,裂项求和(北京)6.设{}n a 是等差数列. 下列结论中正确的是A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2aD .若10a <,则()()21230a a a a -->【答案】C考点:1.等差数列通项公式;2.作差比较法(浙江)3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等 比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>【答案】B.考点:1.等差数列的通项公式及其前n 项和;2.等比数列的概念(福建)8.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( )A .6B .7C .8D .9【答案】D【解析】试题分析:由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a =-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D .考点:等差中项和等比中项.。

【创新设计】2015高考数学(人教通用,文科)二轮专题训练:小题综合限时练3

【创新设计】2015高考数学(人教通用,文科)二轮专题训练:小题综合限时练3

限时练(三)(建议用时:40分钟)一、选择题1.已知i 为虚数单位,复数z 满足i z =1+i ,则z =( ). A .1+i B . 1-i C. -1+iD . -1-i解析 由题意z =1+i i =(1+i )ii 2=1-i ,则z =1+i. 答案 A2.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是( ). A .1 B .3 C .4D .6解析 符合题意的B 有{3},{1,3},{2,3},{1,2,3},共4个. 答案 C3.函数f (x )=log 2(4x +1)的值域为( ). A .[0,+∞) B .(0,+∞) C .[1,+∞)D .(1,+∞)解析 因为4x +1>1,所以f (x )=log 2(4x +1)>0. 答案 B4.已知函数f (x )为偶函数,当x <0时,f (x )=sin x +cos x ,则f ⎝ ⎛⎭⎪⎫π4=( ).A .0B . 2C .- 2D .1解析 由题意f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫-π4=sin ⎝ ⎛⎭⎪⎫-π4+cos ⎝ ⎛⎭⎪⎫-π4=-22+22=0.答案 A5.圆(x +2)2+y 2=4与圆x 2+y 2-2x -2y +1=0( ). A .内切 B .相交 C .外切D .相离解析 两圆圆心分别是(-2,0),(1,1),圆心距为d =10,而两圆半径分别为2,1,显然10>2+1,故两圆相离. 答案 D6.已知数列{a n }满足1+log 3a n =log 3a n +1(n ∈N +),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( ). A.15 B .-15 C .5D .-5解析 由1+log 3a n =log 3a n +1(n ∈N +)可以推出a n +1=3a n ,数列{a n }是以3为公比的等比数列,故a 5+a 7+a 9=27(a 2+a 4+a 6)=35,故log 13(a 5+a 7+a 9)=-5. 答案 D7.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ). A.110 B .310 C.35D .910解析 由题意可知从5个球中任取3个球的所有情况有10种,所取的3个球至少有1个白球的情况有(10-1)种,根据古典概型公式得所求概率P =10-110=910. 答案 D8.某企业2014年2月份生产A ,B ,C 三种产品共6 000件,根据分层抽样的结果,该企业统计员制作了如下的统计表格:产品分类 A B C 产品数量 2 600 样本容量260由于不小心,表格中B ,C 产品的有关数据已被污染看不清楚,统计员记得B 产品的样本容量比C 产品的样本容量多20,根据以上信息,可得C 产品数量是( ). A .160B .180C .1 600D .1 800解析 记B ,C 两种产品的样本容量分别为x ,y ,则⎩⎨⎧x +y =600-260,x -y =20,解得⎩⎨⎧x =180,y =160,因此C 产品数量为1 600. 答案 C 9.函数y =cos πxx 的图象大致为( ).解析 考虑函数的性质,它是奇函数,排除C ,D ;当x 从正方向趋向于0时,cos πxx →+∞,排除B ,故选A. 答案 A10.如图为长方体与圆柱构成的组合体的三视图,则该几何体的体积为( ).A .64+32πB .64+64πC .256+64πD .256+128π解析 由题意,V =8×8×4+π×42×4=256+64π. 答案 C11.已知△ABC 是边长为4的等边三角形,点D ,E 分别满足DC →=-AC →,BE →=EC →,则AB →·DE →=( ). A .8 B .4 C .-8D .-4解析 AB →·DE →=AB →·(DC →+CE →)=AB →·⎝ ⎛⎭⎪⎫-AC →+12CB →=-AB →·AC →+12AB →·CB →=-4×4×cos π3+12×4×4×cos π3=-4. 答案 D12.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( ). A .e x 1f (x 2)>e x 2f (x 1) B .e x 1f (x 2)<e x 2f (x 1) C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定解析 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x-f (x )e x(e x )2=f ′(x )-f (x )e x ,由题意g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),则f (x 1)e x 1<f (x 2)e x 2,所以e x 1f (x 2)>e x 2f (x 1). 答案 A 二、填空题13.若实数x ,y 满足不等式组⎩⎨⎧x ≥1,y ≥1,x +2y ≤5,则yx 的最大值是________.解析 作出不等式组表示的平面区域(可行域),如图△ABC 内部(含边界),yx 表示可行域内点与原点连线的斜率,最大值在A (1,2)处取得,y x =21=2.答案 214.执行如图的程序框图,则输出的S 的值为________.解析 S ,T ,n 的值依次为3,1,2;6,4,3;9,11,4,此时有T >S ,因此执行语句S =S -n =5,输出S =5. 答案 515.设P 是双曲线x 2a 2-y 2b 2=1上的点,它的一条渐近线方程为y =32x ,两焦点间距离为213,F 1,F 2分别是该双曲线的左、右焦点,若|PF 1|=3,则|PF 2|=________. 解析 由题意b a =32,又2c =2a 2+b 2=213,所以a =2,b =3,由双曲线定义得||PF 2|-|PF 1||=2a =4,故|PF 2|=7. 答案 716.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若其面积S =b 2+c 2-a 216,则cos A =________.解析 因为b 2+c 2-a 2=2bc cos A ,由S =b 2+c 2-a 216得b 2+c 2-a 2=16S ,即2bc cos A =16×12bc sin A ,cos A =4sin A ,所以cos A =41717. 答案41717。

【创新设计】2015高考数学(人教通用,文科)二轮专题训练:小题综合限时练1

【创新设计】2015高考数学(人教通用,文科)二轮专题训练:小题综合限时练1

限时练(一)(建议用时:40分钟)一、选择题1.已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ). A .{0} B .{0,1} C .{-1,0}D .{-1,0,1}解析 A ∩B ={-1,0}. 答案 C2.若(1+2a i)i =1-b i ,其中a ,b ∈R ,则|a +b i|=( ). A.12+i B . 5 C.52D .54 解析 因为(1+2a i)i =1-b i ,所以-2a +i =1-b i ,a =-12,b =-1,|a +b i|=|-12-i|=52. 答案 C3.设a =log 123,b =(13)0.2,c =213,则( ). A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析 由函数的性质得到a =log 123<0,b =(13)0.2∈(0,1),c =213>1,所以,a <b <c . 答案 A4.等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是( ). A .21B .24C .28D .7解析 ∵a 2+a 4+a 6=3a 4=12,∴a 4=4, ∴S 7=a 1+a 72×7=7a 4=28. 答案 C5.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既不充分也不必要条件解析 由(a -b )·a 2<0,得a ≠0且a <b ;反之,由a <b ,不能推出(a -b )·a 2<0,即“(a -b )·a 2<0”是“a <b ”的充分非必要条件. 答案 A6.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( ).A.12 B .32 C .1D . 3解析 抛物线y 2=4x 的焦点为(1,0),双曲线x 2-y 23=1的渐近线为x ±33y =0,所以抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是|1±33×0|1+⎝ ⎛⎭⎪⎫332=32. 答案 B7.某程序框图如图所示,若输出的S =57,则判断框内应填入( ).A .k >7?B .k >6?C .k >5?D .k >4?解析 由程序框图可知,程序在运行过程中各变量值变化如下表:k S 是否满足条件 循环前 1 1 否 第一次循环 2 4 否 第二次循环 3 11 否 第三次循环 4 26 否 第四次循环557是所以退出循环的条件应为k >4. 答案 D8.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象如图所示,则f (x )的解析式为( ).A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3C .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6D .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6解析 由图象可知A =1,且14T =14×2πω=7π12-π3=π4, ∴ω=2,f (x )=sin(2x +φ).把⎝ ⎛⎭⎪⎫7π12,-1代入得:-1=sin ⎝ ⎛⎭⎪⎫2×7π12+φ,又∵|φ|<π2, ∴7π6+φ=3π2, ∴φ=π3, ∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 答案 A9.已知O 是坐标原点,点A (-2,1),若点M (x ,y )为平面区域⎩⎨⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则O A →·OM →的取值范围是( ). A .[-1,0] B .[-1,2] C .[0,1]D .[0,2]解析 ∵A (-2,1),M (x ,y ),∴z =O A →·OM →=-2x +y ,作出不等式组对应的平面区域及直线-2x +y =0,如图所示.平移直线-2x +y =0,由图象可知当直线经过点N (1,1)时,z min =-2+1=-1;经过点M (0,2)时,z max =2. 答案 B10.如图F 1,F 2是双曲线C 1:x 2-y23=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1F 2|=|F 1A |,则C 2的离心率是( ).A.13 B .23 C.15D .25解析 由题意知,|F 1F 2|=|F 1A |=4, ∵|F 1A |-|F 2A |=2,∴|F 2A |=2, ∴|F 1A |+|F 2A |=6, ∵|F 1F 2|=4, ∴C 2的离心率是46=23. 答案 B11.已知某几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,则此几何体的体积V 为( ).A.323 B .403 C.163D .40解析 观察三视图可知,该几何体为四棱锥,底面为直角梯形,两个侧面与底面垂直,棱锥的高为4,由图中数据得该几何体的体积为13×4+12×4×4=403.答案 B12.已知定义在R 上的函数f (x )是奇函数且满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),f (-2)=-3,数列{a n }满足a 1=-1,且S n n =2×a nn +1(其中S n 为{a n }的前n 项和),则f (a 5)+f (a 6)=( ). A .-3 B .-2 C .3D .2解析 ∵函数f (x )是奇函数, ∴f (-x )=-f (x ),∵f (32-x )=f (x ), ∴f (32-x )=-f (-x ),∴f (3+x )=f (x ), ∴f (x )是以3为周期的周期函数. ∵S n n =2×a nn +1,∴S n =2a n +n ,S n -1=2a n -1+(n -1)(n ≥2). 两式相减并整理得出a n =2a n -1-1, 即a n -1=2(a n -1-1),∴数列{a n -1}是以2为公比的等比数列,首项为a 1-1=-2, ∴a n -1=-2·2n -1=-2n ,a n =-2n +1, ∴a 5=-31,a 6=-63.∴f (a 5)+f (a 6)=f (-31)+f (-63)=f (2)+f (0)=f (2)=-f (-2)=3. 答案 C 二、填空题13.曲线f (x )=e x 在x =0处的切线方程为__________. 解析 ∵f ′(x )=e x ,∴f ′(0)=1.又f (0)=1, ∴切线方程为:y -1=x ,即x -y +1=0.答案 x -y +1=014.已知向量p =(2,-1),q =(x,2),且p ⊥q ,则|p +λq |的最小值为__________. 解析 ∵p ·q =2x -2=0,∴x =1, ∴p +λq =(2+λ,2λ-1),∴|p +λq |=(2+λ)2+(2λ-1)2=5λ2+5≥ 5. 答案515.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由sin B +cos B =2,得2sin ⎝ ⎛⎭⎪⎫B +π4=2,sin ⎝ ⎛⎭⎪⎫B +π4=1,而B ∈(0,π),所以B =π4.由正弦定理得,sin A =a sin B b =12,又A +B +C =π,A ∈⎝ ⎛⎭⎪⎫0,3π4,∴A =π6. 答案 π616.已知a >0,b >0,方程为x 2+y 2-4x +2y =0的曲线关于直线ax -by -1=0对称,则3a +2bab 的最小值为______.解析 该曲线表示圆心为(2,-1)的圆,直线ax -by -1=0经过圆心,则2a +b -1=0,即2a +b =1,所以 3a +2b ab =3b +2a =(3b +2a )(2a +b )=6a b +2ba +7≥26a b ·2ba +7=7+43(当且仅当a =2-3,b =23-3时等号成立).答案 7+4 3。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考数学小题训练<1>
(试卷总分80分、考试时间45分钟)
班级___________ 姓名__________ 学号_________ 分数___________
一 选择题(本大题共12小题,每小题5分,共60分)
1.已知集合2{|10}M x x =-<,2{|log (2),}N y y x x M ==+∈,则=N M ( ) A .(0,1) B .(1,1)- C . (1,0)- D . ∅ 2.已知复平面内复数sin cos z i αα=- (0)απ<< 对应的 点P 在直线y =3x 上,则实数α的值为( )
A . 5π6
B . 2π3
C . π3
D . π6
3.如图所示的算法流程图中, 若2
()2,()x
f x
g x x ==,
则(3)h 的值等于( )
A ..1
B .1-
C . 9
D . 8
4.若2a =,4b =)a b a +⊥且(,则a 与b 的夹角是( ) A .2π3 B .π3 C .4π3 D .-2π
3
5.已知x 为实数,条件p :x x <2
,条件q :
x
1
2>,则p 是q 的( ) A .充要条件 B .必要不充分条件
C .充分不必要条件
D .既不充分也不必要条件
6.若,,a b c 是空间三条不同的直线,,αβ是空间中不同的平面,则下列命题中不正确的是 A .若c α⊥,c β⊥,则//αβ B .若b α⊂,b β⊥,则αβ⊥
C .当,b a αα⊂⊄且c 是a 在α内的射影,若b c ⊥,则a b ⊥
D .当b α⊂且c α⊄时,若//c α,则//b c
7.若数列{}n a 的通项为2
(2)
n a n n =
+,则其前n 项和n S 为( )
A . 112n -+
B .31121n n --+
C .31122n n --+
D .311
212
n n --++
8. 要得到函数2cos(2)3
y x π
=+
的图象,只需将函数sin 2y x x =的图象( )
A .向左平移π
4
个单位
B .向右平移π
2
个单位
C .向右平移π3个单位
D .向左平移π
8
个单位
9.设函数)(x f 对任意y x ,满足)()()(y f x f y x f +=+,且4)2(=f ,则)1(-f 的值为 ( )
A .3-
B .2-
C .2
D .3
开始输入x f(x)>g(x)
h(x)=f(x)h(x)=g(x)
输出h(x)结束


第3题图
10.一个平面图形的面积为S ,其直观图的面积为S ',则S S ':=( )
A .2 2
B . 2
C .2
D .1
11. 设21,F F 是椭圆x 2a 2+y 2
b 2=1(a >b >0)的两个焦点,P 是椭圆上一点,02190=∠PF F ,则该椭圆离心率的最
小值为( )
A . 12
B . 22
C . 33
D . 32
12.已知函数742)(23---=x x x x f ,其导函数为)(x f '.
①)(x f 的单调减区间是⎪⎭
⎫ ⎝⎛2,32
; ②)(x f 的极小值是15-; ③当2>a 时,对任意的2>x 且a x ≠,恒有))(()()(a x a f a f x f -'+> ④函数)(x f 有且只有一个零点。

其中真命题的个数为( )
A
二.填空题(本大题共4小题,每题5分,共20分)
13.已知(,2),tan 2,αππαα∈=-=则cos
14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率是e =23
3,则该双曲线两渐近线夹角是
15.已知实数x 、y 满足10
201x y x y x -+≥⎧⎪
+-≥⎨⎪≤⎩
,则2x +y 的最大值是
16.有下列命题: ①函数cos()cos()4
4
y x x π
π
=-+
的图象中,相邻两个对称中心的距离为π;
②函数3
1
x y x +=
-的图象关于点()1,1-对称; ③关于x 的方程2
210ax ax --=有且仅有一个实数根的充要条件是实数1a =-;
④已知命题p :对任意的R x ∈,都有sin 1,:,sin 1x p x R x ≤⌝∈>则存在使得;
⑤线性回归方程a x b y
ˆˆˆ+=对应的直线一定经过其样本数据点()11,y x ,()22,y x ,…,()n n y x ,中的一个点;
其中所有真命题的序号是_______________________.
参考答案
13 ; 14、3 ; 15、4 ; 16. ③④。

相关文档
最新文档