(精编)高中数学数列专题复习(综合训练篇含答案)
高三数学数列综合练习题答案与解析
高三数学数列综合练习题答案与解析一.选择题(共23小题)1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[,4)B.(,4)C.(2,4) D.(1,4)2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞)3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值()A.恒为正数B.恒为负数C.恒为0 D.可正可负4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于()A.2 B.lg50 C.10 D.55.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是()A.2 B.4 C.6 D.86.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为()A.B.C.D.7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=()A.B.C.D.8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是()A.(π,)B.[π,]C.[,]D.(,)9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数:①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|,则其中是“等比函数”的f(x)的序号为()A.①②③④B.①④C.①②④D.②③10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是()A.③④B.①②④C.①③④D.①③11.已知数列{a n}满足a1=1,a n+1=,则a n=()A.B.3n﹣2 C.D.n﹣212.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于()A.﹣B.﹣C.﹣D.﹣13.如果数列{a n}是等比数列,那么()A.数列{}是等比数列B.数列{2an}是等比数列C.数列{lga n}是等比数列D.数列{na n}是等比数列14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D.15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C)16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()A.98 B.99 C.100 D.10117.数列1,,,…,的前n项和为()A.B. C. D.18.数列{a n}的通项公式为,其前n项和为s n,则s2017等于()A.1006 B.1008 C.﹣1006 D.﹣100819.数列{a n}中,,则数列{a n}前16项和等于()A.130 B.132 C.134 D.13620.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是()A.1+++…+=2﹣B.1+++…++…<2C.++…+=1 D.++…+<121.在数列{a n}中,若=+,a1=8,则数列{a n}的通项公式为()A.a n=2(n+1)2B.a n=4(n+1)C.a n=8n2D.a n=4n(n+1)22.已知函数f(x)=,把函数g(x)=f(x)﹣x的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为S n,则S10=()A.210﹣1 B.29﹣1 C.45 D.5523.设等差数列{a n}满足,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.B.[,]C.(,)D.[,]二.解答题(共4小题)24.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.25.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.26.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.27.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.数列综合练习题答案与解析一.选择题(共23小题)1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[,4)B.(,4)C.(2,4) D.(1,4)【解答】解:函数f(x)=,数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,∴,解得2<a<4.故选:C.2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞)【解答】解:∵{a n}是递增数列,∴a n>a n,+1∵a n=n2+λn恒成立即(n+1)2+λ(n+1)>n2+λn,∴λ>﹣2n﹣1对于n∈N*恒成立.而﹣2n﹣1在n=1时取得最大值﹣3,∴λ>﹣3,故选D.3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值()A.恒为正数B.恒为负数C.恒为0 D.可正可负【解答】解:∵f(a11)>f(0)=0,a9+a13=2a11>0,a9>﹣a13,∴f(a9)>f(﹣a13)=﹣f(a13),f(a9)+f(a13)>0,∴f(a9)+f(a11)+f(a13)>0,故选:A.4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于()A.2 B.lg50 C.10 D.5【解答】解:∵等比数列{a n}中,a4=2,a7=5,∴a1a10=a2a9=…=a4a7=10,∴数列{lga n}的前10项和S=lga1+lga2+…+lga10=lga1a2…a10=lg105=5故选:D5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是()A.2 B.4 C.6 D.8【解答】解:杨辉三角形中,每一行的第一个数和最后一个数都是1,首尾之间的数总是上一行对应的两个数的和,∴a=3+3=6;故选C.6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为()A.B.C.D.【解答】解:设正项等比数列{a n}的公比为q,且q>0,由a7=a6+2a5得:a6q=a6+,化简得,q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),因为a m a n=16a12,所(a1q m﹣1)(a1q n﹣1)=16a12,则q m+n﹣2=16,解得m+n=6,+=×(m+n)×(+)=×(17++)≥×(17+2)=,当且仅当=,解得:m=,n=,因为m n取整数,所以均值不等式等号条件取不到,+>,验证可得,当m=1、n=5时,取最小值为.故答案选:B.7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=()A.B.C.D.【解答】解:由A(m,n)表示第m行的第n个数可知,A(10,12)表示第10行的第12个数,根据图形可知:①每一行的最后一个项的项数为行数的平方,所以第10行的最后一个项的项数为102=100,即为a100;②每一行都有2n﹣1个项,所以第10行有2×10﹣1=19项,得到第10行第一个项为100﹣19+1=82,所以第12项的项数为82+12﹣1=93;所以A(10,12)=a93=故选A.8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是()A.(π,)B.[π,]C.[,]D.(,)【解答】解:∵======﹣=﹣sin(4d),∴sin(4d)=﹣1,∵d∈(﹣1,0),∴4d∈(﹣4,0),∴4d=﹣,d=﹣,∵S n=na1+==﹣+,∴其对称轴方程为:n=,有题意可知当且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴<<,解得π<a1<,故选:A.9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数:①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|,则其中是“等比函数”的f(x)的序号为()A.①②③④B.①④C.①②④D.②③【解答】解:不妨设等比数列{a n}中,a n=a1•q n﹣1,①∵f(x)=3x,∴====常数,故当q≠1时,{f(a n)}不是等比数列,故f(x)=3x不是等比函数;②∵f(x)=,∴===,故{f(a n)}是等比数列,故f(x)=是等比函数;③∵f(x)=x3,∴=═q3,故{f(a n)}是等比数列,故f(x)=x3是等比函数;④f(x)=log2|x|,∴==,故{f(a n)}不是等比数列,故f(x)=log2|x|不是等比函数.故其中是“等比函数”的f(x)的序号②③,故选:D.10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是()A.③④B.①②④C.①③④D.①③【解答】解:设数列{a n}的公比为q(q≠1)①由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=ln=﹣lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;②由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=a n+1﹣a n不是常数,∴数列{lnf(a n)}不为等差数列,不满足题意;③由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;④由题意,lnf(a n)=ln(2a n),∴lnf(a n+1)﹣lnf(a n)=ln(2a n+1)﹣ln(2a n)=lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;综上,为“保比差数列函数”的所有序号为①③④故选:C.11.已知数列{a n}满足a1=1,a n+1=,则a n=()A.B.3n﹣2 C.D.n﹣2【解答】解:∵a1=1,a n+1=,∴=+3,即﹣=3,∴数列{}是以1为首项,3为公差的等差数列,∴=1+(n﹣1)×3=3n﹣2,∴a n=,故选:A.12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于()A.﹣B.﹣C.﹣D.﹣【解答】解:由已知可得﹣=﹣1,设b n=,则数列{b n}是以为首项,公差为﹣1的等差数列.∴b31=+(31﹣1)×(﹣1)=﹣,∴a31=﹣.故选:B.13.如果数列{a n}是等比数列,那么()A.数列{}是等比数列B.数列{2an}是等比数列C.数列{lga n}是等比数列D.数列{na n}是等比数列【解答】解:对于A:设b n=,则==()2=q2,∴{b n}成等比数列;正确;对于B:数列{2},=2≠常数;不正确;对于C:当a n<0时lga n无意义;不正确;对于D:设c n=na n,则==≠常数.不正确.故选A.14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D.【解答】解:在数列{a n}中,a n+1=a n+2,且a1=1,可得a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1,由==(﹣),可得=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故选:A.15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C)【解答】解:由等差数列的前n项和公式的性质可得:A,B﹣A,C﹣B也成等差数列.∴2(B﹣A)=A+C﹣B,解得3(B﹣A)=C.故选:C.16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()A.98 B.99 C.100 D.101【解答】解:数列{a n}的通项为a n=(﹣1)n(4n﹣3),前50项和T50=﹣1+5﹣9+13﹣17+…+197=(﹣1+5)+(﹣9+13)+(﹣17+21)+…+(﹣193+197)=4+4+4+…+4=4×25=100.故选:C.17.数列1,,,…,的前n项和为()A.B. C. D.【解答】解:===2().数列1,,,…,的前n项和:数列1+++…+=2(1++…)=2(1﹣)=.故选:B.18.数列{a n}的通项公式为,其前n项和为s n,则s2017等于()A.1006 B.1008 C.﹣1006 D.﹣1008【解答】解:∵,n=2k﹣1(k∈N*)时,a n=a2k﹣1=(2k﹣1)=0.n=2k时,a n=a2k=2kcoskπ=2k•(﹣1)k.∴s2017=(a1+a3+…+a2017)+(a2+a4+…+a2016)=0+(﹣2+4﹣…﹣2014+2016)=1008.故选:B.19.数列{a n}中,,则数列{a n}前16项和等于()A.130 B.132 C.134 D.136+(﹣1)n a n=2n﹣1,【解答】解:∵a n+1∴a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a16﹣a15=29.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a15=2,a16+a14=56,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.∴{a n}的前16项和为4×2+8×4+=136.故选:D.20.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是()A.1+++…+=2﹣B.1+++…++…<2C.++…+=1 D.++…+<1【解答】解:根据已知可得每次截取的长度构造一个以为首项,以为公比的等比数列,∵++…+=1﹣<1,故反映这个命题本质的式子是++…+<1,故选:D21.在数列{a n}中,若=+,a1=8,则数列{a n}的通项公式为()A.a n=2(n+1)2B.a n=4(n+1)C.a n=8n2D.a n=4n(n+1)【解答】解:∵=+,a 1=8,则数列{}为等差数列.∴=+(n﹣1)=(n+1).∴a n=2(n+1)2.故选:A.22.已知函数f(x)=,把函数g(x)=f(x)﹣x的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为S n,则S10=()A.210﹣1 B.29﹣1 C.45 D.55【解答】解:当0<x≤1时,有﹣1<x﹣1<0,则f(x)=f(x﹣1)+1=2x﹣1,当1<x≤2时,有0<x﹣1≤1,则f(x)=f(x﹣1)+1=2x﹣2+1,当2<x≤3时,有1<x﹣1≤2,则f(x)=f(x﹣1)+1=2x﹣3+2,当3<x≤4时,有2<x﹣1≤3,则f(x)=f(x﹣1)+1=2x﹣4+3,以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=f(x﹣1)+1=2x﹣n﹣1+n,所以,函数f(x)=2x的图象与直线y=x+1的交点为:(0,1)和(1,2),由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点.然后:①将函数f(x)=2x和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2x﹣1和y=x 的图象,取x≤0的部分,可见它们有且仅有一个交点(0,0).即当x≤0时,方程f(x)﹣x=0有且仅有一个根x=0.②取①中函数f(x)=2x﹣1和y=x图象﹣1<x≤0的部分,再同时向上和向右各平移一个单位,即得f(x)=2x﹣1和y=x在0<x≤1上的图象,此时它们仍然只有一个交点(1,1).即当0<x≤1时,方程f(x)﹣x=0有且仅有一个根x=1.③取②中函数f(x)=2x﹣1和y=x在0<x≤1上的图象,继续按照上述步骤进行,即得到f(x)=2x﹣2+1和y=x在1<x≤2上的图象,此时它们仍然只有一个交点(2,2).即当1<x≤2时,方程f(x)﹣x=0有且仅有一个根x=2.④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…,(n,n+1]上的交点依次为(3,3),(4,4),…(n+1,n+1).即方程f(x)﹣x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…,n+1.综上所述方程f(x)﹣x=0的根按从小到大的顺序排列所得数列为:0,1,2,3,4,…,其通项公式为:a n=n﹣1,前n项的和为S n=,∴S10=45,故选C.23.设等差数列{a n}满足,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.B.[,]C.(,)D.[,]【解答】解:∵等差数列{a n}满足,∴(sina4cosa7﹣sina7cosa4)(sina4cosa7+sina7cosa4)=sin(a5+a6)=sin(a4+a7)=sina4cosa7+sina7cosa4,∴sina4cosa7﹣sina7cosa4=1,或sina4cosa7+sina7cosa4=0即sin(a4﹣a7)=1,或sin(a4+a7)=0(舍)当sin(a4﹣a7)=1时,∵a4﹣a7=﹣3d∈(0,3),a4﹣a7=2kπ+,k∈Z,∴﹣3d=2kπ+,d=﹣﹣π.∴d=﹣∵S n=na1+=n2+(a1﹣)n,且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴8.5<﹣<9.5,∴π<a1<故选:C二.解答题(共4小题)24.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.【解答】解:(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,则d==2,则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)c n=a n+b n=2n﹣1+3n﹣1,则数列{c n}的前n项和为(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+=n2+.25.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.26.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.27.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,{b2n}是等比数列,公比为3,首项为1.﹣1b1+b3+b5+…+b2n﹣1==.。
高二数学数列专题练习题(含答案)
高二数学数列专题练习题(含答案)高中数学《数列》专题练1.数列基本概念已知数列的前n项和S_n和第n项a_n之间的关系为:a_n=S_n-S_{n-1} (n>1),当n=1时,a_1=S_1.通过这个关系式可以求出任意一项的值。
2.等差数列和等比数列等差数列和等比数列是两种常见的数列类型。
对于等差数列,有通项公式a_n=a_1+(n-1)d,其中d为公差。
对于等比数列,有通项公式a_n=a_1*q^{n-1},其中q为公比。
如果a、G、b成等比数列,那么G叫做a与b的等比中项。
如果a、A、b、B成等差数列,那么A、B叫做a、b的等差中项。
3.求和公式对于等差数列,前n项和S_n=n(a_1+a_n)/2.对于等比数列,前n项和S_n=a_1(1-q^n)/(1-q),其中q不等于1.另外,对于等差数列,S_n、S_{2n}-S_n、S_{3n}-S_{2n}构成等差数列;对于等比数列,S_n、S_{2n}/S_n、S_{3n}/S_{2n}构成等比数列。
4.数列的函数看法数列可以看作是一个函数,通常有以下几种形式:a_n=dn+(a_1-d),a_n=An^2+Bn+C,a_n=a_1q^n,a_n=k*n+b。
5.判定方法对于数列的常数项,可以使用定义法证明;对于等差中项,可以证明2a_n=a_{n-1}+a_{n+1};对于等比中项,可以证明2a_n=a_{n-1}*a_{n+1}。
最后,对于数列的通项公式,可以使用数学归纳法证明。
1.数列基本概念和通项公式数列是按照一定规律排列的一列数,通常用{ }表示。
其中,第n项表示为an,公差为d,公比为q。
常用的数列有等差数列和等比数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
等比数列的通项公式为an = a1q^(n-1),其中a1为首项,q为公比。
2.数列求和公式数列求和是指将数列中的所有项加起来的操作。
高二数学数列专题练习题(含答案)
高中数学《数列》专题练习1.n S 与n a 的关系:11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩ ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a = 两步,最后考虑1a 是否满足后面的n a .2.等差等比数列数列通项公式求法。
()定义法(利用等差、等比数列的定义);()累加法(3)累乘法(n n n c a a =+1型);(4)利用公式11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等4.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。
5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解:(1)当0,01<>d a 时,满足⎩⎨⎧≤≥+001m ma a的项数m 使得m S 取最大值. (2)当 0,01><d a 时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得m S 取最小值。
也可以直接表示n S ,利用二次函数配方求最值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
6.数列的实际应用现实生活中涉及到银行利率、企业股金、产品利润、人口增长、工作效率、图形面积、等实际问题,常考虑用数列的知识来解决.训练题一、选择题1.已知等差数列{}n a 的前三项依次为1a -、1a +、23a +,则2011是这个数列的 (B )A.第1006项B.第1007项C. 第1008项D. 第1009项2.在等比数列}{n a 中,485756=-=+a a a a ,则10S 等于 (A ) A .1023 B .1024 C .511 D .5123.若{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =( )A .-2B .-12 C.12 D .2答案 B解析 由等差中项的定义结合已知条件可知2a 4=a 5+a 3,∴2d =a 7-a 5=-1,即d =-12.故选B.4.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( A )A.180B.-180C.90D.-905.已知{}n a 为等差数列,若π=++951a a a ,则28cos()a a +的值为( A ) A .21-B .23-C .21D .236.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( )A .9B .1C .2D .3答案 D解析 由等比数列性质可知a 3a 5a 7a 9a 11=a 57=243,所以得a 7=3,又a 29a 11=a 7a 11a 11=a 7,故选D.7.已知等差数列{a n }的前n 项和为S n ,a 1+a 5=12S 5,且a 9=20,则S 11=( )A .260B .220C .130D .110答案 D解析 ∵S 5=a 1+a 52×5,又∵12S 5=a 1+a 5,∴a 1+a 5=0.∴a 3=0,∴S 11=a 1+a 112×11=a 3+a 92×11=0+202×11=110,故选D. 8.各项均不为零的等差数列{a n }中,若a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则S 2 009等于A .0B .2C .2 009D .4 018答案 D解析 各项均不为零的等差数列{a n },由于a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则a 2n -2a n =0,a n =2,S 2 009=4 018,故选D.9.数列{a n }是等比数列且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于A .5B .10C .15D .20答案 A解析 由于a 2a 4=a 23,a 4a 6=a 25,所以a 2·a 4+2a 3·a 5+a 4·a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25.所以a 3+a 5=±5.又a n >0,所以a 3+a 5=5.所以选A. 10.首项为1,公差不为0的等差数列{a n }中,a 3,a 4,a 6是一个等比数列的前三项,则这个等比数列的第四项是( )A .8B .-8C .-6D .不确定答案 B解析 a 24=a 3·a 6⇒(1+3d )2=(1+2d )·(1+5d ) ⇒d (d +1)=0⇒d =-1,∴a 3=-1,a 4=-2,∴q =2. ∴a 6=a 4·q =-4,第四项为a 6·q =-8.11.在△ABC 中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以31为第三项,9为第六项的等比数列的公比,则这个三角形是(B )A.钝角三角形B.锐角三角形C.等腰三角形D.非等腰的直角三角形12.记等差数列{}n a 的前项和为n s ,若103s s =,且公差不为0,则当n s 取最大值时,=n ( )CA .4或5B .5或6C .6或7D .7或813.在等差数列{a n }中,前n 项和为S n ,且S 2 011=-2 011,a 1 007=3,则S 2 012的值为A .1 006B .-2 012C .2 012D .-1 006答案 C解析 方法一 设等差数列的首项为a 1,公差为d ,根据题意可得, ⎩⎪⎨⎪⎧S 2 011=2 011a 1+2 011× 2 011-1 2d =-2 011,a 1 007=a 1+1 006d =3,即⎩⎨⎧ a 1+1 005d =-1,a 1+1 006d =3,解得⎩⎨⎧a 1=-4 021,d =4.所以,S 2 012=2 012a 1+2 012× 2 012-1 2d =2 012×(-4 021)+2 012×2 011×2 =2 012×(4 022-4 021)=2012. 方法二 由S 2 011=2 011 a 1+a 2 011 2 =2 011a 1 006=-2 011, 解得a 1 006=-1,则S 2 012=2 012 a 1+a 2 012 2=2 012 a 1 006+a 1 0072=2 012× -1+3 2=2 012. 14.设函数f (x )满足f (n +1)=2f n +n 2(n ∈N *),且f (1)=2,则f (20)=( ) A .95 B .97 C .105 D .192答案 B解析 f (n +1)=f (n )+n 2,∴⎩⎪⎨⎪⎧f 20 =f 19 +192,f 19 =f 18 +182,……f 2 =f 1 +12.累加,得f (20)=f (1)+(12+22+…+192)=f (1)+19×204=97.15.已知数列{}n a 的前n 项和n S 满足1)1log 2+=+n S n (,则通项公式为(B ) A.)(2*N n a n n ∈= B. ⎩⎨⎧≥==)2(2)1(3n n a nn C. )(2*1N n a n n ∈=+ D. 以上都不正确16.一种细胞每3分钟分裂一次,一个分裂成两个,如果把一个这种细胞放入某个容器内,恰好一小时充满该容器,如果开始把2个这种细胞放入该容器内,则细胞充满该容器的时间为 ( D )A .15分钟B .30分钟C .45分钟D .57分钟 二、填空题17.等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4= 8. 18.记等差数列{a n }的前n 项和为S n ,若a 1=21,S 4=20,则S 6= . 48 19.在等比数列{}n a 中,11a =,公比2q =,若64n a =,则n 的值为 .7 20.设等比数列{a n }的公比q=2,前n 项和为S n ,则24a S = .21512.数列{a n },{b n }的前n 项和分别为S n 和T n ,若S n T n =2n 3n +1,则a 100b 100=________. 答案 199299解析 a 100b 100=a 1+a 1992b 1+b 1992=S 199T 199=199299.21.数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥则{}n a 的通项公式 解:(Ⅰ)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥又21213a S =+= ∴213a a = 故{}n a 是首项为1,公比为3得等比数列 ∴13n n a -=22.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为________.答案 4解析 设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4.又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n +2=29-3n.由于2-3=18>19,因此要使29-3n>19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a n +2>19的最大正整数n 的值为4. 23.等比数列{a n }的首项为a 1=1,前n 项和为S n ,若S 10S 5=3132,则公比q 等于________.答案 -12解析 因为S 10S 5=3132,所以S 10-S 5S 5=31-3232=-132,即q 5=(-12)5,所以q =-12.三、解答题24.(本小题满分12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T . 1【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n 。
高中数学数列综合训练题(带答案)
高中数学数列综合训练题(带答案)1.等差数列{an}中,a1+a4+a7=39,a3+a6+a9=27,则数列{an}前9项的和S9等于()A。
66 B。
99 C。
144 D。
2972.若互不相等的实数a、b、c成等差数列,c、a、b成等比数列,且a+3b+c=10,则a=()A。
4 B。
2 C。
-2 D。
-43.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为()A。
81 B。
120 C。
168 D。
1924.2+1与2-1,两数的等比中项是()A。
1 B。
-1 C。
±1 D.5.若lg2,XXX(2-1),XXX(2+3)成等差数列,则x的值等于()A。
1 B。
or 32 C。
32 D。
log256.已知三角形的三边构成等比数列,它们的公比为q,则q的取值范围是()A。
(0.1+5) B。
(,1] C。
[1,1+5) D。
(−1+5,1+5)7.在ΔABC中,XXX是以-4为第三项,4为第七项的等差数列的公差,tanB是以1为第三项,9为第六项的等比数列的公比,则这个三角形是()A。
钝角三角形 B。
锐角三角形 C。
等腰直角三角形 D。
以上都不对8.等比数列{an}的各项均为正数,且a5a6+a4a7=18,则XXX()A。
12 B。
10 C。
1+log35 D。
2+log359.在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值为()A。
9 B。
12 C。
16 D。
1710.在等比数列{an}中,若a2=6,且a5-2a4-a3+12=0,则an为()A。
6 B。
6(-1)n-2 C。
6·2n-2 D。
6或6(-1)n-2或6·2n-211.等差数列{an}的前n项和为Sn,若m>1,且am-1+am+1-am=Sn-1=38,则m等于()A。
38 B。
20 C。
10 D。
912.等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/an=Tn/(3n+1)bn,则n=()1.22n-12n-12n+1 should be written as (22n-1)/(3n+1).2.The article has no clear n or topic sentence。
最新高考数学第二轮专题复习- 数列的综合运用(含答案)
万件的月份是( )
A.5月、6月B.6月、7月C.7月、8月D.8月、9月
二. 填空题
7.数列 前n项和为__________.
8.设 是首项为1的正项数列,且 ,则它的
通项公式是 _________.
9.已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,求这个
A. B.
C. D.
4.若数列 前8项的值各异,且 对任意 都成立,则下列数列中可取遍
前8项值的数列为( )
A. B. C. D.
5.已知数列 ,那么“对任意的 ,点 都在直线 上”是“
为等差数列”的( )
A.必要而不充分条件B. 充分而不必要条件
C. 充要条件D. 既不充分也不必要条件
6.根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量 (万件)近似
数列的公比,项数为.
10.在各项均为正数的等比数列 中,若 则
.
三. 解答题
11.数列 的前n项和为 ,且 , 求
(1) , , 的值及数列 的通项公式;(2) 的值.
12. 有穷数列 的前n项和Sn=2n2+n, 现从中抽取某一项(不是首项和末项)后, 余下项的
平均值是79.(1)求数列 的通项;(2)求数列 的项数及抽取的项数.
常数项为0, 那么 一定是公差不为0的等差数列.
通项 与前n项和 之间的关系:
2.分析高考趋势
数列是初等数学与高等数学衔接和联系最密切的内容之一, 是进一步学习高等数学的基础, 数列的题目形态多变, 蕴含丰富的数学思想和数学方法, 是高考的热点之一. 在近几年新教材的高考试题中, 对数列的考查多以解答题的形式出现, 数列与函数, 数列与不等式等的综合知识, 在知识的交汇点处设计题目, 成为高考对能力和素质考查的重要方面. 在数列方面的考查, 对能力方面的要求, 呈现越来越高的趋势, 对知识考查的同时, 伴随着对数学思想方法的考查. 在近几年新教材的高考试题中, 数列约占 %左右, 考查的内容主要有: ①等差数列、等比数列的基本知识 (定义、通项公式、前n项和公式); ②等差数列、等比数列与其他知识点的综合运用, 及应用数列知识解决实际问题; ③ 函数和方程的思想, 化归思想, 分类讨论思想, 待定系数法等.
2021年高中数学数列多选题专题复习含答案(1)
2021年高中数学数列多选题专题复习含答案(1)一、数列多选题1.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2C .0D .2【答案】AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.2.已知等差数列{}n a 的前n 项和为n S ,若831a =,10210S =,则( )A .19919S a =B .数列{}22na 是公比为8的等比数列C .若()1nnnb a =-⋅,则数列{}n b 的前2020项和为4040D .若11n n n b a a +=,则数列{}n b 的前2020项和为202024249【答案】CD 【分析】由等差数列性质可判断A ;结合已知条件可求出等差数列的公差,从而可求出通项公式以及22n a ,结合等比数列的定义可判断B ;写出n b ,由定义写出2020T 的表达式,进行分组求和即可判断C ;11144143n b n n ⎛⎫=- ⎪-+⎝⎭,裂项相消即可求和.【详解】由等差数列的性质可知,191019S a =,故A 错误;设{}n a 的公差为d ,则有811017311045210a a d S a d =+=⎧⎨=+=⎩,解得13a =,4d =,故41n a n =-,28122na n -=, 则数列{}22n a是公比为82的等比数列,故B 错误;若()()()1141n nn n b a n =-⋅=-⋅-,则{}n b 的前2020项20203711158079410104040T =-+-+-⋅⋅⋅+=⨯=,故C 正确; 若()()1111414344143n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,则{}n b 的前2020项和2020111111120204377118079808324249T ⎛⎫=-+-+⋅⋅⋅+-=⎪⎝⎭,故D 正确. 故选:CD . 【点睛】 方法点睛:求数列的前n 项和常见思路有:1、对于等差和等比数列,直接结合求和公式求解;2、等差数列±等比数列时,常采取分组求和法;3、等差数列⨯等比数列时,常采取错位相减法;4、裂项相消法.3.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有( ) A .数列{}n a 递增B .n S 为{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列 C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫⎨⎬+⎩⎭为等差数列,则0cD .若70a =,n S 为{}n a 的前n 项和,则方程0n S =有唯一的根13n =【答案】ABD 【分析】选项A. 由题意10n n a a d +-=>可判断;选项B.先求出112n S n a d n -=+⨯,根据1012n n S S dn n +-=>+可判断;选项C. 若n a n =,则()12n n n S +=,则0c 或1c =时n S n c ⎧⎫⎨⎬+⎩⎭为等差数列可判断;选项D.由1602n n S dn -⎛⎫=--= ⎪⎝⎭可判断. 【详解】选项A. 由题意10n n a a d +-=>,则1n n a a +>,所以数列{}n a 递增,故A 正确. 选项B. ()112n n n S na d -=+⨯,则112n S n a d n -=+⨯ 所以1012n n S S d n n +-=>+,则11n n S S n n +>+,所以数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列. 故B 正确. 选项C. 若n a n =,则()12n n n S +=,则()()12n n n S n c n c =+++当0c时,12+n S n c n =+为等差数列. 当1c =时,2n S n c n=+为等差数列.所以选项C 不正确.选项D. 70a =,即7160a a d =+=,则16a d =- 又()()1111660222n n n n n n S na d dn d dn ---⎛⎫=+⨯=-+⨯=--= ⎪⎝⎭ 由0,0d n >>,所以1602n --=,得13n =,故选项D 正确. 故选:ABD 【点睛】关键点睛:本题考查等差数列的判定和单调性的单调,解答本题的关键是利用等差数列的定义和前n 项和公式进行判断,求出162n n S dn -⎛⎫=-+⎪⎝⎭,从而判断,属于中档题.4.记数列{}n a 的前n 项和为n S ,*n ∈N ,下列四个命题中不正确的有( ) A .若0q ≠,且对于*212,n n n n a a a ++∀∈=N ,则数列{}n a 为等比数列B .若nn S Aq B =+(非零常数q ,A ,B 满足1q ≠,0A B +=),则数列{}n a 为等比数列C .若数列{}n a 为等比数列,则232,,,n n n n n S S S S S --仍为等比数列D .设数列{}n a 是等比数列,若123a a a <<,则{}n a 为递增数列 【答案】AC 【分析】若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,可判断A ;利用n a 与n S 的关系,可求得数列{}n a 的通项公式,可判断B ;若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,可判断C ;设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,分类讨论10a >与10a <两种情况,可判断D ; 【详解】对于A ,若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,故A 错误;对于B ,当2n ≥时,()111(1)nn n n n n a S S Aq B AqB Aq q ---=-=+-+=-且1q ≠;当1n =时,0A B +=,则()111a S Aq B A q ==+=-符合上式,故数列{}n a 是首项为()1A q -公比为q 的等比数列,故B 正确;对于C ,若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,不为等比数列,故C 错误;对于D ,设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,若10a >,可得21q q <<,即1q >,则{}n a 为递增数列;若10a <,可得21q q >>,即01q <<,则{}n a 为递增数列;故D 正确;故选:AC 【点睛】结论点睛:本题考查等比数列通项公式及和的性质,等比数列和的性质:公比为1q ≠-的等比数列{}n a 的前n 项和为n S ,则232,,,n n n n n S S S S S --仍成等比数列,其公比为n q ;同理等差数列和的性质:公差为d 的等差数列{}n a 的前n 项和为n S ,数列232,,,m m m m m S S S S S --构成等差数列,公差为md ,考查学生的分析能力,属于中档题.5.将()23nn ≥个数排成n 行n 列的一个数阵,如图:11a 12a 13a ……1n a21a 22a 23a ……2n a 31a 32a 33a ……3n a……1n a 2n a 3n a ……nn a该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知113a =,61131a a =+,记这2n 个数的和为S .下列结论正确的有( )A .2m =B .767132a =⨯C .()1212j ij a i -=+⨯D .()()221nS n n =+-【答案】ACD 【分析】由题中条件113a =,61131a a =+,得23531m m +=+解得m 的值可判断A ;根据第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列可判断BC ;由等差数列、等比数列的前n 项和公式可判断D. 【详解】由113a =,61131a a =+,得23531m m +=+,所以2m =或13m =-(舍去),A 正确;()666735132a m m =+=⨯,B 错误;()()112132212j j ij a i i --=-+⨯=+⨯⎡⎤⎣⎦,C 正确;()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++1121(12)(12)(12)121212n n n nn a a a ---=+++--- ()()()11211332(1)21212n nn n a a a n ++-⎛⎫=+++-=⨯- ⎪⎝⎭()()221n n n =+-,D 正确.故选:ACD. 【点睛】方法点睛:本题考查了分析问题、解决问题的能力,解答的关键是利用等比数列、等差数列的通项公式、求和公式求解,考查了学生的推理能力、计算能力.6.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .18181103354kk i a =⨯+=∑C .(31)3ij ja i =-⨯ D .()1(31)314n S n n =+- 【答案】ABD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,进而可得ii a ,根据错位相减法可求得181kki a=∑,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去),A 正确; ∴()()11113213313j j j ij i a a i m i ---⎡⎤=⋅=+-⨯⋅=-⋅⎣⎦,C 错误;∴()1313i ii a i -=-⋅,0171811223318182353533S a a a a =+++⋯+=⨯+⨯+⋯+⨯① 12181832353533S =⨯+⨯+⋯+⨯②,①-②化简计算可得:1818103354S ⨯+=,B 正确;S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )()()()11211131313131313nnnn a a a ---=+++---()()231131.22nn n +-=- ()1=(31)314n n n +-,D 正确; 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.7.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <. 【答案】ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >,所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.8.(多选)设数列{}n a 是等差数列,公差为d ,n S 是其前n 项和,10a >且69S S =,则( ) A .0d > B .80a =C .7S 或8S 为n S 的最大值D .56S S >【答案】BC 【分析】根据69S S =得到80a =,再根据10a >得到0d <,可得数列{}n a 是单调递减的等差数列,所以7S 或8S 为n S 的最大值,根据6560S S a -=>得65S S >,故BC 正确. 【详解】由69S S =得,960S S -=, 即7890a a a ++=,又7982a a a +=,830a ∴=,80a ∴=,∴B 正确;由8170a a d =+=,得17a d =-,又10a >,0d ∴<, ∴数列{}n a 是单调递减的等差数列,()()0,70,9n n a n N n a n N n **⎧>∈≤⎪∴⎨<∈≥⎪⎩, 7S ∴或8S 为n S 的最大值,∴A 错误,C 正确; 6560S S a -=>,65S S ∴>,所以D 错误.故选:BC . 【点睛】关键点点睛:根据等差中项推出80a =,进而推出0d <是解题关键.9.已知首项为1的数列{}n a 的前n 项和为n S ,当n 为偶数时,11n n a a --=;当n 为奇数且1n >时,121n n a a --=.若4000m S >,则m 的值可以是( ) A .17 B .18C .19D .20【答案】BCD 【分析】由已知条件得出数列奇数项之间的递推关系,从而得数列21{3}k a -+是等比数列,由此可求得奇数项的表达式(也即得到偶数项的表达式),对2k S 可先求得其奇数项的和,再得偶数项的和,从而得2k S ,计算出与4000接近的和,184043S =,173021S =,从而可得结论. 【详解】依题意,2211k k a a -=+,21221k k a a +=+,*k N ∈,所以2211k k a a -=+,2122121212(1)123k k k k a a a a +--=+=++=+,∴()2121323k k a a +-+=+.又134a +=,故数列{}213k a -+是以4为首项,2为公比的等比数列,所以121423k k a --=⋅-,故S 奇()21321141232(44242)43321k k k k k a a a k k -+-===+⨯++⨯--+++-=---,S 偶21232412()242k k k a a a k k a a a +-=+=+++=+++--,故2k S S =奇+S 偶3285k k +=--,故121828454043S =--=,173021S =,故使得4000m S >的最小整数m 的值为18.故选:BCD . 【点睛】关键点点睛:本题考查数列的和的问题,解题关键是是由已知关系得出数列的奇数项满足的性质,求出奇数项的表达式(也可求出偶数项的表达式),而求和时,先考虑项数为偶数时的和,这样可分类求各:先求奇数项的和,再求偶数项的和,从而得所有项的和,利用这个和的表达式估计和n S 接近4000时的项数n ,从而得出结论.10.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩⎭的前n 项和为n T ,n *∈N ,则下列选项正确的是( ) A .24a = B .2nn S =C .38n T ≥D .12n T <【答案】ACD 【分析】在1+14,()n n a S a n N *==∈中,令1n =,则A 易判断;由32122S a a =+=,B 易判断;令12(1)n n n b n n a ++=+,138b =,2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,裂项求和3182n T ≤<,则CD 可判断. 【详解】解:由1+14,()n n a S a n N *==∈,所以2114a S a ===,故A 正确;32212822S a a =+==≠,故B 错误;+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,12n na a +=, 所以2n ≥时,2422n n n a -=⋅=, 令12(1)n n n b n n a ++=+,12123(11)8b a +==+, 2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,1138T b ==,2n ≥时,()()23341131111111118223232422122122n n n n T n n n ++=+-+-++-=-<⨯⋅⋅⋅⋅+⋅+⋅ 所以n *∈N 时,3182n T ≤<,故CD 正确;故选:ACD. 【点睛】方法点睛:已知n a 与n S 之间的关系,一般用()11,12n nn a n a S S n -=⎧=⎨-≥⎩递推数列的通项,注意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和.。
高中数学--数列大题专项训练(含详解)
高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。
高中数学《数列求和与综合问题》专项练习题(含答案解析)
高中数学《数列求和与综合问题》专项练习题(含答案解析)一、选择题1.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44 B .3×44+1 C .44D .44+1A [因为a n +1=3S n ,所以a n =3S n -1(n ≥2), 两式相减得,a n +1-a n =3a n ,即a n +1a n=4(n ≥2),所以数列a 2,a 3,a 4,…构成以a 2=3S 1=3a 1=3为首项,公比为4的等比数列,所以a 6=a 2·44=3×44.]2.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2等于( ) A .2B .12C .3D .13C [∵在等差数列中,S 2n -1=(2n -1)a n ,∴S 1=a 1,S 3=3a 2,S 5=5a 3,∴35=1a 1a 2+1a 2a 3+1a 1a 3,∵a 1a 2a 3=15,∴35=a 315+a 115+a 215=a 25,即a 2=3.]3.已知数列{b n }满足b 1=1,b 2=4,b n +2=⎝ ⎛⎭⎪⎫1+sin 2n π2b n +cos 2n π2,则该数列的前23项的和为( )A .4 194B .4 195C .2 046D .2 047A [当n 为偶数时,b n +2=⎝⎛⎭⎪⎫1+sin 2n π2b n +cos 2n π2=b n +1,有b n +2-b n =1,即偶数项成等差数列,所以b 2+b 4+…+b 22=11b 2+11×102×1=99.当n 为奇数时,b n +2=2b n ,即奇数项成等比数列,所以b 1+b 3+…+b 23=b 11-2121-2=212-1=4 095.所以该数列的前23项的和为99+4 095=4 194,故选A .]4.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n +a n +1=2n +1,则S 2 0192 019=( )A .1 010B .1 009C .2 020D .2 019A [S 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019), =(2×0+1)+(2×2+1)+(2×4+1)+…+(2×2 018+1), =1+2×2 018+11 0102=2 019×1 010,∴S 2 0192 019=1 010,故选A .]5.已知数列{a n }的前n 项和S n =2+λa n ,且a 1=1,则S 5=( ) A .27 B .5327C .3116D .31C [∵S n =2+λa n ,且a 1=1,∴S 1=2+λa 1, 即λ=-1,∴S n =2-a n ,当n ≥2时,S n =2-(S n -S n -1),∴2S n =2+S n -1,即S n =12S n -1+1,∴S n -2=12(S n -1-2),∴S n -2=(-1)×⎝ ⎛⎭⎪⎫12n -1.当n =1时也满足.∴S 5=2-⎝ ⎛⎭⎪⎫124=3116.故选C .]6.设曲线y =2 018x n +1(n ∈N *)在点(1,2 018)处的切线与x 轴的交点的横坐标为x n ,令a n =log 2 018x n ,则a 1+a 2+…+a 2 017的值为( )A .2 018B .2 017C .1D .-1D [因为y ′=2 018(n +1)x n ,所以切线方程是y -2 018=2 018(n +1)(x -1),所以x n =nn +1,所以a 1+a 2+…+a 2 017=log 2 018(x 1·x 2·…·x 2 017)=log 2 018⎝ ⎛⎭⎪⎫12×23×…×2 0172 018=log 2 01812 018=-1.]7.在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87等于( )A .1403B .60C .80D .160C [法一:a 3+a 6+a 9+…+a 87=a 3(1+q 3+q 6+…+q 84)=a1q 2×1q 3291-q 3=q 21+q +q 2×a 11-q 871-q =47×140=80.故选C . 法二:设b 1=a 1+a 4+a 7+…+a 85,b 2=a 2+a 5+a 8+…+a 86,b 3=a 3+a 6+a 9+…+a 87,因为b 1q =b 2,b 2q =b 3,且b 1+b 2+b 3=140,所以b 1(1+q +q 2)=140,而1+q +q 2=7,所以b 1=20,b 3=q 2b 1=4×20=80.故选C .]8.设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5,则数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项和的最大值为( )A .49B .1C .4181D .151315A [a 1=9,a 2为整数,可知:等差数列{a n }的公差d 为整数,由S n ≤S 5,∴a 5≥0,a 6≤0,则9+4d ≥0,9+5d ≤0,解得-94≤d ≤-95,d 为整数,d =-2.∴a n =9-2(n -1)=11-2n . 1a n ·a n +1=111-2n9-2n =12⎝⎛⎭⎪⎫19-2n -111-2n , 数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项和为 12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-19+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫19-2n -111-2n =12⎝⎛⎭⎪⎫19-2n -19, 令b n =19-2n ,由于函数f (x )=19-2x 的图象关于点⎝ ⎛⎭⎪⎫92,0对称及其单调性,可知:0<b 1<b 2<b 3<b 4,b 5<b 6<b 7<…<0,∴b n ≤b 4=1.∴最大值为49.故选A .]二、填空题 9.已知a n =2n ,b n =3n -1,c n =b n a n,则数列{c n }的前n 项和S n 为________.5-3n +52n [由题设知,c n =3n -12n ,所以S n =221+522+823+…+3n -12n , ①2S n =2+521+822+…+3n -12n -1,②由②-①得,S n =2+321+322+…+32n -1-3n -12n .故所求S n =2+32⎝ ⎛⎭⎪⎫1-12n -11-12-3n -12n =5-3n +52n .]10.已知数列{a n }和{b n }满足a 1=1,a n +1a n=n +1n,b n a n=sin 2n π3-cos 2n π3,n ∈N *,则数列{b n }的前47项和等于________.1 120 [依题意得a n +1n +1=a nn ,故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是常数列,于是有a n n =1,a n =n 2,b n =-n 2cos 2n π3,b 3k -2+b 3k -1+b 3k =3k -223k -122-(3k )2=-9k +52(k ∈N *),因此数列{b n }的前47项和为S 47=S 48-b 48=-9×161+162+52×16+482=1 120.]11.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.2 [由S nS 2n =k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n 2n -1d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,∵对任意正整数n ,上式恒成立,∴⎩⎪⎨⎪⎧d 4k -10,2k -12-d0,得⎩⎪⎨⎪⎧d =2,k =14.∴数列{a n }的公差为2.]12.记S n 为正项等比数列{a n }的前n 项和,若S 4-2S 2=3,则S 6-S 4的最小值为________.12 [由题可知数列{a n }的公比q >0,a n >0,则3=(a 4-a 2)+(a 3-a 1)=a 1(q +1)·(q 2-1),则有q >1,所以3S 6-S 4=3a 6+a 5=3a 1q +1q 4=a 1q +1q 2-1a 1q +1q 4=1q 2-⎝ ⎛⎭⎪⎫1q 22=14-⎝ ⎛⎭⎪⎫1q 2-122≤14(当且仅当q =2时,取等号),所以S 6-S 4≥12,即S 6-S 4的最小值为12.]三、解答题13.(2018·黔东南州二模)已知数列{a n }的前n 项和为S n ,且满足S n =43(a n -1),n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =log 2a n ,记数列⎩⎨⎧⎭⎬⎫1b n -1b n +1的前n 项和为T n ,证明:T n <12.[解] (1)当n =1时,有a 1=S 1=43(a 1-1),解得a 1=4.当n ≥2时,有S n -1=43(a n -1-1),则a n =S n -S n -1=43(a n -1)-43(a n -1-1),整理得:a na n -1=4,∴数列{a n }是以q =4为公比,以a 1=4为首项的等比数列.∴a n =4×4n -1=4n (n ∈N *)即数列{a n }的通项公式为:a n =4n (n ∈N *). (2)由(1)有b n =log 2a n =log 2 4n =2n ,则1b n +1b n -1=12n +12n -1=12⎝⎛⎭⎪⎫12n -1-12n +1. ∴T n =12⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1. 易知数列{T n }为递增数列, ∴T 1≤T n <12,即13≤T n <12.14.(2018·邯郸市一模)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2.(1)求T n -S n ; (2)求数列⎩⎨⎧⎭⎬⎫b n 2n 的前n 项和R n .[解] (1)依题意可得b 1-a 1=3,b 2-a 2=5,…,b n -a n =2n +1, ∴T n -S n =(b 1+b 2+…+b n )-(a 1+a 2+…+a n ) =n +(2+22+…+2n )=2n +1+n -2. (2)∵2S n =S n +T n -(T n -S n )=n 2-n , ∴S n =n 2-n2,∴a n =n -1. 又b n -a n =2n +1, ∴b n =2n +n .∴b n2n =1+n2n , ∴R n =n +⎝ ⎛⎭⎪⎫12+222+…+n 2n ,则12R n =12n +⎝ ⎛⎭⎪⎫122+223+…+n 2n +1,∴12R n =12n +⎝ ⎛⎭⎪⎫12+122+…+12n -n2n +1, 故R n =n +2×12-12n +11-12-n 2n =n +2-n +22n .。
高中数学数列专题训练6套含答案
目录第一套:等比数列例题精讲第二套:等差等比数列基础试题一第三套:等差等比数列基础试题二第四套:等差等比数列提升试题一第五套:等差等比数列提升试题二第六套:数列的极限拓展等比数列·例题解析【例1】 已知S n 是数列{a n }的前n 项和,S n =p n (p ∈R ,n ∈N*),那么数列{a n }.[ ]A .是等比数列B .当p ≠0时是等比数列C .当p ≠0,p ≠1时是等比数列D .不是等比数列分析 由S n =p n (n ∈N*),有a 1=S 1=p ,并且当n ≥2时, a n =S n -S n-1=p n -p n-1=(p -1)p n-1但满足此条件的实数p 是不存在的,故本题应选D .说明 数列{a n }成等比数列的必要条件是a n ≠0(n ∈N*),还要注【例2】 已知等比数列1,x 1,x 2,…,x 2n ,2,求x 1·x 2·x 3·…·x 2n . 解 ∵1,x 1,x 2,…,x 2n ,2成等比数列,公比q ∴2=1·q 2n+1x 1x 2x 3...x 2n =q .q 2.q 3...q 2n =q 1+2+3+ (2)式;(2)已知a 3·a 4·a 5=8,求a 2a 3a 4a 5a 6的值.故-,因此数列成等比数列≠-≠a =(p 1)p {a }p 0p 10(p 1)p 2n n 1⇔--=-⎧⎨⎪⎪⎪⎩⎪⎪⎪--()()p pp p p n 212意对任∈,≥,都为同一常数是其定义规定的准确含义.n *n 2N a a nn -1=q2n(1+2n)2==+q n n n ()212【例3】 {a }(1)a =4a n 25等比数列中,已知,=-,求通项公12解 (1)a =a q q =5252-∴-12∴a 4=2【例4】 已知a >0,b >0且a ≠b ,在a ,b 之间插入n 个正数x 1,x 2,…,x n ,使得a ,x 1,x 2,…,x n ,b 成等比数列,求证明 设这n +2个数所成数列的公比为q ,则b=aq n+1【例5】 设a 、b 、c 、d 成等比数列,求证:(b -c)2+(c -a)2+(d -b)2=(a -d)2.证法一 ∵a 、b 、c 、d 成等比数列∴b 2=ac ,c 2=bd ,ad =bc∴左边=b 2-2bc +c 2+c 2-2ac +a 2+d 2-2bd +b 2 =2(b 2-ac)+2(c 2-bd)+(a 2-2bc +d 2) =a 2-2ad +d 2 =(a -d)2=右边证毕.证法二 ∵a 、b 、c 、d 成等比数列,设其公比为q ,则: b =aq ,c =aq 2,d=aq 3∴==-=∵·=··=a a q 4()()(2)a a a a a a a =8n 2n 2n 2n 4354234543----1212又==∴a a a a a a a a a a =a =322635423456452证…<.x x x a bn n 122+∴∴……<q b ax x x aqaq aq aqab a bn n n nn n ++====+1122122∴a b b c c d==∴左边=(aq -aq 2)2+(aq 2-a)2+(aq 3-aq)2 =a 2-2a 2q 3+a 2q 6 =(a -aq 3)2 =(a -d)2=右边证毕.说明 这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b 、c 的特点,走的是利用等比的条件消去左边式中的b 、c 的路子.证法二则是把a 、b 、c 、d 统一化成等比数列的基本元素a 、q 去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】 求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----证 ∵a 1、a 2、a 3、a 4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a 1、a 2、a 3为实数因而a 1、a 2、a 3成等比数列∴a 4即为等比数列a 1、a 2、a 3的公比.【例8】 若a 、b 、c 成等差数列,且a +1、b 、c 与a 、b 、c +2都成等比数列,求b 的值.解 设a 、b 、c 分别为b -d 、b 、b +d ,由已知b -d +1、b 、b +d 与b -d 、b 、b +d +2都成等比数列,有整理,得∴b +d=2b -2d 即b=3d 代入①,得9d 2=(3d -d +1)(3d +d) 9d 2=(2d +1)·4d 解之,得d=4或d=0(舍) ∴b=12【例7】 a a a a (a a )a 2a (a a )a a a =0a a a a 1234122242213422321234若实数、、、都不为零,且满足+-+++求证:、、成等比数列,且公比为.∴+-+++为实系数一元二次方程等式+-+++说明上述方程有实数根.(a a )x 2a (a a )x a a =0(a a )a 2a (a a )a a a =0a 122222132232122242213422324[2a (a a )]4(a a )(a a )=4(a a a )0(a a a )02132122222322213222132-+-++--≥∴-≤∴-≥必有-即(a a a )0a a a =0a =a a 2213222132213又∵a =2a 42()()()a a a a a a a a a a a a 1312222131213212++=++=b =(b d 1)(b d)b =(b d)(b d 2)22-++①-++②⎧⎨⎪⎩⎪b =b d b db =b d 2b 2d 222222-++-+-⎧⎨⎪⎩⎪【例9】 已知等差数列{a n }的公差和等比数列{b n }的公比都是d ,又知d ≠1,且a 4=b 4,a 10=b 10:(1)求a 1与d 的值; (2)b 16是不是{a n }中的项? 思路:运用通项公式列方程(2)∵b 16=b 1·d 15=-32b 1∴b 16=-32b 1=-32a 1,如果b 16是{a n }中的第k 项,则 -32a 1=a 1+(k -1)d ∴(k -1)d=-33a 1=33d∴k=34即b 16是{a n }中的第34项.解 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d解 (1)a =b a =b 3d =a d a 9d =a da (1d )=3d a (1d )=9d4410101131191319由++----⎧⎨⎩⇒⎧⎨⎪⎩⎪⇒⎧⎨⎪⎩⎪a ⇒⇒==-=-==-d d 2=063+-舍或∴d d a d d 1231331222()且+·--∴a =a 3d =22=b b =b d =2b =22b =a =2413441313113-【例10】 {a }b =(12)b b b =218b b b =18n n a n 123123设是等差数列,,已知++,,求等差数列的通项.∴·b =(12)b b =(12)(12)=(12)b n a 13a a +2d 2(a +d)221111+-()n d1解这个方程组,得∴a 1=-1,d=2或a 1=3,d=-2∴当a 1=-1,d=2时,a n =a 1+(n -1)d=2n -3 当a 1=3,d=2时,a n =a 1+(n -1)d=5-2n【例11】 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列由,解得,解得,代入已知条件整理得+b b b =18b =18b =12b b b =18b b =14b b =1781232321231313b b b 123218++=⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎩⎪⎪b =2b =18b =18b =21313,或,⇒aq 2=4a +②①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.【例12】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.分析 本题有三种设未知数的方法方法一 设前三个数为a -d ,a ,a +d ,则第四个数由已知条⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq方法二 设后三个数为b ,bq ,bq 2,则第一个数由已知条件推得为2b -bq . 方法三 设第一个数与第二个数分别为x ,y ,则第三、第四个数依次为12-y ,16-x .由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,所求四个数为:0,4,8,16或15,9,3,1.解法二 设后三个数为:b ,bq ,bq 2,则第一个数为:2b -bq所求四个数为:0,4,8,16或15,9,3,1.解法三 设四个数依次为x ,y ,12-y ,16-x .这四个数为0,4,8,16或15,9,3,1.【例13】 已知三个数成等差数列,其和为126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到85,76,84.求这两个数列.解 设成等差数列的三个数为b -d ,b ,b +d ,由已知,b -d +b +b +d=126 ∴b=42这三个数可写成42-d ,42,42+d .再设另三个数为a ,aq ,aq 2.由题设,得件可推得:()a d a+2解法一 a d a a d 设前三个数为-,,+,则第四个数为.()a d a+2依题意,有-+++a d =16a (a d)=12()a d a+⎧⎨⎪⎩⎪2解方程组得:或-a =4d =4a =9d =61122⎧⎨⎩⎧⎨⎩依题意有:-++2b bq bq =16b bq =122⎧⎨⎩解方程组得:或b =4q =2 b =9q =131122⎧⎨⎩⎧⎨⎪⎩⎪依题意有+-·--x (12y)=2yy (16x)=(12y)2⎧⎨⎩解方程组得:或x =0y =4x =15y =91122⎧⎨⎩⎧⎨⎩解这个方程组,得 a 1=17或a 2=68当a=17时,q=2,d=-26从而得到:成等比数列的三个数为17,34,68,此时成等差的三个数为68,42,16;或者成等比的三个数为68,34,17,此时成等差的三个数为17,42,67.【例14】 已知在数列{a n }中,a 1、a 2、a 3成等差数列,a 2、a 3、a 4成等比数列,a 3、a 4、a 5的倒数成等差数列,证明:a 1、a 3、a 5成等比数列.证明 由已知,有 2a 2=a 1+a 3①即 a 3(a 3+a 5)=a 5(a 1+a 3)所以a 1、a 3、a 5成等比数列.a 42d =85ap 42=76aq 42d =842+-+++⎧⎨⎪⎩⎪整理,得-①②+③a d =43aq =34aq d =422⎧⎨⎪⎩⎪当时,,a =68q =12d =25a =a a 3224·②③211435a a a =+由③,得·由①,得代入②,得··a =2a a a +a a =a +a 2a =a +a 243535213321323535a a a a +整理,得a =a (a +a )a +a 351235a a a =a a a a a =a a 323515353215++∴·【例15】已知(b-c)log m x+(c-a)log m y+(a-b)log m z=0.(1)设a,b,c依次成等差数列,且公差不为零,求证:x,y,z成等比数列.(2)设正数x,y,z依次成等比数列,且公比不为1,求证:a,b,c成等差数列.证明(1)∵a,b,c成等差数列,且公差d≠0∴b-c=a-b=-d,c-a=2d代入已知条件,得:-d(log m x-2log m y+log m z)=0∴log m x+log m z=2log m y∴y2=xz∵x,y,z均为正数∴x,y,z成等比数列(2)∵x,y,z成等比数列且公比q≠1∴y=xq,z=xq2代入已知条件得:(b-c)log m x+(c-a)log m xq+(a-b)log m xq2=0变形、整理得:(c+a-2b)log m q=0∵q≠1 ∴log m q≠0∴c+a-2b=0 即2b=a+c即a,b,c成等差数列高一数学数列练习【同步达纲练习】 一、选择题1.已知数列1,21,31,…,n1…,则其通项的表示为( ) A.{a n }B.{n 1}C. n1D.n2.已知数列{a n }中,a n =4n-13·2n+2,则50是其( )A.第3项B.第4项C.第5项D.不是这个数列的项3.已知数列的通项公式a n =2n-1,则2047是这个数列的( ) A.第10项 B.第11项 C.第12项 D.第13项 4.数列-1,58,-715,924,…的通项公式是( ) A.a n =(-1)n 122++n nnB.a n =(-1)n12)3(++n n nC.a n =(-1)n1222-+n nnD.a n =(-1)n12)2(++n n n5.在数列a 1,a 2,a 3,…,a n ,…的每相邻两项中插入3个数,使它们与原数列构成一个新数列,则新数列的第29项( )A.不是原数列的项B.是原数列的第7项C.是原数列的第8项D.是原数列的第9项6.已知数列的通项公式为a n =1213+-n n ,则a n 与a n+1的大小关系是( ) A.a n <a n+1 B.a n >a n+1C.a n =a n+1D.大小不能确定7.数列{a n }中,a n =-2n 2+29n+3,则此数列的最大项的值是( ) A.107B.108C.10881 D.1098.数列1,3,6,10,15,…的通项公式a n ,等于( ) A.n 2-(n-1) B.2)1(-n n C.2)1(+n n D.n 2-2n+2二、填空题1.数列-31,91,-271,…的一个通项公式是 .2.数列1,1,2,2,3,3,…的一个通项公式是 .3.数列1×3,2×4,3×5,…,n(n+2),…,问120是否是这个数列的项 .若是,120是第 项.4.已知数列{a n }满足a 1=1,a n+1=pa n +q ,且a 2=3,a 4=15,则p= ,q= .5.一个数列的前n 项之和是n n,则此数列的第4项为 .6.-1103,4203,-7403,10803,-131603,…的一个通项公式为 . 三、解答题1.已知数列{a n }的通项a n =)1(1+-n n n ,207、1207是不是这个数列的项?如果是,则是第几项?2.写出以下数列的一个通项公式.①-31,256,-499,274,-12115…; ②9,99,999,9999,99999,….3.已知下列数列{a n }的前n 项和S n ,求数列{a n }的通项公式.①S n =3+2n ; ②S n =2n 2+n+3【素质优化训练】1.已知数列的前4项如下,试写出下列各数列的一个通项公式:(1) 21,61,121,201; (2)-1,23,-45,87;(3)0.9,0.99,0.999,0.9999; (4)35,810,1517,2426.2.已知数列的通项公式为a n =-0.3n 2+2n+732,求它的数值最大的项.3.若数列{a n }由a 1=2,a n+1=a n +2n(n ≥1)确定,求通项公式a n .【生活实际运用】参加一次国际商贸洽谈会的国际友人居住在西安某大楼的不同楼层内,该大楼共有n 层,每层均住有参会人员.现要求每层指派一人,共n 人集中到第k 层开会,试问k 如何确定,能使n 位参加会议人员上、下楼梯所走路程总和最少?(假定相邻两层楼楼长都相等)【知识探究学习】某人从A 地到B 地乘坐出租车,有两种方案:第一种方案:利用起步价10元,每千米价为1.2元的汽车.第二种方案:租用起步价是8元,每千米价为4元的汽车.按出租车管理条例,在起步价内,不同型号车行驶的里程是相等的.则此人从A 地到B 地选择哪一种方案比较合适.解:设起步价内行驶里程为a 千米,A 地到B 地的距离是m 千米. 当m ≤a 时,选起步价8元的出租车比较合适. 当m >a 时,设m=a+x(x >0)乘坐起步价10元的出租车费用为P(x)元,乘坐起步价为8元的费用为Q(x)元, 则:P(x)=10+1.2x Q(x)=8+1.4x令P(x)=Q(x)得10+1.28+1.4x 解得x=10(千米) 此时两种出租车任选.当x >10时,P(x)-Q(x)=2-0.2x <0,故P(x)<Q(x) 此时选起步价为10元合适.当x <10时,P(x)-Q(x)=2-0.2x >0,故P(x)>Q(x) 此时选起步价为8元的出租车合适.参考答案:【同步达纲练习】一、1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.C二、1.a n =nn3)1(- 2.a n =⎪⎪⎩⎪⎪⎨⎧+为偶数为奇数n n n n ,2,213.是,104.2或-3,1或65.2296.a n =(-1)n[(3n-2)+12103-∙n ] 三、1.207不是{a n }中的项,1207是{a n }中的第15项. 2.①a n =(-1)n2)12(3+n n ;②a n =10n-1.3.①a n =⎪⎩⎪⎨⎧≥=2)(n 21)(n 51-n ②a n =⎩⎨⎧≥-=2)(n 1n 41)(n 6。
高中数学数列经典题型专题训练试题(含答案)
高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。
105高中数学数列专题复习(综合训练篇含答案)105
数列高考复习(附参考答案)———综合训练篇一、选择题:1. 在等差数列{}n a 中,12031581=++a a a ,则1092a a -的值为 ( D )A .18B .20C .22D .242.等差数列{}n a 满足:30,8531==+S a a ,若等比数列{}n b 满足,,4311a b a b ==则5b 为( B ) A .16B .32C .64D .273.等差数列{}n a 中,,27,39963741=++=++a a a a a a 则数列{}n a 的前9项之和S 9等于 ( C )A .66B .144C .99D .2974.各项都是正数的等比数列{}n a 的公比q ≠1,且2a ,321a ,1a 成等差数列,则5443a a a a ++为(A ) A .215- B .215+ C .251- D .215+或215-5.设等比数列{}n a 的前n 项和为n S ,若,336=S S 则=69S S( B ) A. 2 B.73 C. 83D.3 6.已知等差数列{}n a 的前n 项的和为n S ,且210S =,555S =,则过点(,)n P n a 和2(2,)()n Q n a n N *++∈的直线的一个方向向量的坐标是 ( B )A.1(2,)2B.1(,2)2-- C.1(,1)2-- D.(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且a 1、b 1、c 1成等差数列,则a c c a +的值为( C ) A .1594B .1594±C .1534 D .1534±8. 已知数列{}n a 的通项,1323211⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=--n n n a 则下列表述正确的是 ( A ) A .最大项为,1a 最小项为3a B .最大项为,1a 最小项不存在 C .最大项不存在,最小项为3a D .最大项为,1a 最小项为4a9.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是(B )A .21B .20C .19D .189.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M ,且点M 到l 的距离为2,若这一系列椭圆的离心率组成以43为首项,31为公比的等比数列,而椭圆相应的长半轴长为a i =(i=1,2,…,n),设b n =2(2n+1)·3n -2·a n ,且C n =11+n n b b ,T n =C 1+C 2+…+C n ,若对任意n ∈N*,总有T n >90m 恒成立,则m 的最大正整数为( B )A .3B .5C .6D .9二、填空题:10.已知等差数列{}n a 前n 项和S n =-n 2+2tn ,当n 仅当n=7时S n 最大,则t 的取值范围是 (6.5,7.5) .11. 数列{}n a 的通项公式是⎪⎩⎪⎨⎧=)(2)(2为偶数为奇数n n na nn ,则数列的前2m (m 为正整数)项和是 2m+1+m 2-2 .12.已知数列{}n a 满足:434121,0,,N ,n n n n a a a a n *--===∈则2009a =________;2014a =_________.【答案】1,0【解析】本题主要考查周期数列等基础知识.属于创新题型.依题意,得2009450331a a ⨯-==,2014210071007425210a a a a ⨯⨯-====.∴应填1,0.13.在数列{}n a 和{}n b 中,b n 是a n 与a n +1的等差中项,a 1 = 2且对任意*N n ∈都有3a n +1-a n = 0,则数列{b n }的通项公式 n n b 34= . 14. 设P 1,P 2,…P n …顺次为函数)0(1>=x xy 图像上的点(如图),Q 1,Q 2,…Q n …顺次为x 轴上的点,且n n n Q P Q Q P O Q OP 122111,,-∆∆∆ ,…,均为等腰直解三角形(其中P n 为直角顶点).设Q n 的坐标为(*)0)(0,N x n ∈,则数列{a n }的通项公式为n x n 2=*)N n ∈ .三、解答题:15.已知}{n a 是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6,成等比数列.15. [解法1]由已知.21,2,26361311741q q q a q a a a a a =+∴=+=+………………(2分)当66663124373124126361,2()2()2()2q S S S S a a a S a q a q a q S S q ≠-=+++=++=时…………(4分).1)1(1)1()1()1(266616318633S S qq a S q q a q S S q =⋅--=⋅--⋅+=+=………………(8分)当,)(2,6,6,3,126612316121613S S S S a S S a S a S q =-=-===同样有时……(10分)所以,61263,,2S S S S -成等比数列.………………………………………………(12分) [解法2]由已知636131174121,2,2q q q a q a a a a a =+∴=+=+,……………(2分)当,36)12(32)(2,1231314122a a a a S S S q =-⨯=-=时∴==.36)6(232126a a S ∴=-.)(2266122S S S S 61263,,2S S S S -成等比数列.…(6分)当,221)1(2111212,1633636q q q q S S q ⋅=+=--⋅=≠时…………………………(8分) ∴61263,,2S S S S -成等比数列.……………………………………………………(11分)综上,61263,,2S S S S -成等比数列.………………………………………………(12分)16.已知数列{a n }的前n 项和为S n ,且对任意自然数n 总有p a p S n n (),1(-=为常数,且q q n b b p p n n (2}{),1,0+=≠≠中有数列为常数)。
(word完整版)高中数学数列专题复习(综合训练篇含答案),推荐文档
数列———综合训练篇一、选择题:1. 在等差数列{}n a 中,12031581=++a a a ,则1092a a -的值为 ( )A .18B .20C .22D .242.等差数列{}n a 满足:30,8531==+S a a ,若等比数列{}n b 满足,,4311a b a b ==则5b 为( ) A .16B .32C .64D .273.等差数列{}n a 中,,27,39963741=++=++a a a a a a 则数列{}n a 的前9项之和S 9等于( ) A .66B .144C .99D .2974.各项都是正数的等比数列{}n a 的公比q ≠1,且2a ,321a ,1a 成等差数列,则5443a a a a ++为( ) A .215- B .215+ C .251- D .215+或215-5.设等比数列{}n a 的前n 项和为n S ,若,336=S S 则=69S S( ) A. 2 B.73 C. 83D.3 6.已知等差数列{}n a 的前n 项的和为n S ,且210S =,555S =,则过点(,)n P n a 和2(2,)()n Q n a n N *++∈的直线的一个方向向量的坐标是 ( )A.1(2,)2 B.1(,2)2-- C.1(,1)2-- D.(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且a 1、b 1、c 1成等差数列,则acc a +的值为( )A .1594B .1594±C .1534 D .1534±8. 已知数列{}n a 的通项,1323211⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=--n n n a 则下列表述正确的是 ( ) A .最大项为,1a 最小项为3a B .最大项为,1a 最小项不存在 C .最大项不存在,最小项为3a D .最大项为,1a 最小项为4a9.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( )A .21B .20C .19D .1810.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M ,且点M 到l 的距离为2,若这一系列椭圆的离心率组成以43为首项,31为公比的等比数列,而椭圆相应的长半轴长为a i =(i=1,2,…,n),设b n =2(2n+1)·3n -2·a n ,且C n =11+n n b b ,T n =C 1+C 2+…+C n ,若对任意n ∈N*,总有T n >90m恒成立,则m 的最大正整数为( )A .3B .5C .6D .9二、填空题:11.已知等差数列{}n a 前n 项和S n =-n 2+2tn ,当n 仅当n=7时S n 最大,则t 的取值范围是 . 12. 数列{}n a 的通项公式是⎪⎩⎪⎨⎧=)(2)(2为偶数为奇数n n na nn ,则数列的前2m (m 为正整数)项和是 .13.已知数列{}n a 满足:434121,0,,N ,n n n n a a a a n *--===∈则2009a =________;2014a =_________.14.在数列{}n a 和{}n b 中,b n 是a n 与a n +1的等差中项,a 1 = 2且对任意*N n ∈都有 3a n +1-a n = 0,则数列{b n }的通项公式 . 15. 设P 1,P 2,…P n …顺次为函数)0(1>=x xy 图像上的点(如图),Q 1,Q 2,…Q n …顺次为x 轴上的点,且n n n Q P Q Q P O Q OP 122111,,-∆∆∆Λ,…,均为等腰直角三角形(其中P n 为直角顶点).设Q n 的坐标为(*)0)(0,N x n ∈,则数列{a n }的通项公式为 .三、解答题:16.已知}{n a 是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6,成等比数列.17.已知数列{a n }的前n 项和为S n ,且对任意自然数n 总有p a p S n n (),1(-=为常数,且q q n b b p p n n (2}{),1,0+=≠≠中有数列为常数)。
人教版高中数学数列专题复习(综合训练篇含答案)及参考答案
数列高考复习 (附参考答案)———综合训练篇一、选择题:1. 在等差数列{}n a 中,12031581=++a a a ,则1092a a -的值为 ( D )A .18B .20C .22D .242.等差数列{}n a 满足:30,8531==+S a a ,若等比数列{}n b 满足,,4311a b a b ==则5b 为( B ) A .16B .32C .64D .273.等差数列{}n a 中,,27,39963741=++=++a a a a a a 则数列{}n a 的前9项之和S 9等于 ( C )A .66B .144C .99D .2974.各项都是正数的等比数列{}n a 的公比q ≠1,且2a ,321a ,1a 成等差数列,则5443a a a a ++为(A ) A .215- B .215+ C .251- D .215+或215-5.设等比数列{}n a 的前n 项和为n S ,若,336=S S 则=69S S( B ) A. 2 B.73C. 83D.36.已知等差数列{}n a 的前n 项的和为n S ,且210S =,555S =,则过点(,)n P n a 和2(2,)()n Q n a n N *++∈的直线的一个方向向量的坐标是 ( B )A.1(2,)2B.1(,2)2-- C.1(,1)2-- D.(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且a 1、b 1、c 1成等差数列,则acc a +的值为( C )A .1594B .1594±C .1534 D .1534±8. 已知数列{}n a 的通项,1323211⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=--n n n a 则下列表述正确的是 ( A ) A .最大项为,1a 最小项为3a B .最大项为,1a 最小项不存在 C .最大项不存在,最小项为3a D .最大项为,1a 最小项为4a9.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是(B ) A .21 B .20 C .19 D .189.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M ,且点M 到l 的距离为2,若这一系列椭圆的离心率组成以43为首项,31为公比的等比数列,而椭圆相应的长半轴长为a i =(i=1,2,…,n),设b n =2(2n+1)·3n -2·a n ,且C n =11+n n b b ,T n =C 1+C 2+…+C n ,若对任意n ∈N*,总有T n >90m恒成立,则m 的最大正整数为 ( B )A .3B .5C .6D .9二、填空题:10.已知等差数列{}n a 前n 项和S n =-n 2+2tn ,当n 仅当n=7时S n 最大,则t 的取值范围是 (6.5,7.5) .11. 数列{}n a 的通项公式是⎪⎩⎪⎨⎧=)(2)(2为偶数为奇数n n na nn ,则数列的前2m (m 为正整数)项和是 2m+1+m 2-2 .12.已知数列{}n a 满足:434121,0,,N ,n n n n a a a a n *--===∈则2009a =________;2014a =_________.【答案】1,0【解析】本题主要考查周期数列等基础知识.属于创新题型.依题意,得2009450331a a ⨯-==,2014210071007425210a a a a ⨯⨯-====.∴应填1,0.13.在数列{}n a 和{}n b 中,b n 是a n 与a n +1的等差中项,a 1 = 2且对任意*N n ∈都有 3a n +1-a n = 0,则数列{b n }的通项公式 nn b 34= . 14. 设P 1,P 2,…P n …顺次为函数)0(1>=x xy 图像上的点(如图),Q 1,Q 2,…Q n …顺次为x 轴上的点,且n n n Q P Q Q P O Q OP 122111,,-∆∆∆ ,…,均为等腰直解三角形(其中P n 为直角顶点).设Q n 的坐标为(*)0)(0,N x n ∈,则数列{a n }的通项公式为 n x n 2=*)N n ∈ .三、解答题:15.已知}{n a 是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6,成等比数列.15. [解法1]由已知.21,2,26361311741q q q a q a a a a a =+∴=+=+………………(2分)当66663124373124126361,2()2()2()2q S S S S a a a S a q a q a q S S q ≠-=+++=++=时…………(4分).1)1(1)1()1()1(266616318633S S qq a S q q a q S S q =⋅--=⋅--⋅+=+=………………(8分)当,)(2,6,6,3,126612316121613S S S S a S S a S a S q =-=-===同样有时……(10分)所以,61263,,2S S S S -成等比数列.………………………………………………(12分)[解法2]由已知636131174121,2,2q q q a q a a a a a =+∴=+=+,……………(2分) 当,36)12(32)(2,1231314122a a a a S S S q =-⨯=-=时∴==.36)6(232126a a S ∴=-.)(2266122S S S S 61263,,2S S S S -成等比数列.…(6分)当,221)1(2111212,1633636q q q q S S q ⋅=+=--⋅=≠时…………………………(8分) ∴61263,,2S S S S -成等比数列.……………………………………………………(11分)综上,61263,,2S S S S -成等比数列.………………………………………………(12分)16.已知数列{a n }的前n 项和为S n ,且对任意自然数n 总有p a p S n n (),1(-=为常数,且q q n b b p p n n (2}{),1,0+=≠≠中有数列为常数)。
105高中数学数列专题复习(综合训练篇含答案)105
15. [解法 1]由已知 a1 a4 2a7 , a1 a1q3 2a1q 6 ,1 q3 2q 6 .………………(2 分)
当 q 1时, 2S3 (S12 S4 ) 2S3 (a7 a3 L a12 ) 2S4 (a1q6 a2q6 L a6q6 ) 2S3S6q6 …………(4 分)
[解法 2]由已知 a1 a4 2a7 , a1 a1q3 2a1q 6 ,1 q3 2q 6 ,……………(2 分)
当 q 1时,2S2 (S12 S4 ) 2 3a1 (12a3 a1 ) 36a32 ,
S
2 6
(6a1 )2
36a32 . 2S2 (S12
S6)
S
2 6
16.新星家俱厂开发了两种新型拳头产品,一种是模拟太空椅,一种是多功能办公桌.2005 年该厂生产的模拟
太空椅获利 48 万元,以后它又以上年利润的 1.25 倍的速度递增;而多功能办公桌在同年获利 75 万元,
4
这个利润是上年利润的 ,以后每年的利润均以此方式产生.
5
预期计划若干年后两产品利润之和达到
1 1 (n 1) 2 an
an
1 .
2n 1
L L 3分
又Q
f
(x)
x 2x 1 , bn1
1 ,
1 2 f (sn )
bn1 1
9.已知an为等差数列, a1 + a3 + a5 =105, a2 a4 a6 =99.以 Sn 表示an的前 n 项和,则使得 Sn 达到最大
值的 n 是(B)
A.21
B.20
C.19
D.18
9.一系列椭圆都以一定直线 l 为准线,所有椭圆的中心都在定点 M,且点 M 到 l 的距离为 2,若这一系列椭
(word完整版)高中数学数列专题复习(综合训练篇含答案),推荐文档
、选择题:75 1D真1c1,51.51A .B .C .-D或2222 25•设等比数列9的前n 项和为S n ,若S 63,则辿()S 3 S 678A. 2B.C.——D.33 36.已知等差数列9n 的前n 项的和为Sn ,且S 210 , S 5 55,则过点 P(n,9n )和 Q(n 2,9n 2)(n的直线的一个方向向量的坐标是()1A.(2,:)2B.( 2, 2)C .( 1 2’ 1)D.( 1, 1)7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且1、 1 —、 11成等差数列, 则-—的值为()9b c c 994943434A .B .— C . —D .— 15151515& 已知数列9n 的通项n 1 29nn 211 ,则下列表述正确的是( )3 310. 一系列椭圆都以一定直线 I 为准线,所有椭圆的中心都在定点M ,且点M 到I 的距离为2,若这一系列椭数列综合训练篇在等差数列9n 中,9i398915120 ,则 2999i0的值为() A . 18B .20C . 22D .24等差数列 9满足: 9i938,S 530,若等比数列b n 满足 b i9i ,b 3 94,则 b 5 为()A . 16B .32C . 64D .27等差数列 9n 中©949739, 9396 9927, 则数列9n 的前9项之和S 9等于( )A . 66B .144C . 99D .2971.2.3.4•各项都是正数的等比数列a n1的公比q 丰1,且a 2, — 93 ,2a i 成等差数列,则 埜旦为(94 95A .最大项为B .最大项为C .最大项不存在,最小项为 93D .最大项为 9i ,最小项为949•已知9n 为等差数列, 的n 是( )A . 219i + 93 + 95 =105, 9294B . 20C . 1996 =99.以 S n 表示 9n D . 18的前n 项和,贝y 使得S n 达到最大值3 1 圆的离心率组成以 -为首项,丄为公比的等比数列,而椭圆相应的长半轴长为a i =(i=1 , 2,…,n ),设b n =243(2n+1 ) • 3n — 2• a n ,且 C n =1一 , T n =C 1+C 2+…+C n ,若对任意n € N*,总有T n > — 恒成立,则 m 的最b n b n 1 90大正整数为 A . 3C . 6二、填空题:11.已知等差数列a n前n 项和 S n = — n 2+2tn 12.数列a n 的通项公式是annn2^(n 为奇数),则数列的前2m (m 为正整数)项和是(n 为偶数)13. 已知数列{a n }满足:a 4n 3h a 4n 1, a2na n, n N,则 a2009;a 2014 =14.在数列a n 和b n 中,b n 是a n 与a n+1的等差中项,a 1 = 2且对任意n N 都有 3a n+1 — a n = 0,则数列{b n }的通项公式 ____15.设P 1, P 2,…P n …顺次为函数 y —(X16.已知{a n }是等比数列, S 是其前n 项a 1, a 7, a 4成等差数列,求证:2S 3, S 6, S 12— S 6,成等比数17.已知数列{a n }的前n 项和为S n ,且对任意自然数n 总有S np (a n 1), (p 为常数,且像上的点(如p 0, p 1),数列{b n}中有b n 2n q(q为常数)。
高中数学 数列基础知识点和综合练习(含答案) 新人教A版必修5
一、等差等比数列基础知识点(一)知识归纳:1.概念与公式:①等差数列:1°.定义:若数列称等差数列;2°.通项公式:3°.前n项和公式:公式:②等比数列:1°.定义若数列(常数),则称等比数列;2°.通项公式:3°.前n项和公式:当q=1时2.简单性质:①首尾项性质:设数列1°.若是等差数列,则2°.若是等比数列,则②中项及性质:1°.设a,A,b成等差数列,则A称a、b的等差中项,且2°.设a,G,b成等比数列,则G称a、b的等比中项,且③设p、q、r、s为正整数,且1°. 若是等差数列,则2°. 若是等比数列,则④顺次n项和性质:1°.若是公差为d的等差数列,组成公差为n2d的等差数列;2°. 若是公差为q的等比数列,组成公差为qn的等比数列.(注意:当q=-1,n为偶数时这个结论不成立)⑤若是等比数列,则顺次n项的乘积:组成公比这的等比数列.⑥若是公差为d的等差数列,1°.若n为奇数,则而S奇、S偶指所有奇数项、所有偶数项的和);2°.若n为偶数,则(二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d≠0的等差数列的通项公式是项n的一次函数an=an+b;②公差d≠0的等差数列的前n 项和公式项数n的没有常数项的二次函数Sn=an2+bn;③公比q≠1的等比数列的前n项公式可以写成“Sn=a(1-qn)的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m(或a-m,a,a+m)”②三数成等比数列,可设三数为“a,aq,aq2(或,a,aq)”③四数成等差数列,可设四数为“”④四数成等比数列,可设四数为“”等等;类似的经验还很多,应在学习中总结经验.[例1]解答下述问题:(Ⅰ)已知成等差数列,求证:(1)成等差数列;(2)成等比数列.[解析]该问题应该选择“中项”的知识解决,(Ⅱ)设数列(1)求证:是等差数列;(2)若数列求证:{}是等比数列.①②[解析](1)②-①得1)当2)由1)、2)知,[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n项和为求[解析]选择公式做比较好,但也可以考虑用性质完成.①②[解法一]设①-②得:[解法二]不妨设(Ⅱ)等比数列的项数n为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为,求项数n.[解析]设公比为(Ⅲ)等差数列{an}中,公差d≠0,在此数列中依次取出部分项组成的数列:求数列[解析]①,②①②[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功.[例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单,设等差数列的三项分别为a-d, a, a+d,则有(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数.[解析]设此四数为,解得所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、选择题1、如果一个数列既是等差数列,又是等比数列,则此数列()(A)为常数数列(B)为非零的常数数列(C)存在且唯一(D)不存在2.、在等差数列中,,且,,成等比数列,则的通项公式为()(A)(B)(C)或(D)或3、已知成等比数列,且分别为与、与的等差中项,则的值为()(A)(B)(C)(D)不确定4、互不相等的三个正数成等差数列,是a,b的等比中项,是b,c的等比中项,那么,,三个数()(A)成等差数列不成等比数列(B)成等比数列不成等差数列(C)既成等差数列又成等比数列(D)既不成等差数列,又不成等比数列5、已知数列的前项和为,,则此数列的通项公式为()(A)(B)(C)(D)6、已知,则()(A)成等差数列(B)成等比数列(C)成等差数列(D)成等比数列7、数列的前项和,则关于数列的下列说法中,正确的个数有()①一定是等比数列,但不可能是等差数列②一定是等差数列,但不可能是等比数列③可能是等比数列,也可能是等差数列④可能既不是等差数列,又不是等比数列⑤可能既是等差数列,又是等比数列(A)4 (B)3 (C)2 (D)18、数列1,前n项和为()(A)(B)(C)(D)9、若两个等差数列、的前项和分别为、,且满足,则的值为()(A)(B)(C)(D)10、已知数列的前项和为,则数列的前10项和为()(A)56 (B)58 (C)62 (D)6011、已知数列的通项公式为, 从中依次取出第3,9,27,…3n, …项,按原来的顺序排成一个新的数列,则此数列的前n项和为()(A)(B)(C)(D)12、下列命题中是真命题的是( ) A.数列是等差数列的充要条件是()B.已知一个数列的前项和为,如果此数列是等差数列,那么此数列也是等比数列C.数列是等比数列的充要条件D.如果一个数列的前项和,则此数列是等比数列的充要条件是二、填空题13、各项都是正数的等比数列,公比,成等差数列,则公比=14、已知等差数列,公差,成等比数列,则=15、已知数列满足,则=16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为二、解答题17、已知数列是公差不为零的等差数列,数列是公比为的等比数列,,求公比及。
(完整版)高中数学数列练习题及答案解析
高中数学数列练习题及答案解析第二章数列1 .{an} 是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n 等于.A .667B.668C.669D.6702 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .33B.7C.84D.1893 .如果a1 ,a2,⋯,a8 为各项都大于零的等差数列,公差d≠ 0,则.A .a1a8> a4a5B.a1a8< a4a5C.a1+a8< a4+a5D.a1a8=a4a54 .已知方程=0 的四个根组成一个首项为|m-n|等于.A .1B.313C.D.8421 的等差数列,则5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n 项和Sn> 0 成立的最大自然数n 是.A .005B.006C.007D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-4B.-6C.-8D.-108 .设Sn 是等差数列{an} 的前n 项和,若A .1B.-1 C.2D.1a2?a1 的值是.b2a5S5 =,则9=.a3S599 .已知数列- 1 ,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,-4成等比数列,则A .11111B.-C.-或D.2222210 .在等差数列{an} 中,a n≠ 0,an- 1 -an+an+1=0,若S2n-1=38,则n=.第 1 页共页A .38B.20 C.10D.9二、填空题11 .设 f = 12?x ,利用课本中推导等差数列前n项和公式的方法,可求得 f + f +⋯+ f +⋯+f + f 的值为12.已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.82713 .在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.314 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.15 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.16 .设平面内有n 条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f 表示这n 条直线交点的个数,则f=;当n> 4时,f =.三、解答题17 .已知数列{an} 的前n 项和Sn=3n2-2n,求证数列{an} 成等差数列.已知第页共页111b?cc?aa?b ,,成等差数列,求证,,也成等差数列. abcabc18 .设{an} 是公比为q 的等比数列,且a1,a3,a2 成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2时,比较Sn 与bn 的大小,并说明理由.19 .数列{an} 的前n 项和记为Sn,已知a1=1,an+1=求证:数列{20 .已知数列{an} 是首项为a且公比不等于 1 的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.第页共页n?2Sn .nSn} 是等比数列.n第二章数列参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1 =21 ,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84..B.解析:由a1 +a8=a4+a5,∴排除C.又a1· a8=a1=a12+7a1d,a12+7a1d +12d2> a1· a8.a4· a5==3 .C解析:解法 1 :设a1=中两根之和也为2,∴ a1+a2+a3+a4=1+6d=4,∴ d=∴ 11735,a1=,a4=是一个方程的两个根,a1=,a3=是另一个方程的两个根.44441111 ,a2=+d,a3=+2d,a4=+3d,而方程x2-2x +m=0 中两根之和为2,x2-2x+n=04444715,分别为m或n,1616第页共页∴|m-n|=1 ,故选C.解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1·x2=m,x3·x4=n.由等差数列的性质:若?+s=p+q,则a?+as=a p+aq,若设x1 为第一项,x2 必为第四项,则x2=差数列为1357,,,,444715 ,n=,16161 .7,于是可得等4∴ m=∴|m-n|=5 .B解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120. 1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003·a004< 0,0 ,a004< 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.同解法 1 的分析得a003>根据已知条件及图象的对称性可得006 在图象中右侧第页共页零点B的左侧,007,4第二章数列2 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .3B.7C.8D.1894 .已知方程=0 的四个根组成一个首项为|m-n|等于.A . 1B . 1 的等差数列,则4C.1D.5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n 项和Sn> 0 成立的最大自然数n 是.A .00B.00C.00D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-B.-C.-D.-108 .设S n 是等差数列{an} 的前n 项和,若A . 1B .-1a5S5=,则9=.a3S5C.D. 1a2?a1 的值是.b29 .已知数列-1,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,- 4 成等比数列,则A . 1B .- 1C .-11 或D. 1二、填空题12 .已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.13 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.14 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.三、解答题15 .已知数列{an} 的前n 项和Sn=3n2-2n,求证数列{an} 成等差数列.已知18 .设{an} 是公比为q? 的等比数列,且a1 ,a3,a2成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2时,比较Sn 与bn 的大小,并说明理由.111b?cc?aa?b ,,成等差数列,求证,,也成等差数列.abcabc19 .数列{an} 的前n 项和记为Sn,已知a1 =1,an+1=求证:数列{n?2Sn .nSn} 是等比数列.n20 .已知数列{an} 是首项为a 且公比不等于1的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.第二章数列参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1=21,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84.3 .B.解析:由a1 +a8=a4+a5,∴排除C.又a1 · a8=a1 =a12+7a1d,∴ a4· a5==a12+7a1d +12d2> a1· a8.4 .C解析:解法 1 :设a1=两根之和也为2,∴a1+a2+a3+a4=1+6d=4,∴ d=∴1111,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m=0 中两根之和为2,x2-2x+n =0 中444411735,a1=,a4=是一个方程的两个根,a1 =,a3=是另一个方程的两个根.4444715,分别为m或n,16161 ,故选C.∴|m-n|=解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1·x2=m,x3·x4=n.由等差数列的性质:若?+s=p+q,则a?+as=ap +aq,若设x1 为第一项,x2 必为第四项,则x2=数列为7,于是可得等差41357,,,,444715 ,n=,16161 .∴m=∴|m-n|=5 .B解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120.1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003· a004< 0,同a004 < 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.解法 1 的分析得a003> 0,根据已知条件及图象的对称性可得006 在图象中右侧都在其右侧,Sn> 0 的最大自然数是006.7 .B解析:∵{an} 是等差数列,∴a3=a1+4,a4=a1+6,又由a1 ,a3,a4 成等比数列,∴ 2=a1 ,解得a1 =-8,∴ a2=-8+2=-6.8 . A 零点 B 的左侧,007,00899?a5S95 解析:∵9===·= 1 ,∴选A.5?a3S55929 .A解析:设d和q 分别为公差和公比,则-4=-1+3d且-4=q4,∴ d=- 1 ,q2=2,第二章数列1 .{an} 是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n 等于.A .66B.66C.66D.6702 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .3B.7C.8D.1893 .如果a1 ,a2,⋯,a8 为各项都大于零的等差数列,公差d≠ 0,则.A .a1a8> a4a B.a1a8< a4a C.a1+a8< a4+aD.a1a8=a4a54 .已知方程=0 的四个根组成一个首项为|m-n|等于.A . 1B . 1 的等差数列,则4C.1D.5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n项和Sn> 0 成立的最大自然数n 是.A .00B.00C.00D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-B.-C.-D.-108 .设Sn 是等差数列{an} 的前n 项和,若A . 1B .-1a5S5=,则9=.a3S5C.D. 1a2?a1 的值是.b29 .已知数列-1,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,- 4 成等比数列,则A . 1B .- 1C .-11 或D. 1210 .在等差数列{an} 中,an≠ 0,an- 1-an+an+1=0,若S2n-1=38,则n=.A .3B.20 C.10 D.9二、填空题第 1 页共页11 .设 f =12x? ,利用课本中推导等差数列前n 项和公式的方法,可求得 f + f +⋯+ f +⋯+f+ f 的值为.12 .已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.82713 .在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.314 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.15 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.16 .设平面内有n 条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f 表示这n 条直线交点的个数,则f=;当n> 4时,f=.三、解答题17 .已知数列{an} 的前n 项和S n=3n2-2n,求证数列{an} 成等差数列.已知18 .设{an} 是公比为q? 的等比数列,且a1 ,a3,a2成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2 时,比较Sn 与bn 的大小,并说明理由.第页共页111b?cc?aa?b ,,成等差数列,求证,,也成等差数列. abcabc19 .数列{an} 的前n 项和记为Sn,已知a1 =1,an+1=求证:数列{20 .已知数列{an} 是首项为 a 且公比不等于1 的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.n?2Sn .nSn} 是等比数列.n第二章数列第页共页参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1 =21 ,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84.3 .B.解析:由a1 +a8=a4+a5,∴排除C.又a1· a8=a1=a12+7a1d,∴ a4· a5==a12+7a1d +12d2> a1· a8.4 .C解析:解法 1 :设a1=两根之和也为2,∴a1+a2+a3+a4=1+6d=4,∴ d=∴1111,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m=0 中两根之和为2,x2-2x +n=0中444411735,a1=,a4=是一个方程的两个根,a1 =,a3=是另一个方程的两个根.4444715,分别为m或n,16161 ,故选C.∴|m-n|=解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1· x2=m,x3· x4=n.由等差数列的性质:若?+s=p+q,则a?+as=ap+aq,若设x1 为第一项,x2 必为第四项,则x2=数列为7,于是可得等差41357,,,,444715 ,n=,1616第页共页∴ m=∴|m-n|=5 . B 1.解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120.1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003· a004< 0,同a004 < 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.解法 1 的分析得a003> 0,根据已知条件及图象的对称性可得006 在图象中右侧都在其右侧,Sn> 0 的最大自然数是006.7 .B解析:∵{an} 是等差数列,∴a3=a1+4,a4=a1+6,又由a1 ,a3,a4 成等比数列,∴ 2=a1 ,解得a1 =-8,∴ a2=-8+2=-6.8 .A第页共页零点B的左侧,007,008。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列高考复习(附参考答案)———综合训练篇一、选择题:1. 在等差数列{}n a 中,12031581=++a a a ,则1092a a - 的值为 ( D )A .18B .20C .22D .242.等差数列{}n a 满足:30,8531==+S a a ,若等比数列{}n b 满足,,4311a b a b ==则5b 为( B ) A .16B .32C .64D .273.等差数列{}n a 中,,27,39963741=++=++a a a a a a 则数列{}n a 的前9项之和S 9等于 ( C )A .66B .144C .99D .2974.各项都是正数 的等比数列{}n a 的公比q ≠1,且2a ,321a ,1a 成等差数列,则5443a a a a ++为(A ) A .215- B .215+ C .251- D .215+或215-5.设等比数列{}n a 的前n 项和为n S ,若,336=S S 则=69S S( B ) A. 2 B.73 C. 83D.3 6.已知等差数列{}n a 的前n 项 的和为n S ,且210S =,555S =,则过点(,)n P n a 和2(2,)()n Q n a n N *++∈的直线 的一个方向向量 的坐标是 ( B )A.1(2,)2 B.1(,2)2-- C.1(,1)2-- D.(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且a 1、b 1、c 1成等差数列,则a c c a + 的值为( C ) A .1594B .1594±C .1534 D .1534±8. 已知数列{}n a 的通项,1323211⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=--n n n a 则下列表述正确 的是 ( A ) A .最大项为,1a 最小项为3a B .最大项为,1a 最小项不存在 C .最大项不存在,最小项为3a D .最大项为,1a 最小项为4a9.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值 的n 是(B )A .21B .20C .19D .189.一系列椭圆都以一定直线l 为准线,所有椭圆 的中心都在定点M ,且点M 到l 的距离为2,若这一系列椭圆 的离心率组成以43为首项,31为公比 的等比数列,而椭圆相应 的长半轴长为a i =(i=1,2,…,n),设b n =2(2n+1)·3n -2·a n ,且C n =11+n n b b ,T n =C 1+C 2+…+C n ,若对任意n ∈N*,总有T n >90m恒成立,则m 的最大正整数为 ( B )A .3B .5C .6D .9二、填空题:10.已知等差数列{}n a 前n 项和S n =-n 2+2tn ,当n 仅当n=7时S n 最大,则t 的取值范围是 (6.5,7.5) .11. 数列{}n a 的通项公式是⎪⎩⎪⎨⎧=)(2)(2为偶数为奇数n n n a nn ,则数列 的前2m (m 为正整数)项和是 2m+1+m 2-2 .12.已知数列{}n a 满足:434121,0,,N ,n n n n a a a a n *--===∈则2009a =________;2014a =_________.【答案】1,0【解析】本题主要考查周期数列等基础知识.属于创新题型.依题意,得2009450331a a ⨯-==,2014210071007425210a a a a ⨯⨯-====.∴应填1,0.13.在数列{}n a 和{}n b 中,b n 是a n 与a n +1 的等差中项,a 1 = 2且对任意*N n ∈都有 3a n +1-a n = 0,则数列{b n } 的通项公式 nn b 34= . 14. 设P 1,P 2,…P n …顺次为函数)0(1>=x xy 图像上 的点(如图),Q 1,Q 2,…Q n …顺次为x 轴上 的点,且n n n Q P Q Q P O Q OP 122111,,-∆∆∆ ,…,均为等腰直解三角形(其中P n 为直角顶点).设Q n 的坐标为(*)0)(0,N x n ∈,则数列{a n } 的通项公式为n x n 2=*)N n ∈ .三、解答题:15.已知}{n a 是等比数列,S n 是其前n 项 的和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6,成等比数列.15. [解法1]由已知.21,2,26361311741q q q a q a a a a a =+∴=+=+………………(2分)当66663124373124126361,2()2()2()2q S S S S a a a S a q a q a q S S q ≠-=+++=++=时…………(4分).1)1(1)1()1()1(266616318633S S qq a S q q a q S S q =⋅--=⋅--⋅+=+=………………(8分)当,)(2,6,6,3,126612316121613S S S S a S S a S a S q =-=-===同样有时……(10分)所以,61263,,2S S S S -成等比数列.………………………………………………(12分)[解法2]由已知636131174121,2,2q q q a q a a a a a =+∴=+=+,……………(2分) 当,36)12(32)(2,1231314122a a a a S S S q =-⨯=-=时∴==.36)6(232126a a S ∴=-.)(2266122S S S S 61263,,2S S S S -成等比数列.…(6分)当,221)1(2111212,1633636q q q q S S q ⋅=+=--⋅=≠时…………………………(8分) ∴61263,,2S S S S -成等比数列.……………………………………………………(11分)综上,61263,,2S S S S -成等比数列.………………………………………………(12分)16.已知数列{a n } 的前n 项和为S n ,且对任意自然数n 总有p a p S n n (),1(-=为常数,且q q n b b p p n n (2}{),1,0+=≠≠中有数列为常数)。
(1)求数列{a n } 的通项公式;(2)若2211,b a b a <=求p 的取值范围。
16.解:(1))1,0(1)1(1111≠≠-=-==p p p pa a p S a 解得 当111)1()(2---=--=-=≥n n n n n n n pa a p a a p S S a n 整理得时, 故)1,0,,2(11≠≠∈≥-=+-p p N n n p pa a n n …………4分 由1,111-=-=-p pa a p p a n n 得)()1()1(11+-∈-=--=N n p p p p p p a nn n ………………………………6分(2)由已知得021)1(4)1(2122<----⎪⎪⎩⎪⎪⎨⎧+<-+=-p p p p q qp p q p p并整理得消去则211<-<-p p有221><p p 或 ………………………………9分 又10,(,0)(0,)(2,)2p p ≠∴-∞⋃⋃+∞的取值范围为………………12分16.新星家俱厂开发了两种新型拳头产品,一种是模拟太空椅,一种是多功能办公桌.2005年该厂生产 的模拟太空椅获利48万元,以后它又以上年利润 的1.25倍 的速度递增;而多功能办公桌在同年获利75万元,这个利润是上年利润 的54,以后每年 的利润均以此方式产生. 预期计划若干年后两产品利润之和达到174万元. 从2005年起,(I )哪一年两产品获利之和最小?(II )至少经过几年即可达到或超过预期计划?16.分))(时取(当且仅当)(分,)(则分)万元万元,办公桌获利年太空椅获利)设第解:(5”“2120)54(754548)3..(..................................................)54(7545481......(1111==≥+=+∴==I ----n y x y x y x n n n n n n n n n n n故第2006年两产品获利最小.……………………………………………………(6分)(II )则有)(,又令)(令,45174)54(754548111---==+=+n n n n n t y x.82540961562545782510243125456.8252566254559 (8)2545)(21825025581658251611112>==<==<===∴==∴=+-∴=+----n n n n n n n t t t t tt )时,(当,)时,(、;当)时,(当分)()(舍或, .7年即可超过预期计划故至少经过…………………………………………(1分)17.(选做题)已知函数)4(44)(≥+-=x x x x f 的反函数为)(1x f-,数列{a n }满足:a 1 = 1,)(),(*11N n a fa n n ∈=-+,数列123121,,,----n nb b b b b b b 是首项为1,公比为31的等比数列.(Ⅰ)求证:数列}{n a 为等差数列; (Ⅱ)若n n n b a c ⋅=,求数列}{n c 的前n 项和S n .17.解:(Ⅰ))4()2(44)(2≥-=+-=x x x x x f ,)0()2()(21≥+=∴-x x x f,…………………………………………2分211)2()(+==∴-+n n n a a f a ,即).(2*1N n a a n n ∈=-+ ………………………………………………4分∴数列1}{1=a a n 是以为首项,公差为2 的等差数列 …………………………6分 (Ⅱ)由(1)得:12)1(21-=-+=n n a n ,即)()12(*2N n n a n ∈-= ……………………………………………………8分b 1 = 1,当11)31(,2--=-≥n n n b b n 时, )()()(123121--++-+-+=∴n n n b b b b b b b b12)31()31(311-++++=n ).311(23n -= 因而.),311(23*N n b n n ∈-= ……………………………………………………10分),311(23)12(n n n n n b a c -⋅-=⋅=)]312353331()12(531[232221n n n n n c c c S -++++--++++=+++=∴令nn n T 31233312-+++= ①则143231233235333131+-+-++++=n nn n n T ② ①-②,得11122312)311(3131312)313131(23132+-+---+=--++++=n n n n n n n T .311n n n T +-=∴又1 + 3 + 5 + … +(2n -1)= n 2,).311(232n n n n S ++-=∴ …………………………………………………………14分18.11(),(0,){}1,();21n n n xf x x a a a f a x +=∈+∞==+(选做题)已知函数,数列满足数1111{},,{}n 1,2,3,.212()n n n n n b b b s b n f s +===-列满足其中为数列前项和,(1);}{}{的通项公式和数列求数列n n b a(2).5:,1112211<+++=n nn n T b a b a b a T 证明设 18.解:.211.12),(,12)(111+=∴+=∴=+=+++n n n nn n n a a a a a a f a x xx f 分为公差等差数列为首项以3.1212)1(11.211}1{1 -=∴⋅-+=∴=∴n a n a a a n nn分公比为从第二项起成等比数列又62,321,21.3,}{,212,21.3).(2.12.1212211,)(211,12)(2121121121211 ⎪⎩⎪⎨⎧≥⋅==∴=+===∴-=-∴+=∴+=+-=∴-=+=-+++++++++n n b b s b b b b s s b b s b s s s b s f b x x x f n n n n n n n n n n n n n nn n n12322222)31()12()31()32()31(7)31(531331)31()12()31(731513])31)(12()31(731513[212:)2(----⋅-+⋅-++⋅+⋅+⋅=⋅-++⋅+⋅+⋅=-++⋅+⋅+⋅+=n n n n n n n n n A n A n T 令依题意证明121232)31)(12(311])31(1[3123)31()12(])31()31()31(31[21332--------⋅+=⋅--++++⋅=∴n n n n n n n A 分分12.5)31)(12(43)31(4359)31)(12(23)31(2361212 <-⋅-⋅-=∴-⋅--=∴----n n n n n n n T n A(2009 天津卷) 已知等差数列{}n a 的公差为)0(≠d d ,等比数列{}n b 的公比为)1(>q q .设1122......n n n S a b a b a b =+++,*12211,)1(N n b a b a b a T n n n n ∈-+⋅⋅⋅+-=-(Ⅰ)若,3,2,111====q d b a 求 3S 的值;(Ⅱ)若11=b ,证明:2*2222(1)(1)(1),1n n n dq q q S q T n N q---+=∈- (Ⅲ)若正整数n 满足2≤n ≤q ,设1212,,...,,,...,12...n n k k k l l l 和是,,,n 的两个不同 的排列,12112...n k k k n c a b a b a b =+++,12212...n l l l n c a b a b a b =+++ 证明12c c ≠。