高三物理2009年带电粒子在电场磁场中的运动选.doc
高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
高三物理备考资料——带电粒子在电磁场中运动的应用实例分析

带电粒子在电磁场中运动的应用1、电视机电视机的显像管中,电子束的偏转是用磁偏转技术实现的。
电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区。
磁场方向垂直于圆面。
磁场区的中心为O ,半径为r 。
当不加磁场时,电子束将通过O 点而打到屏幕的中心M 点。
为了让电子束射到屏幕边缘P ,需要加磁场,使电子束转一已知角度θ,此时磁场的磁感应强度B 应为多少?解析: 电子在磁场中沿圆弧运动,如图所示,圆心为O ′,半径为R 。
以v 表示电子进入磁场时的速度,m 、e 分别表示电子的质量和电量,则221mv eU = R mv evB 2= Rr tg =2θ 由以上各式解得 221θtg e mU r B = 2、电磁流量计电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积)。
为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c ,流量计的两端与输送液体的管道相连接(图中虚线)。
图中流量计的上下两面是金属材料,前后两面是绝缘材料,现于流量计所在处加磁感强度为B 的匀强磁场,磁场方向垂直于前后两面。
当导电液体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值。
已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为 A. )(ac bR B I ρ+ B. )(c b aR B I ρ+ C. )(b a cR B I ρ+ D. )(abc R B I ρ+ 答案: A3、质谱仪下图是测量带电粒子质量的仪器工作原理示意图。
设法是某有机化合物的气态分子导入图中所示的容器A 中,使它受到电子束轰击,失去一个电子变成正一价的分子离子。
分子离子从狭缝s 1以很小的速度进入电压为U 的加速电场区(初速不计),加速后,再通过狭缝s 2、s 3射入磁感强度为B 的匀强磁场,方向垂直于磁场区的界面PQ 。
高中物理精品试题:高三三轮冲刺题型专练系列——计算题二十

2009届高三三轮冲刺物理题型专练系列计算题部分(二十)计算题1、如图所示,气缸直立地固定于地面,被光滑活塞封闭一定质量的气体,活塞与重物用一根轻绳相连。
已知活塞横截面积S=5×10-3m2,活塞质量m=8kg,重物质量M=12kg。
当气体温度为27℃时,活塞离缸底的高度h=30cm。
设大气压强为1×105Pa,g取10m/s2。
(1)当温度升高到47℃时,重物下降的高度为多少?(2)若在47℃时去掉重物,则活塞离缸底的高度为多少?m SMV02.一艘帆船在湖面上顺风行驶,在风力的推动下做速度v1=4m/s的匀速直线运动, 已知:该帆船在匀速行驶的状态下突然失去风的动力,帆船在湖面上做匀减速直线运动,经过8秒钟才能恰好静止;该帆船的帆面正对风的有效面积为S=10m2,帆船的总质量M约为940kg,当时的风速v2=10m/s。
若假设帆船在行驶的过程中受到的阻力始终恒定不变,那么由此估算:(1)在匀速行驶的状态下,帆船受到的动力和阻力分别为多大?(2)空气的密度约为多少?3.如图所示,质量为m 1=1kg 的小物块P 置于桌面上的A 点并与弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态。
质量M =3.5 kg 、长L =1.2 m 的小车静置于光滑水平面上,其上表面与水平桌面相平,且紧靠桌子右端。
小车左端放有一质量m 2=0.5kg 的小滑块Q 。
现用水平向左的推力将P 缓慢推至B 点(弹簧仍在弹性限度内)时,撤去推力,此后P 沿桌面滑到桌子边缘C 时速度为2m/s ,并与小车左端的滑块Q 相碰,最后Q 停在小车的右端,物块P 停在小车上距左端0.5 m 处。
已知AB 间距离L 1=5cm ,AC 间距离L 2=90cm ,P 与桌面间动摩擦因数μ1=0.4,P 、Q 与小车表面间的动摩擦因数μ2=0.1, (g 取10 m/s 2),求: (1)弹簧的最大弹性势能; (2)小车最后的速度v ;(3) 滑块Q 与车相对静止时Q 到桌边的距离。
高三物理带电粒子在电场中的运动

qE=mg q=mgd/U0=10 -9C
若电压增大为U1,恰好从上板边缘飞出,
y=1/2 at2 =d/2 qU1/d – mg = ma y=1/2 at2 =d/2 mg - qU1/d = ma ∴200V≤U ≤1800V
a=d v02 / L2 = 8m/s2, U1 =1800V
L=10cm + +
B
Vy
1500
V0
U AB
3m V Ey 2q
2 0
Vt
返回
1992年高考 、 如图,电子在电势差为U1的加速电场中 由静止开始运动,然后射入电势差为U2的两块平行极板 间的电场中,入射方向跟极板平行.整个装置处在真空中, 重力可忽略.在满足电子能射出平行板区的条件下,下述 四种情况中,一定能使电子的偏转角θ变大的是 ( B ) (A)U1变大、U2变大(B)U1变小、U2变大 (C)U1变大、U2变小(D)U1变小、U2变小
在第2秒内,电场方向沿y轴正方向,故小球在x方向做 速度为vx的匀速运动,在y方向做初速为零的匀加速运动
沿x方向移动的距离 △x2=vxt=0.20m (4) (5) 沿y方向移动的距离Δy=1/2 at2=1/2×0.2 ×1=0.10m 故在第2秒末小球到达的位置坐标 x2=△x1+△x2=0.30m (6) y2=△y=0.10m (7)
t
例10、质量为5×10-6kg的带电粒子以2m/s速度从水平放置的平 行金属板A、B中央沿水平方向飞入板间,如图所示.已知板长L =10cm,间距d=2cm,当UAB 为 1000V时,带电粒子恰好沿直 -9 线穿过板间,则该粒子带 负 电,电量为 10 C,当AB间电 200-1800V 范围内时,此带电粒子能从板间飞出. 压在 解: 粒子受力如图, 粒子带 负电
高三物理一轮复习资料【带电粒子在匀强磁场中的运动】

高三物理一轮复习资料【带电粒子在匀强磁场中的运动】 [考点分析]1.命题特点:带电粒子在匀强磁场中的运动是等级考命题的热点问题,对此部分内容的考查以带电粒子在各类有界匀强磁场中的运动为主,题型有选择也有计算,难度中等偏上.2.思想方法:对称法、图解法、模型法等.[知能必备]1.单边界磁场问题的对称性带电粒子在单边界匀强磁场中的运动一般都具有对称性,可总结为:单边进出(即从同一直线边界进出),等角进出,如图所示.2.缩放圆法的应用技巧当带电粒子以任一速度沿特定方向射入匀强磁场时,它们的速度v0越大,在磁场中做圆周运动的轨道半径也越大,它们运动轨迹的圆心在垂直速度方向的直线PP′上,此时可以用“缩放圆法”分析——以入射点为定点,圆心位于直线PP′上,将半径缩放作粒子的运动轨迹,从而探索出临界条件.3.带电粒子在磁场中运动产生多解的原因[真题再练]1. (多选)如图所示,在Oxy 平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B 的匀强磁场.一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45°.粒子经过磁场偏转后在N 点(图中未画出)垂直穿过x 轴.已知OM =a ,粒子电荷量为q ,质量为m ,重力不计.则( )A .粒子带负电荷B .粒子速度大小为qBamC .粒子在磁场中运动的轨道半径为aD .N 与O 点相距(2+1)a解析:AD 由左手定则,分析粒子在M 点受的洛伦兹力,可知粒子带负电,选项A 正确;粒子的运动轨迹如图所示,O ′为粒子做匀速圆周运动的圆心,其轨道半径R =2a ,选项C 错误;由q v B =m v 2R ,可求出v =2qBa m ,选项B 错误;由图可知,ON =a +2a =(2+1)a ,选项D 正确.2.如图,在0≤x ≤h ,-∞<y <+∞区域中存在方向垂直于纸面的匀强磁场,磁感应强度B 的大小可调,方向不变.一质量为m 、电荷量为q (q >0)的粒子以速度v 0从磁场区域左侧沿x 轴进入磁场,不计重力.(1)若粒子经磁场偏转后穿过y 轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值B m ;(2)如果磁感应强度大小为B m2,粒子将通过虚线所示边界上的一点离开磁场.求粒子在该点的运动方向与x 轴正方向的夹角及该点到x 轴的距离.解析:(1)由题意,粒子刚进入磁场时应受到方向向上的洛伦兹力,因此磁场方向垂直于纸面向里.设粒子进入磁场中做圆周运动的半径为R ,根据洛伦兹力公式和圆周运动规律,有q v 0B =m v 20R①由此可得R =m v 0qB②粒子穿过y 轴正半轴离开磁场,其在磁场中做圆周运动的圆心在y 轴正半轴上,半径应满足R ≤h ③由题意,当磁感应强度大小为B m 时,粒子的运动半径最大,由此得B m =m v 0qh④ (2)若磁感应强度大小为B m2,粒子做圆周运动的圆心仍在y 轴正半轴上,由②④式可得,此时圆弧半径为R ′ =2h ⑤粒子会穿过图中P 点离开磁场,运动轨迹如图所示.设粒子在P 点的运动方向与x 轴正方向的夹角为α,由几何关系sin α=h 2h =12⑥即α=π6⑦由几何关系可得,P 点与x 轴的距离为 y =2h (1-cos α)⑧联立⑦⑧式得y = (2-3)h ⑨ 答案:(1)磁场方向垂直于纸面向里 m v 0qh(2)π6(2-3)h带电粒子在匀强磁场中运动问题的解题流程[精选模拟]视角1:带电粒子在匀强磁场中运动的临界、极值问题1.(多选)如图所示,S 处有一电子源,可向纸面内任意方向发射电子,平板MN 垂直于纸面,在纸面内的长度L =9.1 cm ,中点O 与S 间的距离d =4.55 cm ,MN 与SO 直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B =2.0×10-4 T ,电子质量m =9.1×10-31kg ,电荷量e =1.6×10-19C ,不计电子重力,电子源发射速度v =1.6×106 m/s 的一个电子,该电子打在板上可能位置的区域的长度为l ,则( )A .θ=90°时,l =9.1 cmB .θ=60°时,l =9.1 cmC .θ=45°时,l =4.55 cmD .θ=30°时,l =4.55 cm解析:AD 电子在磁场中运动,洛伦兹力提供向心力:e v B =m v 2R ,R =m v Be=4.55×10-2 m =4.55 cm =L2,θ=90°时,击中板的范围如图甲,l =2R =9.1 cm ,选项A 正确;θ=60°时,击中板的范围如图乙所示,l <2R =9.1 cm ,选项B 错误;θ=30°,如图丙所示,l =R =4.55 cm ,当θ=45°时,击中板的范围如图丁所示,l >R (R =4.55 cm),故选项D 正确,选项C 错误.2.如图所示,竖直线MN ∥PQ ,MN 与PQ 间距离为a ,其间存在垂直纸面向里的匀强磁场,磁感应强度为B ,O 是MN 上一点,O 处有一粒子源,某时刻放出大量速率均为v (方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN 成θ=60°角射入的粒子恰好垂直PQ 射出磁场,则粒子在磁场中运动的最长时间为( )A.πa3v B .23πa 3vC.4πa 3vD .2πa v解析:C 当θ=60°时,粒子的运动轨迹如图甲所示,则a =R sin 30°,即R =2a .设带电粒子在磁场中运动轨迹所对的圆心角为α,则其在磁场中运行的时间为t =α2πT ,即α越大,粒子在磁场中运行时间越长,α最大时粒子的运行轨迹恰好与磁场的右边界相切,如图乙所示,因R =2a ,此时圆心角αm 为120°,即最长运行时间为T 3,而T =2πR v =4πav ,所以粒子在磁场中运动的最长时间为4πa3v,C 正确.3.如图是某屏蔽高能粒子辐射的装置,铅盒左侧面中心O 有一放射源可通过铅盒右侧面的狭缝MQ 向外辐射α粒子,铅盒右侧有一左右边界平行的匀强磁场区域.过O 的截面MNPQ 位于垂直磁场的平面内,OH 垂直于MQ .已知∠MOH =∠QOH =53°.α粒子质量m =6.64×10-27kg ,电量q =3.20×10-19C ,速率v =1.28×107m/s ;磁场的磁感应强度B=0.664 T ,方向垂直于纸面向里;粒子重力不计,忽略粒子间的相互作用及相对论效应,sin 53°=0.80,cos 53°=0.60.(1)求垂直于磁场边界向左射出磁场的粒子在磁场中运动的时间t ;(2)若所有粒子均不能从磁场右边界穿出,达到屏蔽作用,求磁场区域的最小宽度d . 解析:(1)粒子在磁场内做匀速圆周运动,则T =2πmqB垂直于磁场边界向左射出磁场的粒子在磁场中运动的时间为:t =T2代入数据解得:t =π32×10-6 s ≈9.81×10-8 s.(2)粒子在磁场中做匀速圆周运动,q v B =m v 2R沿OQ 方向进入磁场的粒子运动轨迹与磁场右边界相切,则所有粒子均不能从磁场的右边界射出,如图所示,由几何关系可得:d =R +R sin 53° 代入数据可得:d =0.72 m. 答案:(1)9.81×10-8 s (2)0.72 m视角2:带电粒子在匀强磁场中运动的多解问题4.(多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B ,板间距离也为l ,板不带电,现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度v 满足Bql 4m <v <5Bql4m解析:AB 带电粒子刚好打在极板右边缘,有r 21=⎝⎛⎭⎫r 1-l 22+l 2,又因r 1=m v 1Bq ,解得v 1=5Bql 4m ;粒子刚好打在极板左边缘,有r 2=l 4=m v 2Bq ,解得v 2=Bql4m,故A 、B 正确.。
带电粒子在磁场中的运动的最小面积问题

30 l
运 动 ,初 速度 为 v,方 向 沿 X正 方 向 。 后
T P
来 .粒 子 经 过 Y轴 上 的 P点 .此 时速 度 方 向 与v轴 的 夹 角 为 30。,P到 0的 距 离 为
J
0
L,如 图所 示 。不 计 重 力 的 影 响 。求 磁 场 的磁 感 应 强 度B的 大 小 和xv平 面上 磁 场 区域 的 半 径 R。
经 过 v轴 上 的 N点 并 与 v轴 正 方 向成 60。 角 的方 向飞 出 。M点 的 坐标 为 (0,一1O),
N点 的 坐标 为 (0,3O),不 计 粒 子 重 力 ,g取 10m/s 。 (1)请 分 析 判 断 匀强 电场 E,的 方 向 并 求 出微 粒 的 运 动 速
度 v: (2)匀 强 磁 场B,的大 小 为 多 大 ?
R,由图 中几 何 关 系 可得
R: L
④
例 题 2.如 图所 示 ,第 四象 限 内有 互 相正 交 的 匀 强 电场 E与 匀 强磁 场B ,E的 大 小 为0.5x10 V/m,B.大 小 为0.5T;第 一 象 限 的 某 个 矩形 区域 内 ,有 方 向垂 直 纸 面 向里 的匀 强 磁 场 B,,磁 场
PA:R(1一cos60。): 3O m
所 以 . 所 求 磁 场 的 最 小 面 积 为 S:而 .PA:一1 Xx/3-
—
—
:
、/3 2
—
—
m —
—
150
例题3.一个质量为m,带+q电量 的
粒 子 在 BC边 上 的 M点 以速 度 v垂 直 于
·
/、
, \
BC边 飞入 正 三 角 形ABC。为 了使 该 粒
高考物理带电粒子在磁场中的运动知识点汇总

高考物理带电粒子在磁场中的运动知识点汇总一、带电粒子在磁场中的运动压轴题1.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S = 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…) 【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y =v 0tanθ=v 0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.6.如图,第一象限内存在沿y轴负方向的匀强电场,电场强度大小为E,第二、三、四象限存在方向垂直xOy平面向外的匀强磁场,其中第二象限的磁感应强度大小为B,第三、四象限磁感应强度大小相等,一带正电的粒子,从P(-d,0)点沿与x轴正方向成α=60°角平行xOy平面入射,经第二象限后恰好由y轴上的Q点(图中未画出)垂直y轴进入第一象限,之后经第四、三象限重新回到P点,回到P点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603d d dr sin sin α===︒ 根据200mv qv B r =得0233qBdv m=粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α===由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度004323v qBdv v cos mα===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动7.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷9110qm=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2v qvB m R=求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,由2v qvB mR= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间61121044R t s v ππ-=⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间62 1.010xt s v-==⨯ 总时间6612110 1.8104t t t s s π--⎛⎫=+=+⨯=⨯⎪⎝⎭(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qEa m s m==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫==⨯⨯⨯= ⎪⨯⎝⎭打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.8.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.【答案】2145qRB E m=【解析】 【分析】 【详解】解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得2v qvB m r=①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此ac bc r ==② 设,cd x =有几何关系得45ac R x =+③ 2235bc R R x =+- 联立②③④式得75r R =再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="m a" ⑥ 粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得212r at =⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2145qRB E m=⑨【点睛】带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.9.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s 发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上.(重力影响不计)(1)若能量在E ~E +ΔE (ΔE >0,且ΔE <<E )范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx 1.(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx 2 【答案】见解析 【解析】 【详解】(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x 圆周运动2q B mRυυ=α粒子的动能212E m υ=2x R =由以上三式可得22mEx qB= 所以()12222m E E mEx qBqB+∆∆=-化简可得122mEx E qBE∆≈∆; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动2q B mRυυ=α粒子的动能212E m υ=由几何关系得()22224222cos 1cos sin 2mE mE φx R R φφqB qB ∆=-=-=10.如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【答案】当α=30°时,粒子在磁场中运动的时间为π126T mt qB== 当α=90°时,粒子在磁场中运动的时间为π42T m t qB== 【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL 于A 点,圆心在y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴的P 点,设AP 与x 轴的夹角为β,如图所示.有(判断出圆心在y 轴上得1分)2v qvB m R=(1分)周期为2πmT qB=(1分) 过A 点作x 、y 轴的垂线,垂足分别为B 、D .由几何知识得sin αAD R =,cot 60OD AD =︒,,OP AD BP =+α=β (2分) 联立得到sin αα13+=(2分) 解得α=30°,或α=90° (各2分) 设M 点到O 点的距离为h ,有sin αAD R =h R OC =-,3cos αOC CD OD R AD =-=联立得到h=R 3cos(α+30°) (1分) 解得h=3R (α=30°) (2分) h=3R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为π126T m t qB ==(2分) 当α=90°时,粒子在磁场中运动的时间为π42T m t qB==(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.。
带电粒子在电磁场中的运动-高中物理专题(含解析)

带电粒子在电磁场中的运动-高中物理专题(含解析)引言本文将讨论带电粒子在电磁场中的运动,涉及到相关的物理概念和解析。
我们将从基本的概念开始,逐步深入探讨。
电磁场的基本概念电磁场是由电荷和电流所产生的。
对于静电场而言,电磁场的作用是通过电荷之间的相互作用传递力;而对于电流产生的磁场来说,电磁场的作用是通过磁力线的变化传递力。
在电磁场中,带电粒子受到电磁力的作用而运动。
带电粒子在电磁场中的运动方程带电粒子在电磁场中的运动方程可以由洛伦兹力得出。
洛伦兹力是指带电粒子在电磁场中所受的力,其方向垂直于粒子速度和磁场方向的平面。
洛伦兹力的大小与带电粒子的电荷量、速度以及磁场的强度有关。
带电粒子在电磁场中的运动方程可以表示为:F = q(E + v × B)其中,F是带电粒子所受的力,q是带电粒子的电荷量,E是电场强度,v是带电粒子的速度,B是磁场强度。
带电粒子在电磁场中的运动类型带电粒子在电磁场中的运动类型有很多种。
根据粒子速度和磁场方向的关系,可以将其分为以下几种情况:1. 带电粒子在电磁场中做匀速直线运动。
2. 带电粒子在电磁场中做匀速圆周运动。
3. 带电粒子在电磁场中做螺旋运动。
实例解析下面我们通过一个实例来解析带电粒子在电磁场中的运动。
假设我们有一个带正电荷的粒子,处于一个均匀磁场和一个均匀电场中。
该粒子以速度v在电场和磁场的交叉方向上运动。
根据洛伦兹力公式,该粒子在电磁场中所受的合力为:F = q(E + v × B)其中q为粒子的电荷量,E为电场强度,B为磁场强度。
根据合力的方向,我们可以确定粒子在电磁场中的运动类型。
具体的运动轨迹可通过求解运动方程得到。
结论带电粒子在电磁场中的运动是由洛伦兹力所驱动的。
根据粒子速度和磁场方向的关系,带电粒子可以做匀速直线运动、匀速圆周运动或螺旋运动。
通过解析带电粒子在电磁场中的运动,我们可以更好地理解电磁场对粒子的影响,为相关领域的研究和应用提供基础知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年带电粒子在电场磁场中的运动选1.如图所示,位于竖直平面内的坐标系xoy ,在其第三象限空间有沿水平方向的、垂直于纸面向外的匀强磁场,磁感应强度大小为B ,还有沿x 轴负方向的匀强电场,场强大小为E .在其第一象限空间有沿y 轴负方向的、场强为E E 34='的匀强电场,并在y>h 区域有磁感应强度也为B 的垂直于纸面向里的匀强磁场.一个带电荷量为q 的油滴从图中第三象限的P 点得到一初速度,恰好能沿PO 作直线运动(PO 与x 轴负方向的夹角为θ=37O),并从原点O 进入第一象限.已知重力加速度为g ,sin37o =0.6,cos37o=0.8,问:(1)油滴的电性;(2)油滴在P 点得到的初速度大小; (3) 油滴在第一象限运动的时间和离开第一象限处的坐标值. 解.(共15分)(1)油滴带负电. (2分)(2)油滴受三个力作用(见右图),从P到O沿直 线必为匀速运动,设油滴质量为m :由平衡条件有qEqvB =︒37sin(1分)qE mg =︒37tan (1分)综合前两式,得B Ev35=(1分)gqE m 34=(1分)(3)进入第一象限,由电场力qE E q F 34='='和 重qE g g qE mg G 3434=⋅==,知油滴先作匀速直线运动,进入y≥h 后作匀速圆周运动,路径如图,最后从x 轴上的N点离开第一象限.由O→A匀速运动位移为h h s 3537sin 1=︒=知运动时间:E Bh BE h v s t ===353511 (2分)由几何关系和圆周运动的周期关系式qBmTπ2=知由A→C的圆周运动时间为 gBE qB gqET t 135********37360742ππ=⋅⋅=︒︒=(2分) 由对称性知从C→N的时间13t t =在第一象限运动的总时间gBEE Bh t t t t135742321π+=++= - (1分) 由在磁场中的匀速圆周运动,有2mv qvB R=(1分)由②、③、⑦式解得得到轨道半径22920gB E qB mv r == (1分) 图中的)(38)37sin 37cos (2221gB E h r s ON +=︒+︒= (1分) 即离开第一象限处(N点)的坐标为〖)(3822gB E h +,0〗 (1分)2.如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m.现有一质量m =4×10-20kg ,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B =0.2T 、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:(1)粒子在磁场中做圆周运动的半径; (2)粒子在磁场中运动的时间; (3)圆形磁场区域的最小半径..解:(1)由rv mqvB 2=,vrT π2=得:m qBmvr 3.0==………………………………(4分) (4)画出粒子的运动轨迹如图,可知T t 65=,得:…………………(4分)s s qB m t 551023.5103535--⨯=⨯==ππ………………………………(2分) (3)由数学知识可得:︒︒+=30cos 30cos 2r r L得:m qB mv L 99.010334)134(=+=+=………………………………(3分) 3.如图所示,质量均为m 、电荷量均为q 的带负电的一簇粒子从P 1(一a ,0)点以相同的速率v o 在xOy 平面内朝x 轴上方的各个方向射出(即0<θ≤π),不计重力及粒子间的相互作用,且已知a 足够大. (1)试在图中的适当位置和区域加一垂直于xOy 平面、磁感应强度为B 的匀强磁场,使这簇带电粒子通过该磁场后都沿平行于x 轴方向运动.在图中定性画出所加的最小磁场区域边界的形状和位置.(2)试在图中的某些区域再加垂直于xOy 平面、磁感应强度为B 的匀强磁场,使从Pl 点发出的这簇带电粒子通过磁场后都能通过P 2(a ,0)点.要求:①说明所加磁场的方向,并在图中定性画出所加的最小磁场区域边界的形状和位置; ②定性画出沿图示v o 方向射出的带电粒子运动的轨迹; ③写出所加磁场区域与xOy 平面所成截面边界的轨迹方程.解:(1)设带电粒子从A 点离开磁场区域,A 点坐标为(x 、y),粒子旋转的半径为R ,旋转的圆心在C 点,旋转圆心角为α,则x =一a+Rsin α,y= R —Rcos α,(4分) 解得(x+a)2+(y 一R)2=R 2.(2分)可见,所加磁场的边界的轨迹是一个以(一a ,R)为圆心,半径为R =mV o /Bq 的圆.该圆位于x 轴上方且与P 1点相切.(1分)(2)根据对称性可得出在P 2处所加的磁场最小区域也是圆,(1分)同理可求得其方程为(x-a)2+(y 一R)2=R 2 (2分)圆心为(a ,R),半径为R =mV o /Bq ,该圆位于x 轴上方且与P 2点相切;(2分)根据左手定则判断,磁场方向垂直于xOy 平面向里;(1分) 沿图示v 0方向射出的带电粒子运动的轨迹如图所示.(2分)4.如图所示,在直角坐标系的第二象限和第四象限中的直角三角形区域内,分布着磁感应强度均为35.010T B -=⨯的匀强磁场,方向分别垂直纸面向外和向里.一质量276.410kg m -=⨯、电荷量193.210C q -=+⨯的未知带电粒子(未知带电粒子重力不计),由静止开始经加速电压1250V U =的电场(图中未画出)加速后,从坐标点M (4-x 轴向右运动,并先后通过两个匀强磁场区域.(1)求未知带电粒子在磁场中的运动半径.(结果用根式表示)(2)在图中画出从直线4x =-到直线4x =之间未知带电粒子的运动轨迹,并在图中标明 轨迹与直线4x =交点的坐标. (3)求出未知带电粒子在两个磁场区域偏转所用的时间.5.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求:(1)两极板间电压;(2)三角形区域内磁感应强度;(3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lm d qu v y=………(2分)0v v tg y=θ……… (1分) ∴qlmdv u 332=………(2分)由几何关系得:030cos dl AB=在磁场中运动半径d l r AB 23431==……(2分) ∴121r mv qv B =︒=30cos 0v v ……………………………(2分)∴qdmv B 3401=……………(1分 ) 方向垂直纸面向里……………………(1分)⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r =………( 2分 )22002r mv qv B =………1分 ∴qdmv B 024=……… 1分即:磁感应强度的最小值为qdm v 04 (1)6.如图所示,在纸平面内建立的直角坐标系xoy ,在第一象限的区域存在沿y 轴正方向的匀强电场.现有一质量为m ,电量为e 的电子从第一象限的某点P (L ,L 83)以初速度v 0沿x 轴的负方向开始运动,经过x 轴上的点Q (4L ,0)进入第四象限,先做匀速直线运动,然后进入垂直纸面的矩形匀强磁场区域,磁场左边界和上边界分别与y 轴、x 轴重合,电子偏转后恰好经过坐标原点O ,并沿y 轴的正方向运动,不计电子的重力.求(1)电子经过Q 点的速度v ; (2)该匀强磁场的磁感应强度B(3)磁场的最小面积S .解:(1)t v L043=t v L y283= 得033v v y=经过P 点的速度大小为022332v v v v yxQ =+=与水平方向夹角为︒===3033arctan arctan x y v v θ(2)电子进入第四象限先做匀速直线运动,进入磁场后做匀速圆周运动,利用磁场速度偏转角为120°.由几何关系得430sin Lr r =︒+解得12Lr =由向心力公式rv meBv 2=解得eLmv B 038=方向垂直于纸面向里(3)矩形磁场右边界距y 轴的距离82360cos L r r r d ==︒+= 下边界距x 轴的距离12Lr =最小面积为962L r d S =⋅=7.如图所示,光滑绝缘壁围成的正方形匀强磁场区域,边长为a 磁场的方向垂直于正方形平面向里,磁感应强度的大小为B .有一个质量为m 、电量为q 的带正电的粒子,从下边界正中央的A 孔垂直于下边界射入磁场中.设粒子与绝缘壁碰撞时无能量和电量损失,不计重力和碰撞时间.(1)若粒子在磁场中运动的半径等于/2a ,则粒子射入磁场的速度为多大?经多长时间粒子又从A 孔射出?(2)若粒子在磁场中运动的半径等于/4a ,判断粒子能否再从A 孔射出.如能,求出经多长时间粒子从A 孔射出;如不能,说出理由.(3)若粒子在磁场中运动的半径小于a 且仍能从A 孔垂直边界射出,粒子射入的速度应为多大?在磁场中的运动时问是多长?8.如图所示,在xOy 坐标系内有垂直纸面向外的范围足够大的匀强磁场, 磁感应强度的大小为B .在t =0 时刻有两个粒子N 、P 分别从坐标原点O 及坐标( L ,0)点开始运动.N 粒子带正电,电量为q ,质量为m ,速度大小为v n 、方向为在xOy 平面内的所有可能的方向;P 粒子不带电,其速度大小为v P 。
方向为在xOy 平面内且与x 轴的负方向的夹角为q .两粒子所受的重力不计.(1)对于Vn 有一临界值v ,当v n <v 时,两个粒子不可能相遇,求临界值可的大小; (2)若两个粒子相遇的位置在y 轴上,且已知q =30, L =m ,m =6.4 ×10-27kg ,q =3.2×10-19 C ,v n =1.15 π⋅107m/s , v P =3⋅106 m/s .求v n 的方向与y 轴正方向的夹角β9.如图所示,在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz (x 轴正方向水平向右,y 轴正方向竖直向上)。