Logistic 回归分析

合集下载

LOGISTIC回归分析

LOGISTIC回归分析

LOGISTIC回归分析前⾯的博客有介绍过对连续的变量进⾏线性回归分析,从⽽达到对因变量的预测或者解释作⽤。

那么如果因变量是离散变量呢?在做⾏为预测的时候通常只有“做”与“不做的区别”、“0”与“1”的区别,这是我们就要⽤到logistic分析(逻辑回归分析,⾮线性模型)。

参数解释(对变量的评价)发⽣⽐(odds): ODDS=事件发⽣概率/事件不发⽣的概率=P/(1-P)发⽣⽐率(odds ratio):odds ratio=odds B/odds A (组B相对于组A更容易发⽣的⽐率)注:odds ratio⼤于1或者⼩于1都有意义,代表⾃变量的两个分组有差异性,对因变量的发⽣概率有作⽤。

若等于1的话,该组变量对事件发⽣概率没有任何作⽤。

参数估计⽅法线性回归中,主要是采⽤最⼩⼆乘法进⾏参数估计,使其残差平⽅和最⼩。

同时在线性回归中最⼤似然估计和最⼩⼆乘发估计结果是⼀致的,但不同的是极⼤似然法可以⽤于⾮线性模型,⼜因为逻辑回归是⾮线性模型,所以逻辑回归最常⽤的估计⽅法是极⼤似然法。

极⼤似然公式:L(Θ)=P(Y1)P(Y2)...p(Y N) P为事件发⽣概率P I=1/(1+E-(α+βX I))在样本较⼤时,极⼤似然估计满⾜相合性、渐进有效性、渐进正太性。

但是在样本观测少于100时,估计的风险会⽐较⼤,⼤于100可以介绍⼤于500则更加充分。

模型评价这⾥介绍拟合优度的评价的两个标准:AIC准则和SC准则,两统计量越⼩说明模型拟合的越好,越可信。

若事件发⽣的观测有n条,时间不发⽣的观测有M条,则称该数据有n*m个观测数据对,在⼀个观测数据对中,P>1-P,则为和谐对(concordant)。

P<1-P,则为不和谐对(discordant)。

P=1-P,则称为结。

在预测准确性有⼀个统计量C=(NC-0.5ND+0.5T)/T,其中NC为和谐对数,ND为不和谐对数,这⾥我们就可以根据C统计量来表明模型的区分度,例如C=0.68,则表⽰事件发⽣的概率⽐不发⽣的概率⼤的可能性为0.68。

数据分析知识:数据分析中的Logistic回归分析

数据分析知识:数据分析中的Logistic回归分析

数据分析知识:数据分析中的Logistic回归分析Logistic回归分析是数据分析中非常重要的一种统计分析方法,它主要用于研究变量之间的关系,并且可以预测某个变量的取值概率。

在实际应用中,Logistic回归分析广泛应用于医学疾病、市场营销、社会科学等领域。

一、Logistic回归分析的原理1、概念Logistic回归分析是一种分类分析方法,可以将一个或多个自变量与一个二分类的因变量进行分析,主要用于分析变量之间的关系,并确定自变量对因变量的影响。

Logistic回归分析使用的是逻辑回归模型,该模型是将自变量与因变量的概率映射到一个范围为0-1之间的变量上,即把一个从负无穷到正无穷的数映射到0-1的范围内。

这样,我们可以用这个数值来表示某个事件发生的概率。

当这个数值大于0.5时,我们就可以判定事件发生的概率比较高,而当这个数值小于0.5时,我们就可以判定事件发生的概率比较小。

2、方法Logistic回归分析的方法有两种:一是全局最优化方法,二是局部最优化方法。

其中全局最优化方法是使用最大似然估计方法,而局部最优化方法则是使用牛顿法或梯度下降算法。

在进行Logistic回归分析之前,我们首先要对数据进行预处理,将数据进行清洗、变量选择和变量转换等操作,以便进行回归分析。

在进行回归分析时,我们需要先建立逻辑回归模型,然后进行参数估计和模型拟合,最后进行模型评估和预测。

在进行参数估计时,我们通常使用最大似然估计方法,即在估计参数时,选择最能解释样本观测数据的参数值。

在进行模型拟合时,我们需要选取一个合适的评价指标,如准确率、召回率、F1得分等。

3、评价指标在Logistic回归分析中,评价指标包括拟合度、准确性、鲁棒性、可解释性等。

其中最常用的指标是拟合度,即模型对已知数据的拟合程度,通常使用准确率、召回率、F1得分等指标进行评价。

此外,还可以使用ROC曲线、AUC值等指标评估模型的性能。

二、Logistic回归分析的应用1、医学疾病预测在医学疾病预测中,Logistic回归分析可以用来预测患某种疾病的概率,如心脏病、肺癌等。

统计学中的Logistic回归分析

统计学中的Logistic回归分析

统计学中的Logistic回归分析Logistic回归是一种常用的统计学方法,用于建立并探索自变量与二分类因变量之间的关系。

它在医学、社会科学、市场营销等领域得到广泛应用,能够帮助研究者理解和预测特定事件发生的概率。

本文将介绍Logistic回归的基本原理、应用领域以及模型评估方法。

一、Logistic回归的基本原理Logistic回归是一种广义线性回归模型,通过对数据的处理,将线性回归模型的预测结果转化为概率值。

其基本原理在于将一个线性函数与一个非线性函数进行组合,以适应因变量概率为S形曲线的特性。

该非线性函数被称为logit函数,可以将概率转化为对数几率。

Logistic回归模型的表达式如下:\[P(Y=1|X) = \frac{1}{1+e^{-(\beta_0+\beta_1X_1+...+\beta_pX_p)}}\]其中,P(Y=1|X)表示在给定自变量X的条件下,因变量为1的概率。

而\(\beta_0\)、\(\beta_1\)、...\(\beta_p\)则是待估计的参数。

二、Logistic回归的应用领域1. 医学领域Logistic回归在医学领域中具有重要的应用。

例如,研究者可以使用Logistic回归分析,探索某种疾病与一系列潜在风险因素之间的关系。

通过对患病和非患病个体的数据进行回归分析,可以估计各个风险因素对疾病患病的影响程度,进而预测某个个体患病的概率。

2. 社会科学领域在社会科学研究中,研究者常常使用Logistic回归来探索特定变量对于某种行为、态度或事件发生的影响程度。

例如,研究者可能想要了解不同性别、教育程度、收入水平对于选民投票行为的影响。

通过Logistic回归分析,可以对不同自变量对于投票行为的作用进行量化,进而预测某个选民投票候选人的概率。

3. 市场营销领域在市场营销中,Logistic回归也被广泛应用于客户分类、市场细分以及产品销量预测等方面。

通过分析客户的个人特征、购买习惯和消费行为等因素,可以建立Logistic回归模型,预测不同客户购买某一产品的概率,以便制定个性化的市场营销策略。

logistic回归

logistic回归

概念
logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同 之处。它们的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多 重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p, p =L(w‘x+b),然后根据p与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是 多项式函数就是多项式回归。
感谢观看
logistic回归
一种广义的线性回归分析模型
01 概念
目录
02 主要用途
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断, 经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为 例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。因此因变量 就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。 自变量既可以是连续的,也可以是分类的。然后通过logistic回归分析,可以得到自变量的权重,从而可以大致 了解到底哪些因素是胃癌的危险因素。同时根据该权值可以根据危险因素预测一个人患癌症的可能性。
实际上跟预测有些类似,也是根据logistic模型,判断某人属于某病或属于某种情况的概率有多大,也就是 看一下这个人有多大的可能性是属于某病。
这是logistic回归最常用的三个用途,实际中的logistic回归用途是极为广泛的,logistic回归几乎已经 成了流行病学和医学中最常用的分析方法,因为它与多重线性回归相比有很多的优势,以后会对该方法进行详细 的阐述。实际上有很多其他分类方法,只不过Logistic回归是最成功也是应用最广的。

统计学-logistic回归分析

统计学-logistic回归分析

在患病率较小情况下,OR≈RR
• Logistic回归中的常数项(b0)表示, 在不接触任何潜在危险/保护因素条 件下,效应指标发生与不发生事件的 概率之比的对数值。 • Logistic回归中的回归系数( bi )表示, 某一因素改变一个单位时,效应指标 发生与不发生事件的概率之比的对数 变化值,即OR的对数值。
( 0 1 x1 ) ( 0 x0 ) 1 x1
OR e

P odds1 1 /(1 P 1) OR P0 /(1 P0 ) odds0
Y 发病=1 不发病=0
危险因素 x= 1 x= 0 30(a) 10( b) 70(c) 90(d) a+c b+d 危险因素 x= 1 x= 0 p1 p0 1-p1 1-p0
i
事件发生率很小,OR≈RR。
二、 Logistic回归模型
• Logistic回归的分类
二分类 多分类
条件Logistic回归 非条件Logistic回归
• Logit变换
也称对数单位转换
P logit P= ln 1 P
流行病学概念:
设P表示暴露因素X时个体发病的概率, 则发病的概率P与未发病的概率1-P 之 比为优势(odds), logit P就是odds 的对数值。
Y 发病=1 不发病=0a p1 ac源自有暴露因素人群中发病的比例
多元回归模型的的 i 概念
P logit(p) ln = 0 1 X 1 1 P m X m
i 反映了在其他变量固定后,X=1与x=0相比
发生Y事件的对数优势比。 回归系数β与OR X与Y的关联 • β=0,OR=1, 无关 β>0,OR>1 , 有关,危险因素 β<0,OR<1, 有关,保护因子

第十九章 Logistic回归分析

第十九章 Logistic回归分析

三、回归模型的假设和回归系数的区间估计
1. 回归模型的假设检验 H0:β=0 (模型中不含变量) H1: β≠ 0 (模型中含变量)
统计量:G = - 2lnL- (-2lnL') ~ χ2(k) 在例19-1中的SAS结果中:
Model Fit Statistics Criterion Pr > ChiSq AIC SC <0.0001 -2 Log L Intercept Only 246.346 249.644 244.346 Intercept and Covariates 230.616 243.809 222.616
Logistic回归模型的分类 按反应变量的类型分:
1.两分类的 Logistic 回归模型
2.多分类有序反应变量的 Logistic 回归模型
3.多分类无序反应变量的 Logistic 回归模型式
按设计类型分: 1.非条件 Logistic 回归模型,研究对象未经过配对的成组资料 2.条件 Logistic 回归模型,研究对象为1︰1或1︰m 配对资料
一、 Logistic 回归分析的实例
例19-1 在抢救急性心肌梗死(AMI)患者能否成功的危险因素调查中,某
医院收集了5年中该院所有的AMI患者的抢救病史共200例。在抢救前:X1=1表 示已发生休克,X1=0表示未发生休克;X2=1表示发生心衰, X2=0表示未发生
心衰;X3=1表示12小时内将患者送往医院, X3=0表示12小时内未将患者送往
第二节
Logistic 回归模型的参数估计和假设检验
一、参数意义(释义同于病例-对照设计研究)
1. 相对危险度RR (Re lative Risk) RR P 1 P0

logistic回归分析

logistic回归分析

Logistic回归分析
数学模型:
e p 1 e
1 X 1 2 X 2 m X m
1 X 1 2 X 2 m X m
Logistic回归分析
一、基本思想
用模型去描述实际资料时,须使 得理论结果与实际结果尽可能的一致。
资料整理格式
Logistic回归分析
1
消除xj量纲的影响
2.标准化偏回归系数j 的意义
果的发生,为“不利因素”;
xij
xij x j sj
(1)符号:取 “+”,xj 增大,则P增大,即促进阳性结
取 “-”,xj增大,则P减小,即抑制阳性结 果的发生,为“保护因素”。 (2)大小 :∣ j ∣越大,则xj 对结果的影响也就越大。
i 1 2 n
x1 x11 x21 xn1
x2
...
xm x1m x2m xnm
δ δ δ δ
1 2
x12 ... x22 ... …... xn2 ...
n
Logistic回归分析
二、基本原理
1.结果问题 : 对于第i个个体而言,其理论结果为pi , 而实际结果是i 。 2.一致问题: 对于第i个个体而言, i =1 pi i =0 qi
m

OR e j 1
j ) ˆ j ( x*j x
(1)对多指标的共同效应进行评价:

若OR>1,则处于X*水平下的阳性结果发生风险要高于X 水平, 即“不利因素”占主导地位;



若OR<1,则处于X*水平下的阳性结果发生风险要低于X 水平, 即“保护因素”占主导地位;

Logistic回归分析

Logistic回归分析
32

注:因为p>a,所以认为样本实际值得到的分布与 预测值得到的分布无显著差异,模型拟合优度较好 。
33

注:模型整体的准确度不高,对不购买人群的准确 率极高,对购买人群的准确率很低。
34

注:预测类别图上可以看出,预测概率在0.4附近的 样本预测准确率相对最低。事实上,无论用什么分 类方法,这类样本身就是最难预测的。

Hosmer—Lemeshow检验:通过模型可以计算出给 定解释变量取值时被解释变量取1的概率预测。如 果模型拟合较好,则应给实际值为1的样本以较高 的概率,给实际值为0的样本以低的概率预测值。 于是对概率预测值进行分位数分组(通常为10分位 数,将样本分为10组),预测概率大小分得的10组 和实际观测值0/1类别分组形成了交叉列联表。由 观测频数和期望频数计算卡方统计量,即Hosmer— Lemeshow统计量,它服从自由度为n-2的卡方分布 ,n为组数。

39
模型拟合优度的评价与检验 目的:第一,回归方程能够解释被解释变量变差的 程度,即线性回归的部分能解释LogitP的程度,这 一点与一般线性回归分析是相同的;第二,由回归 方程得到的概率进行分别判别的准确率。 方法: 第一目的:Cox &Snell R2 统计量和 Nagel ker ke R2 统计量 第二目的:混淆矩阵(错判矩阵)和 Hosmer-Lemeshow检验

16
2 L0 N 1 ( ) 2 Cox & Snell R 统计量= L1
,N为样本容量。 该统计量类似于一般线性模型中的R方,统计量的值 越大表明模型的拟合优度越高。不足之处在于其取值 范围无法确定,不利于模型之间的比较。
Cox &Snell R 2

logistic回归分析

logistic回归分析

队列研究(cohort study):也称前瞻性研究、随访研究等。是一种由因及果的研
究,在研究开始时,根据以往有无暴露经历,将研究人群分为暴露人群和非暴 露人群,在一定时期内,随访观察和比较两组人群的发病率或死亡率。如果两 组人群发病率或死亡率差别有统计学意义,则认为暴露和疾病间存在联系。队 列研究验证的暴露因素在研究开始前已存在,研究者知道每个研究对象的暴露 情况。
调查方向:追踪收集资料 暴露 疾病 +
人数
比较
aபைடு நூலகம்
b c
+
研究人群
a/(a+b)
+ -
-
c/(c+d)
d
队列研究原理示意图
暴露组 非暴露组
病例 a c
非病例 b d
合计 n1=a+b n0=c+d
发病率 a/ n1 c/ n0
相对危险度(relative risk, RR)也称危险比(risk ratio) 或率比(rate ratio) RR I e a / n1 、 I e a / n1 、 I 0 c / n2 。
研究,先按疾病状态确定调查对象,分为病例(case)和对照 (control)两组,然后利用已有的记录、或采用询问、填写调查表 等方式,了解其发病前的暴露情况,并进行比较,推测疾病与 暴露间的关系。
调查方向:收集回顾性资料
比较 a/(a+b)
人数 a b c
暴露 +
疾病 病例
+ 对照 -
c/(c+d) d
二、 logistic回归模型的参数估计
logistic 回归模型的参数估计常采用最大似然估计。 其基本思想是先建立似然函数与对数似然函数, 求使对数似然函数最大时的参数值,其估计值即 为最大似然估计值。 建立样本似然函数:

Logistic回归分析

Logistic回归分析

Logistic 回归分析Logistic 回归分析是与线性回归分析方法非常相似的一种多元统计方法。

适用于因变量的取值仅有两个(即二分类变量,一般用1和0表示)的情况,如发病与未发病、阳性与阴性、死亡与生存、治愈与未治愈、暴露与未暴露等,对于这类数据如果采用线性回归方法则效果很不理想,此时用Logistic 回归分析则可以很好的解决问题。

一、Logistic 回归模型设Y 是一个二分类变量,取值只可能为1和0,另外有影响Y 取值的n 个自变量12,,...,n X X X ,记12(1|,,...,)n P P Y X X X ==表示在n 个自变量的作用下Y 取值为1的概率,则Logistic 回归模型为:[]0112211exp (...)n n P X X X ββββ=+-++++它可以化成如下的线性形式:01122ln ...1n n P X X X P ββββ⎛⎫=++++ ⎪-⎝⎭通常用最大似然估计法估计模型中的参数。

二、Logistic 回归模型的检验与变量筛选根据R Square 的值评价模型的拟合效果。

变量筛选的原理与普通的回归分析方法是一样的,不再重复。

三、Logistic 回归的应用(1)可以进行危险因素分析计算结果各关于各变量系数的Wald 统计量和Sig 水平就直接反映了因素i X 对因变量Y 的危险性或重要性的大小。

(2)预测与判别Logistic回归是一个概率模型,可以利用它预测某事件发生的概率。

当然也可以进行判别分析,而且可以给出概率,并且对数据的要求不是很高。

四、SPSS操作方法1.选择菜单2.概率预测值和分类预测结果作为变量保存其它使用默认选项即可。

例:试对临床422名病人的资料进行分析,研究急性肾衰竭患者死亡的危险因素和统计规律。

Logistic回归分析.sav解:在SPSS中采用Logistic回归全变量方式分析得到:(1)模型的拟合优度为0.755。

Logistic回归分析(共53张PPT)

Logistic回归分析(共53张PPT)
数值。
• 优势比
• 常把出现某种结果的概率与不出现的概率 之比称为比值(odds),即odds=p/1-p。两个
比值之比称为比值比(Odds Ratio),简称 OR。
• Logistic回归中的常数项(b0)表示,在不
接触任何潜在危险/保护因素条件下,效 应指标发生与不发生事件的概率之比的对 数值。

Forward: LR ( 向前逐步法:似然比 法 likelihood ratio,LR)→ 再击下 方的 Save 钮,将 Predicted values 、 Influence 与 Residuls 窗口中的 预选项全勾选 → Continue → 再击 下方的 Options 钮,将 Statistics and Plot 小窗口中的选项全勾选 → Continue → OK 。
三、参数检验
• 似然比检验(likehood ratio test)
通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似 然函数变化来进行,其统计量为G (又 称Deviance)。
G=-2(ln Lp-ln Lk) 样本量较大时, G近似服从自由度
为待检验因素个数的2分布。
• 比分检验(score test)
, Logistic回归系数的解释变得更为复杂 ,应特别小心。
根据Wald检验,可知Logistic回归系
数bi服从u分布。因此其可信区间为
病例与对照匹配---条件logistic回归 其中, 为常数项, 为偏回归系数。 应变量水平数大于2,且水平之间不存在等级递减或递增的关系时,对这种多分类变量通过拟合一种广义Logit模型方法。
u= bi s bi
u服从正态分布,即为标准正态离差。

logistic回归分析

logistic回归分析

表13-7 例13-2的logistic回归模型自变量筛选结果
模型
因素 X
第1步 常数项
回归系数 标准误
b
Sb
-2.528 0.238
Wald χ2 P值 112.433 <0.001
OR值
OR值95%可信区间 下限 上限
0.080
治疗11周
2.149 0.289 55.267 <0.001 8.578 4.867 15.117
因素 X 常数项
回归系数 标准误
Waldχ2 P值 OR值
b
Sb
-0.910 0.136 44.870 0.000 0.403
OR值95%可信区间
下限
上限
吸烟
0.886 0.150 34.862 0.000 2.424 1.807
3.253
饮酒
0.526 0.157 11.207 0.001 1.692 1.244
logistic回归分析
Logistic regression analysis
• 医学研究中应变量有时是二分类结果,如发病与不 发病、死亡与生存、有效与无效、复发与未复发等, 当需要研究二分类应变量的影响因素时,适合采用 logistic回归分析。
logistic回归属于概率型非线性回归,它是研究二 分类(可以扩展到多分类)反应变量与多个影响 因素之间关系的一种多变量分析方法。logistic回 归模型参数具有明确的实际意义。
OR值的可信区间:
exp(bj - zα/2 Sbj ) ORj exp(bj zα/2 Sb j )
• 例13-1 研究吸烟(X1)、饮酒(X2)与食道癌 (Y)关系的病例-对照资料,试作logistic回归 分析。

logistic回归分析

logistic回归分析
即 OR P1 (1 P1) P1 RR P0 (1 P0 ) P0
二、 logistic回归模型的参数估计
logistic 回归模型的参数估计常采用最大似然估计。
其基本思想是先建立似然函数与对数似然函数,
求使对数似然函数最大时的参数值,其估计值即
为最大似然估计值。 建立样本似然函数:
n
L
i 1
(1)Mantel-Haenszel分层分析:适用于样本量大、分析因 素较少的情况。当分层较多时,由于要求各格子中例数不 能太少,所需样本较大,往往难以做到;当混杂因素较多 时,分层数也呈几何倍数增长,这将导致部分层中某个格 子的频数为零,无法利用其信息。
(2)线性回归分析:由于因变量是分类变量,不能满足 其正态性要求;有些自变量对因变量的影响并非线性。
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
c
+
d
-
病例对照原理示意图
病例 对照
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
比值(odds):某事物发生的可能性与不发生的可能性之比。
第十五章 logistic回归分析
Logistic Regression Analysis
山东大学公共卫生学院
回归分析的分类
一个 因变 量y
连续型因变量 (y) --- 线性回归分析 分类型因变量 (y) ---Logistic 回归分析 生存时间因变量 (t) ---生存风险回归分析 时间序列因变量 (t) ---时间序列分析

Logistic回归分析(LogisticRegressionAnalysis)

Logistic回归分析(LogisticRegressionAnalysis)

• 由于
模型参数的意义
log it( ) ln( ) ln(Odds) 1
Odds e(0X )
模型参数的意义
• 例中
“超重或肥胖”组(X=1)患高血压的优势
为:
Odds1 e(0 1) e(0 )
“正常”组(XO=d0d)s0患高e(血0 压0的) 优e势0为:
两组O的R优势 比o(doddds1s odds0
log it( ) ln( ) ln(Odds) 1
• 这个变换将取值在0-1间的值转换为值域在
( , )的值。
• 建立log it( )与X的线性模型:
• log it( ) 0 X

ln( 1
)
0
X
Logistic回归模型
• 求解
•ln( 1
)
0
X
e(0X ) 1
e(0X )
• 当变量Xj的回归系数Βj >0时, Xj增加1个单位后与 增加前相比,事件的优势比ORj >1,表明Xj为危险 因素;
• Βj <0时, Xj增加1个单位后与增加前相比,事件的 优势比ORj <1 ,表明Xj 为保护因素;
• Βj =0 , Xj增加1个单位后与增加前相比,事件的 优势比, ORj =1,表明Xj对结果变量不起作用。
1 e e(0 1X1P X P )
1 e 1 (0 1X1P X P )
模型参数的意义
• Β0 :常数项(截距),表示模型中所有自变 量均为0时,log it( ) 的值;
• β1 , β2 、... βP:回归系数 ,表示在控 制其他自变量时,自变量变化一个单位所引
起的
log it( ) 改变量。

logistic_回归分析1

logistic_回归分析1
0
74
55
104663
212555
选择0和1使似然函数L达到最大,即最 大似然估计。
17
STATA命令
Expand f Logit y x Logit, or 或直接logisitc y x
18
expand f (317343 observations created)
OR e
0.4117232
1.509417
21
OR的95%可信区间为(1.06,2.14)
应用Logistic模型校正混杂作用
实例2:上例没有考虑吸烟情况,故将吸烟作 为分层加入,资料如下:
吸烟 不吸烟 饮酒 不饮酒 饮酒 不饮酒 患病 33 21 22 53 未患病 22331 14210 82332 198345 合计 22364 14231 82354 198398
. logistic y x Logistic regression Log likelihood = -1133.5955 Number of obs = 317347 LR chi2(1) = 5.20 (模型检验) Prob > chi2 = 0.0225 Pseudo R2 = 0.0023
----------------------------------------------------------------------------- y | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+--------------------------------------------------------------- x1 | .999979 .1877859 -0.00 1.000 .6920603 1.4449 x2 | 5.530467 1.0412 9.08 0.000 3.823925 7.998605 ------------------------------------------------------------------------------

logistic回归分析

logistic回归分析

它与自变量x1, x2,…,xp之间的Logistic回
归模型为:
p exp(0 1X1 2 X 2 ... m X m ) 1 exp(0 1X1 2 X 2 ... m X m )
1
1 p
1 exp( 0 1 X 1 p X p )
6
模 型
ln
P 1 P
=0
1
• 按照研究设计类型 –非条件logistic回归(研究对象未经匹配) –条件logistic回归(研究对象经过匹配)
5
Logistic回归模型
应变量Y
1 0
发生 未发生 ,
自变量X1, X 2 ,
, Xm
在m个自变量的作用下阳性结果发生的概率记作:
P P(Y 1| X1, X 2 ,, X m ) 0 P 1
X1
2
X
2
m X m log itP
参 数
常数项 0
表示暴露剂量为0时个体

发病与不发病概率之比的自然对数。
意 义
回归系数 j ( j 1,2,, m)
表示自变量 X j 改变一个单位时
logitP 的改变量。 7
优势比OR(odds ratio)
流行病学衡量危险因素作用大小的比数比例指标。 计算公式为:
OR j
P1 P0
/(1 /(1
P1 ) P0 )
式中 P1 和 P0 分别表示在 X j 取值为 c1 及 c0 时 的发病概率, OR j 称作多变量调整后的优势比, 表示扣除了其他自变量影响后危险因素的作用。
8
与 logisticP 的关系:
对比某一危险因素两个不同暴露水平 X j c1 与 X j c0 的发病 情况(假定其它因素的水平相同),其优势比的自然对数为:
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10
分层分析的局限性
只能控制少数因素(分层因素过多, 每个格子中的样本例数太少) 定量资料需要分组,信息丢失 不能对因素作用大小进行定量分析 (交互作用)
11
y = log2x y
二、Logistic 回归原理
0
1
经过数理统计学家证明:把疾病概率 P 转换成
p ln 1 − p ,会使该回归方程的统计性能更好一些。而且,

当发病率低的时候ac所占的比例非常小, 当发病率低的时候 所占的比例非常小, 所占的比例非常小 公式中忽略ac后对 在RR公式中忽略 后对 值的影响非常小 公式中忽略 后对RR值的影响非常小 则有: 则有: RR

(ad)/(bc) = OR
5
举例1 举例 口服避孕药与心肌梗塞的流行病学研究
(病例对照,曾光《现代流行病学方法与应用》,P90) 病例对照,曾光《现代流行病学方法与应用》 P90)
β1
ORX1 =
p X1 =1 q X1 =1 p X 1 =0 q X 1 =0
=
...... ...... 1 − p x1 =1 p x1 =0 1 − p x1 =0
e
14
假设建立了如下的logistic回归方程: 回归方程: 假设建立了如下的 回归方程 Logit P = α + βx x 为二分变量,当暴露时,取值为1; 为二分变量,当暴露时,取值为1 不暴露时,取值为0 不暴露时,取值为0。 暴露时 Logit(P1) = α + β, 所以暴露 , 所以暴露时, 比值(odds) = exp(α + β ) 比值 所以不暴露时 所以不暴露时, 不暴露 Logit(P0) = α , 比值(odds) = exp(α) 比值
————————————
≥40岁
————————————
MI 服OC 21
非MI 合计 17 59 76 38 85 123
MI 18 88
非MI 合计 7 95 25 183 208
—————————————————————————————————
未服OC 26 合计 47
———————————————————大似然建模
以四格表为例来说明最大似然求解的意义及过程。 以四格表为例来说明最大似然求解的意义及过程。 四格表的一般表达形式 ————————————————————————————
106 102
—————————————————————————
OR(1) = 2.803 χ2 (1)= 6.77 OR(2) = 2.776 χ2 (2)= 5.03
ORMH = ∑(ai*di/ni) / ∑(bi *ci/ni) ORMH =2.79
9
分层分析中,可以分别计算出分层后的各层 分层分析中,可以分别计算出分层后的各层OR 如果发现与总的OR有较大的差异,则可以认为 有较大的差异, 值,如果发现与总的 有较大的差异 该风层因素是混杂因素。必须对该因素进行MH调整, 调整, 该风层因素是混杂因素。必须对该因素进行 调整 调整后的OR值才能真正反映因素和结局间的关系。 值才能真正反映因素和结局间的关系。 调整后的 值才能真正反映因素和结局间的关系 如果当分层后各层的OR值经过一致性检验发现: 值经过一致性检验发现: 如果当分层后各层的 值经过一致性检验发现 各层间的OR值有统计学差异,这时说明分析因素在 值有统计学差异, 各层间的 值有统计学差异 分层因素的不同水平上与结局变量的联系强度是不同 这时分层因素和研究因素存在这交互作用( 的,这时分层因素和研究因素存在这交互作用(效应 修饰作用)。这时应该分层报告OR值,而不能计算 )。这时应该分层报告 值 修饰作用)。这时应该分层报告 调整OR值。 调整 值
暴露对于不暴露的比值比(odds ratio)为: 则,暴露对于不暴露的比值比 为 OR = exp(α + β ) / exp(α) = exp(β)
15
举例2 举例2 使用雌激素与子宫内膜癌病例对照研究
病例对照,曾光《现代流行病学方法与应用》 P76) (病例对照,曾光《现代流行病学方法与应用》,P76)
——————————————————————————————————
MI 服OC 39
非MI 24 154 178
合计 63 268 331
—————————————————————————
未服OC 114 合计 153
———————————————————————
————————————————————————— χ2 = 7. 80 P〈0. 05 RR=1.455 OR=2.195 〈
Logistic 回归
王建生
中国疾病预防控制中心公共卫生监测与信息服务中心 卫生统计研究室
1
一、问题的提出
在流行病学研究中,经常遇到因变量为离散 在流行病学研究中, 型分类变量的情况。如治疗效果的无效好转、 型分类变量的情况。如治疗效果的无效好转、 显效、痊愈; 显效、痊愈;不同染毒剂量下小白鼠的存活 或死亡;在某种暴露下的发病与不发病等。 或死亡;在某种暴露下的发病与不发病等。 最常见的情况是因变量为二分变量的问题。 最常见的情况是因变量为二分变量的问题。 多元线性回归的局限性 经典流行病学统计分析方法—分层分析的局 经典流行病学统计分析方法 分层分析的局 流行病学概念复习,举例) 限性 (流行病学概念复习,举例)
40岁以上服用 的比例远小于 岁以下组。 岁以上服用OC的比例远小于 岁以下组。 的比例远小于40岁以下组 岁以上服用
8
Mantel-Haenszel分层分析法 分层分析法
按年龄分层,可以得到下表: 按年龄分层,可以得到下表:
—————————————————————————————————
〈40岁
以一个最简单的Logistic回归模型做为例子。 以一个最简单的 回归模型做为例子。 回归模型做为例子
—————————————————————————— 使用过 未使用过 合计 —————————————————————————— 55 128 183 病例 19 164 183 对照 —————————————————————— 74 293 366 合计 ——————————————————————————
3
发病(D= 发病(D=1) (D 暴露( 暴露(E=1) 不暴露(E= 不暴露(E=0) (E 合计 a (PE=1) c (PE=0) a+c
不发病(D 不发病(D=0) b (QE=1) d (QE=0) b+d
合计 a+b c+d a +b+c+d
OR=
a/b --------c /d
=
ad --------bc
———————————————————————— RR( 高年龄:低年龄) = 1.334 OR(高年龄:低年龄)=1.680 高年龄: 高年龄:
χ2
= 5.055 p<0.05
7
结论: 的发病与年龄有关 的发病与年龄有关。 结论:MI的发病与年龄有关。
不同年龄组内服用避孕药的比例
——————————————————————————
年龄
服OC
不服OC 不服
合计
——————————————————————————
〈40 ≥40 合计 χ2
38(0.31) 25(0.12) 63
= 17. 88 P〈0. 01 〈
85 183 268
123 208 331
——————————————————————————
———————————————————————————————————
建立的logistic 回归方程形式为: 建立的logistic 回归方程形式为: Logit P = -0.2478 + 1.3107 x X取值:1 使用过雌激素 取值: 取值 0 未使用过雌激素
16
使用过雌激素的Logit 为: 使用过雌激素的 Logit P(x=1) = -0.2478 + 1.3107 = 1.063 即:Ln (p1/q1) = 1.063 所以,使用过雌激素的比值( 所以,使用过雌激素的比值(odds) 为: p1/q1 = exp(1.063) =2.895 未使用过雌激素的Logit 为: 使用过雌激素的 Logit P(x=0) = -0.2478 + 0 = -0.2478 即:Ln (p0/q0) = -0.2478 所以,未使用过雌激素的比值( 所以,未使用过雌激素的比值(odds) 为: p0/q0 = (exp(-0.2478)) = 0.781 使用过雌激素相对于未使用过雌激素的比值比为: 使用过雌激素相对于未使用过雌激素的比值比为: OR (odds ratio) = 2.895 / 0.781 = 3.709
p ln 1 − p 的值域为-∞到+∞,而且这 在经过转换以后,
p 些ln 1 − p 值都可以和在大于0 小于1 范围内的P 值相对
p ln 1 − p 称为 Logit 变换。 应。统计学中,常把
12
Logistic 回归方程: 回归方程:
结论: 发病与服用口服避孕药有关 结论:MI发病与服用口服避孕药有关。
6
不同年龄组的MI与非 发病情况 不同年龄组的 与非MI发病情况 与非
————————————————————————
MI 非MI 合计 —————————————————— 40岁 76 123 〈40岁 47 ≥40岁 102 208 ≥40岁 106 ————————————— 153 178 331 合计
p ln 1− p =
β 0 + β 1 x1 + ⋅ ⋅ ⋅β n x n
相关文档
最新文档