【最新】人教版八年级数学上册第1课时 分式方程及其解法学案

合集下载

人教版初中初二八年级数学上册 15.3 第1课时 分式方程及其解法 精品导学案

人教版初中初二八年级数学上册 15.3 第1课时 分式方程及其解法 精品导学案

第十五章分式问题2:解分式方程的一般步骤有哪些?要点归纳:(1)去分母:在方程的两边同乘___________(2)解这个整式方程:去括号、移项、合并同类项、系数化为(3)检验:把解得的根代入____________的解是原分式方程的解;否则这个解不是原分式方程的解.三、自学自测1.下列各式中,不是关于x 的分式方程的是 ( )A .65x x = B .1051x x =- C .2341x x =+ D .3x a =2.解分式方程2211x x x++--=3时,去分母后变形为 ( ) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1) C .2-(x +2)=3(1-x ) D .2-(x +2)=3(x -1)3.解方程:(1)x -2x +2-1=3x 2-4; (2)2x 2x -3-12x +3=1四、我的疑惑一、要点探究探究点1:分式方程的概念问题1:一艘轮船在静水中的最大航速为30千米/千米所用时间,与以最大航速逆流航行60/时,根据题意可列方程: .问题2:要点归纳:此方程的分母中含有未知数x ,像这样 的方程叫做判一判:下列方程中,哪些是分式方程?哪些是整式方程?23x x x -= 437x y += 132x x =- ()11x x x-=- 3π2x x -= 12105x x -+= 12x x -= 2131x x x++=4.若关于x的分式方程2213m xx x+-=-无解,则m的值为( )A.-1,B.1C.-1.5或2D.-0.5或-1.5参考答案自主学习一、知识链接1.√ × × × √ √ √ √2.2x -5(3-2x )=10x 2x -15+10x =10x 2x +10x -10x =15 2x =15 152x = 3.(1)x 2-1 (2)a 2-4 二、新知预习问题1 未知数问题2 公分母 公分母 三、自学自测 1.D 2.D 3.解:(1)54x =;(2)x =-3. 四、我的疑惑 课堂探究二、要点探究探究点1:分式方程的概念 问题1906030+30x x=- 问题2 分母中含未知数 判一判 分式方程:23x x x -=,437x y +=,132x x =-,()11x x x -=-,12x x -=,2131x x x ++= 整式方程:3π2x x -=,12105x x -+= 探究点2:分式方程的解法问题1 解:方程①两边同乘(30+x )(30-x ),得90(30-x )=60(30+x ),解得x =6. 检验:将x =6代入原分式方程中,左边=52=右边, 因此x =6是原分式方程的解.问题2 下面我们再讨论一个分式方程:解:方程两边同乘(x +5)(x -5),得x +5=10,解得x =5.检验:将x =5代入原方程中,分母x -5和x 2-25的值都为0,相应的分式无意义.因此x =5虽是整式方程x +5=10的解,但不是原分式方程2110525x x =--的解,实际上,这个分式方程无解.例1 解: 方程两边同乘x (x -3),得2x =3x -9.解得x =9. 检验:当x =9时,x (x -3) ≠0,所以,原分式方程的解为x =9.例2 解: 方程两边同乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=3.解得x =1.检验:当x =1时, (x -1)(x +2) =0, 因此x =1不是原分式方程的解.所以,原分式方程无解.例3 a <-1且a ≠-2 解析:去分母得2x +a =x -1,解得x =-a -1. ∵关于x 的方程2x +ax -1=1的解是正数,∴x >0且x ≠1.∴-a -1>0且-a -1≠1,解得a <-1且a ≠-2.∴a 的取值范围是a <-1且a ≠-2.例4:解:方程两边同乘(x +2)(x -2),得2(x +2)+mx =3(x -2),即(m -1)x =-10. ①当m -1=0时,此方程无解,此时m =1; ①方程有增根,则x =2或x =-2.当x =2时,代入(m -1)x =-10,得2(m -1)=-10,m =-4;当x =-2时,代入(m -1)x =-10,得-2(m -1)=-10,解得m =6. 综上所述,m 的值是1,-4或6. 当堂检测1.D 2.D 3.D 4.D5.解:去分母,得2(1)(1)2(1).x x x x x ++-=+解得1.2x =- 检验:把12x =-代入11)0.4x x +=-≠(所以原方程的解为1.2x =-。

人教版八年级数学上册15.3第1课时分式方程及其解法学案

人教版八年级数学上册15.3第1课时分式方程及其解法学案

15.3分式方程第 1 课时分式方程及其解法学教目 : 1.认识分式方程的观点, 和 生增根的原由.2.掌握分式方程的解法,会解可化 一元一次方程的分式方程,会 一个数能否是原方程的增根 .学教要点:会解可化 一元一次方程的分式方程,会 一个数能否是原方程的增根 . 学教 点:会解可化 一元一次方程的分式方程,会 一个数能否是原方程的增根 .学教 程: 一、温故知新:1、前方我 已 学 了哪些方程?是怎 的方程?怎样求解? (1 )前方我 已 学 了 方程。

(2 )一元一次方程是方程。

(3 )一元一次方程解法 步 是:①去分母;②去括号;③移 ;④归并同 ;⑤系数化1。

如解方程:x 2 2x 31462、研究新知:一艘 船在静水中的最大航速20 千米 / ,它沿江以最大航速 流 ,与以最大航速逆流航行60 千米所用 相等,江水的流速 多少?100 千米所用剖析: 江水的流速v 千米 / ,依据“两次航行所用 同样” 一等量关系,100 60获得方程:20 v 20 v .像 分母中含未知数的方程叫做分式方程。

分式方程与整式方程的区 在哪里?通 察 获得 两种方程的区 在于未知数能否在分母上。

未知数在分母的方程是分式方程。

未知数不在分母的方程是整式方程。

前方我 学 一元一次方程的解法,可是分式方程中分母含有未知数,我 又将怎样解?解分式方程的基本思路是将分式方程 化 最 公分母。

方程,详细的方法是去分母,即方程两 同乘以100 60⋯⋯⋯⋯⋯⋯⋯⋯ ①如解方程:=20v 20 v去分母:方程两 同乘以最 公分母( 20+v )( 20-v ),得100(20-v )=60( 20+v )⋯⋯⋯⋯⋯⋯⋯⋯② 解得v=5察方程①、②中的v 的取 范 同样 ?① 因为是分式方程 v ≠± 20,而②是整式方程 v 可取任何 数。

明, 于方程①来 ,必 要求使方程中各分式的分母的 均不0.但 形后获得的整式方程② 没有 个要求。

新人教版八年级上册数学15.3 第1课时 分式方程及其解法学案

新人教版八年级上册数学15.3 第1课时 分式方程及其解法学案

15.3 分式方程第1课时 分式方程及其解法学教目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 学教重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.学教难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.学教过程:一、温故知新:1、前面我们已经学习了哪些方程?是怎样的方程?如何求解?(1)前面我们已经学过了 方程。

(2)一元一次方程是 方程。

(3)一元一次方程解法 步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。

如解方程:163242=--+x x2、探究新知:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,根据“两次航行所用时间相同”这一等量关系, 得到方程: vv -=+206020100. 像这样分母中含未知数的方程叫做分式方程。

分式方程与整式方程的区别在哪里?通过观察发现得到这两种方程的区别在于未知数是否在分母上。

未知数在分母的方程是分式方程。

未知数不在分母的方程是整式方程。

前面我们学过一元一次方程的解法,但是分式方程中分母含有未知数,我们又将如何解?解分式方程的基本思路是将分式方程转化为 方程,具体的方法是去分母,即方程两边同乘以最简公分母。

如解方程:v +20100=v-2060 …………………… ① 去分母:方程两边同乘以最简公分母(20+v )(20-v ),得100(20-v )=60(20+v )……………………②解得 v=5观察方程①、②中的v 的取值范围相同吗?① 由于是分式方程v ≠±20,而②是整式方程v 可取任何实数。

这说明,对于方程①来说,必须要求使方程中各分式的分母的值均不为0.但变形后得到的整式方程②则没有这个要求。

新人教版八年级数学上精品导学案分式方程及其解法(1)教案教师用教学案教学设计含答案学生用学案

新人教版八年级数学上精品导学案分式方程及其解法(1)教案教师用教学案教学设计含答案学生用学案

分式方程及其解法(1)(教师用)一、教学目标(一)知识与技能:理解分式方程的概念,会判断分式方程,会解简单的方式方程. (二)过程与方法:经历探索分式方程概念的过程,探索“实际问题”建立模型的方法. (三)情感态度与价值观:培养从实际问题抽象、概括分式方程的数学化思想,体会数学的 应用价值.二、教学重点、难点重点:会解可化为-元一次方程的分式方程,会检验一个数是不是原方程的解. 难点:会解可化为-元一次方程的分式方程,会检验一个数是不是原方程的解. 三、教学过程 一元一次方程只含有一个未知数(元),并且未知数的最高次数为1(次)的整式方程叫做一元一次方程. 1.下列方程哪些是一元一次方程?(1) 3x -5=3;_____ (2) x +2y =5;_____ (3) x 2-x =5;_____ (4)312-x = 42+x -1. _____ 2.请解上述方程(4).312-x = 42+x -1 解:去分母(方程两边乘12),得 4(2x -1)=3(x +2)-12 去括号,得 8x -4=3x +6-12 移项,得 8x -3x =6-12+4 合并同类项,得 5x =-2 化系数为1,得 x =52-列方程有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg 和15000kg ,已知第一块试验田每公顷的产量比第二块少3000kg ,分别求这两块试验田每公顷的产量.解:设第一块试验田每公顷的产量为 x kg ,那么第二块试验田每公顷的产量是_________kg . 根据题意,可得方观察 v v -=+30603090,3000150009000+=x x 方程有什么共同特点? 分母中含有未知数的方程叫做分式方程.注:(1)分式方程的主要特征:含分母且分母里含有未知数. (2)分式方程和整式方程的区别就在于分母中是否含有未知数. 思考如何解分式方程:vv -=+30603090 上述分式方程中各分母的最简公分母是(30+v )(30-v ) 解:方程两边乘(30+v )(30-v ),得 90(30-v )=60(30+v ) 解得 v =6 检验:将v =6代入原方程中,左边=25=右边,因此v =6是原分式方程的解. 由此可知,江水的流速为6km /h .将分式方程化成整式方程的关键步骤是什么? 归纳解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边乘最简公分母.3000150009000+=x x 解:方程两边乘x (x +3000),得 9000(x +3000)=15000x 解得 x =4500检验:将x =4500代入原方程中,左边=2=右边,因此x =4500是原分式方程的解. 两块试验田每公顷的产量分别是4500kg 、7500kg . 练习(1)275-=x x (2) 1132-=+x x 解:(1)方程两边乘x (x -2),得 5(x -2)=7x 解得 x =-5检验:将x =-5代入原方程中,左边=-1=右边,因此x =-5是原分式方程的解. (2)方程两边乘(x +3)(x -1),得 2(x -1)=x +3 解得 x =5 检验:将x =5代入原方程中,左边=41=右边,因此x =5是原分式方程的解. 课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤. 在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.分式方程及其解法(1)(学生用)一、教学目标(一)知识与技能:理解分式方程的概念,会判断分式方程,会解简单的方式方程. (二)过程与方法:经历探索分式方程概念的过程,探索“实际问题”建立模型的方法. (三)情感态度与价值观:培养从实际问题抽象、概括分式方程的数学化思想,体会数学的 应用价值.二、教学重点、难点重点:会解可化为-元一次方程的分式方程,会检验一个数是不是原方程的解. 难点:会解可化为-元一次方程的分式方程,会检验一个数是不是原方程的解. 三、教学过程 一元一次方程只含有一个未知数(元),并且未知数的最高次数为1(次)的整式方程叫做一元一次方程. 1.下列方程哪些是一元一次方程?(1) 3x -5=3;_____ (2) x +2y =5;_____ (3) x 2-x =5;_____ (4)312-x = 42+x -1. _____ 2.请解上述方程(4).312-x = 42+x -1列方程有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg 和15000kg ,已知第一块试验田每公顷的产量比第二块少3000kg ,分别求这两块试验田每公顷的产量.解:设第一块试验田每公顷的产量为 x kg ,那么第二块试验田每公顷的产量是_________kg . 根据题意,可得方观察 v v -=+30603090,3000150009000+=x x 方程有什么共同特点? 叫做分式方程.注:(1)分式方程的主要特征: .(2)分式方程和整式方程的区别就在于 思考如何解分式方程:vv -=+30603090将分式方程化成整式方程的关键步骤是什么? 归纳解分式方程的基本思路是 ,具体做法是3000150009000+=x x 练习 (1)275-=x x (2) 1132-=+x x课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤. 在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.。

八年级数学人教版(上册)15.3第1课时分式方程及其解法

八年级数学人教版(上册)15.3第1课时分式方程及其解法
侵权必究
例1
解方程
2 3. x3 x
解: 方程两边乘x(x-3),得
2x=3x-9.
解得 x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
侵权必究
例2
解方程
x
x 1
1
(x
3 1)( x
2)
.
解:方程两边乘(x-1)(x+2),得 x(x+2)-(x-1)(x+2)=3.
侵权必究
方法总结:分式方程无解可能有两种情况: ①去分母后化成的整式方程无解; ②去分母后化成的整式方程有解,但这个解使 原方程的最简公分母为0,是增根.
侵权必究
当堂练习
✓ 当堂反馈 ✓ 即学即用
侵权必究
当堂练习
1.下列关于x的方程中,是分式方程的是( D )
A.
B.
C.
D.
2.
要把方程
2 3y
解得 x=1.
检验:当x=1时, (x-1)(x+2) =0, 因此x=1不是 原分式方程的解. 所以,原分式方程无解.
侵权必究
用框图的方式总结为:
分式方程 整式方程
x =a
去分母 解整式方程 检验
x =a是分式 否
x =a 最简公分母是
是 x =a不是分式
方程的解
否为零?
方程的解
侵权必究
例3 关于x的方程
的解是正数,则a的取值
范围是_a_<__-__1_且__a_≠_-_.2
解析:去分母得2x+a=x-1,解得x=-a-1,
∵关于x的方程
的解是正数,∴x>0且x≠1,
∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的

人教版八年级上册数学《 分式方程》(优质教案)

人教版八年级上册数学《 分式方程》(优质教案)

人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。

本章主要内容是让学生了解分式方程的定义、解法以及应用。

通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。

二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。

但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。

因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。

三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。

2.掌握解分式方程的基本方法,能够熟练地求解分式方程。

3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。

四. 教学重难点1.分式方程的定义及其与一般方程的区别。

2.分式方程的解法及其应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。

2.案例材料:收集一些实际问题,用于教学过程中的案例分析。

3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。

七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。

同时,结合实际问题,让学生了解分式方程在生活中的应用。

3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。

八年级数学上册15.3分式方程第1课时分式方程及其解法说课稿(新版)新人教版

八年级数学上册15.3分式方程第1课时分式方程及其解法说课稿(新版)新人教版

八年级数学上册 15.3 分式方程第1课时分式方程及其解法说课稿(新版)新人教版一. 教材分析八年级数学上册15.3分式方程是新人教版教材中的一节重要内容。

本节内容主要介绍了分式方程的概念及其解法。

在此之前,学生已经学习了分式的基本性质和运算,为本节内容的学习奠定了基础。

本节内容的学习,不仅有助于学生巩固分式的相关知识,还能提高他们解决实际问题的能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对分式的概念和性质有一定的了解。

但是,他们在解决实际问题时,还存在着一定的困难。

因此,在教学过程中,我们需要关注学生的个体差异,针对不同层次的学生进行教学,使他们在原有基础上得到提高。

三. 说教学目标1.知识与技能:使学生掌握分式方程的概念,了解分式方程的解法,能运用分式方程解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生解决分式方程的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。

四. 说教学重难点1.重点:分式方程的概念及其解法。

2.难点:分式方程在实际问题中的应用。

五. 说教学方法与手段1.采用问题驱动法,引导学生主动探究分式方程的解法。

2.利用多媒体课件,为学生提供丰富的学习资源,提高课堂效果。

3.学生进行小组讨论,培养他们的合作意识。

4.通过课后练习,巩固所学知识。

六. 说教学过程1.导入新课:以生活实例引入分式方程的概念,激发学生的学习兴趣。

2.自主学习:让学生自主探究分式方程的解法,培养学生独立解决问题的能力。

3.合作交流:学生进行小组讨论,分享各自的解题心得,互相学习,共同进步。

4.课堂讲解:对分式方程的解法进行讲解,重点讲解实际问题中的运用。

5.练习巩固:布置课后练习,让学生巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,突出重点。

主要包括以下内容:1.分式方程的概念2.分式方程的解法3.分式方程在实际问题中的应用八. 说教学评价1.课堂表现:关注学生在课堂上的参与程度、思维品质和合作意识。

最新人教版八年级数学上册《分式方程及其解法》精品教案

最新人教版八年级数学上册《分式方程及其解法》精品教案

15.3 分式方程第1课时分式方程及其解法一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.从而渗透数学的转化思想.二、教学重点和难点1.教学重点:可化为一元一次方程的分式方程的解法.2.教学难点:检验分式方程解的原因三、教学过程(一)复习及引入新课提问:什么叫方程?什么叫方程的解?(二)新课板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.检验:把x=3代入原方程左边=右边 ∴x=3是原方程的解.例2:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时, 可列方程v 20100+=v 2060-解方程得:v =5检验:v =5为方程的解。

所以水流速度为5千米/时。

(三)课堂练习:(四)小结:谈谈你的收获(五)布置作业(六)板书设计第1课时 分式方程及其解法1、分式方程的定义 例:2、分式方程的解法 练习:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.作者留言:非常感谢!您浏览到此文档。

为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。

人教版八年级数学上册教案:15.3.1分式方程及其解法

人教版八年级数学上册教案:15.3.1分式方程及其解法
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学过程中,我发现学生们对分式方程的概念和解法掌握程度参差不齐。有的同学能够迅速理解并运用到实际问题上,但也有一些同学在去分母和解决实际问题时感到困惑。这让我意识到,在接下来的教学中,我需要更加关注以下几个方面:
二、核心素养目标
1.让学生掌握分式方程的基本概念和解法,提高逻辑思维能力和数学运算能力;
2.培养学生运用分式方程解决实际问题的能力,增强数学应用意识和模型观念;
3.引导学生通过探究、合作、总结等学习过程,发展自主学习、合作交流的核心素养;
4.培养学生严谨、细致的数学学习态度,提高数学素养和审美观念;
-对于含有绝对值、不等式的分式方程,如何转化为常规分式方程求解。
举例:
-难点解释:在去分母的过程中,学生可能会遇到分母因式分解的困难,需要教师引导学生掌握因式分解的方法,并通过例题演示如何将复杂的分母简化;
-解法选择:对于一些特殊的分式方程,如含有绝对值,学生可能会感到困惑,教师需要通过具体的例子讲解如何将其转化为常规分式方程求解;
1.讨论主题:学生将围绕“分式方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

八年级数学上册(人教版)配套教学教案15.3第1课时分式方程及其解法

八年级数学上册(人教版)配套教学教案15.3第1课时分式方程及其解法

全新修订版教学设计
(教案)
八年级数学上册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
15.3 分式方程
第1课时分式方程及其解法
一、教学目标
1.使学生理解分式方程的意义.
2.使学生掌握可化为一元一次方程的分式方程的一般解法.
3.了解解分式方程解的检验方法.从而渗透数学的转化思想.二、教学重点和难点
1.教学重点:可化为一元一次方程的分式方程的解法.
2.教学难点:检验分式方程解的原因
三、教学过程
(一)复习及引入新课
提问:什么叫方程?什么叫方程的解?
(二)新课
板书:分式方程的定义.
分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.
练习:判断下列各式哪个是分式方程.
解:两边同乘以最简公分母2(x+5)得
2(x+1)=5+x 2x+2=5+x x=3.。

八年级数学上册 15.3 分式方程 第1课时 分式方程及其解法学案 (新版)新人教版

八年级数学上册 15.3 分式方程 第1课时 分式方程及其解法学案 (新版)新人教版

15.3 分式方程第1课时 分式方程及其解法1.理解分式方程的意义.2.掌握分式方程的基本思路和解法.3.理解分式方程可能无解的原因,并掌握解分式方程的验根的方法.阅读教材P 149~151,完成预习内容.知识探究1.填空:(1)分母中________有未知数的方程叫做整式方程(2)分母中__________的方程叫做分式方程.2.判断下列说法是否正确:①2x +32=5是分式方程;②34-4x =4x +3是分式方程; ③x 2x =1是分式方程;④1x +1=1y -1是分式方程. 3.解分式方程的一般步骤:(1)________;(2)________;(3)________;(4)________. 自学反馈1.下列方程中,哪些是分式方程?哪些是整式方程?①x -22=x 3;②4x +3y=7; ③1x -2=3x ;④x (x -1)x =-1; ⑤3-x π=x 2;⑥2x+x -15=10; ⑦x -1x =2;⑧2x +1x+3x =1.判断整式方程和分式方程的方法就是看分母中是否含有未知数.2.解方程:12x =2x +3.活动1 小组讨论例1 解方程:2x -1=4x 2-1. 解:方程两边乘(x +1)(x -1),得2(x +1)=4.解得x =1.检验:当x =1时,(x +1)(x -1)=0.∴x =1不是原分式方程的解.∴原分式方程无解.例2 解方程:(1)x x +1=2x 3x +3+1;(2)5x 2+x -1x 2-x=0. 解:(1)x =-32. (2)x =32. 活动2 跟踪训练1.解分式方程:(1)x x -1=32x -2-2; (2)x -3x -2+1=32-x; (3)2x 2x -1=1-2x +2.方程中分母是多项式,要先分解因式,再找公分母.活动3 课堂小结解分式方程的思路是: 分式方程――→去分母两边都乘以最简公分母一化二解三检验整式方程―→验根【预习导学】知识探究1.(1)不含 (2)含有未知数 2.①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数. 3.(1)去分母 (2)解整式方程 (3)验根 (4)小结自学反馈1.①⑤⑥是整式方程,因为分母中没有未知数.②③④⑦⑧是分式方程,因为分母中含有未知数. 2.x =1.【合作探究】活动2 跟踪训练1.(1)方程两边乘2x -2,得2x =3-2(2x -2).解得x =76.检验:当x =76时,2x -2≠0.所以,x =76是原方程的解.(2)方程两边乘x -2,得x -3+x -2=-3.解得x =1.检验:当x =1时,x -2≠0.所以,x =1是原方程的解.(3)方程两边乘(2x -1)(x +2),得2x(x +2)=(2x -1)(x +2)-2(2x -1).解得x =0.检验:当x =0时,(2x -1)(x +2)≠0.所以,x =0是原方程的解.。

人教版八年级数学上册《分式》导学案:分式方程(第一课时)

人教版八年级数学上册《分式》导学案:分式方程(第一课时)

人教版八年级数学上册《分式》导学案分式方程(第一课时)【学习目标】1.理解分式方程的概念,并能判断一个方程是不是分式方程;2.能将实际问题中的等量关系用分式方程表示.【知识梳理】1.方程的定义:含有 的等式叫做方程.2.解一元一次方程的一般步骤:3.分式方程的定义:【典型例题】知识点一 分式方程的定义1.方程:1255341112362235552122=-=+-=-=--=-x x y x x x x x x π)()()()()(其中分式方程的个数是( )A.1B.2C.3D.42.下列方程是分式方程的有 (填序号).()()().124;0141313;1252;242212为常数)、(为常数)、()(b a abx x x x b a b x a x x x x =-=-+--++=-=+-小结;(1)分式方程的主要特征:①含有分母;②分母中含有未知数;③是方程.⑵分式方程与整式方程的区别在于分母中是否含有未知数.知识点二 列分式方程3.部分学生自行组织春游,预计费用为120元,后来又有2名学生参加,费用不变,这样每人可少交3元.若设原来的人数是x ,则可列方程为 .4.为切实加强我市学校新冠疫情防控工作,筑牢校园疫情防控屏障,保障广大师生员工生命健康安全,某校师生员工共2000人需要开展全员核酸检测工作,由于组织有序,实际上每小时检测人数比原计划增加100人,结果提前1小时完成检测任务.若设原计划每小时检测x 人,则据题意可列方程为( )A .+100=B .﹣100= C .+1=D .﹣1=小结:列方程的关键是找出等量关系。

【巩固训练】1.在方程①1111x y=+-;②210x+=;③1x ya b+=(a,b为常数);④21xx=;⑤23356x x-+-=;⑥137xxa-=-+(a是常数);⑦2=πx中是分式方程的有(只填序号)2.某镇修建一条“村村通”公路,若甲乙两个工程队单独完成,甲工程队比乙工程队少用10天,若甲乙两对合作,12天可以完成,设甲单独完成这项工程需要x天,则根据题意,可列方程为_________________.3.某地对一段长达4800m的河堤进行加固.在加固600m后,采用新的加固模式,每天的加固长度是原来的2倍.用9天完成了全部加固任务.如果设原来每天加固河堤x米,请列出关于x的分式方程.等量关系式:列出方程:4.小亮从图书馆借了一本书,共280页,借期是两周.当他读完书的一半时,发现以后平均每天读书的页数必须增加1倍才能在借期内读完.如果设小亮读前半本书时平均每天读x页,请列出关于x的分式方程.等量关系式:列出方程:5.某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米.(请列出符合题意的分式方程)。

最新人教版初中八年级数学上册15.3 第1课时 分式方程及其解法导学案

最新人教版初中八年级数学上册15.3 第1课时 分式方程及其解法导学案

第十五章分式3.找出下列各组分式的最简公分母:(1)11+x 与11-x 的最简公分母是 . (2)21+a 与412-a 的最简公分母是 .二、新知预习问题1:什么是分式方程?要点归纳:分母中含有________的方程叫做分式方程.问题2:解分式方程的一般步骤有哪些?要点归纳:(1)去分母:在方程的两边都乘以___________,化成整式方程; (2)解这个整式方程:去括号、移项、合并同类项;(3)检验:把解得的根代入______________,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则这个解不是原分式方程的解. 三、自学自测1.1.下列各式中,分式方程是 ( )[来源:Z&xx& A.65x x = B.1051x x =- C.2341x x =+ D.()1033x x a a =-≠ 2.解分式方程2211x x x++--=3时,去分母后变形为 ( ) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3(1-x) .D .2-(x +2)=3(x -1)3.解方程:(1)x -2x +2-1=3x 2-4;(2)2x 2x -3-12x +3=1.四、我的疑惑_____________________________________________________________________________________________________________________________________________________问题2:分式方程2510512-=-x x 有解吗?问题3:解分式方程的基本思路是什么?需要注意的问题是什么?例1:解方程:(1)5x =7x -2;(2)1x -2=1-x 2-x -3.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.例2:关于x 的方程2x +ax -1=1的解是正数,则a 的取值范围是____________.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.例3:若关于x 的分式方程2x -2+mx x 2-4=3x +2无解,求m 的值.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.A.2(x-8)+5x=16(x-7)B.2(x-8)+5x=8C.2(x-8)-5x=16(x-7)D.2(x-8)-5x=84.若关于x的分式方程2213m xx x+-=-无解,则m的值为 ( )A.-1,5 B.1 C.-1.5或2 D.-0.5或-1.5 3. 解方程:()。

人教版八年级数学上册《分式方程(第1课时)》示范教学设计

人教版八年级数学上册《分式方程(第1课时)》示范教学设计

分式方程(第1课时)教学目标1.理解分式方程的概念,能区分分式方程和整式方程.2.掌握解分式方程的基本思路,会解可化为一元一次方程的分式方程.3.理解分式方程无解的原因,掌握检验分式方程的解的方法.4.经历“实际问题—分式方程—整式方程”的过程,发展分析问题和解决问题的能力,渗透转化的数学思想,体会化归思想在解方程时的作用.教学重点解分式方程的基本思路和一般步骤.教学难点检验分式方程的解的原因及方法.教学过程知识回顾1.前面我们学习了什么方程?【答案】一元一次方程和二元一次方程.【师生活动】教师提示:一元一次方程和二元一次方程都是整式方程.2.什么是一元一次方程?【答案】只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.【设计意图】带领学生复习已经学过的方程的知识,巩固基础,为本节课学习分式方程做好准备.新知探究一、探究学习【问题】1.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行90 km 所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?【师生活动】教师出示本章引言的问题,学生独立解决,然后教师展示学生的答案.【答案】解:设江水的流速为v km/h,根据题意,得90 30v +=6030v-.【追问】为了解决引言中的问题,我们得到了方程9030v+=6030v-.仔细观察这个方程,未知数有什么特点?【答案】未知数位于分母的位置上.【新知】方程9030v+=6030v-的分母中含未知数v,像这样分母中含未知数的方程叫做分式方程.注意:我们以前学习的方程都是整式方程,它们的未知数都不在分母中.【设计意图】从本章引言中的轮船航行问题说起,列出分母中含未知数的方程,并指出这个方程的特点,给出分式方程的概念.【练习】判断下列式子是否是分式方程?若不是,请说明理由.(1)1x=5;(2)5x=1;(3)x2-x+13=5;(4)22x-1x;(5)4x+35x=7;(6)212x-2a=1.【师生活动】教师提出问题,学生独立思考并回答.【答案】(1)(5)(6)是分式方程;(2)(3)(4)不是分式方程.理由:(2)(3)分母中不含未知数,不是分式方程;(4)不是方程.【归纳】分式方程的三个特征:①是方程;②方程中含分母;③分母中含有未知数.特别注意,判断一个式子是否为分式方程时,不能对式子进行约分、通分变形,更不能利用等式的性质对其进行变形.【设计意图】通过练习题,帮助学生巩固分式方程与整式方程的区别.【问题】2.解分式方程:9030v+=6030v-.【追问】1.如何将分式方程化为整式方程?【师生活动】教师提问,学生小组讨论后回答.【答案】通过“去分母”将分式方程化为整式方程.【追问】2.如何去分母?去分母的依据是什么呢?【答案】利用等式的性质2,可以在方程两边都乘同一个式子——各分母的最简公分母.【师生活动】教师引导学生完成问题2的作答.【答案】解:方程两边同乘(30+v)(30-v),得90(30-v)=60(30+v).解得v=6.【追问】v=6是分式方程9030v+=6030v-的解吗?你是怎样确定的?【答案】将v=6代入分式方程中,左边=52=右边,因此v=6是原分式方程的解.【归纳】解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边乘最简公分母.这也是解分式方程的一般方法.【设计意图】由分式方程的特点引出解分式方程的基本思路,即通过去分母将分式方程化为整式方程,再解出未知数.体会化繁为简,化未知为已知,化未学为已学的基本思想.【问题】3.解分式方程:15x-=21025x-.【答案】解:方程两边同乘(x-5)(x+5),得x+5=10.解得x=5.检验:将x=5代入原分式方程,发现这时分母x-5和x²-25的值都为0,相应的分式无意义.因此,x=5虽是整式方程x+5=10的解,但不是原分式方程的解.实际上,这个分式方程无解.【问题】4.上面两个分式方程中,为什么9030v+=6030v-①去分母后所得整式方程的解就是①的解,而15x-=21025x-②去分母后所得整式方程的解却不是②的解呢?【师生活动】学生分组讨论,得出结论,师生一起总结.【答案】解分式方程去分母时,方程两边要乘同一个含未知数的式子(最简公分母).方程①两边乘(30+v)(30-v),得到整式方程,它的解是v=6.当v=6时,(30+v)(30-v)≠0,这就是说,去分母时,①两边乘了同一个不为0的式子,因此所得整式方程的解与①的解相同.方程②两边乘(x-5)(x+5),得到整式方程,它的解是x=5.当x=5时,(x-5)(x+5)=0,这就是说,去分母时,②两边乘了同一个等于0的式子,这时所得整式方程的解使②出现分母为0的现象,因此这样的解不是②的解.【归纳】解分式方程产生不适合原方程的解的原因在将分式方程化为整式方程时,未知数的取值范围被扩大了.对于整式方程来说,求出的解成立;而对于原分式方程来说,当分母为0时,分式无意义,所以这个解不是原分式方程的解.【思考】你能总结出检验分式方程的解的方法吗?【师生活动】学生独立思考,进行作答.学生回答后,师生一起总结.【新知】一般地,解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应做如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.【设计意图】通过问题2和问题3,经过对比得出解分式方程时检验的必要性和具体的检验方法.让学生经历由特殊到一般的过程,认识到解分式方程时需要检验,并知道怎样检验.二、典例精讲【例1】解方程:23x -=3x. 【师生活动】学生独立完成,教师巡查,给予辅导.【答案】解:方程两边同乘x (x -3),得2x =3x -9.解得x =9.检验:当x =9时,x (x -3)≠0.所以,原分式方程的解为x =9.【例2】解方程:1x x --1=3(1)(2)x x -+. 【师生活动】学生独立完成后,教师出示答案.师生总结解分式方程的一般步骤.【答案】解:方程两边同乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=3. 解得x =1.检验:当x =1时,(x -1)(x +2)=0,因此x =1不是原分式方程的解.所以,原分式方程无解.【归纳】解分式方程的一般步骤【设计意图】通过例2和例3,帮助学生巩固分式方程的解法,培养学生的运算能力.课堂小结板书设计一、分式方程的概念二、分式方程的解法三、分式方程无解的原因及检验方法课后任务完成教材第150页练习题,第152页练习题.。

人教版八年级数学上册15.3.1.1《分式方程及其解法(1)》教学设计

人教版八年级数学上册15.3.1.1《分式方程及其解法(1)》教学设计

人教版八年级数学上册15.3.1.1《分式方程及其解法(1)》教学设计一. 教材分析人教版八年级数学上册15.3.1.1《分式方程及其解法(1)》这一节主要介绍了分式方程的定义、性质以及解法。

分式方程是初中数学中的一种重要方程,它涉及到实数的运算、方程的转化和求解,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

本节内容为学生提供了分式方程的基本解法,为后续学习更复杂的方程打下基础。

二. 学情分析八年级的学生已经掌握了实数的运算、方程的基本概念,具备了一定的数学基础。

但是,对于分式方程这一概念,学生可能还比较陌生,需要通过具体的例子和练习来逐步理解和掌握。

在教学过程中,教师需要关注学生的学习情况,针对学生的实际水平进行教学,提高学生的学习兴趣和自信心。

三. 教学目标1.了解分式方程的定义和性质,理解分式方程的意义。

2.学会分式方程的基本解法,提高解方程的能力。

3.培养学生的逻辑思维和解决问题的能力。

四. 教学重难点1.分式方程的定义和性质。

2.分式方程的解法。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,通过创设情境、设置问题、引导学生自主探究、小组讨论等方式,激发学生的学习兴趣,培养学生的动手操作能力、思考能力和团队协作能力。

六. 教学准备1.准备相关的教学PPT、案例和练习题。

2.准备黑板、粉笔等教学工具。

3.准备与教学内容相关的学习资料。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式方程的概念,让学生感受分式方程在实际生活中的应用。

例如:某商品打8折后的价格是120元,问原价是多少?2.呈现(15分钟)介绍分式方程的定义、性质和基本解法。

通过PPT展示相关的理论和案例,让学生理解和掌握分式方程的基本概念。

3.操练(15分钟)让学生分组进行练习,运用所学的知识解分式方程。

教师巡回指导,解答学生的问题,并给予鼓励和表扬。

4.巩固(5分钟)挑选几道典型的练习题,让学生上黑板演示解题过程,讲解解题思路。

人教版八年级数学上册分式方程教学设计

人教版八年级数学上册分式方程教学设计
-采用多元化的评价方式,如口头表扬、作业评语、小组互评等,以激发学生的学习积极性。
6.情感关怀,营造氛围:关注学生的学习情感,营造一个温馨、支持的学习环境,让学生在轻松的氛围中学习。
-教师应以亲切的态度对待学生,鼓励学生提出疑问,给予耐心的解答和帮助。
7.创新思维,拓展视野:在教学过程中,鼓励学生思考问题的多种可能性,培养学生的创新思维和解决问题的能力。
-第3题:将以下实际情境转化为分式方程,并求解。
这些题目旨在帮助学生巩固分式方程的基本概念和求解方法。
2.提高拓展题:选择以下两题进行解答:
-第4题:比较下列分式方程的难易程度,并说明原因。
-第5题:求解一个含有两个未知数的分式方程组,并讨论其解的情况。
这些题目旨在提高学生的分析能力和解题技巧。
3.应用实践题:结合生活实际,自选一个情境,建立分式方程,并解决以下问题:
3.应用实例:结合教材中的例题,讲解分式方程在实际生活中的应用,让学生体会数学的实用性。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
-分式方程与整式方程的联系与区别是什么?
-分式方程在实际生活中的应用有哪些?
2.汇报交流:各小组汇报讨论成果,教师点评并总结,引导学生形成系统化的认识。
针对以上情况,教师应充分了解学生的认知水平和学习需求,采用启发式教学策略,引导学生从已知知识向新知识过渡。在教学中,注重培养学生的逻辑思维能力和问题解决能力,鼓励学生积极参与课堂讨论,提高他们的自主学习能力。同时,关注学生的情感态度,营造轻松愉快的学习氛围,使学生在愉悦的情感体验中,更好地理解和掌握分式方程的知识。
六、课堂小结
1.让学生回顾本节课所学内容,总结分式方程的知识点。

最新人教版八年级数学上册《分式方程的解》学案

最新人教版八年级数学上册《分式方程的解》学案
3、相关题:练习册22页B组
反思提升
课题
最新人教版八年级数学上册《分式方程的解》学案
目标
当分式方程有增根时,无解时,怎样求参数的值。
重点
分式方程产生增根时,求参数的值。
难点
分式方程产生增根的原因。
自主学习
一、导入识标:
分式方程为什么会产生增根?分式方程产生增根的条件是什么?在哪一步产生增根的?分式方程无解时分为几种情况?
二、自学新知:
已知 的解,求a的值。
导学探究
类型分类:
类型一:有一个根为1,试源自a的值。类型二:类型三:
若 有增根,求m的值。
类型四:
若 无解,求m的值。
类型五:
当m为何值时,关于x的分式方程 有解?
归纳总结:你能回答导入识标中的问题吗?谈谈你的认识。
达标拓展
一、达标测试:
1、已知关于x的方程
2、当m为何值时,关于x的分式方程 有增根?

人教版八年级数学上册《分式(第1课时)》示范教学设计

人教版八年级数学上册《分式(第1课时)》示范教学设计

分式(第1课时)教学目标1.了解分式的概念,能用分式表示实际问题中的数量关系.2.掌握分式有意义的条件,并能进行计算.3.掌握分式取特殊值的条件,并能进行计算.教学重点分式的概念,分式有意义或无意义的条件.教学难点熟练地求出分式有意义的条件、分式取特殊值的条件.教学过程新知探究一、新课导入【例】1.一艘轮船在静水中的最大航速为30 km/h,它沿江以最大航速顺流航行90 km 所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?【师生活动】学生先独立思考,教师提出问题引导学生列出代数式.【问题1】顺流航行的速度、逆流航行的速度与轮船在静水中的速度、水流速度之间有什么关系?【答案】顺流航行的速度=轮船在静水中的速度+水流速度;逆流航行的速度=轮船在静水中的速度-水流速度.【问题2】这个问题的等量关系是什么?【答案】顺流航行90 km所用时间=逆流航行60 km所用时间.【问题3】如果设江水流速为v km/h,如何列出方程?【答案】9060 3030v v=+-【设计意图】本章引例从实际问题引出代数式,体会分式的实际需要.【例】2.长方形的面积为10 cm2,长为7 cm,宽应为_____cm;长方形的面积为S cm2,长为a cm,宽为_____cm.3.把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,水面高度为_____cm;把体积为V cm3的水倒入底面积为S cm2的圆柱形容器中,水面高度为_____cm.【答案】107 S a 20033 V S【设计意图】通过具体的实际问题列出式子,形成对比,自然过渡到分式的探索和分式学习的必要性,让学生进一步经历探索实际问题中的数量关系的过程.二、新知精讲 【思考】式子S a ,V S ,9030v+,6030v -有什么相同点?它们与分数有什么相同点和不同点?【师生活动】学生通过观察、类比、归纳,得出这些式子的共同点,以及与分数的区别.教师对学生的回答进行点拨,引导学生观察和归纳分式的特点,从而形成分式的概念.【答案】相同点:都是AB(即A ÷B )的形式. 不同点:分数的分子A 与分母B 都是整数;而这些式子中的A 与B 都是整式,并且分母B 中含有字母.【新知】定义:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式.分式AB中,A 叫做分子,B 叫做分母. 【设计意图】培养学生观察的能力,渗透由特殊到一般的研究方法,体会类比的数学思想,进一步提高分析解决问题的能力.【练习】下列式子中,哪些是整式?哪些是分式? (1)3x ;(2)136b +; (3)m nm n -+; (4)22xx y +;(5)4a a;(6)5πy -.【师生活动】学生独立完成,教师巡视批改,及时辅导学困生. 【答案】整式:(1)(6);分式:(2)(3)(4)(5). 【归纳】1.分式满足AB的形式,且B 中一定要有字母. 2.π是圆周率,它代表的是一个常数而不是字母.【设计意图】通过简单的练习题让学生热身,熟悉刚刚学过的分式的概念,增强他们的自信心.【思考】我们知道要使分数有意义,分数中的分母不能为0.那么要使分式有意义,分式中的分母应满足什么条件?【师生活动】学生总结分式有意义的条件,教师给予指导. 【答案】∵分式的分母表示除数, ∴分母不能为0,即B 不能为0, ∴当B ≠0时,分式AB才有意义. 【设计意图】通过类比分数的分母不能为0,得出分式有意义的条件. 三、典例精讲【例1】下列分式中的字母满足什么条件时分式有意义? (1)23x ; (2)1xx -; (3)153b-;(4)x y x y+-.【答案】解:(1)要使分式23x有意义,则分母3x ≠0,即x ≠0; (2)要使分式1xx -有意义,则分母x -1≠0,即x ≠1; (3)要使分式153b-有意义,则分母5-3b ≠0,即b ≠53;(4)要使分式x yx y+-有意义,则分母x -y ≠0,即x ≠y .【设计意图】通过例题,培养学生解决问题的能力,掌握分式有意义的条件. 【例2】当x 取何值时,分式211x x --的值为0?【答案】解:由分子x 2-1=0,得x =1或x =-1, 当x =1时,分母x -1=1-1=0; 当x =-1时,分母x -1=-1-1=-2; 故当x =-1时,原分式的值为0. 【例3】(1)当x 取何值时,分式1xx -的值为正? (2)当b 取何值时,分式5bb-的值为负? 【答案】解:(1)当分子x >0,分母x -1>0,即x >1时,1xx -的值为正; 当分子x <0,分母x -1<0,即x <0时,1xx -的值为正. (2)当分子b >0,分母5-b <0,即b >5时,5bb-的值为负; 当分子b <0时,分母5-b >0,即b <0时,5bb-的值为负.【归纳】分式取特殊值的条件分式的值为0:分子为0,且分母不为0;分式的值为正:分子、分母符号相同;分式的值为负:分子、分母符号不同.注意:必须在分式有意义的前提下才能讨论分式的值等于或者不等于0的条件.【设计意图】通过例2和例3,在分式有意义的基础上,归纳出分式值为0、为正、为负等特殊情况的条件,培养学生解决问题的能力.课堂小结板书设计一、分式的概念二、分式有意义的条件三、分式取特殊值的条件课后任务完成教材第128页练习1~3题.。

最新人教版八年级数学上册《第1课时分式方程及其解法》优质教案

最新人教版八年级数学上册《第1课时分式方程及其解法》优质教案

15.3分式方程第1课时分式方程及其解法一、新课导入1.导入课题:前面我们探讨了分式的有关性质及其运算,在分式的研究中,还有一个重要的内容就是分式方程,今天我们一起走进分式方程.2.学习目标:(1)知道分式方程的概念,(2)会解分式方程.3.学习重、难点:重点:分式方程及其解法.难点:分式方程产生增根的原因.二、分层学习1.自学指导:(1)自学内容:教材第149页到第150页的内容.(2)自学时间:5分钟.(3)自学方法:对照自学提纲,认真阅读课本.重点词句或不理解的地方做上记号.(4)自学参考提纲:①什么样的方程叫分式方程?分母中含有未知数的方程叫分式方程.②解分式方程的基本思路是什么?将分式方程化为整式方程.③将分式方程化成整式方程的关键步骤是什么?去分母,即方程两边乘最简公分母.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否认识分式方程的特点和分式方程的解法.②差异指导:指导个别学生正确找出最简公分母.(2)生助生:学生之间相互交流帮助.4.强化:(1)判断分式方程的方法是:看分母是否含有未知数.(2)分式方程的关键步骤是去分母,难点是找最简公分母.(3)下列方程哪些是分式方程?④⑤.(4)指出下列方程中各分母的最简分母,并写出去分母后得到的整式方程.解:①最简公分母2x(x+3),去分母得x+3=4x;②最简公分母x2-1,去分母,得2(x+1)=4;③最简公分母3x+3,去分母,得3x=2x+3x+3.1.自学指导:(1)自学内容:教材第150页“思考”到第151页的内容.(2)自学时间:8分钟.(3)自学方法:认真阅读课本,思考去分母后化成的整式方程的解,为什么有的是原分式方程的解,有的不是?对照课本中的例子想想理由.归纳解分式方程的基本步骤.(4)自学参考提纲:①说说为什么解分式方程一定要检验?因为得到的解可能会导致最简公分母为0,即分母为0.②说说解分式方程的检验方法.将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解③解分式方程的一般有哪些步骤? 去分母,解整式方程,检验.④某生在解例2时去分母得x(x+2)-1=3,你认为他错在哪里? 漏乘了最简公分母. ⑤试解方程23511x x =--; 解:去分母,得3(x+1)=5x=53-1=23检验:当x=23时,(x+1)(x-1)≠0, 所以,原分式方程的解为x=23. 32122x x x =--- 解:去分母,得2x=3-2(2x-2) 去括号得2x=3-4x+4 移项6x=7 系数化为1,x=76检验:当x=76时,2(x-1)≠0. 所以原分式方程的解为x=762.自学:同学们结合自学指导进行自学.3.助学: (1)师助生:①明了学情:观察学生在解分式方程过程中易产生错误的环节或步骤. ②差异指导:对学生出现的错误进行分类指导. (2)生助生:交流提纲④,对⑤互相批改、纠错. 4.强化:(1)解分式方程的一般步骤. (2)分式方程的验根方法.(3)分式方程无解的条件.检验:当x=12时,4x2-1=0,因此x=12不是原分式方程的解.所以,原分式方程无解.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、情感、方法、成果及不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在本课的教学过程中,应从这样的几个方面入手:(1)分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件:①方程式里必须有分式,②分母中含有未知数.这两个条件是判断一个方程是否为分式方程的必要条件.同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根.正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验.(2)分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分渗透这种化归思想.(3)解分式方程时,如果分母是多项式,应先写出将分母进行因式分解的步骤,从而让学生准确无误地找出最简公分母.另外,对分式方程可能产生增根的原因,要启发学生认真思考和讨论.一、基础巩固(每题10分,共60分)1.下列式子是分式方程的是(C)2.把分式方程两边同乘(x-1),约去分母后,得(D)3.分式方程的解是(D)A.x=1B.x =-1C.x=-14D.无解解:(1)去分母,3x-6+4(x+2)=16去括号,合并同类项7x=14系数化为1,x=2检验:当x=2时,(x+2)(x-2)=0,因此x=2不是原分式方程的解.所以,原分式方程无解.(2)去分母得,(x+1)(x+2)=x(x+4)去括号,合并同类项,得3x+2=4x移项,x=2检验:当x=2时,x(2+x)≠0,所以,原分式方程的解为x=2.二、综合应用(20分)7.已知关于x的方程有增根,求该方程的增根和k的值.解:去分母,得3x+3-(x-1)=x2+kx,整理,得x2+(k-2)x-4=0.因为有增根,所以增根为x=0或x=1.当x=0时,代入方程得-4=0,所以x=0不是方程的增根;当x=1时,代入方程,得k=5,所以k=5时方程有增根x=1.三、拓展延伸(20分)8.解方程:学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级数学上册第1课时 分式方程及其解法学案
1.理解分式方程的意义.
2.了解分式方程的基本思路和解法.
3.理解分式方程可能无解的原因,并掌握解分式方程的验根的方法.
自学指导:阅读教材P149-151,完成下列问题.
1.填空:
(1)分母中不含有未知数的方程叫做整式方程
(2)分母中含有未知数的方程叫做分式方程.
2.判断下列说法是否正确: ①232x +=5是分式方程;②4x -43=3
x 4+是分式方程; ③x
x 2=1是分式方程;④1x 1+=1-y 1是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.
自学反馈
1.下列方程中,哪些是分式方程?哪些是整式方程? ①22-x =3x ;②x 4+y
3=7; ③
2-x 1=x 3;④x
1)-x(x =-1; ⑤πx -3=2x ;⑥2x+5
1-x =10; ⑦x-x 1=2;⑧x 12x ++3x=1. 解:①⑤⑥是整式方程,因为分母中没有未知数.
②③④⑦⑧是分式方程,因为分母中含有未知数.
判断整式方程和分式方程的方法就是看分母中是否含有未知数.
2.解分式方程的一般步骤是:(1)去分母;(2)解整式方程;(3)验根;(4)小结.
活动1 小组讨论
例1 解方程:3-x 2=x
3. 解:方程两边乘x(x-3),得2x=3(x-3).
解得x=9.
检验:当x=9时,x(x-3)≠0.
所以,原分式方程的解为x=9.
例2 解方程:1-x x -1=2)
1)(x -(x 3+. 解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3.
解得x=1.
检验:当x=1时,(x-1)(x+2)=0.
所以x=1不是原方程的解.所以,原方程无解.
活动2 跟踪训练
1.解方程: (1)
2x 1=3x 2+; (2)1x x +=3
3x 2x ++1; (3)1-x 2=1-x 42; (4)x x 52+-x -x 12=0. 解:(1)方程两边乘2x(x+3),得x+3=4x.去分母:x+3=4x.化简得:3x=3.解得x=1.
检验:将x=1代入2x(x+3)≠0.所以x=1是方程的解.
(2)方程两边乘3(x+1),得3x=2x+3x+3.解得x=23-
. 检验:将x=23-
代入(3x+3)≠0. 所以x=2
3-是方程的解. (3)方程两边乘x 2-1,得2(x+1)=4.解得x=1.
检验:将x=1代入x 2-1=0,所以x=1不是方程的解.所以,原方程无解.
(4)方程两边乘x(x+1)(x-1),得5(x-1)-(x+1)=0.解得x=
23. 检验:将x=
23代入x(x+1)(x-1)≠0. 所以x=2
3是原方程的解.
方程中分母是多项式,要先分解因式再找公分母.
2.解分式方程:(1)
1-x x =2-2x 3-2; (2)2-x 3-x +1=x
-23; (3)1-2x 2x =1-2
x 2+. 解:(1)方程两边乘2x-2,得2x=3-2(2x-2).解得x=
67. 检验:当x=67时,2x-2≠0.所以x=6
7是原方程的解. (2)方程两边乘x-2,得x-3+x-2=-3.
解得x=1.
检验:当x=1时,x-2≠0.所以,x=1是原方程的解.
(3)方程两边乘(2x-1)(x+2),得2x(x+2)=(2x-1)(x+2)-2(2x-1).
解得x=0.
检验:当x=0时,(2x-1)(x+2)≠0.所以,x=0是原方程的解.
课堂小结
解分式方程的思路是:
教学至此,敬请使用学案当堂训练部分.。

相关文档
最新文档