2017年山东省济宁市邹城市中考数学模拟试卷(解析版)

合集下载

2017年山东省济宁市中考数学试题及参考答案(解析word版)

2017年山东省济宁市中考数学试题及参考答案(解析word版)

2017年山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.16的倒数是()A.6 B.6-C.16D.16-2.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3C.4D.53.下列图形中是中心对称图形的是()A.B.C.D.4.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣45.下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.6.1在实数范围内有意义,则x满足的条件是A.12x≥ B.12x≤ C.12x= D.12x≠7.计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣1aC.a5D.a68.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.18B.16C.14D.129.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为 BD,则图中阴影部分的面积是()A.6π B. 3π C.122π- D. 12 10.如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB ,点P 从点A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束,设运动时间为x (单位:s ),弦BP 的长为y ,那么下列图象中可能表示y 与x 函数关系的是( )A .①B .③C .②或④D .①或③ 二、填空题(本大题共5小题,每小题3分,共15分) 11.分解因式:ma 2+2mab+mb 2= . 12.请写出一个过点(1,1),且与x 轴无交点的函数解析式: . 13.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是 . 14.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限内交于点P (a ,b ),则a 与b 的数量关系是 .15.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为1,它的六条对角线又围成一个正六边形A 2B 2C 2D 2E 2F 2,如此继续下去,则正六边形A 4B 4C 4D 4E 4F 4的面积是 .三、解答题(本大题共7小题,共55分)16.(5分)解方程:211.22xx x=---17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是 BC的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P 是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐3),点N0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.16的倒数是()A.6 B.6-C.16D.16-【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:16的倒数是6.故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3C.4D.5【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.【点评】本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.3.下列图形中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000016=1.6×10﹣5;故选;B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.1在实数范围内有意义,则x满足的条件是A.12x≥ B.12x≤ C.12x= D.12x≠【分析】根据二次根式有意义的条件即可求出x的值.【解答】解:由题意可知:210 120xx-⎧⎨-⎩≥≥,解得:12 x=故选(C)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.7.计算(a 2)3+a 2•a 3﹣a 2÷a ﹣3,结果是( ) A .2a 5﹣aB .2a 5﹣1aC .a 5D .a 6【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则化简求出答案.【解答】解:(a 2)3+a 2•a 3﹣a 2÷a ﹣3 =a 6+a 5﹣a 5 =a 6.故选:D .【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键. 8.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是( )A .18 B . 16 C . 14 D . 12【分析】画树状图展示所以12种等可能的结果数,再找出两次摸出的球上的汉字组成“孔孟”的结果数,然后根据概率公式求解. 【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2, 所以两次摸出的球上的汉字组成“孔孟”的概率21126==. 故选B .【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率. 9.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为 BD,则图中阴影部分的面积是( )A.6π B. 3π C.122π- D. 12【分析】先根据勾股定理得到再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD ﹣S △ABC =S 扇形ABD .【解答】解:∵∠ACB=90°,AC=BC=1,∴∴S 扇形ABD=2303606ππ⨯=.又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE , ∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD ﹣S △ABC =S 扇形ABD =6π. 故选:A .【点评】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD 的面积是解题的关键.10.如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB ,点P 从点A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束,设运动时间为x (单位:s ),弦BP 的长为y ,那么下列图象中可能表示y 与x 函数关系的是( )A .①B .③C .②或④D .①或③【分析】分两种情形讨论当点P 顺时针旋转时,图象是③,当点P 逆时针旋转时,图象是①,由此即可解决问题.【解答】解:当点P 顺时针旋转时,图象是③,当点P 逆时针旋转时,图象是①, 故答案为①③, 故选D .【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(本大题共5小题,每小题3分,共15分) 11.分解因式:ma 2+2mab+mb 2= .【分析】原式提取m ,再利用完全平方公式分解即可. 【解答】解:原式=m (a 2+2ab+b 2)=m (a+b )2, 故答案为:m (a+b )2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 12.请写出一个过点(1,1),且与x 轴无交点的函数解析式: . 【分析】反比例函数的图象与坐标轴无交点.【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=1×1=1,所以反比例函数1y x=(答案不唯一)符合题意. 故答案可以是:1y x=(答案不唯一).【点评】本题考查了反比例函数的性质,此题属于开放题,答案不唯一,若是二次函数也符合题意.13.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,1482248 3x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,故答案为:1482248 3x yx y⎧+=⎪⎪⎨⎪+=⎪⎩.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.【点评】此题主要考查了角平分线的性质以及坐标与图形的性质,解题时注意:第二象限内的点的横坐标为负,纵坐标为正,得出P点位置是解题关键.15.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A 1B 1B 2=90°,∠B 1A 1B 2=30°,A 1A 2=A 2B 2,由直角三角形的性质得出B 1B 2=A 1B 1=,A 2B 2=12A 1B 2=B 1B 2=,由相似多边形的性质得出正六边形A 2B 2C 2D 2E 2F 2的面积:正六边形A 1B 1C 1D 1E 1F 1的面积=13,求出正六边形A 1B 1C 1D 1E 1F 1的面积=2,得出正六边形A 2B 2C 2D 2E 2F 2的面积,同理得出正六边形A 4B 4C 4D 4E 4F 4的面积.【解答】解:由正六边形的性质得:∠A 1B 1B 2=90°,∠B 1A 1B 2=30°,A 1A 2=A 2B 2,∴B 1B 21B 1∴A 2B 2=12A 1B 2=B 1B 2 ∵正六边形A 1B 1C 1D 1E 1F 1∽正六边形A 2B 2C 2D 2E 2F 2,∴正六边形A 2B 2C 2D 2E 2F 2的面积:正六边形A 1B 1C 1D 1E 1F 1的面积=2=13,∵正六边形A 1B 1C 1D 1E 1F 1的面积=6×12×1×2=2,∴正六边形A 2B 2C 2D 2E 2F 2的面积=13同理:正六边形A 4B 4C 4D 4E 4F 4的面积=(13)3;【点评】本题考查了正六边形的性质、相似多边形的性质、正六边形面积的计算等知识;熟练掌握正六边形的性质,由相似多边形的性质得出规律是关键. 三、解答题(本大题共7小题,共55分) 16.(5分)解方程:211.22x x x=--- 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【分析】(1)利用折线统计图结合条形统计图,利用优秀人数÷优秀率=总人数求出即可;(2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案;(3)利用已知条形统计图以及折线统计图分析得出答案.【解答】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:3240×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.11。

济宁数学中考模拟试题及答案

济宁数学中考模拟试题及答案

2017济宁数学中考模拟试题及答案2017济宁数学中考模拟真题一、选择题(本大题共10小题,每小题4分,共40分,每题的选项中只有一项符合题目要求,请选出正确答案,将其字母在答卷相应位置涂黑。

)1.在﹣3,2,﹣1,3这四个数中,比﹣2小的数是( )A.﹣3B.2C.﹣1D.32.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图( ) A. B. C. D.3.若在实数范围内有意义,则x的取值范围是( )A.x 2B.x ﹣2C.x ﹣2D.x ﹣24.下列说法中,正确的是( )A.一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,7,7,10,6,7,9的众数和中位数都是7D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小5.下列计算正确的是( )A.x3 x5=x15B.(x3)5=x8C.x3+x5=x8D.x5 x3=x26.如图,DAE= ADE=15 ,DE∥AB,DF AB,若AE=8,则DF等于( )A.5B.4C.3D.27.如图,在平面直角坐标系中, □OABC的顶点A在轴上,顶点B的坐标为(6,4).若直线经过点(1,0),且将□OABC分割成面积相等的两部分,则直线的函数解析式是( )A. B. C. D.8.已知2是关于的方程的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则△ABC的周长为( )A.10B.14C.10或14D.8或109.如图,在△ABC中,ACB=90 ,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是( )A.AD=BDB.BD=CDC. A= BEDD. ECD= EDC10.已知二次函数y=ax2+bx+c(a 0)与轴一个交点在﹣1,﹣2之间,对称轴为直线=1,图象如图,给出以下结论:①b2﹣4ac②abc ③2a﹣b=0;④9a+3b+c 0.其中结论正确的个数有( )A.1B.2C.3D.4纪*教育网二、填空题(本大题共5小题,每小题4分,共20分)11.因式分解:.12.有5张看上去无差别的卡片,上面分别写着0,,,,1.333.随机抽取1张,则取出的数是无理数的概率是.13.如图,AB是⊙O的直径,AB=15,AC=9,则cosADC=____.14.如图,在平面直角坐标系中,点P在函数( 0)的图象上.过点P分别作轴、轴的垂线,垂足分别为A、B,取线段OB的中点C,连结PC并延长交轴于点D则△APD的面积为.15.如图,已知Rt△ABC中,ACB=90 ,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90 得到△DEC,若点F是DE的中点,连接AF,则AF= .三、解答题(本大题共9小题,共90分.解答时应在每题相应空白位置处写出文字说明、证明过程或演算过程.)www-2-1-cnjy-com16.(本题8分)计算:17.(本题8分)已知,求代数式的值.18.(本题10分)如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且BC=10,BAC=90 ,求BE 的长.19.(本题10分)在直角墙角AOB(OA OB,且OA,OB长度不限)中,要砌20 m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96 m2.【(1)求这地面矩形的长;(2)有规格为0.8 0.8和1.0 1.0(单位:m)的地板砖单价为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?20.(本题12分)某校开展了互助、平等、感恩、和谐、进取主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出进取所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).21.(本题10分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15 和60 ,如图,直线AB 与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)22.(本题10分)一次函数的图象与、轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.23.(本题10分)如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC 与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若BCE=60 ,AB=8,求图中阴影部分的面积.24.(本题12分)如图,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0),交y轴于点C,点D是线段OB上一动点,连接CD,将CD绕点D顺时针旋转90 得到线段DE,过点E作直线l x轴,垂足为H,过点C作CF l于F,连接DF,CE交于点G.(1)求抛物线解析式;(2)求线段DF的长;(3)当DG= 时,①求tan CGD的值;②试探究在x轴上方的抛物线上,是否存在点P,使EDP=45 ?若存在,请写出点P的坐标;若不存在,请说明理由.。

山东省济宁市邹城市2017年中考数学模拟试卷(含解析)

山东省济宁市邹城市2017年中考数学模拟试卷(含解析)

2017年山东省济宁市邹城市中考数学模拟试卷一、选择题(本题共10个小题,每小题3分,共30分)1.的绝对值为()A.B.C.D.32.如图是某个几何体的三视图,该几何体是()A.圆锥 B.三棱锥C.圆柱 D.三棱柱3.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O1O2<84.函数y=的自变量x的取值范围在数轴上可表示为()A.B.C.D.5.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠C=40°,则∠ABO的度数是()A.50° B.40° C.25° D.20度6.某种商品的进价为160元,出售时的标价为240元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打()A.6折B.7折C.8折D.9折7.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是()A.4 B.3 C.2 D.8.已知直线y=﹣x+4与双曲线y=(x>0)只有一个交点,将直线y=﹣x+4向上平移1个单位后与双曲线y=(x>0)相交于A,B两点,如图,则A点的坐标为()A.(1,4)B.(1,5)C.(2,3)D.(2,4)9.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1二、填空题(本大题共5小题,每小题3分,共15分)11.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000073米,将0.000073用科学记数法表示为.12.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是.13.已知(x﹣y+1)2+=0,则x+y的值为.14.如图,P点的坐标为(3,2),过P点的直线AB分别交x轴和y轴的正半轴于A,B两点,作PM⊥x轴于M点,作PN⊥y轴于N点,若△PAM的面积与△PBN的面积的比为,则直线AB的解析式为.15.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C 处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)米.三、解答题(本大题共7小题,共55分)16.先化简,再求值:(﹣)÷,其中 x=﹣1.17.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A 5500≤x<6500 2B 6500≤x<7500 10C 7500≤x<8500 mD 8500≤x<9500 3E 9500≤x<10500 n请根据以上信息解答下列问题:(1)填空:m= ,n= ;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.已知,A点的坐标为(4,3),过A点分别作坐标轴的垂线,交x轴和y轴分别于B点和C点,P为线段AB上一个动点(P不与A,B重合),过点P的反比例函数y=的图象与AC交于点D.(1)当△PBC的面积等于4时,求该反比例函数的解析式;(2)当k为何值时,△PBD的面积最大,最大面积是多少?19.如图,四边形ABCD内接于⊙O,且BD为直径,∠ACB=45°,过A点的AC的垂线交BC 的延长线于点E.(1)求证:BE=CD;(2)如果AD=,求图中阴影的面积.20.某商店购进了A,B两种家用电器,相关信息如下表:家用电器进价(元/件)售价(元/件)A m+200 1800B m 1700已知用6000元购进的A种电器件数与用5000元购进的B种电器件数相同.(1)求表中m的值.(2)由于A,B两种家用电器热销,该商店计划用不超过23000元的资金再购进A,B两种电器总件数共20件,且获利不少于13300元.请问:有几种进货方案?哪一种方案才能获得最大利润?最大利润是多少?21.如图1,△ABC和△DCE是两个全等的等腰三角形,BC,CE为底边.(1)将图1中的△DCE绕C点顺时针方向旋转至∠BCE=∠ACB的位置,分别延长AB,DE交于点F(如图2),此时,四边形BCEF为何种四边形?请证明你的结论;(2)如果将图1中的△DCE绕C点顺时针旋转至∠BCE=2∠ACB的位置,连接AD,BE(如图3),证明四边形ABED为矩形;(3)在(2)的条件下,四边形ABED有无可能成为正方形?如果有可能成为正方形,求出∠ABC的度数为多少?22.如图,已知抛物线y=﹣x2+2x的顶点为A,直线y=x﹣2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.2017年山东省济宁市邹城市中考数学模拟试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.的绝对值为()A.B.C.D.3【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣|=,∴﹣的绝对值是.故选C.2.如图是某个几何体的三视图,该几何体是()A.圆锥 B.三棱锥C.圆柱 D.三棱柱【考点】U3:由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D3.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O1O2<8【考点】MJ:圆与圆的位置关系;AB:根与系数的关系.【分析】先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况讨论求解.【解答】解:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5.∴①当两圆外切时,圆心距O1O2=3+5=8;②当两圆内切时,圆心距O1O2=5﹣3=2.故选C.4.函数y=的自变量x的取值范围在数轴上可表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;E4:函数自变量的取值范围.【分析】函数y=有意义,则分母必须满足,解得出x的取值范围,在数轴上表示出即可;【解答】解:∵函数y=有意义,∴分母必须满足,解得,,∴x>1;故选B.5.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠C=40°,则∠ABO的度数是()A.50° B.40° C.25° D.20度【考点】MC:切线的性质.【分析】直接利用切线的性质得出∠BOC度数,再利用等腰三角形的性质得出∠ABO度数.【解答】解:∵AO的延长线交过点B的⊙O的切线于点C,∴∠OBC=90°,∵∠C=40°,∴∠BOC=50°,∵AO=BO,∴∠A=∠OBA=∠BOC,∴∠ABP=25°.故选:C.6.某种商品的进价为160元,出售时的标价为240元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打()A.6折B.7折C.8折D.9折【考点】C9:一元一次不等式的应用.【分析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于5%,列不等式求解.【解答】解:设打了x折,由题意得240×0.1x﹣160≥160×5%,解得:x≥7.答:至多打7折.故选:B.7.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是()A.4 B.3 C.2 D.【考点】KQ:勾股定理;KF:角平分线的性质.【分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.【解答】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=3,∴AC=AE,由勾股定理得BE==2,设AC=AE=x,由勾股定理得,x2+62=(x+2)2,解得x=2.故选:C.8.已知直线y=﹣x+4与双曲线y=(x>0)只有一个交点,将直线y=﹣x+4向上平移1个单位后与双曲线y=(x>0)相交于A,B两点,如图,则A点的坐标为()A.(1,4)B.(1,5)C.(2,3)D.(2,4)【考点】G8:反比例函数与一次函数的交点问题;F9:一次函数图象与几何变换.【分析】解方程=﹣x+4,化为整式方程x2﹣4x+k=0,由于直线y=﹣x+4与双曲线y=(x >0)只有一个交点,有△=0即可求出反比例函数解析式,求出直线y=﹣x+4向上平移1个单位后解析式,解两解析式联组立成的方程组即可求出A,B的坐标.【解答】解:解方程=﹣x+4,化为整式方程x2﹣4x+k=0,∵直线y=﹣x+4与双曲线y=(x>0)只有一个交点,∴△=(﹣4)2﹣4k=0,解得:k=4,∴y=,直线y=﹣x+4向上平移1个单位后解析式为y=﹣x+5,解方程组,解得:,,∴A(1,4),B(4,1),故选A.9.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BF C=90°,∴CF==.故选:D.10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【考点】37:规律型:数字的变化类.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.二、填空题(本大题共5小题,每小题3分,共15分)11.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000073米,将0.000073用科学记数法表示为7.3×10﹣5.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000073用科学记数法表示为7.3×10﹣5.故答案为:7.3×10﹣5.12.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是.【考点】X4:概率公式;P3:轴对称图形;R5:中心对称图形.【分析】先找出既是轴对称图形又是中心对称图形的个数,再根据概率公式进行计算即可.【解答】解:∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,∴取到的图形既是中心对称图形又是轴对称图形的概率为,故答案为:.13.已知(x﹣y+1)2+=0,则x+y的值为.【考点】98:解二元一次方程组;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据非负数的性质以及二元一次方程的解法即可求出答案.【解答】解:由题意可知:解得:∴x+y=故答案为:14.如图,P点的坐标为(3,2),过P点的直线AB分别交x轴和y轴的正半轴于A,B两点,作PM⊥x轴于M点,作PN⊥y轴于N点,若△PAM的面积与△PBN的面积的比为,则直线AB的解析式为y=﹣x+5 .【考点】FA:待定系数法求一次函数解析式.【分析】求出△PMA∽△BNP,根据相似三角形的性质求出BN和AM长,求出A、B的坐标,设直线AB的解析式为y=kx+b,把A、B的坐标代入求出K、B值,即可得出答案.【解答】解:∵PM⊥x轴,PN⊥y中,x轴⊥y轴,∴∠BNP=∠PMA=90°,PN∥x轴,∴∠BPN=∠PAO,∴△PMA∽△BNP,∵△PAM的面积与△PBN的面积的比为,∴()2=()2=,∵P(3,2),∴PN=3,PM=2,∴AM=2,BN=3,∴A(5,0),B(0,5),设直线AB的解析式为y=kx+b,把A、B的坐标代入得:,解得:k=﹣1,b=5,即直线AB的解析式为y=﹣x+5,故答案为:y=﹣x+5.15.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C 处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)9+9 米.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.【解答】解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=3×12=36m,∴AD=CD=18m,BD=AB•cos30°=18m,∴BC=CD+BD=(18+18)m,∴BH=BC•sin30°=(9+9)m.故答案为:9+9.三、解答题(本大题共7小题,共55分)16.先化简,再求值:(﹣)÷,其中 x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=[﹣]•=•=•=,当x=﹣1时,原式===1﹣.17.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A 5500≤x<6500 2B 6500≤x<7500 10C 7500≤x<8500 mD 8500≤x<9500 3E 9500≤x<10500 n请根据以上信息解答下列问题:(1)填空:m= 4 ,n= 1 ;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在 B 组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;W4:中位数.【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.【解答】解:(1)m=4,n=1.故答案是:4,1;(2);(3)行走步数的中位数落在B组,故答案是:B;(4)一天行走步数不少于7500步的人数是:120×=48(人).答:估计一天行走步数不少于7500步的人数是48人.18.已知,A点的坐标为(4,3),过A点分别作坐标轴的垂线,交x轴和y轴分别于B点和C点,P为线段AB上一个动点(P不与A,B重合),过点P的反比例函数y=的图象与AC交于点D.(1)当△PBC的面积等于4时,求该反比例函数的解析式;(2)当k为何值时,△PBD的面积最大,最大面积是多少?【考点】G7:待定系数法求反比例函数解析式;G5:反比例函数系数k的几何意义;H7:二次函数的最值.【分析】(1)根据已知条件得到P点的横坐标为4,由△PBC的面积等于4,得到P(4,2),于是得到结论;(2)设D(,3),P(4,),根据三角形的面积公式得到二次函数的解析式,求出二次函数的最值即可.【解答】解:(1)∵A点的坐标为(4,3),∴P点的横坐标为4,∵△PBC的面积等于4,∴PB=2,∴P(4,2),∴k=2×4=8,∴反比例函数的解析式为:y=;(2)设D(,3),P(4,),∴S△PBD=PB•AD=××(4﹣)=﹣+=﹣(k﹣6)2+,∴当k=6时,△PBD的面积最大,最大面积是.19.如图,四边形ABCD内接于⊙O,且BD为直径,∠ACB=45°,过A点的AC的垂线交BC 的延长线于点E.(1)求证:BE=CD;(2)如果AD=,求图中阴影的面积.【考点】M6:圆内接四边形的性质;MO:扇形面积的计算.【分析】(1)由BD为⊙O的直径,得到∠BAC=90°,根据圆周角定理得到∠ADB=∠ACB=45°,推出△ADE与△ABD是等腰直角三角形,根据全等三角形的性质即可得到结论;(2)连接AO,则∠AOD=90°,根据勾股定理得到AO=OD=1,根据图形的面积公式即可得到结论.【解答】解:(1)∵BD为⊙O的直径,∴∠BAC=90°,∵∠ACB=45°,∴∠ADB=∠ACB=45°,∵AE⊥AC,∴△ADE与△ABD是等腰直角三角形,∴AE=AC,AB=AD,∠EAC=∠BAD=90°,∴∠EAB=∠CAD,在△ABE与△ADC中,,∴△ABE≌△ADC,∴BE=CD;(2)连接AO,则∠AOD=90°,∵AD=,∴AO=OD=1,∴S阴影=S扇形﹣S△AOD=﹣×1×1=﹣.20.某商店购进了A,B两种家用电器,相关信息如下表:家用电器进价(元/件)售价(元/件)A m+200 1800B m 1700已知用6000元购进的A种电器件数与用5000元购进的B种电器件数相同.(1)求表中m的值.(2)由于A,B两种家用电器热销,该商店计划用不超过23000元的资金再购进A,B两种电器总件数共20件,且获利不少于13300元.请问:有几种进货方案?哪一种方案才能获得最大利润?最大利润是多少?【考点】FH:一次函数的应用.【分析】(1)根据“用6000元购进的A种电器件数与用5000元购进的B种电器件数相同”列分式方程求解可得;(2)设计划购进A种电器件数为x,根据购进总钱数不超过23000元及获利不少于13300元求得x的范围,依据题意列出总利润y关于x的函数关系式,利用一次函数的性质求解可得.【解答】解:(1)由题意可得:=,解得:m=1000,经检验得:m=1000是原方程的根,答:m的值为1000;(2)设计划购进A种电器件数为x,则,解得:x≤7,则x可取的整数有0、1、2、3、4、5、6、7这8种,故购进方案有8种,设所获利润为y,则y=600x+700(20﹣x)=﹣100x+14000,∵y随x的增大而减小,∴当x=0时,y取得最大值,最大值为14000元,即进货方案为A种电器0台,B种电器20台时,利润最大,最大利润为14000元.21.如图1,△ABC和△DCE是两个全等的等腰三角形,BC,CE为底边.(1)将图1中的△DCE绕C点顺时针方向旋转至∠BCE=∠ACB的位置,分别延长AB,DE交于点F(如图2),此时,四边形BCEF为何种四边形?请证明你的结论;(2)如果将图1中的△DCE绕C点顺时针旋转至∠BCE=2∠ACB的位置,连接AD,BE(如图3),证明四边形ABED为矩形;(3)在(2)的条件下,四边形ABED有无可能成为正方形?如果有可能成为正方形,求出∠ABC的度数为多少?【考点】LO:四边形综合题.【分析】(1)由全等得出∠ABC=∠ACB=∠DCE=∠DEC,进而判断出BC∥DE,即可得出∠ABC=∠F,进而得出CE∥AB,即可得出结论;(2)由等腰三角形的性质求出∠A BE=90°,同理:∠BAD=∠ADE=90°,即可得出结论;(3)由正方形得出AB=AD,进而得出△ACD是等边三角形,即可求出∠ABC=75°.【解答】解:(1)四边形BCEF是菱形,理由:∵△ABC和△DCE是两个全等的等腰三角形,BC,CE为底边.∴BC=CE,∠ABC=∠ACB=∠DCE=∠DEC,∵∠BCE=∠ACB,∴∠BCE=∠DEC,∴BC∥DE,∴∠ABC=∠F,∴∠F=∠DEC,∴CE∥AB,∴四边形BCEF是平行四边形,∵BC=CE,∴平行四边形BCEF是菱形;(2)∵∠ABC=∠ACB,∠BCE=2∠ACB,∴∠BCE=2∠ABC,∵BC=CE,∴∠CBE===90°﹣∠ABC ,∴∠CBE+∠ABC=90°,∴∠ABE=90°,同理:∠BAD=∠ADE=90°,∴四边形ABED 是矩形;(3)四边形ABED 能成为正方形,∵四边形ABED 是正方形,∴AB=AD ,∵AB=AC=CD ,∴AC=AD=CD ,∴△ACD 是等边三角形,∴∠ACD=60°,∵∠BCE=2∠ACB ,∠ABC=∠ACB=∠DCE ,∴∠ACB+∠BCE+∠DCE+∠ACD=360°,∴∠ABC+2∠ABC+∠ABC=300°,∴∠ABC=75°,22.如图,已知抛物线y=﹣x 2+2x 的顶点为A ,直线y=x ﹣2与抛物线交于B ,C 两点.(1)求A ,B ,C 三点的坐标;(2)作CD ⊥x 轴于点D ,求证:△ODC ∽△ABC ;(3)若点P 为抛物线上的一个动点,过点P 作PM ⊥x 轴于点M ,则是否还存在除C 点外的其他位置的点,使以O ,P ,M 为顶点的三角形与△ABC 相似?若存在,请求出这样的P 点坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把抛物线解析式化为顶点式可求得A点坐标,联立直线与抛物线解析式,解方程组,可求得B、C的坐标;(2)由A、B、C三点的坐标可求得AB、BC和AC的长,可判定△ABC为直角三角形,且可得=,可证得结论;(3)设M(x,0),则P(x,﹣x2+2x),从而可表示出OM和PM的长,分=和=两种情况,分别得到关于x的方程,可求得x的值,可求得P点坐标.【解答】解:(1)∵y=﹣x2+2x=﹣(x﹣1)2+1,∴A(1,1),联立直线与抛物线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)证明:∵A(1,1),B(2,0),C(﹣1,﹣3),∴AB==,BC==3,AC==2,∴AB2+BC2=2+18=20=AC2,∴△ABC是以AC为斜边的直角三角形,∴∠ABC=∠ODC,∵C(﹣1,﹣3),∴OD=1,CD=3,∴==,∴△ODC∽△ABC;(3)设M(x,0),则P(x,﹣x2+2x),∴OM=|x|,PM=|﹣x2+2x|,∵∠OMP=∠ABC=90°,∴当以△OPM与△ABC相似时,有=或=两种情况,①当=时,则=,解得x=或x=,此时P点坐标为(,)或(,﹣);②当=时,则=,解得x=5或x=﹣1(与C点重合,舍去),此时P点坐标为(5,﹣15);综上可知存在满足条件的点P,其坐标为(,)或(,﹣)或(5,﹣15).。

山东省济宁市邹城市2017届中考数学模拟试题六

山东省济宁市邹城市2017届中考数学模拟试题六

中考数学试题6一、选择题:本大题共10小题,每小题3分,共30分.1.在0,2-,1,12这四个数中,最小的数是( )A. 0 B. 2- C. 1 D. 122.下列计算正确的是( )A .532x x x =⋅B .236x x x =÷ C. 633)(x x = D .x x =-13.已知:如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=50°.那么∠2的度数是( )A. 20°B. 30°C. 40°D. 50°4.如图所示几何体是由4个大小完全一样的正方体组成的,它的左视图是( )A .B . C. D .5. 如图,在⊙O 中, , ,∠AOB=40°,则∠ADC 的度数是( )A .15°B .20°C .30°D .40°6.已知32=-y x ,那么代数式y x 423+-的值是( )A .-3B .0C .6D .97.已知如图,将△ABE 向右平移2cm 得△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16B .18C .20D .218.在学校开展的“争做最美中学生”的一次演讲比赛中,编号分别为1,2,3,4,5的五位同学最后成绩如下表所示:869题) (第3题)那么这五位同学演讲成绩的众数与中位数分别是( )A.96,88B. 86,86C.88,86D. 86,889.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .613B .513C .413D .31310.如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB=45,反比例函数48y x =在第一象限内的图象经过点A ,与BC 交于点F.则△AOF 的面积等于( ) A. 60 B. 80 C. 30 D. 40二、填空题:本大题共5小题,每小题3分,共15分.11.若式子1-x 有意义,则实数x 的取值范围是 .12.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E.AD ,CE 交于点H.请你添加一个适当条件: ,使△AEH ≌△CEB.13.如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,那么CEBC 的值等于 . 14.已知A ,B 两地相距160 km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4h 到达.这辆汽车原来的速度是 km/h.15.按一定规律排列的一列数:21,1,,119,1311,1713,…….请你仔细观察,按照此规律方框内的数字应为 .三、解答题:本大题共7小题,共55分.16.(6分)先化简,再求值:2(2)()a a b a b -++,其中1-=a ,2=b .17.(6分)2016年6月19日是父亲节,某商店老板统计了近四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.(第13(第10题)请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.18.(7分)某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC的坡度为1∶3.(1)求新坡面的坡角α;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.19.(8分)某地2014年为做好“精准扶贫”工作,投入1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年基础上增加投入1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,政府计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天补助8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?20.(8分)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,延长CB 至点F ,使CF =CA ,连接AF ,∠ACF 的平分线分别交AF ,AB ,BD 于点E ,N ,M ,连接EO.(1)如果EO=2,求正方形ABC D 的边长;(2)猜想线段EM 与CN 的数量关系并加以证明.21.(9分)已知点P (0x ,0y )和直线b kx y +=,则点P 到直线b kx y +=的距离d 可用公式2001k by kx d ++-=计算.例如:求点P(1-,2)到直线73+=x y 的距离.解:因为直线73+=x y ,其中3=k k ,7=b .所以点P(1-,2)到直线73+=x y 的距离为:()51010231721312200==++--⨯=++-=k by kx d . 根据以上材料,解答下列问题:(1)求点P (1,1-)到直线1-=x y 的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线93+=x y 的位置关系并说明理由;(3)已知直线42+-=x y 与62--=x y 平行,求这两条直线之间的距离.22.(11分)如图,已知抛物线m :y =ax 2-6ax +c(a >0)的顶点A 在x 轴上,并过点B(0,1) .直线n :y =-21x +27与x 轴交于点D.与抛物线m 的对称轴l 交于点F ,过B 点的直线BE 与直线n 相交于点E (7 ,7).(1)求抛物线m 的解析式;(2)P 是l 上的一个动点,若以B ,E ,P 为顶点的三角形的周长最小,求点P 的坐标;(3)抛物线m 上是否存在一动点Q ,使以线段FQ 为直径的圆恰好经过点D ?若存在,求点Q 的坐标;若不存在,请说明理由.。

2017年度山东地区济宁市中考数学试卷(含答案解析)

2017年度山东地区济宁市中考数学试卷(含答案解析)

2017年山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)16的倒数是()A.6 B.﹣6 C.16D.﹣162.(3分)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.53.(3分)下列图形中是中心对称图形的是()A.B.C.D.4.(3分)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣45.(3分)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C. D.6.(3分)若√2x−1+√1−2x+1在实数范围内有意义,则x满足的条件是()A.x≥12B.x≤12C.x=12D.x≠127.(3分)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣1aC.a5D.a68.(3分)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.18B.16C.14D.129.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为BD̂,则图中阴影部分的面积是()A.π6B.π3C.π2﹣12D.1210.(3分)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:ma2+2mab+mb2= .12.(3分)请写出一个过点(1,1),且与x轴无交点的函数解析式:.13.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是 .14.(3分)如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限内交于点P (a ,b ),则a 与b 的数量关系是 .(第14题) (第15题)15.(3分)如图,正六边形A 1B 1C 1D 1E 1F 1的边长为1,它的六条对角线又围成一个正六边形A 2B 2C 2D 2E 2F 2,如此继续下去,则正六边形A 4B 4C 4D 4E 4F 4的面积是 .三、解答题(本大题共7小题,共55分) 16.(5分)解方程:2xx−2=1﹣12−x .17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是BĈ的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为√5的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P 是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:(x>0)上的任意一点,点N是x轴正半轴上的在平面直角坐标系中,点M是曲线y=3√3x任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M 的坐标是(√3,3),点N的坐标是(√3,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,√3),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.2017年山东省济宁市中考数学试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.A.2.D.3.C.4.B.5.B.6.C 7.D.8.B.9.A.10.D.二、填空题(本大题共5小题,每小题3分,共15分)11.m(a+b)2 12.y=1x (答案不唯一).13.{x+12y=4823x+y=48.14.a+b=0.15.√318.三、解答题(本大题共7小题,共55分)16.解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.17.解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:3240×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.18.解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x 2+90x ﹣1800=200,解得x 1=40,x 2=50, ∵50>48,x 2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.19.【解答】(1)证明:连接OD ,∵D 为BC ̂的中点,∴BD ̂=CD ̂,∴∠BOD=∠BAE ,∴OD ∥AE ,∵DE ⊥AC ,∴∠ADE=90°,∴∠AED=90°,∴OD ⊥DE ,则DE 为圆O 的切线;(2)解:过点O 作OF ⊥AC ,∵AC=10,∴AF=CF=12AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED 为矩形,∴FE=OD=12AB ,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.20.解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN ,∵直线EF 是AB 的垂直平分线,∴NA=NB , 由折叠可知,BN=AB ,∴AB=BN=AN ,∴△ABN 是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=12∠ABN=30°.(2)结论:MN=12BM .折纸方案:如图2中,折叠△BMN ,使得点N 落在BM 上O 处,折痕为MP ,连接OP . 理由:由折叠可知△MOP ≌△MNP ,∴MN=OM ,∠OMP=∠NMP=12∠OMN=30°=∠B ,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP ,∴△MOP ≌△BOP ,∴MO=BO=12BM ,∴MN=12BM .21.解:(1)∵函数图象与x 轴有两个交点,∴m ≠0且[﹣(2m ﹣5)]2﹣4m (m ﹣2)>0,解得:m <2512且m ≠0. ∵m 为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x 2+x .(2)抛物线的对称轴为x=﹣b 2a =﹣14.∵n ≤x ≤﹣1<﹣14,a=2>0, ∴当n ≤x ≤﹣1时,y 随x 的增大而减小.∴当x=n 时,y=﹣3n .∴2n 2+n=﹣3n ,解得n=﹣2或n=0(舍去).∴n 的值为﹣2.(3)∵y=2x 2+x=2(x+14)2﹣18,∴M (﹣14,﹣18). 如图所示:当点P 在OM 与⊙O 的交点处时,PM 有最大值.设直线OM 的解析式为y=kx ,将点M 的坐标代入得:﹣14k=﹣18,解得:k=12. ∴OM 的解析式为y=12x . 设点P 的坐标为(x ,12x ).由两点间的距离公式可知:OP=√x 2+(12x)2=√5, 解得:x=2或x=﹣2(舍去).∴点P 的坐标为(2,1).∴当点P 与点M 距离最大时函数C 2的解析式为y=2(x ﹣2)2+1.22.解:(1)∵∠ONP=∠M ,∠NOP=∠MON ,∴△NOP ∽△MON ,23.∴点P 是△MON 的自相似点;过P 作PD ⊥x 轴于D ,则tan ∠POD=MN ON =√3,∴∠AON=60°,∵当点M 的坐标是(√3,3),点N 的坐标是(√3,0),∴∠MNO=90°,∵△NOP ∽△MON ,∴∠NPO=∠MNO=90°,在Rt △OPN 中,OP=ONcos60°=√32, ∴OD=OPcos60°=√32×12=√34,PD=OP •sin60°=√32×√32=34,∴P (√34,34); (2)作MH ⊥x 轴于H ,如图3所示:∵点M 的坐标是(3,√3),点N 的坐标是(2,0),∴OM=√32+(√3)2=2√3,直线OM 的解析式为y=√33x ,ON=2,∠MOH=30°, 分两种情况:①如图3所示:∵P 是△MON 的相似点,∴△PON ∽△NOM ,作PQ ⊥x 轴于Q ,∴PO=PN ,OQ=12ON=1,∵P 的横坐标为1,∴y=√33×1=√33,∴P (1,√33); ②如图4所示:由勾股定理得:MN=√(√3)2+12=2,∵P 是△MON 的相似点,∴△PNM ∽△NOM ,∴PN ON =MN MO ,即PN 2=2√3, 解得:PN=2√33,即P 的纵坐标为2√33,代入y=√33得:2√33=√33x , 解得:x=2,∴P (2,2√33);综上所述:△MON 的自相似点的坐标为(1,√33)或(2,2√33); (3)存在点M 和点N ,使△MON 无自相似点,M (√3,3),N (2√3,0);理由如下: ∵M (√3,3),N (2√3,0),∴OM=2√3=ON ,∠MON=60°,∴△MON 是等边三角形,∵点P 在△MON 的内部,∴∠PON ≠∠OMN ,∠PNO ≠∠MON ,∴存在点M 和点N ,使△MON 无自相似点.。

2017数学中考模拟考试试题及答案

2017数学中考模拟考试试题及答案

2017数学中考模拟考试试题A级基础题1.计算6x3•x2的结果是( )A.6xB.6x5C.6x6D.6x92.(2013年湖南湘西州)下列运算正确的是( )A.a2-a4=a8B.(x-2)(x-3)=x2-6C.(x-2)2=x2-4D.2a+3a=5a3.下列运算正确的是( )A.a+a=a2B.(-a3)2=a5C.3a•a2=a3D.(2a)2=2a24.(2013年山东济宁)如果整式xn-2-5x+2是关于x的三次三项式,那么n=( )A.3B.4C.5D.65.下列计算正确的是( )A.(-p2q)3=-p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m-1)=m-3m2D.(x2-4x)x-1=x-46.如果单项式-xa+1y3与12ybx2是同类项,那么a,b的值分别为( )A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=27.计算(-5a3)2的结果是( )A.-10a5B.10a6C.-25a5D.25a68.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( )A.-5x-1B.5x+1C.13x-1D.13x+19.化简:(a+b)2+a(a-2b)2017数学中考模拟考试试题B级中等题10.若一多项式除以2x2-3,得到的商式为7x-4,余式为-5x+2,则此多项式为( )A.14x3-8x2-26x+14B.14x3-8x2-26x-10C.-10x3+4x2-8x-10D.-10x3+4x2+22x-1011.(2011年安徽芜湖)如图1­3­2,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm212.若关于x的多项式-5x3-(2m-1)x2+(2-3n)x-1不含二次项和一次项,求m,n的值.13.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.2017数学中考模拟考试试题C级拔尖题14.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?2017数学中考模拟考试试题答案1.B2.D3.D4.C5.D6.C7.D8.A9.解:原式=a2+2ab+b2+a2-2ab=2a2+b2.10.A 11.D12.解:2m-1=0,2-3n=0.解得m=12,n=23.13.解:原式=4x2-9-4x2+4x+x2-4x+4=x2-5.当x=-3时,原式=(-3)2-5=3-5=-2.14.解:方案(1)的调价结果为:(1+10%)(1-10%)a=0.99a;方案(2)的调价结果为:(1-10%)(1+10%)a=0.99a;方案(3)的调价结果为:(1+20%)(1-20%)a=0.96a.由此可以得到这三种方案的调价结果是不一样的.最后都没有恢复原价.。

山东省济宁市邹城市2017届中考数学模拟试题3

山东省济宁市邹城市2017届中考数学模拟试题3

中考数学模拟试题3一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的的四个选项中,只有一项符合题目要求。

)1.-23的倒数是( ) A. - 32 B. 32 C. -23 D. 232.据《齐鲁晚报-今日运河》报道, 5月5日,济宁城区东五里营棚户区改造现场(东南华城片区二期工程),34栋错落有致的住宅楼大部分已经封顶。

该项目是济宁市棚户区改造项目之一,年内济宁将改造棚户区17985户,改造面积252.59万平方米。

把面积252.59万平方米用科学计数法表示,且保留两个有效数字后为( )平方米.A .2500000B .6105.2⨯C .5105.2⨯D .3000000 3.下列运算正确的是( ) A .336aa a += B .2()2ab a b +=+ C .22()ab ab --=D .624aa a ÷=4.若点A (m -3,1-3m )在第三象限,则m 的取值范围是( ).A .31>m B .3<m C . 3>m D .331<<m 5. 为省运会选拔参赛队员,济宁市体委对某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,确定参赛球员。

下列四个结论中,不正确的是( ) A .甲运动员得分的极差大于乙运动员得分的极差 B .甲运动员得分的的中位数小于乙运动员得分的的中位数 C .甲运动员的得分平均数大于乙运动员的得分平均数 D .乙运动员的成绩比甲运动员的成绩稳定6.某商店的老板销售一种商品,他要以利润不低于进价的20%的价格出售,但为了获得更高的利润,他以利润高出进价的80%的价格标价。

如果你想买下标价为360元的这种商品,那么商店老板最多愿意降价( )第7题第5题图A. 80元B.100元C.120元D.160元7. 如图,ABCD 、CEFG 是正方形,E 在CD 上且BE 平分∠DBC ,O 是BD 中点,直线BE 、DG 交于H .BD ,AH 交于M ,连接OH ,下列四个结论:①BE ⊥GD ;②OH=21BG ;③AH=BH ;④∠AHD=45°,其中正确的结论个数有( )A .1个B .2个C . 3个D .4个8.定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( ) A.21 B.52 C.53 D.1879.某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A .小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法: 方法一:在底边BC 上找一点D ,连接AD 作为分割线; 方法二:在腰AC 上找一点D ,连接BD 作为分割线;方法三:在腰AB 上找一点D ,作DE ∥BC ,交AC 于点E ,DE 作为分割线;方法四:以顶点A 为圆心,AD 为半径作弧,交AB 于点D ,交AC 于点E ,弧DE 作为分割线.这些分割方法中分割线最短的是( )A .方法一B .方法二C .方法三D .方法四10.如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2014次交换位置后,小鼠所在的座号是( ).A .1B .2C .3D .4 二、填空题:本大题共5小题,每小题3分,共15分.11.货架上摆放同一种盒装巧克力,其三视图如图所示,则货架上共摆放巧克力为_____盒…12.如图,在每个小正方形的边长均为l 个单位长度的方格纸中,有△ABC 和直线MN , 点A 、B 、C 均在小正方形的顶点上.在图中找一点D (D 点在小正方形的顶点上),使△ABC 与△DBC 关于直线MN 对称. 连接AD 、CD ,那么四边形ABCD 的周长为________.13.如图所示,五角星的顶点是一个正五边形的五个顶点,五角星是旋转对称图形.它绕中心O 至少旋转_______度才能和它本身重合.14.Rt△AOB 中,O 为坐标原点,∠AOB=90°,∠B=30°,如果点A 在反比例函数y=x1(x>0)的图像上运动,那么点B 在函数 (填函数解析式,x>0)的图像上运动.)=4为非负整数时,有(m+2013x (1)已知a 是方程012=--x x 的一个根,求第14题图第12题俯视图 左视图 主视图第11题图3 4(备用图)(第16(2)题)6(2)如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.①求x ,y 的值;②在备用图中完成此方阵图.17.(本小题满分7分)为了了解某校初三年级1000名学生的视力情况,随机抽查了部分初三学生的视力情况,经过统计绘制了频率分布表和频率分布直方图.频率分布表 频率分布直方图根据图表中的信息回答下列问题:(1)写出频率分布表中的a = ,b = ,补全频率分布直方图; (2)判断这组数据的中位数落在哪个小组内?(3)若视力在4.85~5.15范围内均属于正常,不需要矫正.试估计该校初三学生视力正常的人数约为多少人? 18.(本小题满分6分)如图,小岛A 在港口P 的南偏西︒45方向,距离港口100海里处,甲船从A 出发,沿AP 方向以10频率 组距视力海里/时的速度驶向港口,乙船从港口P 出发,沿南偏东︒60方向以20海里/时的速度驶离港口。

山东省济宁市邹城市2017届中考数学模拟试题(2)(无答案)

山东省济宁市邹城市2017届中考数学模拟试题(2)(无答案)

2017年中考数学模拟试题(二)第I 卷(选择题 共30分)一、 选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求)1.已知边长为a 的正方形的面积为8,则下列说法中,错误的是( ) A .a 是无理数 B .a 是方程x 2﹣3=0的解 C .a 是8的算术平方根 D .3<a <4 2.下列计算正确的是( )A.2a 3+3a 3=5a 6B.(x 5)3=x 8C.-2m (m -3)=-2m 2-6mD.(-3a -2)(-3a +2)=9a 2-43.如图,直线a ∥b ,若∠1=45°,∠2=55°,则∠3等于( ) A.80° B.90° C.955° D.100°4. 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是A .10πB .15πC .20πD .30π5.函数14y x =-的自变量x 的取值范围是( ) A .3x ≤ B .4x ≠ C .3x ≥且4x ≠ D .3x ≤或4x ≠ 6.下列方程中,有两个相等实数根的方程是( )A .x (x ﹣1)=0B .x 2﹣x+1=0 C .x 2﹣2=0 D .x 2﹣2x+1=07.如图,在直角∠O 的内部有一滑动杆AB ,当端点A 沿直线AO 向下滑动时,端点B 会随之自动地沿直线OB 向左滑动,如果滑动杆从图中AB 处滑动到A′B′处,那么滑动杆的中点C 所经过的路径是( ) A.直线的一部分 B.圆的一部分 C.双曲线的一部分 D.抛物线的一部分8.某小组7位同学的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是【 】A. 30,27B. 30,29C. 29,30D. 30,289. 8、如图,□ABCD 中,点E 是边A D 的中点,EC 交对角线BD 于点F ,则EF :FC 等于( )A .3:2B .3:1C .1:1D .1:210.如图,已知:n 为正整数,点A 1(x 1,y 1),A 2(x 2,y 2), A 3(x 3,y 3),A 4(x 4,y 4)…A n (x n ,y n )均在直线y=x ﹣1上,点B 1(m 1,p 1),B 2(m 2,p 2),B 3(m 3,p 3)…B n (m n ,p n )均在双曲线y=﹣上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴, B 2A 3⊥y 轴,A 3B 3⊥x 轴,…,A n B n ⊥x 轴,B n A n+1⊥y 轴, 若点A 1的横坐标为﹣1,则点A 2017的坐标为( )A .(﹣1,﹣2)B .(2,1)C .(,)D .(,﹣2)第II 卷(非选择题共70分)二、填空题(本大题共5小题,每小题3分,共15分) 11.不等式组的解集为 .12.如图,在正五边形ABCDE 中,以BC 为一边,在形内作等边△BCF ,连结AF .则∠AFB 的大小是 度.13.13.如图,在周长为12的菱形ABCD 中,AE=1,AF=2,若P 为对角线BD 上一动点,则EP+FP 的最小值为 14. 求++++322221…+22014的值,可令S=++++322221…+22014,则2S=+++32222…+22015,因此2S ﹣S =22015-1.仿照以上推理,计算出1+5+52+53+ (52014)的值为 .15.如图:在x 轴的上方,直角∠BOA 绕原点O 顺时针方向旋转,若∠BOA 的两边分别与函数y=-1x 、y=2x 的图象交于B 、A 两点,则tanA= . 三、解答题(本大题共7小题,共55分) 16.(6分) 先化简,再求值:⎪⎭⎫ ⎝⎛-+-÷-+2824222x x x x x x ,其中12-=x .17.(6分) 某学校为了增强学生体质,决定开设以下体育课外活动项目:A .篮球 B .乒乓球C .羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图2补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率.(用树状图或列表法解答)图1 图218.(7分)如图,某电信部门计划修建一条连接B、C两地的电缆。

2017年山东省济宁市中考数学试卷(解析版)

2017年山东省济宁市中考数学试卷(解析版)
试卷第 6页,总 6页
2017 年山东省济宁市中考数学试卷(解析版)
题号 得分


注意事项:1.本试卷共 XX 页,二个大题,满分 39 分,考试时间为 100 分钟。请用钢笔 或圆珠笔直接答在试卷上。2.答卷前将密封线内的项目填写清楚。
一、单选题(共 27 分)
评卷人 得分
1. 的倒数是(3 分) A. 6 B.
C.
D. 2.单项式 与 是同类项,则 的值是(3 分)
A.
B.
C.
试卷第 3页,总 6页
D.
9.如图,A,B 是半径为 1 的⊙O 上两点,且 OA⊥OB. 点 P 从 A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点 A 运动结束. 设运动时间 为 x,弦 BP 的长度为 y,那么下面图象中可能表示 y 与 x 的函数关系的是
(3 分)
A. ① B. ④ C. ②或④ D. ①或③
二、解答题(共 12 分)
评卷人 得分
试卷第 4页,总 6页
10.
(6 分)
11. 如图,已知⊙ O 的直径 AB=12,弦 AC=10, D 是 的中点,过点 D 作 DE⊥ AC 交 AC 的延长线于点 E.
(1)求证:DE 是⊙O 的切线; (2)求 AE 的长.
(6 分)
******答案及解析****** 一、单选题(共 27 分) 1.答案:A 2.答案:D 3.答案:C
解析:
试卷第 5页,总 6页
试题分析:把一个图形绕着某一点旋转 180°,如果它能与另一个图形重合, 那么就说这两个图形点对称或中心对称.故选 C 4.答案:B 5.答案:C 6.答案:D 7.答案:B 8.答案:A 9.答案:D 二、解答题(共 12 分) 10.答案:(1)40;(2)答案见解析;(3)答案不唯一,如优秀人数逐渐增多, 增大的幅度逐渐减小等. 11.答案:(1)略;(2)11.

山东省济宁市邹城市2017届中考数学模拟试题2 精002

山东省济宁市邹城市2017届中考数学模拟试题2 精002

中考数学模拟试题2一、选择题(30分)1.下列计算中正确的一个是( )A.a 5+a 5=2a 10B.a 3·a 5=a 15C.(a 2b )3=a 2b 3D.(2)(2)a a +-=24a -2.“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260000平方米,将260000用科学记数法表示为( )A.0.26×106B.26×104C.2.6×106D.2.6×1053.已知半径分别为4cm 和7cm 的两圆相交,则它们的圆心距可能是( )A.1cmB.3cmC.10cmD.15cm 4.某校篮球课外活动小组21名同学的身高如下表A.176,176B.176,177C.176,178D.184,1785. 关于x 的方程01)12(22=+-+x k x k 有实数根,则k 的取值范围是( )A 、 41≤k B 、 041≠≤k k 且 C 、 k <41 D 、 41≥k 6.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是 ( )A.2abB.(a+b)2C.(a-b)2D.a 2+b 27.如图,⊙O 的直径ABDAB C 6题图垂直于弦CD ,垂足为H ,点P 是弧AC 上的一点(点P 不与A ,C 重合),连结PC ,PD ,PA ,AD ,点E 在AP 的延长线上,PD 与AB 交于点F .给出下列四个结论:①CH 2=AH·BH;②弧BC=弧BD ;③△ADP ∽△FDA ;④∠ADC=∠APD .其中正确的有( ) A .①②③ B.①②④ C .②③④ D .①③④8.如图,已知第一象限内的点A 在反比例函数y=的图象上,第二象限内的点B 在反比例函数y=的图象上,且OA⊥OB,cosA=0.5,则k 的值为( ) A .﹣3 B .﹣6 C .﹣ D .﹣29.如图所示,在直角坐标系中,A 点坐标为(-3,-2),⊙A 的半径为1,P 为x•轴上一动点,PQ切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( )A .(-4,0)B .(-2,0)C .(-4,0)或(-2,0)D .(-3,0) 10. 如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC =6,BD =8,动点P 从点B 出发,沿着B -A -D 在菱形ABCD 的边上运动,运动到点D 停止,点'P 是点P 关于BD 的对称点,'PP 交BD 于点M ,若BM =x ,'OPP △的面积为y ,则y 与x 之间的函数关系对应的图像为( )二、填空(每小题3分,共15分) 11. 要使式子a +2a有意义,a 的取值范围是 . 7题图8题图9题图MOP'P DBAC12.分解因式:3x 2+6x +3=______________.13.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为___________cm 2.14. 如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数)0(<=x xky 的图象上,则k 的值等于 . 15. 将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图15-1.在图15-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图15-1所示的状态,那么按上述规则连续完成3次变换后,骰子朝上一面的点数是________;连续完成2015次变换后,骰子朝上一面的点数是________.三、解答题(共55分)16.(本题5分)计算:()23823160sin 2302-+--+⎪⎭⎫⎝⎛-+︒--π17.(本题8分) 某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为 ,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;图15-1 图15-2(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.18.(本题9分)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?19. (本题9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1, DC=3,求AE的长.20.(本题8分)如图,游客从某旅游区的景点A处下山至C处有两种路径。

山东省济宁市邹城市2017届中考数学模拟试题(五)(无答案)

山东省济宁市邹城市2017届中考数学模拟试题(五)(无答案)

中考数学试题5一、选择题:本大题共10小题,每小题3分,共30分. 1. 23-的相反数是( ) A. 23- B. 32 C . 23 D. 32- 2. 化简()160.5x --的结果是( )A. 160.5x --B. 5.016+xC. 816-xD. 168x -+ 3.x 必须满足( ) A.x ≤2 B. x ≥2 C. x <2 D.x >24.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该 正方体中和“值”字相对的字是( )A .记B .观C .心D .间5.三角形两边长分别为3和6,第三边是方程213360x x -+=的根,则三角形的周长为( ) A.13 B.15 C.18 D.13或186.匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状是下图中哪一个( )A B C D 7.只用下列哪一种正多边形,可以进行平面镶嵌( ) A .正五边形 B .正六边形 C .正八边形 D .正十边形 8. 解分式方程22311x x x++=--时,去分母后变形正确的为( ) A .2+(x+2)=3(x-1) B .2-x+2=3(x-1)C .2-(x+2)=3D . 2-(x+2)=3(x-1)9.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=米,坡顶有一旗杆BC ,旗杆顶端B 点与值 观 间心记 价DCBAA 点有一条彩带相连,若AB=10米,则旗杆BC 的高度为( )A.5米 B.6米 C.8米 D.(3+米10.将一副三角尺(在t R ACB ∆中,∠ACB=090,∠B=060;在t R EDF ∆中,∠EDF=090,∠E=045)如图摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C.将EDF ∆绕点D 顺时针方向旋转角(060)αα<<, 'DE 交AC 于点M ,'DF 交BC 于点N ,则PMCN的值为( ) A.12二、填空题:本大题共5小题,每小题3分,共15分. http://ww w.xkb 11. 2014年我国国内生产总值约为636000亿元,用科学计数法表示636000亿元约为 亿元12. 分解因式:22312y x -=13.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温的方差大小关系为2S 甲2S 乙 (填>或<)14.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90O,得到的点B 的坐标为 15.若221223127⨯-⨯=-⨯⨯, 2222(1223)(3445)2311⨯-⨯+⨯-⨯=-⨯⨯,222222(1223)(3445)(5667)3415⨯-⨯+⨯-⨯+⨯-⨯=-⨯⨯,则222222(1223)(3445).........(2n 1)(2n)2(2n 1)n ⎡⎤⨯-⨯+⨯-⨯++--+=⎣⎦三、解答题:本大题共7小题,共55分. 16.(本题满分5分) 计算:01123π-+-17. (本题满分7分)某学校初三年级男生共200人,随机抽取10名测量他们的身高为(单位:cm ): 181、176、169、155、163、175、173、167、165、166.PNM F 'FE 'EDCBA(1)求这10名男生的平均身高和上面这组数据的中位数; (2)估计该校初三年级男生身高高于170cm 的人数;(3)从身高(单位:cm )为181、176、175、173的男生中任选2名,求身高为181cm 的男生被抽中的概率.18. (本题满分7分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件。

2017年山东省济宁市中考数学试卷(含解析)

2017年山东省济宁市中考数学试卷(含解析)

2017年山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)的倒数是()A.6 B.﹣6 C.D.﹣2.(3分)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.53.(3分)下列图形是中心对称图形的是()A.B.C.D.4.(3分)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣65.(3分)下列几何体中,主视图、俯视图、左视图都相同的是()A. B.C.D.6.(3分)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x= D.x≠7.(3分)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a68.(3分)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.10.(3分)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:ma2+2mab+mb2=.12.(3分)请写出一个过点(1,1),且与x轴无交点的函数解析式:.13.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.14.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.15.(3分)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.三、解答题(本大题共7小题,共55分)16.(5分)解方程:=1﹣.17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2.折叠该纸片,探究MN与BM 的数量关系.写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1.①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.2017年山东省济宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:的倒数是6.故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.5【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.【点评】本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.3.(3分)下列图形是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000016=1.6×10﹣5;故选;B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)下列几何体中,主视图、俯视图、左视图都相同的是()A. B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.(3分)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x= D.x≠【分析】根据二次根式有意义的条件即可求出x的值.【解答】解:由题意可知:解得:x=故选(C)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.7.(3分)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a6【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则化简求出答案.【解答】解:(a2)3+a2•a3﹣a2÷a﹣3=a6+a5﹣a5=a6.故选:D.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.8.(3分)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.【分析】画树状图展示所以12种等可能的结果数,再找出两次摸出的球上的汉字组成“孔孟”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率==.故选B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.【点评】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.10.(3分)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【解答】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③,故选D.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:ma2+2mab+mb2=m(a+b)2.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)请写出一个过点(1,1),且与x轴无交点的函数解析式:y=(答案不唯一).【分析】反比例函数的图象与坐标轴无交点.【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=1×1=1,所以反比例函数y=(答案不唯一)符合题意.故答案可以是:y=(答案不唯一).【点评】本题考查了反比例函数的性质,此题属于开放题,答案不唯一,若是二次函数也符合题意.13.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.【点评】此题主要考查了角平分线的性质以及坐标与图形的性质,解题时注意:第二象限内的点的横坐标为负,纵坐标为正,得出P点位置是解题关键.15.(3分)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.【点评】本题考查了正六边形的性质、相似多边形的性质、正六边形面积的计算等知识;熟练掌握正六边形的性质,由相似多边形的性质得出规律是关键.三、解答题(本大题共7小题,共55分)16.(5分)解方程:=1﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【分析】(1)利用折线统计图结合条形统计图,利用优秀人数÷优秀率=总人数求出即可;(2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案;(3)利用已知条形统计图以及折线统计图分析得出答案.【解答】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点评】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【分析】(1)每天的销售利润W=每天的销售量×每件产品的利润;(2)根据配方法,可得答案;(3)根据自变量与函数值的对应关系,可得答案.【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点评】本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.【分析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED 为矩形,求出FE的长,由AF+EF求出AE的长即可.【解答】(1)证明:连接OD,∵D为的中点,∴=,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠ADE=90°,∴∠AED=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.【点评】此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2.折叠该纸片,探究MN与BM 的数量关系.写出折叠方案,并结合方案证明你的结论.【分析】(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O 处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.【点评】本题考查翻折变换、矩形的性质、剪纸问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折变换添加辅助线,属于中考常考题型.21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1.①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.【分析】(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m的不等式组,从而可求得m的取值范围;(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y 随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此可求得点P的坐标,从而可得到函数C2的解析式.【解答】解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质,勾股定理的应用,待定系数法求一次函数的解析式,找出PM取得最大值的条件是解题的关键.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P 是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠AON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=,∴OD=OPcos60°=×=,P D=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.【点评】本题是反比例函数综合题目,考查了相似三角形的性质、相似点的判定与性质、三角函数、坐标与图形性质、勾股定理、等边三角形的判定与性质、直线解析式的确定等知识;本题综合性强,有一定难度,熟练掌握相似点的判定与性质是解决问题的关键.。

山东省济宁市2017届中考数学模拟试卷(含解析)

山东省济宁市2017届中考数学模拟试卷(含解析)

2017年山东省济宁市中考数学模拟试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.的绝对值的相反数是()A.B.C.2 D.﹣22.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为()A.2.5×10﹣5B.2.5×105C.2.5×10﹣6D.2.5×1063.下列运算正确的是()A.(ab)5=ab5B.a8÷a2=a6C.(a2)3=a5D.(a﹣b)5=a5﹣b54.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.5.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34° B.56° C.124°D.146°6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3) B.(2,﹣3)C.(﹣3,﹣2) D.(3,﹣2)7.分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁9.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.π D.π二、填空题(本大题共5个小题,每小题3分,共15分,答案写在答题卡上)11.已知|a+2|=0,则a= .12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= .13.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.15.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB= .三、解答题(本大题共7个小题,共55分,解答过程写在答题卡上)16.(6分)计算:(﹣2)3+﹣2sin30°+(2016﹣π)0.17.(6分)先化简,再求代数式(﹣)÷的值,其中x=2sin60°﹣1,y=tan45°.18.(7分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD 的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)19.(8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.20.(10分)六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B 种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B 品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?21.(12分)已知:AB、CD为⊙O的直径,弦BE交CD于点F,连接DE交AB于点G,GO=GD.(1)如图1,求证:DE=DF;(2)如图2,作弦AK∥DC,AK交BE于点N,连接CK,求证:四边形KNFC为平行四边形;(3)如图3,作弦CH,连接DH,∠CDH=3∠EDH,CH=2,BE=4,求DH的长.22.(6分)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.2017年山东省济宁市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.的绝对值的相反数是( )A .B .C .2D .﹣2【考点】绝对值;相反数.【分析】根据绝对值的定义,这个数在数轴上的点到原点的距离,﹣的绝对值为;再根据相反数的定义,只有符号不同的两个数是互为相反数,的相反数为﹣;【解答】解:﹣的绝对值为:|﹣|=,的相反数为:﹣,所以﹣的绝对值的相反数是为:﹣, 故选:B .【点评】此题考查了绝对值及相反数,关键明确:相反数的定义,只有符号不同的两个数是互为相反数;绝对值的定义,这个数在数轴上的点到原点的距离.2.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为( ) A .2.5×10﹣5B .2.5×105C .2.5×10﹣6D .2.5×106【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列运算正确的是()A.(ab)5=ab5B.a8÷a2=a6C.(a2)3=a5D.(a﹣b)5=a5﹣b5【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据积的乘方、同底数幂的除法、幂的乘方计算法则进行解答即可.【解答】解:A、(ab)5=a5b5,故本选项错误;B、a8÷a2=a8﹣2a6,故本选项正确;C、(a2)3=a2×3=a6,故本选项错误;D、(a﹣b)5=(a﹣b)( a⁴+a3b+a2b2+ab3+b⁴),故本选项错误;故选:B.【点评】本题考查同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34° B.56° C.124°D.146°【考点】平行线的性质.【分析】根据平行线性质求出∠3=∠1=50°,代入∠2+∠3=180°即可求出∠2.【解答】解:∵l1∥l2,∴∠1=∠3,∵∠1=56°,∴∠3=56°,∵∠2+∠3=180°,∴∠2=124°,故选C.【点评】本题考查了平行线的性质和邻补角的定义,注意:两直线平行,同位角相等.6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3) B.(2,﹣3)C.(﹣3,﹣2) D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.7.分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=3【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选B.【点评】此题考查了分式方程的解,求出分式方程的解是解本题的关键.8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【解答】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点【考点】二次函数的性质.【分析】根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2﹣3=0解的情况对D进行判断.【解答】解:A、a=2,则抛物线y=2x2﹣3的开口向上,所以A选项错误;B、当x=2时,y=2×4﹣3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2﹣3=0,此方程有两个不相等的实数解,所以D选项正确.故选D.【点评】本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(﹣,),对称轴为直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小.10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.π D.π【考点】弧长的计算;圆周角定理.【分析】直接利用等腰三角形的性质得出∠A的度数,再利用圆周角定理得出∠BOC的度数,再利用弧长公式求出答案.【解答】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=100°,∵AB=4,∴BO=2,∴的长为: =π.故选:B.【点评】此题主要考查了弧长公式应用以及圆周角定理,正确得出∠BOC的度数是解题关键.二、填空题(本大题共5个小题,每小题3分,共15分,答案写在答题卡上)11.已知|a+2|=0,则a= ﹣2 .【考点】绝对值.【分析】根据绝对值的意义得出a+2=0,即可得出结果.【解答】解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.【点评】本题考查了绝对值的意义;熟记0的绝对值等于0是解决问题的关键.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= 120°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.13.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1>y2(填“>”或“<”).【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】根据一次函数的系数k的值可知,该函数在x<0内单调递减,再结合x1<x2<0,即可得出结论.【解答】解:在反比例函数y=中k=2>0,∴该函数在x<0内单调递减.∵x1<x2<0,∴y1>y2.故答案为:>.【点评】本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内单调递减.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的单调性是关键.14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.【考点】矩形的性质;线段垂直平分线的性质;等边三角形的判定与性质.【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.【点评】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.【考点】三角形的外接圆与外心.【分析】首先作直径AE,连接CE,易证得△ABH∽△AEC,然后由相似三角形的对应边成比例,即可求得⊙O半径.【解答】解:作直径AE,连接CE,∴∠ACE=90°,∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠AHB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==,故答案为:.【点评】此题考查了圆周角定理与相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题(本大题共7个小题,共55分,解答过程写在答题卡上)16.计算:(﹣2)3+﹣2sin30°+(2016﹣π)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】原式利用乘方的意义,算术平方根定义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=﹣8+4﹣1+1=﹣4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.先化简,再求代数式(﹣)÷的值,其中x=2sin60°﹣1,y=tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先将分子、分母因式分解、将括号内通分,同时将除法转化为乘法,再计算括号内的减法,最后约分可得,将x、y的值整理后代入即可.【解答】解:原式=[﹣]•=•=﹣=﹣,∵x=2sin60°﹣1=2×﹣1=﹣1,y=tan45°=1,∴原式=﹣=﹣=﹣.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算的顺序和运算法则是解题的关键.18.在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意得AC=20米,AB=1.5米,过点B做BE⊥CD,交CD于点E,利用∠DBE=32°,得到DE=BEtan32°后再加上CE即可求得CD的高度.【解答】解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.【点评】此题主要考查了仰角问题的应用,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.【考点】列表法与树状图法;勾股数.【分析】(1)利用树状图展示12种等可能的结果数;(2)根据勾股数可判定只有A 卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==. 【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.也考查了勾股数.20.(10分)(2017•济宁模拟)六•一前夕,某幼儿园园长到厂家选购A 、B 两种品牌的儿童服装,每套A 品牌服装进价比B 品牌服装每套进价多25元,用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别为多少元?(2)该服装A 品牌每套售价为130元,B 品牌每套售价为95元,服装店老板决定,购进B 品牌服装的数量比购进A 品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A 品牌的服装多少套?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)首先设A 品牌服装每套进价为x 元,则B 品牌服装每套进价为(x ﹣25)元,根据关键语句“用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍.”列出方程,解方程即可;(2)首先设购进A 品牌的服装a 套,则购进B 品牌服装(2a+4)套,根据“可使总的获利超过1200元”可得不等式(130﹣100)a+(95﹣75)(2a+4)>1200,再解不等式即可.【解答】解:(1)设A 品牌服装每套进价为x 元,则B 品牌服装每套进价为(x ﹣25)元,由题意得:=×2,解得:x=100,经检验:x=100是原分式方程的解,x﹣25=100﹣25=75,答:A、B两种品牌服装每套进价分别为100元、75元;(2)设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,由题意得:(130﹣100)a+(95﹣75)(2a+4)>1200,解得:a>16,答:至少购进A品牌服装的数量是17套.【点评】本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A、B 两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.21.(12分)(2017•济宁模拟)已知:AB、CD为⊙O的直径,弦BE交CD于点F,连接DE 交AB于点G,GO=GD.(1)如图1,求证:DE=DF;(2)如图2,作弦AK∥DC,AK交BE于点N,连接CK,求证:四边形KNFC为平行四边形;(3)如图3,作弦CH,连接DH,∠CDH=3∠EDH,CH=2,BE=4,求DH的长.【考点】圆的综合题.【分析】(1)如图1中,连接BC.欲证明DE=DF,只要证明∠E=∠EFD.(2)如图2中,连接AD、DK、BC.首先证明∠ADC=∠KCD,再证明∠EFD=∠ADC,即可推出∠EFD=∠KCD,推出KC∥FN,由此即可解决问题.(3)如图3中,作ON⊥BE于N,HK⊥CD于K,连接EO.想办法证明△OHK≌△OBN,推出HK=BN=2,再证明△CKH∽△CHD,得=,利用勾股定理求出KC即可解决问题.【解答】(1)证明:如图1中,连接BC.∵OB=OC,∴∠C=∠OBC=∠E,∵GO=GD,∴∠D=∠GOD=∠EBC=∠BOC,∵∠OBC=∠EBC+∠EBA,∠EFD=∠BOC+∠EBA,∵∠EBC=∠BOC,∴∠OBC=∠EFD=∠E,∴DE=DF.(2)证明:如图2中,连接AD、DK、BC.∵AK∥CD,∴∠AKD=∠KDC,∴=,∴=,∴∠ADC=∠KCD,∵∠ADO=∠OBC=∠OCB=∠E=∠EFD,∴∠KCD=∠EFD,∴KC∥FN,∵KN∥FC,∴四边形KNFC是平行四边形.(3)解:如图3中,作ON⊥BE于N,HK⊥CD于K,连接EO.∵ON⊥EB,∴EN=BN=2,∵∠CDH=3∠EDH,设∠EDH=x,则∠CDH=3x,∠OHD=∠ODH=3x,∠HOC=∠D+∠OHD=6x,∠GOD=∠GDO=∠BOC=4x,∠HOB=∠HOC+∠BOC=10x,∠EOC=∠ODE+∠OED=8x,∠EOB=∠EOC+∠BOC=12x,∵∠BON=∠EON=6x,∴∠HOK=∠BON=6x,在△OHK和△OBN中,,∴△OHK≌△OBN,∴HK=BN=2,在Rt△CHK中,CK===4,∵CD是直径,∴∠CHD=∠CKH=90°,∵∠C=∠C,∴△CKH∽△CHD,∴=,∴DH===.【点评】本题考查圆综合题、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理、平行线的性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造全等三角形解决问题,本题的突破点是证明△OHK≌△OBN,属于中考压轴题.22.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H 的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)把点C代入抛物线解析式即可求出a,令y=0,列方程即可求出点A、B坐标.(2)先求出四边形ABCD面积,分两种情形:①当直线l边AD相交与点M1时,根据S=×10=3,求出点M1坐标即可解决问题.②当直线l边BC相交与点M2时,同理可得点M2坐标.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,得到b=k,利用方程组求出点M坐标,求出直线DN解析式,再利用方程组求出点N坐标,列出方程求出k,即可解决问题.【解答】解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1, k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).【点评】本题考查二次函数综合题、待定系数法、一次函数、菱形的判定和性质等知识,解题的关键是学会分类讨论,学会利用参数解决问题,用方程的思想思考问题,属于中考压轴题.。

2017年山东省济宁市中考数学试卷及答案与解析

2017年山东省济宁市中考数学试卷及答案与解析

2017年山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)的倒数是()A.6 B.﹣6 C.D.﹣2.(3分)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.53.(3分)下列图形中是中心对称图形的是()A.B.C.D.4.(3分)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣45.(3分)下列几何体中,主视图、俯视图、左视图都相同的是()A. B.C.D.6.(3分)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x= D.x≠7.(3分)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a68.(3分)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.10.(3分)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:ma2+2mab+mb2=.12.(3分)请写出一个过点(1,1),且与x轴无交点的函数解析式:.13.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.14.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.15.(3分)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.三、解答题(本大题共7小题,共55分)16.(5分)解方程:=1﹣.17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.2017年山东省济宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•济宁)的倒数是()A.6 B.﹣6 C.D.﹣【解答】解:的倒数是6.故选:A.2.(3分)(2017•济宁)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.5【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.3.(3分)(2017•济宁)下列图形中是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.4.(3分)(2017•济宁)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣4【解答】解:0.000016=1.6×10﹣5;故选;B.5.(3分)(2017•济宁)下列几何体中,主视图、俯视图、左视图都相同的是()A. B.C.D.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.6.(3分)(2017•济宁)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x= D.x≠【解答】解:由题意可知:解得:x=故选(C)7.(3分)(2017•济宁)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a6【解答】解:(a2)3+a2•a3﹣a2÷a﹣3=a6+a5﹣a5=a6.故选:D.8.(3分)(2017•济宁)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率==.故选B.9.(3分)(2017•济宁)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.10.(3分)(2017•济宁)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y 与x函数关系的是()A.①B.③C.②或④D.①或③【解答】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③,故选D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(2017•济宁)分解因式:ma2+2mab+mb2=m(a+b)2.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)212.(3分)(2017•济宁)请写出一个过点(1,1),且与x轴无交点的函数解析式:y=(答案不唯一).【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=1×1=1,所以反比例函数y=(答案不唯一)符合题意.故答案可以是:y=(答案不唯一).13.(3分)(2017•济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【解答】解:由题意可得,,故答案为:.14.(3分)(2017•济宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN 的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.15.(3分)(2017•济宁)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.三、解答题(本大题共7小题,共55分)16.(5分)(2017•济宁)解方程:=1﹣.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.17.(7分)(2017•济宁)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【解答】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.18.(7分)(2017•济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.19.(8分)(2017•济宁)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.【解答】(1)证明:连接OD,∵D为的中点,∴=,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠ADE=90°,∴∠AED=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.20.(8分)(2017•济宁)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.21.(9分)(2017•济宁)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.【解答】解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==5,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.22.(11分)(2017•济宁)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠AON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=,∴OD=OPcos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作ME⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△ABC的内部,∴∠PBC≠∠A,∠PCB≠∠ABC,∴存在点M和点N,使△MON无自相似点.。

2017年山东省济宁市中考数学试卷含答案解析版

2017年山东省济宁市中考数学试卷含答案解析版

2017年XX省XX市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•)的倒数是()A.6 B.﹣6 C.D.﹣【考点】17:倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:的倒数是6.故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2017•)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.5【考点】34:同类项.【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.【点评】本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.3.(3分)(2017•)下列图形中是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017•)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4 B.1.6×10﹣5 C.1.6×10﹣6 D.16×10﹣4【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000016=1.6×10﹣5;故选;B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)(2017•)下列几何体中,主视图、俯视图、左视图都相同的是()A. B.C.D.【考点】U1:简单几何体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.(3分)(2017•)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x= D.x≠【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出x的值.【解答】解:由题意可知:解得:x=故选(C)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.7.(3分)(2017•)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a6【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法;6F:负整数指数幂.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则化简求出答案.【解答】解:(a2)3+a2•a3﹣a2÷a﹣3=a6+a5﹣a5=a6.故选:D.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.8.(3分)(2017•)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【专题】11 :计算题.【分析】画树状图展示所以12种等可能的结果数,再找出两次摸出的球上的汉字组成“孔孟”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率==.故选B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.(3分)(2017•)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC 绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.【考点】MO:扇形面积的计算;KW:等腰直角三角形;R2:旋转的性质.【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.【点评】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.10.(3分)(2017•)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P 从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③【考点】E7:动点问题的函数图象.【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【解答】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③,故选D.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(2017•)分解因式:ma2+2mab+mb2= m(a+b)2.【考点】55:提公因式法与公式法的综合运用.【专题】11 :计算题;44 :因式分解.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2017•)请写出一个过点(1,1),且与x轴无交点的函数解析式:y=(答案不唯一).【考点】G4:反比例函数的性质;F5:一次函数的性质;F6:正比例函数的性质;H3:二次函数的性质.【专题】26 :开放型.【分析】反比例函数的图象与坐标轴无交点.【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=1×1=1,所以反比例函数y=(答案不唯一)符合题意.故答案可以是:y=(答案不唯一).【点评】本题考查了反比例函数的性质,此题属于开放题,答案不唯一,若是二次函数也符合题意.13.(3分)(2017•)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.(3分)(2017•)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0 .【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.【点评】此题主要考查了角平分线的性质以及坐标与图形的性质,解题时注意:第二象限内的点的横坐标为负,纵坐标为正,得出P点位置是解题关键.15.(3分)(2017•)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【考点】MM:正多边形和圆.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.【点评】本题考查了正六边形的性质、相似多边形的性质、正六边形面积的计算等知识;熟练掌握正六边形的性质,由相似多边形的性质得出规律是关键.三、解答题(本大题共7小题,共55分)16.(5分)(2017•)解方程:=1﹣.【考点】B3:解分式方程.【专题】11 :计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(7分)(2017•)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40 ;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)利用折线统计图结合条形统计图,利用优秀人数÷优秀率=总人数求出即可;(2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案;(3)利用已知条形统计图以及折线统计图分析得出答案.【解答】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点评】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.18.(7分)(2017•)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【考点】HE:二次函数的应用.【分析】(1)每天的销售利润W=每天的销售量×每件产品的利润;(2)根据配方法,可得答案;(3)根据自变量与函数值的对应关系,可得答案.【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点评】本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.19.(8分)(2017•)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.【考点】ME:切线的判定与性质;KQ:勾股定理;M2:垂径定理.【专题】11 :计算题;55A:与圆有关的位置关系.【分析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED 为矩形,求出FE的长,由AF+EF求出AE的长即可.【解答】(1)证明:连接OD,∵D为的中点,∴=,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠ADE=90°,∴∠AED=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.【点评】此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.20.(8分)(2017•)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.【考点】PB:翻折变换(折叠问题);LB:矩形的性质;P9:剪纸问题.【分析】(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O 处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.【点评】本题考查翻折变换、矩形的性质、剪纸问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会理由翻折变换添加辅助线,属于中考常考题型.21.(9分)(2017•)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.【考点】HF:二次函数综合题.【分析】(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m的不等式组,从而可求得m的取值范围;(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y 随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此的解析式.可求得点P的坐标,从而可得到函数C2【解答】解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).的解析式为y=2(x﹣2)2+1.∴当点P与点M距离最大时函数C2【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质,勾股定理的应用,待定系数法求一次函数的解析式,找出PM取得最大值的条件是解题的关键.22.(11分)(2017•)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC 的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【考点】GB:反比例函数综合题.【专题】16 :压轴题.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠AON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=,∴OD=OPcos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.【点评】本题是反比例函数综合题目,考查了相似三角形的性质、相似点的判定与性质、三角函数、坐标与图形性质、勾股定理、等边三角形的判定与性质、直线解析式的确定等知识;本题综合性强,有一定难度,熟练掌握相似点的判定与性质是解决问题的关键.。

山东省济宁市邹城市中考数学模拟试卷(含解析)

山东省济宁市邹城市中考数学模拟试卷(含解析)

2017年山东省济宁市邹城市中考数学模拟试卷一、选择题(本题共10个小题,每小题3分,共30分)1.下列命题中的真命题是()A.长度相等的弧是等弧B.相似三角形的面积比等于相似比C.正方形不是中心对称图形D.圆内接四边形的对角互补2.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根3.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C 所经过的路径是()A.直线的一部分 B.圆的一部分C.双曲线的一部分D.抛物线的一部分4.某几何体的三视图如图所示,则此几何体是()A.圆锥 B.圆柱 C.长方体D.四棱柱5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°6.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.7.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50° B.80° C.100°D.130°8.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位9.在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣210.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC 于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A. B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为.12.已知A(﹣1,m)与B(2,m﹣3)是反比例函数图象上的两个点.则m的值.13.4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是米.14.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三、解答题(本大题共7小题,共55分)16.计算:sin260°+cos260°.17.2014年,邹城市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2016年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2017年的均价仍然下调相同的百分率,张老师准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,李老师的愿望能否实现(房价每平方米按照均价计算)?18.小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?19.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.20.如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE ∥OB,(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.21.已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.(1)求证:AC•AD=AB•AE;(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.22.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?2017年山东省济宁市邹城市峄山中学等八校联考学中考数学模拟试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.下列命题中的真命题是()A.长度相等的弧是等弧B.相似三角形的面积比等于相似比C.正方形不是中心对称图形D.圆内接四边形的对角互补【考点】命题与定理.【分析】利用等弧的定义、相似三角形的性质、正方形的性质及圆内接四边形的性质分别判断后即可确定正确的选项.【解答】解:A、长度相等的弧不一定是等弧,故错误,是假命题;B、相似三角形的面积的比等于相似比的平方,故错误,是假命题;C、正方形是中心对称图形,故错误,是假命题;D、圆内接四边形的对角互补,正确,是真命题,故选D.2.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.3.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C 所经过的路径是()A.直线的一部分 B.圆的一部分C.双曲线的一部分D.抛物线的一部分【考点】轨迹;直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半得到OC=AB=A′B′=OC′,从而得出滑动杆的中点C所经过的路径是一段圆弧.【解答】解:连接OC、OC′,如图,∵∠AOB=90°,C为AB中点,∴OC=AB=A′B′=OC′,∴当端点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,∴滑动杆的中点C所经过的路径是一段圆弧.故选B.4.某几何体的三视图如图所示,则此几何体是()A.圆锥 B.圆柱 C.长方体D.四棱柱【考点】简单几何体的三视图.【分析】根据三视图的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析可知几何体的名称.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.5.如图,在△ABC中,∠CA B=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°【考点】旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.6.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选C.7.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50° B.80° C.100°D.130°【考点】圆周角定理.【分析】首先在上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠A OC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选D.8.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位【考点】二次函数图象与几何变换.【分析】原抛物线顶点坐标为(﹣1,2),平移后抛物线顶点坐标为(0,0),由此确定平移规律.【解答】解:y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(﹣1,2),抛物线y=x2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x2+2x+3向右移1个单位,再向下平移2个单位.故选:D.9.在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2【考点】反比例函数与一次函数的交点问题.【分析】联立两函数解析式消去y可得x2﹣bx+1=0,由直线y=﹣x+b与反比例函数y=的图象有2个公共点,得到方程x2﹣bx+1=0有两个不相等的实数根,根据根的判别式可得结果.【解答】解:解方程组得:x2﹣bx+1=0,∵直线y=﹣x+b与反比例函数y=的图象有2个公共点,∴方程x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b>2,或b<﹣2,故选C.10.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC 于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A. B.C.D.【考点】动点问题的函数图象.【分析】根据平行线的性质可得∠EDF=∠B=60°,根据三角形内角和定理即可求得∠F=30°,然后证得△EDB是等边三角形,从而求得ED=DB=2﹣x,再根据直角三角形的性质求得EF,最后根据三角形的面积公式求得y与x函数关系式,根据函数关系式即可判定.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AC,∴∠EDF=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠ACB=60°,∠EDC=60°,∴△EDB是等边三角形.∴ED=DB=2﹣x,∵∠DEF=90°,∠F=30°,∴EF=ED=(2﹣x).∴y=ED•EF=(2﹣x)•(2﹣x),即y=(x﹣2)2,(x<2),故选A.二、填空题(本大题共5小题,每小题3分,共15分)11.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为24 .【考点】菱形的性质;解直角三角形.【分析】连接BD,交AC与点O,首先根据菱形的性质可知AC⊥BD,解三角形求出BO的长,利用勾股定理求出AO的长,即可求出AC的长.【解答】解:连接BD,交AC与点O,∵四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵AB=15,sin∠BAC=,∴sin∠BAC==,∴BO=9,∴AB2=OB2+AO2,∴AO===12,∴AC=2AO=24,故答案为24.12.已知A(﹣1,m)与B(2,m﹣3)是反比例函数图象上的两个点.则m的值 2 .【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数中k=xy的特点进行解答即可.【解答】解:∵A(﹣1,m)与B(2,m﹣3)是反比例函数图象上的两个点,∴(﹣1)×m=2×(m﹣3),解得m=2.故答案为:2.13.4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是200+200 米.【考点】解直角三角形的应用﹣仰角俯角问题.【分析】在两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.【解答】解:由已知,得∠A=30°,∠B=45°,CD=200,∵CD⊥AB于点D.∴在Rt△ACD中,∠CDA=90°,tanA=,∴AD==200,在Rt△BCD中,∠CDB=90°,∠B=45°∴DB=CD=200,∴AB=AD+DB=200+200,故答案为:200+200.14.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为(﹣5,4).【考点】坐标与图形变化﹣旋转.【分析】首先根据点A的坐标求出OA的长度,然后根据旋转变换只改变图形的位置,不改变图形的形状与大小,可得OA′=OA,据此求出点A′的坐标即可.【解答】解:如图,过点A作AC⊥y轴于点C,作AB⊥x轴于点B,过A′作A′E⊥y轴于点E,作A′D⊥x轴于点D,,∵点A(4,5),∴AC=4,AB=5,∵点A(4,5)绕原点逆时针旋转90°得到点A′,∴A′E=AB=5,A′D=AC=4,∴点A′的坐标是(﹣5,4).故答案为:(﹣5,4).15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是①④(填写序号).【考点】二次函数图象与系数的关系.【分析】根据抛物线对称轴方程对①进行判断;根据自变量为1时对应的函数值为负数可对②进行判断;根据抛物线的对称性,由抛物线与x轴的一个交点为(﹣2,0)得到抛物线与x轴的另一个交点为(4,0),则可对③进行判断;由抛物线开口方向得到a>0,由对称轴位置可得b<0,由抛物线与y轴的交点位置可得c<0,于是可对④进行判断.【解答】解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三、解答题(本大题共7小题,共55分)16.计算:sin260°+cos260°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:sin260°+cos260°=()2+()2=1.17.2014年,邹城市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2016年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2017年的均价仍然下调相同的百分率,张老师准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,李老师的愿望能否实现(房价每平方米按照均价计算)?【考点】一元二次方程的应用.【分析】(1)设平均每年下调的百分率为x,根据2016年的均价为每平方米5265元列出方程6500(1﹣x)2=5265,求解即可;(2)根据2017年的均价仍然下调相同的百分率,求出2017年的房价,再求出购买一套100平方米的住房的总房款即可得出答案.【解答】解:(1)设平均每年下调的百分率为x,根据题意得:6500(1﹣x)2=5265,解得:x1=0.1=10%,x2=1.9(不合题意舍去),答:平均每年下调的百分率为10%;(2)假设2017年的均价仍然下调相同的百分率,则2017年的房价为:5265×(1﹣10%)=4738.5(元/平方米)则购买一套100平方米的住房的总房款为:100×4738.5=473850(元)=48.385(万元),∵20+30>47.385,∴李老师的愿望能实现.18.小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?【考点】解直角三角形的应用﹣仰角俯角问题.【分析】求这栋楼的高度,即BC的长度,根据BC=BD+DC,在Rt△ABD和Rt△ACD中分别求出BD,CD即可.【解答】解:在Rt△ABD中,∵∠BDA=90°,∠BAD=30°,AD=42m,∴BD=ADtan30°=42×=14(m).在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=ADtan60°=42×=42(m).∴BC=BD+CD=14+42=56(m).答:这栋楼的高度为56m.19.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.【考点】相似三角形的应用.【分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.【解答】解:在△ABC与△AMN中,=, =,∴,又∵∠A=∠A,∴△ABC∽△AMN,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;20.如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE ∥OB,(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.【考点】反比例函数综合题.【分析】(1)先证明四边形AEBD是平行四边形,再由矩形的性质得出DA=DB,即可证出四边形AEBD是菱形;(2)连接DE,交AB于F,由菱形的性质得出AB与DE互相垂直平分,求出EF、AF,得出点E的坐标;设经过点E的反比例函数解析式为:y=,把点E坐标代入求出k的值即可.【解答】(1)证明:∵BE∥AC,AE∥OB,∴四边形AEBD是平行四边形,∵四边形OABC是矩形,∴DA=AC,DB=OB,AC=OB,AB=OC=2,∴DA=DB,∴四边形AEBD是菱形;(2)解:连接DE,交AB于F,如图所示:∵四边形AEBD是菱形,∴AB与DE互相垂直平分,∵OA=3,OC=2,∴EF=DF=OA=,AF=AB=1,3+=,∴点E坐标为:(,1),设经过点E的反比例函数解析式为:y=,把点E(,1)代入得:k=,∴经过点E的反比例函数解析式为:y=.21.已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.(1)求证:AC•AD=AB•AE;(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)连接DE,根据圆周角定理求得∠ADE=90°,得出∠ADE=∠ABC,进而证得△ADE ∽△ABC,根据相似三角形对应边成比例即可求得结论;(2)连接OD,根据切线的性质求得OD⊥BD,在RT△OBD中,根据已知求得∠OBD=30°,进而求得∠BAC=30°,根据30°的直角三角形的性质即可求得AC的长.【解答】(1)证明:连接DE,∵AE是直径,∴∠ADE=90°,∴∠ADE=∠ABC,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,∴AC•AD=AB•AE;(2)解:连接OD,∵BD是⊙O的切线,∴OD⊥BD,在RT△OBD中,OE=BE=OD,∴OB=2OD,∴∠OBD=30°,同理∠BAC=30°,在RT△ABC中,AC=2BC=2×2=4.22.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【考点】二次函数的应用.【分析】(1)先确定B点和C点坐标,然后利用待定系数法求出抛物线解析式,再利用配方法确定顶点D的坐标,从而得到点D到地面OA的距离;(2)由于抛物线的对称轴为直线x=6,而隧道内设双向行车道,车宽为4m,则货运汽车最外侧与地面OA的交点为(2,0)或(10,0),然后计算自变量为2或10的函数值,再把函数值与6进行大小比较即可判断;(3)抛物线开口向下,函数值越大,对称点之间的距离越小,于是计算函数值为8所对应的自变量的值即可得到两排灯的水平距离最小值.【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省济宁市邹城市中考数学模拟试卷一、选择题(本题共10个小题,每小题3分,共30分)1.的绝对值为()A.B.C.D.32.如图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱3.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O1O2<84.函数y=的自变量x的取值范围在数轴上可表示为()A. B.C.D.5.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠C=40°,则∠ABO的度数是()A.50°B.40°C.25°D.20度6.某种商品的进价为160元,出售时的标价为240元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打()A.6折 B.7折 C.8折 D.9折7.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是()A.4 B.3 C.2 D.8.已知直线y=﹣x+4与双曲线y=(x>0)只有一个交点,将直线y=﹣x+4向上平移1个单位后与双曲线y=(x>0)相交于A,B两点,如图,则A点的坐标为()A.(1,4) B.(1,5) C.(2,3) D.(2,4)9.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1二、填空题(本大题共5小题,每小题3分,共15分)11.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000073米,将0.000073用科学记数法表示为.12.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是.13.已知(x﹣y+1)2+=0,则x+y的值为.14.如图,P点的坐标为(3,2),过P点的直线AB分别交x轴和y轴的正半轴于A,B两点,作PM⊥x轴于M点,作PN⊥y轴于N点,若△PAM的面积与△PBN的面积的比为,则直线AB的解析式为.15.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)米.三、解答题(本大题共7小题,共55分)16.先化简,再求值:(﹣)÷,其中x=﹣1.17.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m=,n=;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.已知,A点的坐标为(4,3),过A点分别作坐标轴的垂线,交x轴和y轴分别于B点和C点,P为线段AB上一个动点(P不与A,B重合),过点P的反比例函数y=的图象与AC交于点D.(1)当△PBC的面积等于4时,求该反比例函数的解析式;(2)当k为何值时,△PBD的面积最大,最大面积是多少?19.如图,四边形ABCD内接于⊙O,且BD为直径,∠ACB=45°,过A点的AC 的垂线交BC的延长线于点E.(1)求证:BE=CD;(2)如果AD=,求图中阴影的面积.20.某商店购进了A,B两种家用电器,相关信息如下表:已知用6000元购进的A种电器件数与用5000元购进的B种电器件数相同.(1)求表中m的值.(2)由于A,B两种家用电器热销,该商店计划用不超过23000元的资金再购进A,B两种电器总件数共20件,且获利不少于13300元.请问:有几种进货方案?哪一种方案才能获得最大利润?最大利润是多少?21.如图1,△ABC和△DCE是两个全等的等腰三角形,BC,CE为底边.(1)将图1中的△DCE绕C点顺时针方向旋转至∠BCE=∠ACB的位置,分别延长AB,DE交于点F(如图2),此时,四边形BCEF为何种四边形?请证明你的结论;(2)如果将图1中的△DCE绕C点顺时针旋转至∠BCE=2∠ACB的位置,连接AD,BE(如图3),证明四边形ABED为矩形;(3)在(2)的条件下,四边形ABED有无可能成为正方形?如果有可能成为正方形,求出∠ABC的度数为多少?22.如图,已知抛物线y=﹣x2+2x的顶点为A,直线y=x﹣2与抛物线交于B,C 两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.2017年山东省济宁市邹城市中考数学模拟试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.的绝对值为()A.B.C.D.3【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣|=,∴﹣的绝对值是.故选C.2.如图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱【考点】U3:由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D3.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O1O2<8【考点】MJ:圆与圆的位置关系;AB:根与系数的关系.【分析】先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况讨论求解.【解答】解:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5.∴①当两圆外切时,圆心距O1O2=3+5=8;②当两圆内切时,圆心距O1O2=5﹣3=2.故选C.4.函数y=的自变量x的取值范围在数轴上可表示为()A. B.C.D.【考点】C4:在数轴上表示不等式的解集;E4:函数自变量的取值范围.【分析】函数y=有意义,则分母必须满足,解得出x的取值范围,在数轴上表示出即可;【解答】解:∵函数y=有意义,∴分母必须满足,解得,,∴x>1;故选B.5.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠C=40°,则∠ABO的度数是()A.50°B.40°C.25°D.20度【考点】MC:切线的性质.【分析】直接利用切线的性质得出∠BOC度数,再利用等腰三角形的性质得出∠ABO度数.【解答】解:∵AO的延长线交过点B的⊙O的切线于点C,∴∠OBC=90°,∵∠C=40°,∴∠BOC=50°,∵AO=BO,∴∠A=∠OBA=∠BOC,∴∠ABP=25°.故选:C.6.某种商品的进价为160元,出售时的标价为240元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打()A.6折 B.7折 C.8折 D.9折【考点】C9:一元一次不等式的应用.【分析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于5%,列不等式求解.【解答】解:设打了x折,由题意得240×0.1x﹣160≥160×5%,解得:x≥7.答:至多打7折.故选:B.7.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是()A.4 B.3 C.2 D.【考点】KQ:勾股定理;KF:角平分线的性质.【分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.【解答】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=3,∴AC=AE,由勾股定理得BE==2,设AC=AE=x,由勾股定理得,x2+62=(x+2)2,解得x=2.故选:C.8.已知直线y=﹣x+4与双曲线y=(x>0)只有一个交点,将直线y=﹣x+4向上平移1个单位后与双曲线y=(x>0)相交于A,B两点,如图,则A点的坐标为()A.(1,4) B.(1,5) C.(2,3) D.(2,4)【考点】G8:反比例函数与一次函数的交点问题;F9:一次函数图象与几何变换.【分析】解方程=﹣x+4,化为整式方程x2﹣4x+k=0,由于直线y=﹣x+4与双曲线y=(x>0)只有一个交点,有△=0即可求出反比例函数解析式,求出直线y=﹣x+4向上平移1个单位后解析式,解两解析式联组立成的方程组即可求出A,B的坐标.【解答】解:解方程=﹣x+4,化为整式方程x2﹣4x+k=0,∵直线y=﹣x+4与双曲线y=(x>0)只有一个交点,∴△=(﹣4)2﹣4k=0,解得:k=4,∴y=,直线y=﹣x+4向上平移1个单位后解析式为y=﹣x+5,解方程组,解得:,,∴A(1,4),B(4,1),故选A.9.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【考点】37:规律型:数字的变化类.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.二、填空题(本大题共5小题,每小题3分,共15分)11.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000073米,将0.000073用科学记数法表示为7.3×10﹣5.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000073用科学记数法表示为7.3×10﹣5.故答案为:7.3×10﹣5.12.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是.【考点】X4:概率公式;P3:轴对称图形;R5:中心对称图形.【分析】先找出既是轴对称图形又是中心对称图形的个数,再根据概率公式进行计算即可.【解答】解:∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,∴取到的图形既是中心对称图形又是轴对称图形的概率为,故答案为:.13.已知(x﹣y+1)2+=0,则x+y的值为.【考点】98:解二元一次方程组;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】根据非负数的性质以及二元一次方程的解法即可求出答案.【解答】解:由题意可知:解得:∴x+y=故答案为:14.如图,P点的坐标为(3,2),过P点的直线AB分别交x轴和y轴的正半轴于A,B两点,作PM⊥x轴于M点,作PN⊥y轴于N点,若△PAM的面积与△PBN的面积的比为,则直线AB的解析式为y=﹣x+5.【考点】FA:待定系数法求一次函数解析式.【分析】求出△PMA∽△BNP,根据相似三角形的性质求出BN和AM长,求出A、B的坐标,设直线AB的解析式为y=kx+b,把A、B的坐标代入求出K、B值,即可得出答案.【解答】解:∵PM⊥x轴,PN⊥y中,x轴⊥y轴,∴∠BNP=∠PMA=90°,PN∥x轴,∴∠BPN=∠PAO,∴△PMA∽△BNP,∵△PAM的面积与△PBN的面积的比为,∴()2=()2=,∵P(3,2),∴PN=3,PM=2,∴AM=2,BN=3,∴A(5,0),B(0,5),设直线AB的解析式为y=kx+b,把A、B的坐标代入得:,解得:k=﹣1,b=5,即直线AB的解析式为y=﹣x+5,故答案为:y=﹣x+5.15.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)9+9米.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH 的长.【解答】解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=3×12=36m,∴AD=CD=18m,BD=AB•cos30°=18m,∴BC=CD+BD=(18+18)m,∴BH=BC•sin30°=(9+9)m.故答案为:9+9.三、解答题(本大题共7小题,共55分)16.先化简,再求值:(﹣)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=[﹣]•=•=•=,当x=﹣1时,原式===1﹣.17.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m=4,n=1;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在B组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;W4:中位数.【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.【解答】解:(1)m=4,n=1.故答案是:4,1;(2);(3)行走步数的中位数落在B组,故答案是:B;(4)一天行走步数不少于7500步的人数是:120×=48(人).答:估计一天行走步数不少于7500步的人数是48人.18.已知,A点的坐标为(4,3),过A点分别作坐标轴的垂线,交x轴和y轴分别于B点和C点,P为线段AB上一个动点(P不与A,B重合),过点P的反比例函数y=的图象与AC交于点D.(1)当△PBC的面积等于4时,求该反比例函数的解析式;(2)当k为何值时,△PBD的面积最大,最大面积是多少?【考点】G7:待定系数法求反比例函数解析式;G5:反比例函数系数k的几何意义;H7:二次函数的最值.【分析】(1)根据已知条件得到P点的横坐标为4,由△PBC的面积等于4,得到P(4,2),于是得到结论;(2)设D(,3),P(4,),根据三角形的面积公式得到二次函数的解析式,求出二次函数的最值即可.【解答】解:(1)∵A点的坐标为(4,3),∴P点的横坐标为4,∵△PBC的面积等于4,∴PB=2,∴P(4,2),∴k=2×4=8,∴反比例函数的解析式为:y=;(2)设D(,3),P(4,),=PB•AD=××(4﹣)=﹣+=﹣(k﹣6)2+,∴S△PBD∴当k=6时,△PBD的面积最大,最大面积是.19.如图,四边形ABCD内接于⊙O,且BD为直径,∠ACB=45°,过A点的AC 的垂线交BC的延长线于点E.(1)求证:BE=CD;(2)如果AD=,求图中阴影的面积.【考点】M6:圆内接四边形的性质;MO:扇形面积的计算.【分析】(1)由BD为⊙O的直径,得到∠BAC=90°,根据圆周角定理得到∠ADB=∠ACB=45°,推出△ADE与△ABD是等腰直角三角形,根据全等三角形的性质即可得到结论;(2)连接AO,则∠AOD=90°,根据勾股定理得到AO=OD=1,根据图形的面积公式即可得到结论.【解答】解:(1)∵BD为⊙O的直径,∴∠BAC=90°,∵∠ACB=45°,∴∠ADB=∠ACB=45°,∵AE⊥AC,∴△ADE与△ABD是等腰直角三角形,∴AE=AC,AB=AD,∠EAC=∠BAD=90°,∴∠EAB=∠CAD,在△ABE与△ADC中,,∴△ABE≌△ADC,∴BE=CD;(2)连接AO ,则∠AOD=90°,∵AD=,∴AO=OD=1,∴S 阴影=S 扇形﹣S △AOD =﹣×1×1=﹣.20.某商店购进了A ,B 两种家用电器,相关信息如下表:已知用6000元购进的A 种电器件数与用5000元购进的B 种电器件数相同. (1)求表中m 的值.(2)由于A ,B 两种家用电器热销,该商店计划用不超过23000元的资金再购进A ,B 两种电器总件数共20件,且获利不少于13300元.请问:有几种进货方案?哪一种方案才能获得最大利润?最大利润是多少?【考点】FH :一次函数的应用.【分析】(1)根据“用6000元购进的A 种电器件数与用5000元购进的B 种电器件数相同”列分式方程求解可得;(2)设计划购进A 种电器件数为x ,根据购进总钱数不超过23000元及获利不少于13300元求得x 的范围,依据题意列出总利润y 关于x 的函数关系式,利用一次函数的性质求解可得.【解答】解:(1)由题意可得:=,解得:m=1000,经检验得:m=1000是原方程的根,答:m的值为1000;(2)设计划购进A种电器件数为x,则,解得:x≤7,则x可取的整数有0、1、2、3、4、5、6、7这8种,故购进方案有8种,设所获利润为y,则y=600x+700(20﹣x)=﹣100x+14000,∵y随x的增大而减小,∴当x=0时,y取得最大值,最大值为14000元,即进货方案为A种电器0台,B种电器20台时,利润最大,最大利润为14000元.21.如图1,△ABC和△DCE是两个全等的等腰三角形,BC,CE为底边.(1)将图1中的△DCE绕C点顺时针方向旋转至∠BCE=∠ACB的位置,分别延长AB,DE交于点F(如图2),此时,四边形BCEF为何种四边形?请证明你的结论;(2)如果将图1中的△DCE绕C点顺时针旋转至∠BCE=2∠ACB的位置,连接AD,BE(如图3),证明四边形ABED为矩形;(3)在(2)的条件下,四边形ABED有无可能成为正方形?如果有可能成为正方形,求出∠ABC的度数为多少?【考点】LO:四边形综合题.【分析】(1)由全等得出∠ABC=∠ACB=∠DCE=∠DEC,进而判断出BC∥DE,即可得出∠ABC=∠F,进而得出CE∥AB,即可得出结论;(2)由等腰三角形的性质求出∠ABE=90°,同理:∠BAD=∠ADE=90°,即可得出结论;(3)由正方形得出AB=AD,进而得出△ACD是等边三角形,即可求出∠ABC=75°.【解答】解:(1)四边形BCEF是菱形,理由:∵△ABC和△DCE是两个全等的等腰三角形,BC,CE为底边.∴BC=CE,∠ABC=∠ACB=∠DCE=∠DEC,∵∠BCE=∠ACB,∴∠BCE=∠DEC,∴BC∥DE,∴∠ABC=∠F,∴∠F=∠DEC,∴CE∥AB,∴四边形BCEF是平行四边形,∵BC=CE,∴平行四边形BCEF是菱形;(2)∵∠ABC=∠ACB,∠BCE=2∠ACB,∴∠BCE=2∠ABC,∵BC=CE,∴∠CBE===90°﹣∠ABC,∴∠CBE+∠ABC=90°,∴∠ABE=90°,同理:∠BAD=∠ADE=90°,∴四边形ABED是矩形;(3)四边形ABED能成为正方形,∵四边形ABED是正方形,∴AB=AD,∵AB=AC=CD,∴AC=AD=CD,∴△ACD是等边三角形,∴∠ACD=60°,∵∠BCE=2∠ACB,∠ABC=∠ACB=∠DCE,∴∠ACB+∠BCE+∠DCE+∠ACD=360°,∴∠ABC+2∠ABC+∠ABC=300°,∴∠ABC=75°,22.如图,已知抛物线y=﹣x2+2x的顶点为A,直线y=x﹣2与抛物线交于B,C 两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把抛物线解析式化为顶点式可求得A点坐标,联立直线与抛物线解析式,解方程组,可求得B、C的坐标;(2)由A、B、C三点的坐标可求得AB、BC和AC的长,可判定△ABC为直角三角形,且可得=,可证得结论;(3)设M(x,0),则P(x,﹣x2+2x),从而可表示出OM和PM的长,分=和=两种情况,分别得到关于x 的方程,可求得x 的值,可求得P 点坐标.【解答】解:(1)∵y=﹣x 2+2x=﹣(x ﹣1)2+1,∴A (1,1),联立直线与抛物线解析式可得,解得或,∴B (2,0),C (﹣1,﹣3);(2)证明:∵A (1,1),B (2,0),C (﹣1,﹣3),∴AB==,BC==3,AC==2, ∴AB 2+BC 2=2+18=20=AC 2,∴△ABC 是以AC 为斜边的直角三角形,∴∠ABC=∠ODC ,∵C (﹣1,﹣3),∴OD=1,CD=3,∴==,∴△ODC ∽△ABC ;(3)设M (x ,0),则P (x ,﹣x 2+2x ),∴OM=|x |,PM=|﹣x 2+2x |,∵∠OMP=∠ABC=90°,∴当以△OPM 与△ABC 相似时,有=或=两种情况,①当=时,则=,解得x=或x=,此时P 点坐标为(,)或(,﹣);②当=时,则=,解得x=5或x=﹣1(与C点重合,舍去),此时P点坐标为(5,﹣15);综上可知存在满足条件的点P,其坐标为(,)或(,﹣)或(5,﹣15).2017年6月10日。

相关文档
最新文档