ZMD31050数据手册

合集下载

MCC MBR30150FCT 150V 电阻器数据手册说明书

MCC MBR30150FCT 150V 电阻器数据手册说明书

Features30 AmpSchottky BarrierRectifier 150 Volts•Low Power Loss, High Efficiency•Guardring F or O vervoltage P rotection•Low Forward Voltage Drop A nd High Frequency Operation•For U se in H igh F requency I nverters,F ree W heeling A nd P olarity P rotection A pplications•Lead Free Finish/RoHS Compliant(Note 1) ("P" Suffix D esignates RoHS Compliant. See O rdering I nformation)•Halogen Free Available Upon Request By Adding Suffix "-HF"•Epoxy Meets UL 94 V-0 Flammability Rating Maximum RatingsMBR30150FCT 150V150VMCC Part NumberDevice MarkingMaximum Recurrent Peak Reverse VoltageMaximum RMS Voltage Maximum DC Blocking Voltage •Operating Junction Temperature Range: -55⁰C to +150⁰C •Storage Temperature Range: -55⁰C to +150⁰C•Typical Thermal Resistance Per Leg: 4.0⁰C/W Junction to Case Electrical Characteristics @ 25°C Unless Otherwise SpecifiedMaximum R everse C urrent P er L eg at W orking P eak R everse V oltageI R5.0µA T J =25⁰C V FMaximum A verageF orward R ectified C urrent I F(AV)30A (See Fig.1)Maximum Instantaneous Forward Voltage P er L eg (Note 5)0.90VNote :1. High Temperature Solder Exemption Applied, see EU Directive Annex 7a .1.0m A T J =125⁰C Voltage R ate of C hange (R ated V R )dv/dt 10,000V/us Peak R epetitive R everse C urrent P er L eg I RR M1.0A0.75V 0.99V 0.86V I F =15A ,T C =25⁰C I F =15A ,T C =125⁰C I F =30A ,T C =25⁰C I F =30A ,TC =125⁰C RMS Isolation V oltage (MBRF type only) F rom T erminals to H eatsink W ith t = 1.0 S econd, RH ≤30%4500VV I SOL3500V 1500V( Note 2)( Note 3)( Note 4)2.Clip mounting (on case), where lead does not overlap heatsink with 0.110" offset3.Clip mounting (on case), where leads do overlap heatsink4.Screw mounting with 4-40 screw, where washer diameter is < 4.9 mm (0.19")5.Pulse test: 300us pulse width, 1% duty cyclePIN 1PIN 3Internal StructurePeak Forward Surge CurrentI FSM 260A 8.3ms,H alf S inetp = 2.0us, 1KHzMBR30150FCT 105VCurve Characteristics25501251501755101520253035A v e r a g e F o r w a r d C u r r e n t (A )75100Case Temperature (°C)Fig. 1 - Forward Current Derating Curve050100150200250300P e a k F o r w a r d S u r g e C u r r e n t (A )Fig. 2 - Maximum Non-Repetitive Peak Forward SurgeNumber of Cycles at 60 Hz0.20.52520500.1110I n s t a n t a n e o u s F o r w a r d C u r r e n t (A )Fig. 3 - Typical Instantaneous Forward CharacteristicsInstantaneous Forward Voltage (V)0.010.11101001000I n s t a n t a n e o u s R e v e r s e L e a k a g e C u r r e n t (μA )Fig. 4 - Typical Reverse Leakage CharacteristicsPercent of Rated Peak Reverse Voltage (%)Ordering InformationDevice PackingPart Number-B P Bulk:50pcs/Tube,1Kpcs/Box,5Kpcs/Carton Note : Adding "-HF" Suffix For Halogen Free, eg. Part Number-B P-HF。

ZMD31050在数字式气压传感器系统中的应用

ZMD31050在数字式气压传感器系统中的应用
l电源 l
高精 度 :2 ℃~ 8 ℃时 的误 差为 01% ,4 一 5 +5 . 一 0℃

+2 1 5℃时 的误 差 为 02 %; .5
可 对 传 感 器 的偏 移 、 敏 度 、 漂 和 非 线 性 进 灵 温
行 数 字补偿 ;
输 出分 辨率 最 高 为 1 5位 ,可选 择 相 对 应 的采 样 频 率 ( 多 39k z ; 最 . H ) P C通 过数 字接 口实现 器件 的配 置 和校准 。
22 工 作 原 理 .

以数 字 信 号 方 式 输 出 ,且 外 围 电路 简 单 。
Z 3 0 0几 乎适 用 于所有 桥式 传感 器 。 MD 5 1
温 二 [二 丽 管二 ] 度极 二 二
I ' 匦! r 一 r —
2 Z D3 O O介 绍 M 15
Ab t a tZ sr c : MD3 0 0 i l a v n e i e e t ls n o i n l c n i o e y Ge ma MD o a y 5 s al d a c d d f r n i e s r sg a o d t n r b r n Z 1 a i c mp n . T e p r r a c fZ h e f m n e o MD3 0 0 i g e t t f n t n sr c u e a d o e a in p n i l l n r d c dT e o 5 s r a . s u ci ,t t r n p r t r c p e a e i t u e . 1 I o u o i o h a p ia in i i i i r s u e s n o y tm s i e . p l t n d g t arp e s r e s rs se i a o gv n c o l a sl Ke r s Z y wo d : MD3 0 0 sg a o d t n r d g t e s r 5 ; i l c n i o e ; ii sn o 1 n i l a

三汇示波器说明书(Ver1.0)

三汇示波器说明书(Ver1.0)
5.3.1 XY格式............................................................................. 24 5.4 菜单框和菜单框选择按钮............................................................ 25 5.5 水平控制..................................................................................... 26
DST4000 和 DST1000 系列数字存储示波器用户手册
i
目录
5.1 显示区 ........................................................................................ 20 5.2 信息区域..................................................................................... 23 5.3 波形显示..................................................................................... 23
三汇系列产品
DST4000 和 DST1000 系列 数字存储示波器
Version 1.0
杭州三汇科技有限公司 www.
目录
目录
目 录 ...........................................................................................................i 版权申明 .......................................................................................................................................................................v 第 1 章 安全事项......................................................................................... 1

ZMD31050中文资料附调试程序

ZMD31050中文资料附调试程序

3 输出..............................................................................................................................................................11 3.1 概述....................................................................................................................................................11 3.2 PWM 输出..........................................................................................................................................13 4 串行数字接口..............................................................................................................................................15 4.1 4.2 4.3 4.4 4.5 概述....................................................................................................................................................15 I2C 协议.............................................................................................................................................17 ZACWIRETM 一线通信数字接口.......................................................................................................22 SPI 串行协议.....................................................................................................................................30 接口指令............................................................................................................................................36

【国家自然科学基金】_小批量_基金支持热词逐年推荐_【万方软件创新助手】_20140801

【国家自然科学基金】_小批量_基金支持热词逐年推荐_【万方软件创新助手】_20140801

多分类支持向量机 型壳 含矿斑岩 可重构集成方法 可视化 变质产品 单件小批量 动态适应交货期 动力学机制 分层存储结构 准时化生产 决策树 共享资源 六西格玛 传送机构 传感器 仪器 亚基类型 pcb板组装 mrp cell宽带引擎架构 bootstrap控制图
推荐指数 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
科研热词 推荐指数 模拟退火 3 铁蛋白 2 自适应遗传 2 多阶段父代更新 2 多目标决策 2 任务优化分配 2 铝合金 1 遗传算法 1 转移方式 1 车间生产管理 1 质量设计 1 调度 1 计算机应用 1 装配 1 表面贴装技术 1 行为理论 1 蛙跳算法 1 航天产品 1 聚类分析 1 统计过程控制(spc) 1 结构转换 1 组炉计划 1 纳米吡啰红 g 核-铁蛋白 1 禁忌搜索 1 相对相似系数 1 疲劳 1 电子显微镜 1 生产计划 1 模板检索 1 无模铸型 1 数控加工 1 数据库连接 1 数学模型 1 数字补偿系统 1 插入邻域搜索 1 控制图 1 批量流水线 1 成组算法 1 快速制造 1 微观结构 1 微粒群优化 1 微小偏差 1 工艺流程图 1 工作流 1 学习率 1 多品种小批量生产 1 基质辅助激光解析电离飞行时间质谱 1 城市配送 1 可重用mes 1 变质剂 1 印刷电路板 1 加工周期 1
2009年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

ZMD31050中文资料

ZMD31050中文资料

ZMD31050中文资料1.基本性能指标电源电压:+2.7 V~+5.5 V;输入信号:1 mV/V~275 mV/V;多种输出方式可供选择:电压(0 V~5 V),电流(4 mA~20 mA),PWM,I2C,SPI,ZACwireTM(一线接口),报警输出;桥式传感器的激励源可选:比例电压、恒压模式或恒流模式;℃℃时的误差为0.1%,-40℃~+125℃时的误差为0.25%;高精度:~25+85可对传感器的偏移、灵敏度、温漂和非线性进行数字补偿;输出分辨率最高为15位,可选择相对应的采样频率(最多3.9 kHz);Pc通过数字接口实现器件的配置和校准。

2.2工作原理图1为ZMD31050的工作原理图,各模块功能如下:图1ZMD31050具有内部EEPROM,共包含32个16位地址空间。

ZMD31050工作所必需的32个参数存储在EEPROM中。

其中。

22个校准常量用于传感器信号的计算校准,7个参数用于配置应用程序,1个CRC字(word)用于检查EEPROM内容的正确性,另外还有2个16位的字供用户自由使用。

每次上电后:EEPROM中的内容被复制到RAM中。

根据RAM中的配置,器件自动完成信号调理过程。

首先,桥式传感器传递出的信号在PGA中进行预放大,MUX将该信号与外部二极管或分立温度传感器信号按照某种序列传送给ADC单元,ADC单元对这些信号进行A /D转换。

然后,CMC根据ROM中存放的校正公式和EEPROM中存放的校准参数对数字信号进行校正。

根据配置,传感器信号以模拟量、数字量或PWM的形式输出,输出信号由串行接口及FIO1、FIO2提供。

表1为:EEPROM和RAM中的参数分配与指令。

数据配置和参数校准可以通过数字接口实现。

2.3 引脚功能图2为ZMD31050的引脚排列。

其引脚功能描述如表2所列。

3 数字式气压传感器系统应用3.1硬件设计ZMD31050接收来自前端桥式传感器的微弱模拟信号,将这一信号放大,经A/D转换、补偿与校正后以数字信号形式传给后端微处理器。

【国家自然科学基金】_压阻式_基金支持热词逐年推荐_【万方软件创新助手】_20140801

【国家自然科学基金】_压阻式_基金支持热词逐年推荐_【万方软件创新助手】_20140801

推荐指数 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
பைடு நூலகம்
2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
科研热词 压阻 表面应力 有限元 掺杂 悬臂梁传感器 微机电系统 压力传感器 高过载 高温 高g加速度计 霍普金森杆 瞬态响应时间 灵敏度 测试 氧离子注入 探针 恶劣环境 微型压力传感器 微力传感器 多晶硅纳米薄膜 双悬臂梁 压阻加速度计 动态性能 动态压力测量 加速度计 加速度传感器 侵彻 介观压阻效应 三维力
科研热词 加速度传感器 微机电系统 压阻式 高速侵彻 高电子迁移率晶体管 高g值传感器 过载 超薄微梁 谐振频率 自适应灌浆 硬回收法 砷化镓 爆炸力学 灵敏度 灌浆压力 灌浆 滤波分析 测试 流量 模糊pid控制 有限元模拟 密度 孔缝双桥结构 多晶硅纳米膜 地层抬动值 固有频率 可编程逻辑控制器 双层钢靶 压阻式过载传感器 压力波动 力电耦合系数 共振隧穿二极管 共振隧穿 光子晶体 先进钻地弹缩比弹 侵彻 传感器 介观压光 mems
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 sf6断路器
1

ZMD31015AIBS中文资料(Zentrum Mikroelektronik)中文数据手册「EasyDatasheet - 矽搜」

ZMD31015AIBS中文资料(Zentrum Mikroelektronik)中文数据手册「EasyDatasheet - 矽搜」
芯片中文手册,看全文,戳
ZMD31015
RBicdLite™
低成本传感器信号调理器 与诊断
初稿
特征
•传感器数字补偿偏移,灵敏度,温度
漂移和非线性
•可编程模拟增益和数字增益; 可容纳桥梁跨度为1mV / V和高偏移
•片上许多诊断功能(例如,EEPROM签名, 桥连接检查,桥梁短路检测,功率损耗
•支持工业质量校正可 •快速电路定制可能大批量生产
dLite dLite
应用电路
典型RBIC dLite 应用电路
芯片中文手册,看全文,戳
应用举例
汽车
产业
家电
消费/医疗
• • 数据记录仪
• 筛选检查 • 制冷剂 • 压力监控
ZMD31015 BIF-T
在SIG
引脚,其可以被配置为模拟电压
输出或作为单线串行数字输出.
数字1线接口可用于一个简单PC-
控制校准过程来编程一组校准
系数成片上EEPROM.该校准RBIC 和一个特定传感器配合时数字:快速,精确,并且没有
与由外部设备修整相关成本开引脚
或激光.集成诊断功能使RBIC 特别适合好于汽车应用.
•该RBIC dLite 开发套件可 包括开发电路板,SOP8样品,软件,和文件.
检测)
•独立可编程高和低幅电平 •为模块可追溯性24位客户ID字段 •通过单线接口数字校准和配置 -
快速,准确 •内部温度补偿参考
(无需外部元件)
•选择与另外外部温度补偿
单二极管
•输出选项:轨到轨比例模拟电压 (12位分辨率),绝对模拟电压,
数字一体线接口
•电源电压2.7〜5.5V;与外部JFET,5.5至30V •快速开机到数据输出响应;输出提供5ms后

ZMD31050中文资料(Zentrum Mikroelektronik)中文数据手册「EasyDatasheet - 矽搜」

ZMD31050中文资料(Zentrum Mikroelektronik)中文数据手册「EasyDatasheet - 矽搜」

5.4 E LECTRICAL P ARAMETERS (V OLTAGES相关TO
VSS) .................................................... 17
5.5 I 覆盖整个院落 C 极特
................................................................................................. 18
2C, SPI,
§ 可用应用开发包( SSOP16样品 , 校准电路板 ,校准软件 ,技术
文档)
§ 支持用于工业质量校准
可得到
§ 快速电路定制可能大
产量
Re
R sens
Fig.1: 比例测量电压输出,
通过外部二极管温度补偿
Fig.2: 两线级(4至20)毫安配置[(7〜40)V]
通过内部二极管温度补偿
1.3 A NALOG F RONT E ND (AFE).......................................................................................................五 1.3.1.可编程增益放大器............................................... ............................................ 5
FIO2
灵活I / O 2:PWM1,SPI数据输出,SPI从选择,报警1,Alarm2SIF
串行接口:I2C数据I / O,SPI在,时钟数据
PCOMP
可编程比较器

ZSC31050传感器信号处理器_EN

ZSC31050传感器信号处理器_EN
VCC
digital bus interface – simple, low cost
High accuracy (±0.1% FSO @ -25 to 85°C;
±0.25% FSO @ -40 to 125°C)

Available Support
Evaluation kit available Support for industrial mass calibration available Quick circuit customization possible for large
Features
Digital compensation of sensor offset, sensitivity,

temperature drift, and nonlinearity Accommodates nearly all resistive bridge sensor types (signal spans from 1mV/V up to 275mV/V) Digital one-pass calibration: quick and precise Selectable compensation temperature source: bridge, thermistor, or internal or external diode Output options: voltage (0 to 5V), current 2 (4 to 20mA), PWM, I C™, SPI, ZACwire™ (one-wire interface), alarm Adjustable output resolution (up to 15 bits) versus sampling rate (up to 3.9kHz) Current consumption: 2.5mA (typical) Selectable bridge excitation: ratiometric voltage, constant voltage, or constant current Input channel for separate temperature sensor Sensor connection and common mode check (sensor aging detection) AEC-Q100 qualification (temperature grade 0)

IN310 集成一体机系列说明书

IN310 集成一体机系列说明书

使用说明书 IN310集成一体机系列目录第一章 安全注意事项 (1)第二章 产品概述 (2)第三章 型号及电气参数 (3)3.1铭牌及型号说明 (3)3.2电气额定参数 (3)第四章 安装指导 (4)4.1安装尺寸 (4)4.2变频器安装空间要求 (5)4.3输入、输出防水接线端子配线要求 (5)第五章 使用指导 (6)5.1使用步骤 (6)5.2使用指导 (6)5.3使用事项 (7)第六章 常见故障解决方法 (8)第七章 选配件 (9)第一章安全注意事项感谢您选择本公司产品,为保证安全、合理的使用本产品,请在完全理解本手册所述的安全注意事项后再使用该产品。

警示标志及其含义危险:如果操作错误,可能会重大安全事故。

操作资质本产品必需由经过培训的专业人员进行操作。

并且,作业人员必须经过专业的技能培训,熟悉设备的安装、接线、运行和维护保养,并正确应对使用中出现的各种紧急情况。

安全信息及事项严禁带电作业,实施配线、检查等作业时,须关闭电源10分钟后进行,否则有触电危险!主回路端子与电缆必须牢固连接,否则会因接触不良造成机器损坏。

确保无异物进入机器内,如电线砗片、焊锅、锌镞片等以防电路短接造成产品损坏。

由于变频器输出电压是脉冲波形,如果输出侧安装有改善功率因数的电容或防雷用压敏电阻等器件,务必请拆除或者改装在变频器输入侧;本公司依照《产品质量管理法》对本产品进行保修和维修,不负责连帯的责任关系。

如用户使用本产品后电机出现故障或娆毁,本公司不负责维修或更换电机以及由于机器故障对用户造成的影响本公司不承担连带责任;第二章产品概述IN310集成一体机主要由变频驱动器、上电旋钮开关、调速定位器、液晶显示屏组成,是集多功能、启动平稳、超静音、体积小、易操作、节能等多种优势的一体机,驱动器采用了国际领先的磁场定向矢量控制技术,兼容异步、同步电机控制;该产品采用一体化小体积设计,节省安装空间,实现即装即用,让用户体验更加完美,全方位保障产品可靠性,让用户使用更放心;同时支持多种扩展配件,让产品元素更加丰富,使产品达到高性能、高可靠性、高功率密度、高通用性的特点;且该产品广泛用于调速运用场合,比如风机、水泵、传输、食品包装等行业,是一款“小而多才”的集成一体机。

ZMD31150_v10中文资料_数据手册_IC数据表

ZMD31150_v10中文资料_数据手册_IC数据表

ZMD31150Fast Automotive Sensor Signal ConditionerDatasheet PRELIMINARYFeatures• Digital compensation of sensor offset, sensitivity, temperature drift and non-linearity • Adjustable to nearly all bridge sensor types, analog gain: 420, over all gain: up to 2000 • Output options: ratiometric analog voltage output (5-95% in maximum, 12.4bit resolution) or ZACwire TM (digital one-wire-interface)• Temperature compensation: internal or external diode, bridge resistance, thermistor • Sensor biasing by voltage or constant current • Sample rate up to 7.8kHz• High voltage protection up to 33V• Reverse polarity and short circuit protection • Wide operation temperature –40...+150°C • Supply voltage 4.5...5.5V• Traceability by user-defined EEP entries• Several safety- and diagnostic functions Benefits• No external trimming components required • PC-controlled configuration and One-Shot calibration via one-wire interface: simple, low cost, quick and precise• End-of-Line calibration via one-wire-interface • High accuracy (0.25% FSO @ -25 to 85°C; Brief DescriptionZMD31150 is a CMOS integrated circuit for highly-accurate amplification and sensor-specific correction of bridge sensor signals. Digital compensation of sensor offset, sensitivity, temperature drift and non-linearity is accomplished via a 16-bit RISC micro-controller running a correction algorithm with calibration coefficients stored in an EEPROM.The ZMD31150 is adjustable to nearly all bridge sensor types. Measured values are provided at the ratiometric analog voltage output or at the digital ZACwire TM and I2C interface. The digital interface can be used for a simple PC-controlled calibration procedure, in order to program a set of calibration coefficients into an on-chip EEPROM. Thus a specific sensor and a ZMD31150 are mated digitally: fast, precise and without the cost overhead associated with trimming by external devices or laser.The ZMD31150 is optimized for automotive environments by it’s special protection circuitry and excellent electromagnetic compatibility.• Evaluation kit available with samples• Mass calibration solutionFig 1: Sensor Module Schematichttps://ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheet PRELIMINARY Contents1.CIRCUIT DESCRIPTION (3)1.1S IGNAL F LOW (3)1.2A PPLICATION M ODES (4)1.3A NALOG F RONT E ND (AFE) (4)1.3.1.Programmable Gain Amplifier (4)1.3.2.XZC - Analog Sensor Offset Compensation (5)1.3.3.Measurement Cycle (6)1.3.4.Analog-to-Digital Converter (6)1.4T EMPERATURE M EASUREMENT (7)1.5S YSTEM C ONTROL AND C ONDITIONING C ALCULATION (8)1.5.1.Operation Modes (8)1.5.2.Start Up Phase (8)1.5.3.Conditioning Calculation (9)1.6A NALOG O UTPUT AOUT (9)1.7S ERIAL D IGITAL I NTERFACE (10)1.8S AFETY F EATURES, W ATCHDOG AND E RROR D ETECTION (10)1.9H IGH V OLTAGE, R EVERSE P OLARITY AND S HORT C IRCUIT P ROTECTION (10)https://2.APPLICATION CIRCUIT EXAMPLE (11)3.ESD-PROTECTION (12)4.PIN CONFIGURATION, LATCH-UP AND PACKAGE (12)5.IC CHARACTERISTICS (13)5.1A BSOLUTE M AXIMUM R ATINGS (13)5.2O PERATING C ONDITIONS (13)5.3E LECTRICAL P ARAMETERS (14)5.4I NTERFACE C HARACTERISTICS & EEPROM (16)6.RELIABILITY (17)7.CUSTOMIZATION (17)8.RELATED DOCUMENTS (17)ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheetPRELIMINARY1.Circuit Description1.1Signal FlowFig.2: Block diagram of ZMD31150The ZMD31150’s signal path is partly analog (blue) and partly digital (red). The analog part is realized differential – this means the differential bridge sensor signal is internal handled via two signal lines, which are rejected symmetrically around a common mode potential (analog ground = VDDA/2). Consequently it is possible to amplify positive and negative input signals, which are located in the common mode range of the signal input.The differential signal from the bridge sensor is pre-amplified by the programmable gain amplifier (PGA). The Multiplexer (MUX) transmits the signals from bridge sensor, external diode or separate temperature sensor to the ADC in a certain sequence (instead of the temp. diode the internal pn-junction (TS) can be used optionally). Afterwards the ADC converts these signals into digital values. The digital signal correction takes place in the calibration micro-controller (CMC). It is based on a correction formula located in the ROM and on sensor-specific coefficients (stored into the EEPROM during calibration). Dependent on the programmed output configuration the corrected sensor signal isoutput as analog value or in digital format (I 2C, ZACwire TM ). The configuration data and the correction parameters can be programmed into the EEPROM via the digital interfaces.https://ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheetPRELIMINARY1.2Application ModesFor each application a configuration set has to be established (generally prior to calibration) by programming the on-chip EEPROM regarding to the following modes:Sensor channel− Sensor mode : ratiometric bridge excitation in voltage or current supply mode.− Input range : the gain adjustment of the AFE with respect to the maximum sensor signal spanand the zero point of the ADC has to be chosen− Additional offset compensation XZC : the extended analog offset compensation has to beenabled if required, e.g. if the sensor offset voltage is near to or larger than the sensor span. − Resolution/response time : the A/D converter has to be configured for resolution and convertingscheme or ADC Order (first or second order). These settings influence the sampling rate, signal integration time and this way the noise immunity. Temperature− Temperature measurement : the source for the temperature correction has to be chosen.1.3 Analog Front End (AFE)The analog front end consists of the PGA, the MUX and the ADC. 1.3.1.Programmable Gain AmplifierTable 1 shows the adjustable gains, the sensor signal spans and the allowed common mode range.Input common mode rangeV IN_CM in % VDDA 2 No. overall gain a IN Max. span V IN_SP [mV/V] 1 Gain Amp1 Gain Amp2 Gain Amp3 XZC=off XZC=on 1 420 1,8 30 7 2 29 ... 65 45...55 2 280 2,7 30 4,66 2 29 ... 65 45...55 3 210 3,6 15 7 2 29 ... 65 45...55 4 140 5,4 15 4,66 2 29 ... 65 45...55 5 105 7,1 7,5 7 2 29 ... 65 45...55 6 70 10,7 7,5 4,66 2 29 ... 65 45...55 7 52,5 14,3 3,75 7 2 29 ... 65 45...55 8 35 21,4 3,75 4,66 2 29 ... 65 45...55 9 26,3 28,5 3,75 3,5 2 29 ... 65 45...55 10 14 53,75 1 7 2 29 ... 65 45...55 11 9,3 80 1 4,66 2 29 ... 65 45...55 12 7 107 1 3,5 2 29 ... 65 45...55 13 2,8 267 1 1,4 2 32 (57)Table 1: Adjustable gains, resulting sensor signal spans and common mode ranges1Recommended internal signal range is 75% of supply voltage in maximum. Span is calculated by formula: span = 75%*VDDA / gain 2Bridge in voltage mode, containing maximum input signal (with XZC: +300% Offset), 14bit accuracyrefer “ZMD31150 Functional description” for usable input signal/common mode range at bridge in current modehttps://ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheet PRELIMINARY1.3.2. XZC - Analog Sensor Offset CompensationThe ZMD31150 supports two methods of sensor offset compensation (zero shift):• digital offset correction• XZC - analog compensation for large offset values(up to in maximum approximately 300% of span, depending on gain adjustment)Digital sensor offset correction will be processed at the digital signal correction/conditioning by the CMC. Analog sensor offset pre-compensation will be needed for compensation of large offset values, which would be overdrive the analog signal path by uncompensated gaining. For analog sensor offset pre-compensation a compensation voltage will be added in the analog pre-gaining signal path (coarse offset removal). The analog offset compensation in the AFE can be adjusted by 6 EEPROM bits.PGA gaina IN Max. spanV IN_SPin mV/VOffset shift per stepin % full spanApprox. maximumoffset shift in mV/VApprox. maximumshift in [% V IN_SP](@ ± 31)420 1,8 12,5% 7,8 388% 280 2,7 7,6% 7,1 237% 210 3,6 12,5% 15,5 388% 140 5,4 7,6% 14,2 237% 105 7,1 5,2% 13 388% 70 10,7 7,6% 28 237% 52,5 14,3 5,2% 26 388% 35 21,4 7,6% 57 237% 26,3 28,5 5,2% 52 161% 14 53,75 12,5% 194 388% 9,3 80 7,6% 189 237% 7 107 5,2% 161 161% 2,8 267 0,83% 72 26% Table 2: Analog Zero Point Shift Ranges (XZC)https://ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheet PRELIMINARY1.3.3. Measurement CycleThe Multiplexer selects, depending on EEPROM settings, the following inputs in a certain sequence. Temperature measured by external diodeInternal offset of the input channel (V OFF)Pre-amplified bridge sensor signalThe complete measurement cycle iscontrolled by the CMC. The cycle diagram atthe right shows its principle structure.The EEPROM adjustable parameters are:• n=<1,31>: Pressure measurement countAfter power on the start routine is called,which contains all needed measurementsonce.Remark: The tasks “CMV”, “SSC/SCC+” and“SSC/SCC-“ are contained independent fromEEPROM configuration always in cycle.1.3.4. Analog-to-Digital ConverterThe ADC is an integrating AD-Converter in fulldifferential switched capacitor technique.Programmable ADC-resolutions are r ADC=<13,14> and with segmentation <15,16> bit.It can be used as first or second order converter. In the first order mode it is inherently monotone and insensitive against short and long term instability of the clock frequency. The conversion cycle time depends on the desired resolution and can be roughly calculated by:t CYC_1 = 2rµs / 2 / f CLKIn the second order mode two conversions are stacked with the advantage of much shorter conversion cycle time and the drawback of a lower noise immunity caused by the shorter signal integration period. The conversion cycle time at this mode is roughly calculated by:t CYC_2 = 2(r+3)/2 / 2 / f CLKThe calculation formulas give a overview about conversion time for one AD-conversion. Refer Calculation sheet “ZMD31150_Bandwidth_Calculation_Rev*.xls” for detailed calculation of samplingtime and bandwidth.ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheet PRELIMINARYThe result of the AD conversion is a relative counter result corresponding to the following equation: Z ADC = 2r * (V ADC_DIFF / V ADC_REF - RS ADC)Z ADC: number of counts (result of the conversion)r: adjusted resolution in bitV ADC/REF_DIFF: differential input/reference voltage of ADCRS ADC: digital ADC Range Shift (RS ADC = 1/16, 1/8, 1/4, 1/2, controlled by the EEPROM content) With the RS ADC value a sensor input signal can be shifted in the optimal input range of the ADC.ADC Adjustment approx. OutputResolution *1)Sample Ratef CON *2)AveragedBandwidth @Order r ADC Digital Analog f CLK=3MHz f CLK=4MHz f CLK=3MHz f CLK=4MHz O ADC Bit Bit Bit Hz Hz Hz Hz1 13 13 12 345 460 130 1721 14 14 12 178 237 67 891 15 14 12 90 120 34 451 16 14 12 45 61 17 232 13 13 12 5859 7813 2203 29372 14 14 12 3906 5208 1469 19582 15 14 12 2930 3906 1101 14682 16 14 12 1953 2604 734 979Table 3: Output resolution versus sample rate*1) ADC resolution should be one bit higher then applied output resolution, if AFE gain is adjusted in such manner, that input range is used more than 50%. Otherwise ADC resolution should bemore than one bit higher than applied output resolution.*2) The sampling rate (AD conversion time) is only a part of the whole cycle,refer “ZMD31150 bandwidth calculation sheet” for detailed informationRemark:ADCs reference voltage ADC VREF is defined by the potential between <VBR_T> and <VBR_B> (or <VDDA> to <VSSA>, if CFGAPP:BREF=1). The theoretically input range ADC RANGE_INP of the ADC is equivalent to ADCs reference voltage.In practice ADCs input range should be used in maximum from 10% to 90% of ADC RANGE_INP- a necessary condition for abiding specified accuracy, stability and nonlinearity parameters of AFE. These condition is also valid for whole temperature range and all applicable sensor tolerances. Inside of ZMD31150 is no failsafe task implemented, which verifies abiding of these condition.https://ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheet PRELIMINARY1.4 Temperature MeasurementThe ZMD31150 supports four different methods for temperature data acquiring needed for calibration of the sensor signal in temperature range. Temperature data can be acquired using:• an internal pn-junction temperature sensor,• an external pn-junction temperature sensor connected to sensor top potential (VBRTOP),• an external resistive half bridge temperature sensor and• the temperature coefficient of the sensor bridge at bridge current excitation.Refer “ZMD31150 Functional Description” for a detailed explanation of temperature sensor adaptation and adjustment.1.5 System Control and Conditioning CalculationThe system control supports the following tasks/features:• control the measurement cycle regarding to the EEPROM-stored configuration data• 16 bit correction calculation for each measurement signal using the EEPROM stored calibration coefficients and ROM-based algorithms = signal conditioning• manage start up sequence and start signal conditioning• handle communication requests received by the serial interface• failsafe tasks for the functions of ZMD31150 and message detected errors with diagnostic stateshttps://Refer “ZMD31150_FunctionalDescription_Rev_*.PDF” for a detailed description.1.5.1. Operation ModesThe internal state machine represents three main states:• the continuous running signal conditioning mode – called N ormal O peration M ode: NOM• the calibration mode with access to all internal registers and states – called C ommand M ode: CM • the failure messaging mode – called D iagnostic M ode: DM1.5.2. Start Up Phase1The start up phase consist of following parts:1 internal supply voltage settling phase (=potential VDDA-VSSA) – finished by disabling the resetsignal through the power on clear block (POC). Refer “ZMD31150_HighVoltageProt_Rev_*.PDF”, chapter 4 for power on/off thresholds.Time (for beginning with VDDA-VSSA=0V): 500µs to 2000µs, AOUT: tristate2 system start, EEPROM read out and signature check (and ROM-check, if CFGAPP:CHKROM=1).Time: ~200µs (~2000µs with ROM-check), AOUT: LOW (DM)3 processing the start routine of signal conditioning (all measures & conditioning calculation).Time: 5x AD conversion time, AOUT behavior depending on adjusted OWI mode (1.6):- OWIANA & OWIDIS => AOUT: LOW (DM)- OWIWIN & OWIENA => AOUT: tristate1 All described timings are roughly estimated values and correlates with internal clock frequency. Timings estimated for fclk=3MHz.ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheet PRELIMINARY The analog output AOUT will be activated at the end of start up phase depending on adjusted output and communication mode (1.6). In case of detected errors Diagnostic Mode (DM) is activated and diagnostic output signal is driven at the output.After the start up phase the continuous running measurement and calibration cycle is started. Refer “ZMD31150_BandwidthCalculation_Rev_*.xls” for detailed information about output update rate.1.5.3. Conditioning CalculationThe digitalized value for pressure (acquired raw data) is processed with the correction formula to remove offset and temperature dependency and to compensate non-linearity up to 3rd order. The result of the correction calculation is a non-negative 15 Bit value for pressure (P) in the range [0; 1). This value P is clipped with programmed limitation coefficients and continuously written to the output register of the digital serial interface and the output DAC.Note: The conditioning includes up to third order nonlinearity sensor input correction. The available adjustment ranges depend on the specific calibration parameters, for a detailed description refer to “ZMD31150 Functional Description”. To give a rough idea: Offset compensation and linear correction are only limited by the loose of resolution it will cause, the second order correction is possible up to about 30% full scale difference to straight line, third order up to about 20% (ADC resolution = 13bit). The used calibration principle is able to reduce present nonlinearity errors of the sensor up to 90%. The temperature calibration includes first and https://second order correction and should be fairly sufficient in all relevant cases. ADC resolution influences also calibration possibilities – 1 bit more resolution reduces calibration range by approximately 50%. Calculation input data width is in maximum 14bit. 15 & 16bit ADC resolution mode uses only a 14 bit segment of ADC range.1.6 Analog Output AOUTThe analog output is used for output the analog signal conditioning result and for “End of Line” communication via the ZACwire TM interface (one wire communication interface - OWI). The ZMD31150 supports four different modes of the analog output in combination with OWI behavior:• OWIENA: analog output is deactivated, OWI communication is enabled• OWIDIS: analog output is active (~2ms after power on), OWI communication is disabled• OWIWIN: analog output will be activated after time window,OWI communication is enabled in time window of ~500ms in maximum,transmission of “START_CM” command has to be finished during time window• OWIANA: analog output will be activated after ~2ms power on time,OWI communication is enabled in time window of ~500ms in maximum,transmission of “START_CM” command has to be finished during time window,to communicate the internal driven potential at AOUT has to be overwrittenby the external communication master (AOUT drive capability is current limited)The analog output potential is driven by an unity gain output buffer, those input signal is generated by an 12.4bit resistor string DAC. The output buffer (BAMP) – a rail-to-rail OPAMP - is offset compensated and current limited. So a short circuit of analog output to ground or power supply does not damage the ZMD31150.ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheet PRELIMINARY1.7 Serial Digital InterfaceThe ZMD31150includes a serial digital interface (SIF), which is used for communication with the circuit to realize calibration of the sensor module. The serial interface is able to communicate with two communication protocols – I2C TM and ZACwire TM (an one wire communication interface – also called OWI). The OWI can be used to realize a “End of Line” calibration via the analog output AOUT of the complete assembled sensor module.Refer “ZMD31150 Functional Description” for a detailed description of the serial interfaces and communication protocols.1.8 Failsafe Features, Watchdog and Error DetectionThe ZMD31150 detects various possible errors. A detected error is signalized by changing the interal status in diagnostic mode (DM). In this case the analog output is set to LOW (minimum possible output value = lower diagnostic range – LDR) and the output registers of the digital serial interface are set to a significant error code.A watchdog oversees the continuous working of the CMC and the running measurement loop. The operation of the internal clock oscillator is verified continuously by oscillator fail detection.A check of the sensor bridge for broken wires is done permanently by two comparators watching thehttps://input voltage of each input (sensor connection and short check). Additionally the common mode voltage of the sensor and sensor input short is watched permanently (sensor aging).Different functions and blocks in digital part - like RAM-, ROM-, EEPROM- and register content - are watched continuously. Refer “ZMD31150 Functional Description” for a detailed description of safety features and methods of error messaging.1.9 High Voltage, Reverse Polarity and Short Circuit ProtectionThe ZMD31150 is designed for 5V power supply operation.The ZMD31150 and the connected sensor is protected from overvoltage and reverse polarity damage by an internal supply voltage limiter. The analog output AOUT can be connected (short circuit, overvoltage and reverse) with all potentials in protection range under all potential conditions at the pins VDDE and VSSE.All external components – explained in application circuit in chapter 2 – are required to guarantee these operation, the protection is no time limited. Refer “ZMD31150 High Voltage Protection Description” for a detailed description of protection cases and conditions.ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheet PRELIMINARY 2. Application Circuit ExampleExample 1:Bridge in voltage mode, ext. diode temp sensorExample 2:Bridge in voltage mode, external thermistorExample 3Bridge in current mode, temp via bridge TCSYMBOLPARAMETERMIN TYP MAX UNITC1 C 100 470 nFC2 C 100 nFC3 C 4 47 160 nFC4, C5 C 0 10 nFR1 10 kOhmRIBR R refer 5.2.8 OhmTable 4: Application Circuit ParametersThe application circuits contain externalcomponents, which are needed forovervoltage, reverse polarity and short circuitprotection.Higher values for C3, C4 & C5 increases EMCimmunity. Notice: Value of C3 summarizesload capacitor and cable capacity.https://ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheetPRELIMINARY3. ESD-ProtectionAll pins have an ESD Protection of >2000V. Additionally the pins VDDE, VSSE and AOUT have an ESD Protection of >4000V.ESD Protection referred to the human body model is tested with devices in SSOP14 packages during product qualification. The ESD test follows the human body model with 1.5kOhm/100pF based on MIL 883, Method 3015.7.4. Pin Configuration, Latch-Up and PackagePin NameDescriptionRe- marks Usage/ Connection 1 Latch-Up related Application CircuitRestrictions and/or Remarks9 AOUT Analog output & one wire IF IO IO Required/- Trigger Current/Voltage: -100mA/33V 7 VDDE Positive external supply voltage Supply Required/- Trigger Current/Voltage: -100mA/33V 6 VDDPositive digital supply voltageAnalog IO Required oropen/- only capacitor to VSSA is allowed, otherwise no application access 8 VSSE Negative external supply voltage GroundRequired/-4 SCL I²C clock Digital IN, pullup -/VDDA 3 SDAI²C data IODigital IO, pullup -/VDDATrigger Current/Voltage to VDDA/VSSA: +/-100mA or 8/-4V2 VSSA Negative analogue supply voltage Analog IO Required/-1VDDA Positive analogue supply voltageAnalog IORequired/-13 VBR_T Bridge top potential Analog IO Required/VDDA 11 VBR_B Bridge bottom potential Analog IO Required/VSSA Depending on application circuit, short to VDDA/VSSA possible 14 IRTEMP Temp sensor & current sourceresistorAnalog IO -/VDDA, VSSA Depending on application circuit 12 VBP Positive input sensor bridge Analog IN Required/- 10VBN Negative input sensor bridgeAnalog INRequired/-Table 4: Pin Configuration and Latch-Up ConditionsZMD31150 is packaged in a SSOP14 green package (5.3mm body width) with a lead-pitch 0.65mm:Pin-NrPin-NamePin-Name Pin-Nr 8 VSSE VDDE 7 9 AOUT VDD 6 10 VBN n.c. 5 11 VBR_B SCL 4 12 VBP SDA 3 13 VBR_T VSSA 2 14IRTEMPVDDA11Usage: If “Required” is notified a electrical connection is necessary – refer application circuitConnection: to be connected to this potential, if not used or no application/configuration related constrains are givenhttps://ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheetPRELIMINARY5.IC Characteristics5.1Absolute Maximum RatingsIn operation temperature range and without time limitations. No. ParameterSymbol min typ Max Unit Conditions5.1.1 Supply Voltage 1VDDE AMR-33 33 V DC to VSSE, refer chapter 2for application circuits5.1.2 Potential at Pin AOUT 1V OUT -3333 V DC related to VSSE 5.1.3 Analog Supply Voltage 1VDDA AMR -0.3 6.5V DC related to VSSA,V DDE –V DDA < 0.35V5.1.4 Voltage at all analog anddigital IO – Pins V A_IO , V D_IO -0.3 VDDA +0.3 V DC related to VSSA 5.1.5 Storage temperature T STG-55150°C5.2Operating ConditionsAll Voltages related to VSSA.* no measurement in mass production, parameter is guarantied by design and/or quality observation 1refer “ZMD31150_HighVoltageProt_Rev_*.PDF” for specification and detailed conditions 2notice temperature profile description in “ZMD31150_DiceAndPackage_Rev_*.PDF” for operation in temperature range >125°C 3Symmetric behaviour and identical electrical properties (especially with regard to the low pass characteristic) of both sensor inputs of the ZMD31150 is required. Unsymmetric conditions of the sensor and/or external components connected to the sensor input pins of ZMD31150 can generate a failure in signal operation.ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheet PRELIMINARY5.3 Electrical ParametersAll parameter values are valid on behalf on in chapter 5.2 specified operating conditions (special definitions excluded). All Voltages related to VSSA.No. Parameter Symbol min typ max Unit Conditions5.3.1 Supply Current and System Operation Conditions5.3.1.1 Supply current I VDDE 5.5 mA without bridge and loadcurrent, f CLK≤ 3MHz5.3.1.2 Clock frequency f CLK 2 * 3 4 *MHz guaranteed adjustmentrange5.3.2 AFE (refer chapter 1.3)5.3.2.1 Input Span V IN_SP 1 275 mV/V analog gain: 420…2.85.3.2.2 Analog OffsetCompensation Range -300 300 % V IN_SP depends on gain adjust,refer 1.3.25.3.2.3 Parasitic differentialinput offset current ∗I IN_OFF-2-10210nA T AMB_TQI5.3.2.4 Common mode inputrange V IN_CM0.29 0.65 VDDA depends on gain adjust,no XZC, refer 1.3.15.3.3 Temperature Measurement (refer chapter 0)5.3.3.1 External temperaturediode channel gain A TSED300 1300 ppm FS/ mV5.3.3.2 External temperaturediode bias currentI TSE 6 10 20 µA5.3.3.3 External temperaturediode input range *0 1.5 V5.3.3.4 External temperatureresistor channel gain A TSER1200 3500 ppm FS/ (mV/V)5.3.3.5 External temperatureresistor input range *V TSER0 600 mV/V5.3.3.7 Internal temperaturediode sensitivityST TSI700 2700 ppm FS/Kraw values – withoutconditioning5.3.4 Sensor Connection Check5.3.4.1 Sensor connection loss 100 kΩdetection threshold 5.3.4.2Sensor input short 50 Ωdetection threshold∗ no measurement in mass production, parameter is guarantied by design and/or quality observationhttps://ZMD31150Advanced Automotive Sensor Signal ConditionerDatasheet PRELIMINARYNo. Parameter Symbol min typ max Unit Conditions5.3.5 AD-Conversion5.3.5.1 A/D Resolution * r ADC13 16 Bit5.3.5.2DNL * DNL ADC0.95 LSB 5.3.5.3INL TQA * INL ADC 4 LSB 5.3.5.4INL TQE INL ADC 5 LSB r ADC =13Bit, f CLK=3MHz, best fit, 2nd order, complete AFE,5.3.5.55.3.5.5 ADC Input Range Range 10 90 %VDDA5.3.6 DAC & Analog Output (Pin AOUT)5.3.6.1 D/A Resolution r DAC12 Bit analog output, 10-90%5.3.6.2Output current sink andsource for VDDE=5V I SRC/SINK_OUT2.55mA Vout: 5-95%, R LOAD>=2kΩVout: 10-90%, R LOAD>=1kΩ5.3.6.3Short circuit current I OUT_max-25 25 mA to VSSE/VDDE15.3.6.4Addressable outputsignal range V SR_OUT95V SR_OUT900.050.10.950.9VDDE @ R LOAD>=2kΩ@ R LOAD>=1kΩ5.3.6.5 Output slew rate * SR OUT0.1 V/µs C LOAD < 50nF5.3.6.6Output resistance indiagnostic mode R OUT_DIA82 Ω Diagnostic Range:<4/>96%, R LOAD>=2kΩ<8/>92%, R LOAD>=1kΩ5.3.6.7Load capacitance * C LOAD150 nF C3 + CL (refer chapter 2) 5.3.6.8DNL DNL OUT-1.5 1.5 LSB5.3.6.9INL TQA * INL OUT-5 5 LSB best fit, r DAC =12Bit5.3.6.10INL TQE INL OUT-8 8 LSB best fit, r DAC =12Bit5.3.6.11Output Leakagecurrent @ 150grd I LEAK_OUT-25 25 µA in case of power orground loss5.3.7 System Response5.3.7.1 Startup time 2t STA 5 ms to 1st output, fclk=3MHz, no ROMcheck, ADC: 14bit & 2nd order5.3.7.2 Response time(100% jump) * t RESP256 512 µs f CLK=4MHz, 13Bit, 2nd order, referchapter 05.3.7.3 Bandwidth * 5 kHz comparable to analog SSCs1 minimum output voltage to VDDE or maximum output voltage to VSSE2Depends on resolution and configuration - start routine begins approximately 0.8ms after power on* no measurement in mass production, parameter is guarantied by design and/or quality observationhttps://。

2014年04月专家审稿情况-兵工自动化

2014年04月专家审稿情况-兵工自动化
当前日期:2014-04-25
编号
作者
单位
稿件题名
9544
贾红丽,王健
军械工程学院
后装合并部队装备业务流程优化研究
9547
李成西,谈乐斌,潘孝斌,魏然
南京理工大学
某防爆车半主动座椅悬架的天棚控制动力学研究
9546
张仕新,昝翔,李浩,韩朝帅
装甲兵工程学院
状态维修关键技术及应用的研究现状与展望
9551
基于最小二乘法的坦克驾驶路径拟合研究
9550
周晨钟,李剑伟,皮佑国
华南理工大学
基于DSP与BIOS内核的运动控制器软件系统架构
9552
姚静波,辛朝军,蔡远文
装备学院
一种基于多测试资源的并行测试任务调度算法
9545
张江辉,钱昆
陆军军官学院
抗仿射变换图像局部特征检测与匹配算法研究
9564
9555
基于旋转-振荡试验系统的强弱电信号传输与测量研究
9559
马宁,胡应洪,甘宁
绵阳职业技术学院
PID-PWM技术在食品封装机温度控制中的应用
9560
高恒1,杜建华1,刘艺
装甲兵工程学院
超高分子量聚乙烯纤维二维织物抗弹性能研究
9563
基于ZMD31050的一体化应变式传感器设计
9566
水陆车辆喷水推进器流场流速和含气量的实车测试技术研究
9567
Hale Waihona Puke 白宁基于NTP的航天测控网络对时系统
9537
杨明华,王国刚,梁涛
装甲兵工程学院兵器工程系
基于投影寻踪法的武器系统维修性定量指标综合评价
9558
周宪英,高成文,曹建华
92xxx部队9x分队

数码三相多功能电力仪表说明书

数码三相多功能电力仪表说明书

多功能电力仪表用户手册一、产品简介该系列产品是一种具有可编程测量、显示、数字通讯和电能脉冲输出等多功能智能仪表,能够完成电量测量、电能计量、数据显示、采集及传输,可广泛应用变电站自动化、配电自动化、智能建筑、企业内部的电能测量、管理、考核。

测量精度为0.5级,实现LED现场显示和远程RS-485数字接口通讯,采用MODBUS-RTU通讯协议。

二、技术参数性能参数输入测电压显示网络三相三线、三相四线电压额定值AC100V、400V(订货时请说明)过负荷持续:1.2倍瞬时:2倍/10s功耗〈1VA(每相)阻抗〉300kΩ精度RMS测量,精度等级0.5级,1.0级电流额定值AC1A、5A(订货时请说明)过负荷持续:1.2倍瞬时:2倍/10s功耗〈0.4VA(每相)阻抗〈20MΩ精度RMS测量,精度等级0.5级,1.0级频率40~60Hz,精度0.1Hz功能有功、无功、视在功率,功率因数电能四相限计量,有功,无功电能计量显示可编程、切换、循环的2、3、4排LED显示电源工作范围AC、DC 80~270V功耗≦5VA输出数字接口RS-485、MODBUS-RTU协议脉冲输出2路电能脉冲输出,光耦隔离环境工作环境-10~55℃储存环境-20~75℃安全耐压输入和电源>2kV,输入和输出>2kV,电源和输出>1kV绝缘输入、输出、电源对机壳>5MΩ外形尺寸尺寸: 120*120*95mm;96*96*95mm80*80*90mm;72*72*90mm 重量0.6kg三、安装与接线3.1 仪表尺寸外型代号外型尺寸(mm)开孔尺寸(mm)最小安装距离总长(mm)水平(mm) 垂直(mm)42 120×120 111×111 120 120 9596 96×96 91×91 96 96 9580 80*80 76*76 80 80 9072 72*72 67*67 72 72 903.2 安装方法(1) 在固定配电柜开开孔尺寸大小的孔;(2) 取出仪表,松开螺丝,取下固定支架;(3) 仪表由前插入安装孔;(4) 插入仪表固定支架,并拧紧螺丝固定仪表。

基于ZMD31050的一体化应变式传感器设计方法

基于ZMD31050的一体化应变式传感器设计方法

( 1 . De p a t t m e n t o J 。 N a v i g a t e E l e c t r o n i c E n g i n e e r i n g , C h e n g d u A e r o n a u t i c V o c a t i o n a l &T e c h n i c a l C o l l e g e , C h e n g d u 6 1 0 1 O 0 , C h i n a ; 2 . Di v i s i o n o fC o n t i n u i n g E d u c a t i o n , C h e n g d u A e r o n a u t i c V o c a t i o n a l &T e c h n i c a l C o l l e g e , C h e n g d u 6 1 0 l O 0 , C h i n a )
s e n s o r d e s i g 1 05 0;s t r ai n s e ns o r ;s i g nal r e gul a t i on
2 0l 4— 0 5 ・88 ・
3 3 ( 5 )
基于 Z MD3 1 0 5 0的 一 体 化 应 变 式 传 感 器 设 计 方 法
何 宸 , 李 明 富 , 李 莉 , 刘 明 鑫
( 1 .成 都航 空职 业技 术 学 院航 电予工 程 系 ,成都 6 1 0 1 0 0
2 .成 都 航 空 职 业 技 术 学 院 继 续 教 育 部 , 成 都 6 1 0 1 0 0 )
摘 要 :针 对传 统应 变式传 感 器补 偿和 信 号调 理 方法 等 方面存 在 的 问题 ,介 绍一 种基 于 Z MD3 1 0 5 0芯 片的 一体 化 应 变 式传 感 器的设 计 方 法 。通 过设 计 专用 的传 感 器结 构 、信 号调 理 电路 以及 补偿 校 准 系统 ,有 效解 决 了传 统 应 变 式 传 感 器 补偿 和信 号 调理 中 的 问题 , 实现 了对 传感 器零 点和 满量 程 输 出以 及满 量程 输 出非线 性 的补 偿 和校 准 。 实践 结

MCD310-12io1 产品数据手册说明书

MCD310-12io1 产品数据手册说明书

Phase legThyristor \ Diode ModulePart numberMCD310-12io1Backside: isolatedTAV TV V1.08RRM 3201200=V =V I =A 2x Features / Advantages:Applications:Package:● Thyristor for line frequency ● Planar passivated chip ● Long-term stability● Direct Copper Bonded Al2O3-ceramic● Line rectifying 50/60 Hz ● Softstart AC motor control ● DC Motor control ● Power converter ● AC power control● Lighting and temperature controlY2● Industry standard outline ● RoHS compliant● Soldering pins for PCB mounting ● Base plate: DCB ceramic ● Reduced weight● Advanced power cycling● Isolation Voltage: V~3600The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. Theinformation in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend - to perform joint risk and quality assessments;- the conclusion of quality agreements;- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.Terms and Conditions of UsageRatingsPackageT op °C M D Nm 5mounting torque 2.5T VJ °C 140virtual junction temperature -40Weight g 255Symbol Definitiontyp.max.min.Conditionsoperation temperature Unit M T Nm 15terminal torque12V V t = 1 second Vt = 1 minuteisolation voltagemm mm 13.013.0d Spp/App creepage distance on surface | striking distance through air d Spb/Apb terminal to backsideI RMS RMS current600A per terminal125-40terminal to terminal Y2Delivery ModeQuantityCode No.Ordering Number Marking on Product Ordering 50/60 Hz, RMS; I ≤ 1 mAISOL MCD310-12io1428787Box 2MCD310-12io1Standard 3600ISOLT stg °C 125storage temperature-403000m Ω0 max R 0 maxslope resistance *0.32Outlines Y2。

TPM310装置培训手册

TPM310装置培训手册
TPM-310无扰动稳定控制装置
可将CPU复位并清信号 可将CPU复位, 但不能清信号
上下移动菜单或滚屏
修改定值参数时
取消当前定值输入 或退出当前菜单 菜单选择确认 或定值输入确认
移动定值参数位或选择追忆事件
TPM-310装置面板
装置通电该灯就亮
亮时表明装置刚进 行过切换操作,复 归后熄灭
馈线一电源开关 合时亮
手动切换

合 母联切向线一 合



手动切换
母联切向线二






五、正常检修注意事项
当系统检修或进行正常手动倒闸操作时,此 时需要将装置的出口闭锁压板打到“闭锁”位 置,完成检修等工作后,把装置出口闭锁压板 退出。
六、 UPS电源
对于部分380伏的低压变电所因没有不间断 电源,为保证装置正常工作,由UPS电源给310 装置供电。 注意:在整个变电所全部停电时要关掉UPS 电源,以防止UPS电源存储的电量释放完后, 再次投运时310装置无法工作;
可由进线二切到进线一



(3) 双进线状态之进线二、母联合
可由进线一切到进线二



(2) 双进线状态之进线一、母联合
三、装置自动解除闭锁
装置每动作一次会闭锁装置,外部恢复正常 后,装置会15秒后自动解除闭锁,准备下次动 作。
四、手动切换
手动切换是指双进线运行方式恢复到双进线 加母联运行方式的一种操作方式,若实现了一 次切换后,要恢复到双进线加母联运行方式时, 按手动切换按钮即可实现。
可由进线二切到母联



图(1)双进线加母联工作方式

上海英威达(四川海德电气)使用说明书

上海英威达(四川海德电气)使用说明书

16
七、试运行
17
(1)、 运 行前检 查
17
(2)、 试 运行方 式
17
八、功能一览表
18
九、功能说明
23
十、保养维护、故障信息及排除方法
63
(1)、 保 养检查 注 意事项
63
(2)、 定 期检查 项 目
63
(3)、 故 障信息 及 排除方 法
63
(4)、 故 障及分 析
65
十一、周边设施选用及配置
频器散热效果变差,请降档使用。 ●输出侧请不要安装接触器及有
W
关电容或压敏电阻,否则会引起 变频器故障及器件损坏。
输出侧请不要安装空开和接触器等
X
pb制动电阻连接端接地端子按电工法规220v第三种接地380v特种接地控制端子说明端子记号内容说明出厂设定x1多功能输入一出厂设定为正转x2多功能输入二出厂设定为反转x3多功能输入三出厂设定为复位x4多功能输入四出厂设定为高速x5多功能输入五出厂设定为中速x6多功能输入六出厂设定为低速com数位控制信号共同端24v电源地端24v24v电源最大输出电流200ma10v速度设定用电源通过j3转换5v10v5vvi模拟电压频率指令010v对应最高操作频率ai模拟量输入电压电流频率指令通过j1转换010v420ma对应最高操作频率gnd模拟控制信号共同端y1多功能输出端子一光耦合dc24v100may2多功能输出端子二光耦合tatbtc多功能输出端子三常开常闭3a250vkakb多功能输出端子四常开3a250vvo数位频率输出端子010vrsrsrs485通讯口11变频器配线部分分为主回路及控制回路
危险 ! 注意
错误使用时,可能造成人员伤亡。 错误使用时,可能造成变频器或机械系统损坏。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器接口芯片 ZMD31050
基本性能指标:
z 能对传感器的偏移、灵敏度、温漂和非线性进行数字补偿; z 适用于几乎所有的桥式传感器(输入信号范围 1~~275mV/V); z 数字单点校准:快速、准确; z 多种温度传感器供选择:桥电路、温度电阻、内部或外部的温度二极管; z 多种输出方式供选择:电压(0~5V),电流(4~20mA),PWM,I2C,SPI,ZACwireTM
-3-
目录
1 芯片结构介绍 ..................................................... 1
1.1 原理框图 .......................................................................................................................... 1
1.6 电源管理电路 ................................................................................................................ 10
1.7 看门狗与错误检测电路 ................................................................................................ 10
6 测试 ............................................................ 18
7 产品版本 ........................................................ 19
8 产品定制 ........................................................ 19
德国著名品牌 ZMD
传感器接口芯片 ZMD31050
ZMD31050 高级差分传感器信号处理器
数据手册
中国区总代理 深圳市华胄科技有限公司

1
联系人:赵勇 电话:075582127969 传真:075582124865 手机:13925258236
-1-
德国著名品牌 ZMD
该芯片通过双向数字接口(I2C,SPI,ZACwireTM)由 PC 实现校准并将校准数据存 入 EEPROM。这种方法的优点是速度快、精度高且降低了生产成本。
中国区总代理 深圳市华胄科技有限公司

2
联系人:赵勇 电话:075582127969 传真:075582124865 手机:13925258236
德国著名品牌 ZMD
1 芯片结构介绍
1.1 原理框图
传感器接口芯片 ZMD31050
图 3:ZMD31050 原理框图
PGA——可编程增益放大器; MUX——多路器; ADC——AD 转换器; CMC——校准控制器; DAC——DA 转换器; FIO1——可选 IO1:模拟输出(电压/电流),PWM2(脉宽调制),ZACwireTM(一 线接口); FIO2——可选 IO2:PWM1,SPI,SPI 从机选择,Alarm1、Alarm2 串行接口,I2C, 时钟; PCOMP——可编程比较器; EEPROM——用于校准参数设置和校准配置; TS——片上温度传感器; ROM——存放校准公式; PWM——脉宽调制模式; ZMD31050 的信号分为模拟部分(蓝色表示)和数字部分(红色表示)。模拟部分 实现信号的差分处理,即内部是差分型桥式传感器信号,通过两个信号线进行处理, 消除了共模电位(模拟地=VDDA/2)。因此,对输入的正信号或负信号都可以进行放
中国区总代理 深圳市华胄科技有限公司
表 1:增益、传感器信号、共模的范围
1.3.2 模拟传感器零偏补偿(AZS---Analog Zero Point Shift)
ZMD31050 支持两种消除零偏的方法: z 数字式零偏补偿。 z 及具有较大补偿量的模拟式零偏补偿(可高达 300%)。 数字式零偏补偿是在 CMC 中进行的;当输入信号有较大偏移量时还需采用第二种
1.2 应用模式 .......................................................................................................................... 2
1.3 模拟前端 .......................................................................................................................... 3
入测量范围时,就需要进行偏移补偿; -响应时间:必须对 AD 转换单元的分辨率和转换方式(1 阶或 2 阶)进行配置。这
些设置影响了采样速率、信号积分时间、抑噪能力。 -可对传感器输入信号反相; z 模拟输出: -输出寄存器 1 可选择的输出模式有:电压输出、电流环输出、PWM。 -输出寄存器 2 可选择的输出模式有:IO1 做 PWM 输出或 IO1/2 做 Alarm 输出。 z 数字通信:设置其通信方式和参数。 z 温度: -温度补偿方式必须选择温度测量源。 -须选择温度传感器 T1 的类型(只有 T1 对校正可用)。 -可选:温度测量作为第二输出通道必须进行选择。
2 应用举例 ........................................................ 11
3 ESD 保护及锁闭保护 .............................................. 12
4 管脚配置 ........................................................ 13
校准过程必须包括: -配置校准方程所需的参数; -配置偏移补偿量; -温度测量的零补偿; -桥电流的调整; -如果需要的话要进行报警门槛电压、报警延时及参考电压的设置。
1.3 模拟前端
模拟前端包括可编程放大器 PGA,多路选通器 MUX,模数转换器 ADC。
1.3.1 可编程增益放大器
下表列出了 PGA 增益的大小及相对应的传感器输入信号的最大幅度以及允许的信 号共模电压范围。
中国区总代理 深圳市华胄科技有限公司

1
联系人:赵勇 电话:075582127969 传真:075582124865 手机:13925258236
-1-
德国著名品牌 ZMD
传感器接口芯片 ZMD31050
大。 从桥式传感器出来的信号在 PGA 中进行预放大,MUX 将该信号与外部二极管或
-2-
德国著名品牌 ZMD
传感器接口芯片 ZMD31050
图 1 :传感器采用比例电压激励、温度测量采用外部 温度二极管且具有电压输出的电路
图 2 :温度测量采用内部温度二极管且具有 4~20mA 输出的电路
中国区总代理 深圳市华胄科技有限公司

Байду номын сангаас
3
联系人:赵勇 电话:075582127969 传真:075582124865 手机:13925258236
1.2 应用模式
使用芯片前应通过 EEPROM 对其参数进行配置,然后再进行校准,最后才能使用。 EEPROM 按照以下模式进行: z 传感器通道 -传感器工作模式:比例电压或电流激励模式; -输入范围:前端模拟电路的增益必须根据传感器信号幅度进行选择,并据此来调整
AD 转换的零点; -偏移补偿:可根据需要设置偏移补偿。例如当传感器偏移电压接近或大于传感器输
1.4 系统控制 ........................................................................................................................ 7
1.5
输出 ........................................................................................................................ 8
(一线接口),报警输出; z 输出分辨率(最多 15 位)及相对应的采样频率(最多 3.9kHz)可以选择; z 桥式传感器的激励源可选用:比例电压、恒压模式或恒流模式; z 独立的温度传感器输入通道; z 具有传感器连接和模式检测功能; z 工作的温度范围为-40℃~+125℃; z 电源电压:+2.7V~+5.5V; z 无需外部焊接元件; z PC 通过数字接口实现芯片的配置和校准; z 高精度(-25℃~+85℃时的误差在±0.1%、-40℃~+125℃时的误差在±0.25%)。
芯片简要介绍:
ZMD31050 是高精度桥式传感器信号处理的 CMOS 集成电路。该产品提供了传感 器的偏移、灵敏度、温漂和非线性的数字补偿,内部有一个 16 位的 RISC 微控制器运 行校准公式,校准系数存放于 EEPROM 中。
ZMD31050 适用于几乎所有的桥式传感器,另外,该芯片还可以与外部的温度传 感器进行接口。
分立温度传感器信号按照某种序列传送给 ADC 单元。其后,ADC 单元对这些信号进 行 AD 转换。在 CMC 中对数字信号进行校正,校正是基于 ROM 中存放的校正公式和 EEPROM 中存放的校准参数来进行的。根据对输出的配置将传感器信号以模拟量、数 字量、PWM 的形式输出,输出信号由串行接口及 FIO1、FIO2 提供,数据配置和参数 校准可以通过数字接口实现。模块化设计的思想方便了在尺寸和功能等方面的快速定 制。
相关文档
最新文档