一次函数测试(2)

合集下载

人教版初中八年级数学下册第十九章《一次函数》经典测试题(含答案解析)(2)

人教版初中八年级数学下册第十九章《一次函数》经典测试题(含答案解析)(2)

一、选择题1.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不确定A解析:A【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案.【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0, ∴12y y >,故选A .【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键. 2.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .A解析:A【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:①当mn >0,m ,n 同号,同正时y =mx +n 过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y =mx +n 过1,3,4象限或2,4,1象限.【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.3.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km C解析:C【分析】 根据题意得A ,B 两城相距300km ,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案.【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5 乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车 得:()601100x x += ∴32x = ∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误;∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确;【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.4.已知56a =-,56b =+,则一次函数y =(a +b )x +ab 的图象大致为( ) A . B . C . D .C 解析:C【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.【详解】解:∵a +b=56-+56+=250>,ab=()()5656-+=10-<, ∴该函数的图象经过第一、三、四象限,故选:C .【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答.5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定B解析:B【分析】 根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9B .11C .15D .18A解析:A【分析】 根据关于x 的不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩恰有4个整数解以及一次函数(6)1y a x =-+经过第一、二、三象限,可以得到a 的取值范围,然后即可得到满足条件的a 的整数值,从而可以计算出满足条件的所有整数a 的和,本题得以解决.【详解】 解:由不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩,解得23a x -≤<, ∵不等式组恰有4个整数解, ∴123a <≤, ∴36a <≤,∵一次函数(6)1y a x =-+的图象经过第一、二、三象限, ∴60a ->,∴6a <,∴36a <<,又∵a 为整数,∴a=4或5,∴满足条件的所有整数a 的和为4+5=9,故选:A .【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.7.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x分钟,船舱内积水量为y吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y与x的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是()A.①②B.②③C.②④D.③④D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.8.如图,直线y=kx(k≠0)与y=23x+2在第二象限交于A,y=23x+2交x轴,y轴分别于B、C两点.3S△ABO=S△BOC,则方程组236kx yx y-=⎧⎨-=-⎩的解为()A.143xy=-⎧⎪⎨=⎪⎩B.321xy⎧=-⎪⎨⎪=⎩C.223xy=-⎧⎪⎨=⎪⎩D.3432xy⎧=-⎪⎪⎨⎪=⎪⎩C解析:C 【分析】先根据223y x=+可得B、C的坐标,进而确定OB、OC的长,然后根据3S△ABO=S△BOC结合点A在第二象限确定A点的纵坐标,然后再根据点A在y=23x+2上,可确定点A的横坐标即可解答.【详解】解:由223y x=+可得B(﹣3,0),C(0,2),∴BO=3,OC=2,∵3S△ABO=S△BOC,∴3×12×3×|yA|=12×3×2,解得y A=±23,又∵点A在第二象限,∴y A=23,当y=23时,23=23x+2,解得x=﹣2,∴方程组236kx yx y-=⎧⎨-=-⎩的解为223xy=-⎧⎪⎨=⎪⎩.故答案为C.【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.9.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5B 解析:B【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案.【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交点的连线段长度等于22125+=,故本选项说法正确,不符合题意;故选:B .【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.10.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-C解析:C【分析】 根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.二、填空题11.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键.12.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____. 3【分析】观察函数图象找出点的坐标利用待定系数法可求出直线的函数关系式再利用一次函数图象上点的坐标特征即可求出的值【详解】解:将代入得:解得:直线的函数关系式为当时故答案为:3【点睛】本题考查了一次解析:3【分析】观察函数图象找出点的坐标,利用待定系数法可求出直线l 的函数关系式,再利用一次函数图象上点的坐标特征即可求出m 的值.【详解】解:将(2,0)-,(0,1)代入y kx b =+,得:201k b b -+=⎧⎨=⎩, 解得:121k b ⎧=⎪⎨⎪=⎩,∴直线l 的函数关系式为112y x =+. 当4x =时,14132m =⨯+=. 故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征、函数图象以及待定系数法求一次函数解析式,根据点的坐标,利用待定系数法求出一次函数的解析式是解题的关键.13.如图,直线y ax b =+与x 轴交于A 点(4,0),与直线y mx =交于B 点(2,)n ,则关于x 的一元一次方程ax b mx -=的解为___________.参考答案【分析】首先根据两直线交于点B 可联立方程组求出x 的值在通过求得x 即可得解;【详解】∵∴解得:∵直线与直线交于点∴由得:∴∴关于x 的一元一次方程的解为:故答案是:【点睛】本题主要考查了一次函数的图像性 解析:2x =-【分析】首先根据两直线交于点B ,可联立方程组求出x 的值,在通过ax b mx -=求得x ,即可得解;【详解】∵y ax b y mx=+⎧⎨=⎩, ∴ax b mx +=,解得:b x m a=-, ∵直线y ax b =+与直线y mx =交于B 点(2,)n ,∴2bm a =-,由ax b mx -=,得:b x m a=--, ∴2bx m a =-=--,∴关于x 的一元一次方程ax b mx -=的解为:2x =-.故答案是:2x =-.【点睛】 本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.14.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟解析:()1+()1()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =, 22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2),故答案为:()1+、()1-、()0,2..【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.15.已知一次函数5y x m =+的图象与正比例函数y kx =的图象交于点(2,4)(,k m -是常数),则关于x 的方程5x kx m =-的解是________.【分析】由题意可知当x=-2时一次函数与正比例函的函数值相同从而可得到方程的解【详解】解:一次函数图象与正比例函数图象交于点所以则则所以方程的解是故答案为:【点睛】本题考查一次函数与一次方程组的关系解析:2x =-【分析】由题意可知当x=-2时,一次函数5y x m =+与正比例函y kx =的函数值相同,从而可得到方程的解.【详解】解:一次函数5y x m =+图象与正比例函数y kx =图象交于点(2,4)-,所以5y x m y kx =+⎧⎨=⎩,则5x m kx +=,则5x kx m =-, 所以,方程5x kx m =-的解是2x =-,故答案为:2x =-.【点睛】本题考查一次函数与一次方程组的关系,一次函数的交点坐标就是它们的解析式组成的方程组的解.16.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式的解集【详解】解:两条直线的交点坐标为(-11)当x <-1时直线y=ax+4在直线y=kx 的下方当x >-1 解析:1x >-【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式4kx ax <+的解集.【详解】解:两条直线的交点坐标为(-1,1),当x <-1时,直线y=ax+4在直线y=kx 的下方,当x >-1时,直线y=ax+4在直线y=kx 的上方,故不等式kx <ax+4的解集为x>-1.故答案为:x>-1.【点睛】本题考查了一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.17.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点 解析:152 【分析】 先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.18.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.【分析】根据中点坐标公式求得C 点坐标作点A关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键.19.已知一次函数y=2x+b的图象经过点A(2,y1)和B(﹣1,y2),则y1_____y2(填“>”、“<”或“=”).>【分析】由k=2>0利用一次函数的性质可得出y随x的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k=2>0∴y随x的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k=2>0,利用一次函数的性质可得出y随x的增大而增大,结合2>﹣1即可得出y1>y2.【详解】解:∵k=2>0,∴y随x的增大而增大,又∵2>﹣1,∴y1>y2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k的正负,判断y随x的变化规律是解题关键.,且y随x的增大而减小,则这个一次函数的解20.已知一个一次函数的图象过点(1,2)析式为__________.(只要写出一个)y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b根据一次函数的性质得k<0取k=-1然后把(-12)代入y=-x+b 可求出b【详解】解:设一次函数的解析式为y=kx+b∵y随x的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b,根据一次函数的性质得k<0,取k=-1,然后把(-1,2)代入y=-x+b可求出b.【详解】解:设一次函数的解析式为y=kx+b ,∵y 随x 的增大而减小,∴k 可取-1,把(-1,2)代入y=-x+b 得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b 的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.三、解答题21.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a ,b 满足|1|30a b ++-=.(1)填空:a =______,b =______.(2)如果在第三象限内有一点(2,)M m -,请用含m 的式子表示ABM 的面积.(3)在(2)条件下,当52m =-时,在y 轴上有一点P ,使得BMP 的面积与ABM 的面积相等,请求出点P 的坐标. 解析:(1)1-;3;(2)△ABM 的面积为2m -;(3)点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫- ⎪⎝⎭. 【分析】(1)根据非负数性质可得a 、b 的值;(2)根据三角形面积公式列式整理即可;(3)先根据(2)计算S △ABM ,再分两种情况:当点P 在y 轴正半轴上时、当点P 在y 轴负半轴上时,利用割补法表示出S △BMP ,根据S △BMP =S △ABM 列方程求解可得. 【详解】解:(1)∵|1|30a b +-=,∴10a +=,30b -=,∴1a =-,3b =;(2)如图1所示,过M 作ME x ⊥轴于E ,∵(1,0)A -,(3,0)B ,∴1OA =,3OB =,∴4AB =,∵在第三象限内有一点(2,)M m -,∴||ME m m ==-, ∴114()222ABM S AB ME m m =⨯=⨯⨯-=-. (3)设(0,)P n ,BM 交y 轴于点C ,连接MP ,BP 如下图:设直线BM 的解析式为y kx b =+, 把(3,0)B ,52,2M ⎛⎫-- ⎪⎝⎭代入得 30522k b k b +=⎧⎪⎨-+=-⎪⎩, 解之得:1232k b ⎧=⎪⎪⎨⎪=-⎪⎩, 即1322y x =-,∴30,2C ⎛⎫-⎪⎝⎭, 当52m =-时,11545222ABM m S AB y =⋅=⨯⨯=. ∵BMP ABM SS =, ∴()1||52x x B M PC -=, 即13(32)522n ⨯++=, 解之得:12n =或72n =-, 综上,点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫-⎪⎝⎭. 【点睛】 本题主要考查了非负数的性质,坐标与图形的性质,利用待定系数法求一次函数解析式,利用割补法表示出△BMP 的面积等知识,根据题意建立方程是解题的关键.22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 解析:22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.天府七中科创小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,经过7min 同时到达C 点,乙机器人始终以60m/min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的图象,请结合图象,回答下列问题.(1)A 、B 两点之间的距离是________m ,甲机器人前2min 的速度为________m/min . (2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.解析:(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m ,由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.24.如图,已知直线113y x =-+与x 轴、y 轴分别交于A 、B 两点,以线段AB 为直角边在第一象限内作等腰Rt ABC △,90BAC ∠=︒.(1)A 点坐标为________,B 点坐标为________;(2)求直线BC 的解析式;(3)点P 为直线BC 上一个动点,当S 3S AOP AOB =时,求点P 坐标.解析:(1)(3,0);(0,1).(2)直线BC 的解析式为y=12x+1.(3)点P 的坐标为(4,3)或(-8,-3).【分析】 (1)分别代入y=0,x=0,求出与之对应的x ,y 的值,进而可得出点A ,B 的坐标; (2)过点C 作CE ⊥x 轴于点E ,易证△ABO ≌△CAE ,利用全等三角形的性质可得出点C 的坐标,根据点B ,C 的坐标,利用待定系数法即可求出直线BC 的解析式; (3)利用三角形的面积公式结合S △AOP =3S △AOB ,即可求出点P 的纵坐标,再利用一次函数图象上点的坐标特征即可求出点P 坐标.【详解】解:(1)当y=0时,-13x+1=0, 解得:x=3,∴点A 的坐标为(3,0);3∴点B 的坐标为(0,1).故答案为:(3,0);(0,1).(2)过点C 作CE ⊥x 轴于点E ,如图所示.∵△ABC 为等腰直角三角形,∴AB=AC ,∠BAC=90°.∵∠OBA+∠OAB=90°,∠OAB+∠BAC+∠EAC=180°,∴∠OBA=∠EAC .在△ABO 和△CAE 中,90AOB CEA OBA EACAB CA ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ABO ≌△CAE (AAS ),∴AE=BO=1,CE=AO=3,∴OE=OA+AE=4,∴点C 的坐标为(4,3).设直线BC 的解析式为y=kx+b (k≠0),将B (0,1),C (4,3)代入y=kx+b ,得:143b k b ⎧⎨+⎩==, 解得:121k b ⎧⎪⎨⎪⎩==,∴直线BC 的解析式为y=12x+1. (3)∵S △AOP =3S △AOB ,即12OA•|y P |=3×12OA•OB , ∴12×3|y P |=3×12×3×1, ∴y P =±3.2解得:x=4,∴点P 坐标为(4,3);当y=-3时,12x+1=-3, 解得:x=-8,∴点P 的坐标为(-8,-3). ∴当S △AOP =3S △AOB 时,点P 的坐标为(4,3)或(-8,-3). 【点睛】本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A ,B 的坐标;(2)利用全等三角形的性质,求出点C 的坐标;(3)利用三角形的面积结合S △AOP =3S △AOB ,求出点P 的纵坐标.25.如图1,在平面直角坐标系中,直线3:32AB y x =+与x 轴交于点A ,且经过点(2,)B m ,已知点(3,0)C . (1)求点,A B 的坐标和直线BC 的函数表达式.(2)在直线BC 上找一点D ,使ABO 与ABD △的面积相等,求点D 的坐标. (3)如图2,E 为线段AC 上一点,连结BE ,一动点F 从点B 出发,沿线段BE 以每秒1个单位运动到点E 再沿线段EA 以每秒2个单位运动到A 后停止,设点F 在整个运动过程中所用时间为t ,当t 取最小值时,求点E 的坐标.解析:(1)(2,0),(2,6),618A B y x -=-+;(2)1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭;(3)(223,0)-.【分析】(1)令直线332y x =+中的0y =,得出点A 的坐标,再把x=2代入得出点B 的坐标,然后用待定系数法即可求解; (2)过点O 作直线m ,在点H 上方作直线n ,使直线m 、n 和直线AB 等距离,则直线m (n )和BC 的交点即为所求点,进而求解;(3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,进而求解.【详解】(1)令直线332y x =+中的0y =,则3302x +=, 解得:2x =-,∴由题意得:(2,0)A -,将(2,)B m 代入直线332y x =+中得3232m ⨯+=, 6m =,(2,6)B ∴,设直线BC 为:y kx b =+,∴代入(2,6),(3,0)B C 可得,2630k b k b +=⎧⎨+=⎩, 解得:618k b =-⎧⎨=⎩, ∴直线BC 的函数表达式为:618y x =-+.(2)设直线AB 交y 轴于点H ,则点H (0,3),过点O 作直线m ,在点H 上方作直线n ,使直线m 、n 和直线AB 等距离,由AB 的表达式知,直线m 的表达式为32y x =直线n 的表达式为362y x =+ ∴32618y x y x ⎧=⎪⎨⎪=-+⎩,解得125,185x y ⎧=⎪⎪⎨⎪=⎪⎩故点D 的坐标为1218(,)553+62618y x y x ⎧=⎪⎨⎪=-+⎩,解得85,425x y ⎧=⎪⎪⎨⎪=⎪⎩点D′的坐标为842,55⎛⎫ ⎪⎝⎭ 故点D 的坐标为为1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭(3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,理由:∵∠CAH=30°,∴12EH AE =∴12=+=+=BE EA t BE EH BH 为最小, ∴∠EBM=∠BME-∠BEM=90°-∠BEM=90°-∠AEH=∠EAH=30°,设EM=x ,则BE=2x ,BM=6,∴BE 2=EM 2+BM 2,即(2x )2=x 2+36,解得23x =∴223,=-=-OE OM EM∴点E 的坐标为(223,0)-.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、最小距离问题等,有一定的综合性.26.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC 表示赛跑过程中_____________的路程与时间的关系,线段OD 表示赛跑过程中_______________的路程与时间的关系.赛跑的全程是_______________米. (2)乌龟用了多少分钟追上了正在睡觉的兔子?(3)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?解析:(1)兔子;乌龟;1500;(2)14分钟;(3)28.5分钟【分析】(1)利用乌龟始终运动,中间没有停留,进而得出折线 OABC 和线段OD 的意义和全程的距离;(2)根据乌龟的速度及兔子睡觉时的路程即可得;(4)用乌龟跑完全程的时间+兔子晚到的时间−兔子在路上奔跑的两端所用时间可得.【详解】()1龟兔赛跑中,兔子在途中睡了一觉,通过图像发现AB 段S 没有发生变化,∴折线OABC 表示赛跑过程中兔子的路程与时间的关系,线段OO 则表示赛跑过程中乌龟的路程与时间的关系,赛跑的全程是1500米.()150025030V ==龟米/分钟, 50700,t ⨯=14t =.答:乌龟用了14分钟追上了正在睡觉的兔子.()83,48t v =千米/时800=米/分钟, 150********t -==分钟, 300.5129.5+-=分钟,29.5128.5-=分钟,答:兔子中间停下睡觉用了28.5分钟.【点睛】本题考查了函数图象,理解两个函数图象的交点表示的意义,从函数图象准确获取信息是解题的关键.27.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值.是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm .(3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)解析:(1)x ,y ;(2)40,28;(3)y=2x+28,9kg【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm ,重物每增加1kg ,弹簧长度增加2cm ,据此可求当所悬挂重物为6kg 时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x 的值即可;【详解】解:(1)上述表格反映了弹簧的长度ycm 与所挂物体的质量xkg 这两个变量之间的关系.其中所挂物体的质量x 是自变量,弹簧的长度y 是因变量.(2)由表格可知不挂重物时,弹簧的长度为28cm ,∵重物每增加1kg ,弹簧长度增加2cm ,∴当所悬挂重物为6kg 时,弹簧的长度为38+2=40cm ;(3)∵重物每增加1kg ,弹簧长度增加2cm ,∴y=2x+28,把y=46代入y=2x+28,得出:46=2x+28,∴x=9,所以,弹簧的长度为46cm 时,此时所挂重物的质量是9kg .【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.28.画出函数2y x =+的图象,利用图象:(1)求方程20x +=的解;。

一次函数测试题(最新人教版)

一次函数测试题(最新人教版)

《一次函数》测试题一、选择题1.若正比例函数的图象经过点(—1,2),则这个图象必经过点…………………【 】 A. (1,2) B. (—1,—2) C. (2,—1) D. (1,—2)2.一次函数2y x =+的图象不经过………………………………………………【 】 A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限3.如果关于x 的一次函数1y kx k =+-的图角经过第一、三、四象限,则K 的取值范围【 】 A. k >0 B. k <0 C. 0 <k <1 D.k >14.将直线y=2x 向上平移2个单位后所得的直线的解析式………【 】 A. 22y x =+ B. 22y x =- C. 2(2)y x =+ D. 2(2)y x =-5.下列图象中分别给出了变量x 与y 之间的对应关系,其中表示y 是x 的函数的是【 】6.函数y ax b y bx a =+=+与的图象在同一坐标系内的大致位置是……………………【 】7.过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B。

该一次函数的解析式是【 】A. 23y x =+B. 3y x =-C.1322y x =-D. 3y x =-+ 8.函数y=2x 和y=ax+4的图象相交于点A (m ,3A . x >32B .x <3C .x <32D .x >3二、填空题9.已知函数3y mx m =+-是正比例函数,则m=________; 10.将直线162y x =-向左平移2个单位,得到直线是___________ x xyxy O33211.若关于x 的函数44y mx m =+-的图象经过点(1,3),则m=__________; 12.若直线L 平行于直线34y x =+,且过点(1,—2),则直线L 的解析式是____________ 13.若一次函数(4)21y m x m =++-的图象与y 轴的交点在x 轴的下方,则m 的取值范围是______ 14.如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P ,则这个正比例函数的表达式是 ______________15.已知关于x 的一次函数3y kx =+的图象如图所示,则不等式30kx +<的解集是________ 16.已知,函数y=3x 的图象经过点A (-1,y 1),点B (-2,y 2),则y 1 y 2 17.如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 . 18.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x (小时)之间的函数关系如图所示,小明父亲出发 小时时,行进中的两车相距8千米. 三、解答题1.已知一次函数的图象经过M (1,3)和N (—2,12)两点。

一次函数测试题(附答案)

一次函数测试题(附答案)

一次函数练习一、选择题:1、下列函数中,是正比例函数的是( )A 、y=2π B 、y=2x C 、y=2x D 、y=2π2、在函数y=23x +-,y=22x +,y=x+8中,一次函数有( ) A 、1个 B 、2个 C 、3个 D 、4个3、函数y=(m+1)m x +2是一次函数, m 的值为( )A 、m=±1B 、m=-1C 、m=1D 、m≠-14、已知直线y=2x 与直线y=kx+3互相平行,则k 的值为 ( )A 、k=-2B 、k=2C 、k=±2D 、无法确定k 的值5、一次函数y=kx+b,若k+b=1,则它的图象必经过点 ( )A 、(-1,-1)B 、(-1,1)C 、(1,-1)D 、(1,1)6、下列各组函数中,与y 轴的交点相同的是( )A 、y=5x 与y=2x+3B 、y=-2x+4与y=-2x-4C 、y=2x +3与y=-2x+3 D 、y=4x-1与y=x+1 7、已知函数y=(2m +2)x ,y 随x 增大而( )A 、增大B 、减小C 、与m 有关D 、无法确定8、若一次函数y=(1-2m)x+3的图象经过A (1x ,1y )和B(2x ,2y ),当1x <2x 时,1y <2y ,则m 的取值范围是( )A 、m <0B 、m >0C 、m <12 D 、m >12 9、已知直线y=a c x b b+中,若ab >0,ac <0,那么这条直线不经过( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限10、直线y=-2x+b 与两坐标轴围成的三角形的面积为4,则b 的值为( )A 、4B 、-4C 、±4D 、±2二、填空题:1、一次函数y=2x+6的图象与y 轴相交,则交点坐标为________2、已知一次函数y=kx+b 的图象经过(-1,1)、(2,3)两点,则这个一次函数的关系式为______3、将直线y=3x-1向上平移3个单位,得直线______________4、一次函数的图象经过点P (1,3),且y 随x 的增大而增大,写出一个满足条件的函数关系式______________5、已知点A (1,a )在直线y=-2x+3上,则a=________6、已知点P 在直线y=143x -+上,且点P 到y 轴的距离等于3个单位长度,则点P 的坐标为_________. 7、某个一次函数y=kx+b 的图象位置大致如下图(1)所示,则k 的取值范围为_____,b 的取值范围为________.(图1) (图2)8、如图(2),一次函数y=x+5的图象经过P(a,b)和Q (c,d ),则a(c-d)-b(c-d)的值为_______.9、已知y 是x 的一次函数,下表中列出了部分对应值,则m=_________.10、点A (2,a )在一次函数y=-x+3的图象上,且一次函数的图象与y 轴的交点为B ,则△AOB 的面积为_________.三、解答题:1、直线1y =kx+b 与y 轴的交点和直线2y =2x+3与y 轴的交点相同,直线1y 与x 轴的交点和直线2y 与x 轴的交点关于原点对称,求:直线1y 的关系式.2、已知y=1y +2y ,1y 与x+2成正比,2y 是x+1的2倍,并且当x=0时,y=4,试求函数y 与x 的关系式.3、已知直线y=-x+4与直线y=2x-2相交于点A,且直线y=-x+4与y 轴相交于点B, 直线y=2x-2与x 轴相交于点C ,求四边形ABOC 的面积.4、已知一次函数y=kx+b的自变量x的取值范围是-1≤x≤5,相对应的函数值范围为-6≤y≤0,求此函数的关系式.5、为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量x(吨)与应付水费(元)的函数关系如图所示。

2014年新人教版八年级下第19章《一次函数》单元测试题及答案(2)

2014年新人教版八年级下第19章《一次函数》单元测试题及答案(2)

新人教版八年级数学第19章《一次函数》单元测试(2)一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ... D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为()A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=12x-3二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?新人教版八年级数学第19章《一次函数》单元测试(2)答案3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

人教版初中八年级数学下册第十九章《一次函数》经典测试卷(含答案解析)(2)

人教版初中八年级数学下册第十九章《一次函数》经典测试卷(含答案解析)(2)

一、选择题1.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D .B 解析:B【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置.【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B .【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.2.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( )A .21m -<<-B .21m -≤<-C .322m -≤<-D .322m -<≤-D 解析:D【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-. 【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点,此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点,此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-. 故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.3.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C 的纵坐标为2880.其中错误..的个数是( ) A .1 B .2C .3D .4B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答. 4.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,4A 解析:A【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案.【详解】∵一次函数2y kx =+,当x=0时y=2,∴函数图象过点(0,2),∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,故选:A .【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键. 5.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .D解析:D【分析】分k >0、k <0两种情况找出函数y=kx 及函数y=kx+x-k 的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l 1:y=kx ,另一条为l 2:y=kx+x-k ,当k <0时,-k >0,|k|>|k+1|,l 1的图象比l 2的图象陡,当k <0,k+1>0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、三象限,故选项A 正确,不符合题意;当k <0,k+1<0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、四象限,故选项B 正确,不符合题意;当k >0,k+1>0,-k <0时,l 1:y kx =的图象经过一、三象限,l 2:y=kx+x-k 的图象经过一、三、四象限,l 1的图象比l 2的图象缓,故选项C 正确,不符合题意;而选项D 中,,l 1的图象比l 2的图象陡,故选项D 错误,符合题意;【点睛】本题考查了正比例函数的图象及一次函数的图象,分k >0、k <0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.6.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫-⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-B 解析:B【分析】确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx 中,得k=6(8)-=34-. 【详解】∵点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭, ∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6,∴点A '的坐标为(-8,6),∵点A '落在直线y kx =,∴6= -8k ,解得k=34-,.【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键. 7.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<B解析:B【分析】 由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.8.函数2y x x =+-()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则 ∵00x x -≥⎧⎪⎨-≠⎪⎩,解得:0x <, ∴20x >,10x >-, ∴210y x x=+>-, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.9.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( ) A . B . C . D .D 解析:D【分析】先根据一次函数的增减性、与y 轴的交点可得一个关于p 的一元一次不等式组,再找出无解的不等式组即可得.【详解】A 、由图象知,0(3)0p p >⎧⎨-->⎩,解得03p <<,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;B 、由图象知,0(3)0p p >⎧⎨--=⎩,解得3p =,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;C 、由图象知,0(3)0p p <⎧⎨-->⎩,解得0p <,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;D 、由图象知,0(3)0p p <⎧⎨--<⎩,不等式组无解,即它不可能是关于x 的一次函数(3)y px p =--的图象,此项符合题意;故选:D .【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.10.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( )A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+B 解析:B【分析】设一次函数关系式为y kx b =+,y 随x 增大而增大,则0k >;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.【详解】解:设一次函数关系式为y kx b =+,图象经过点(1,2),2k b ∴+=; y 随x 增大而增大,0k ∴>.即k 取正数,满足2k b +=的k 、b 的取值都可以.故选:B .【点睛】本题考查了待定系数法求一次函数解析式及一次函数的性质,为开放性试题,答案不唯一.只要满足条件即可.二、填空题11.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.【分析】一次函数中k=-1<0y 将随x 的增大而减小根据-1<2即可得出答案【详解】解:∵在一次函数中k=-1<0y 将随x 的增大而减小又∵-1<2∴y1>y2故答案为:y1>y2【点睛】本题考查一次函解析:12y y >【分析】一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,根据-1<2即可得出答案.【详解】解:∵在一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,又∵-1<2,∴y 1>y 2.故答案为:y 1>y 2.【点睛】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b (k 、b 为常数,k≠0),当k>0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.12.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键.13.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:52【分析】依据题意得到三个关系式:a+b=355c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点35(1)5P ,在“勾股一次函数”a b y x c c =+的图象上,把35(1)5P ,代入得: 355a b c c=+,即355a b c +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10,∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=,∴22352205c c ⎛⎫-⨯= ⎪ ⎪⎝⎭,故24405c =, 解得:52c =.故答案为:52.【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.14.如图,在平面直角坐标系中,点()1,1P a -在直线22y x =+与直线24y x =+之间(不在两条直线上),则a 的取值范围是_________. 【分析】先分别计算出P 在直线和直线上时a 的值然后结合题意即可解答【详解】解:当P 在直线y=2x+2上时a-1=2+2解得a=5;当P 在直线y=2x+4上时a-1=2+4解得a=7则当时点P 在两直线之解析:57a <<【分析】先分别计算出P 在直线22y x =+和直线24y x =+上时a 的值,然后结合题意即可解答.【详解】解:当P 在直线y=2x+2上时,a-1=2+2,解得a=5;当P 在直线y=2x+4上时,a-1=2+4,解得a=7则当57a <<时,点P 在两直线之间.故答案为:57a <<.【点睛】本题主要考查了一次函数与一元一次不等式,掌握一次函数图象经过的点,必能使解析式左右相等成为解答本题的关键.15.如图,一次函数483y x =-+的图象与,x y 轴交于点,A B ,点B 关于x 轴的对称点为C ,动点,P Q 分别在线段,BC AB 上(P 不与,B C 重合),且APQ ABO ∠=∠,当APQ 是以AQ 为底边的等腰三角形时,点P 的坐标是________.【分析】由一次函数的图象与轴交于点可得A (60)B (08)由勾股定理AB=由点B 与点C 关于x 轴对称可求C (0-8)AB=AC=10可证△BPQ ≌△CAP(AAS)由性质可得PB=CA=10由线段和差解析:(0,2)-【分析】由一次函数483y x =-+的图象与,x y 轴交于点,A B ,可得A (6,0),B (0,8),由勾股定理2222OA +OB =6+8=10,由点B 与点C 关于x 轴对称,可求C (0,-8),AB=AC=10,可证△BPQ ≌△CAP(AAS),由性质可得PB=CA=10,由线段和差OP=BP-OB=2即可.【详解】解:∵一次函数483y x =-+的图象与,x y 轴交于点,A B , ∴x=0,y=8;y=0,48=03x -+,解得x=6, ∴A (6,0),B (0,8),∴2222OA +OB =6+8=10,∵点B 与点C 关于x 轴对称,∴C (0,-8),AB=AC=10,∵∠QPA=∠ABC=∠ACB ,∴∠BPQ+∠APC=108°-∠QPA ,∵∠PAC+∠APC=180°-∠BCA=180°-∠QPA ,∴∠BPQ=∠CAP ,∵PQ=PA ,∴△BPQ ≌△CAP(AAS),∴PB=CA=10,∴OP=BP-OB=10-8=2,P(0,-2),故答案为:(0,-2).【点睛】本题考查一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,掌握一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,解题关键发现并会利用一线三等角构造全等.16.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点解析:152【分析】先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.17.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.(6)【分析】如图作点D 关于直线AB 的对称点H 连接CH 与AB 的交点为E 此时△CDE 的周长最小先求出直线CH 解析式再求出直线CH 与AB 的交点即可解决问题【详解】解:如图作点D 关于直线AB 的对称点H 连接解析:(6,83)【分析】如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小,先求出直线CH 解析式,再求出直线CH 与AB 的交点即可解决问题.【详解】解:如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小.∵D (3,0),A (6,0),B (6,8),∴H (9,0),C (0,8),设直线CH 解析式为8y kx =+,∴098k =+, ∴89k =-, ∴直线CH 解析式为y =−89x +8, ∴x =6时,y =83, ∴点E 坐标(6,83). .【点睛】本题考查矩形的性质、坐标与图形的性质、轴对称−最短问题、一次函数等知识,解题的关键是利用轴对称找到点E 位置,学会利用一次函数解决交点问题,属于中考常考题型. 18.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.19.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________.【分析】分别画出函数的图象根据图象可知在时有最大值求出此时的值即可【详解】解:令函数联立得函数图象如下根据函数图象可知当时min{x+1-2x+2}的最大值为故答案为:【点睛】本题考查一次函数与一元 解析:43 【分析】分别画出函数1y x =+,22y x =-+的图象,根据图象可知min{1,22}x x +-+在13x =时有最大值,求出此时的值即可.【详解】解:令函数1y x =+,22y x =-+, 联立122y x y x =+⎧⎨=-+⎩得1343x y ⎧=⎪⎪⎨⎪=⎪⎩, 函数图象如下,根据函数图象可知,当时13x =,min{x+1,-2x+2}的最大值为43, 故答案为:43.【点睛】本题考查一次函数与一元一次不等式.掌握数形结合思想,能借助图形分析是解题关键.20.平面直角坐标系中,点A坐标为(),将点A沿x轴向左平移a个单位后恰好落在正比例函数y=-的图象上,则a的值为__________.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A坐标为(23)∴将点A沿x轴向左平移a个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a=【分析】根据点的平移规律可得平移后点的坐标是,3),代入y=-计算即可.【详解】解:∵A坐标为3),∴将点A沿x轴向左平移a个单位后得到的点的坐标是-a,3),∵恰好落在正比例函数y=-的图象上,∴)3a-=,解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.已知直线l1:y=kx+b经过点A(12,2)和点B(2,5).(1)求直线l1的表达式;(2)求直线l1与坐标轴的交点坐标.解析:(1)y=2x+1;(2)(0,1)和(﹣12,0)【分析】(1)由待定系数法可求得直线l1的解析式;(2)令x=0可求得其与y轴的交点坐标,令y=0,可求得其与x轴的交点坐标.【详解】解:(1)∵直线l1:y=kx+b经过点A(12,2)和点B(2,5).∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12, ∴直线l 1与坐标轴的交点坐标为(0,1)和(-12,0). 【点睛】本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.22.某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.设每天安排x 人生产乙产品.(1)根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.写出乙每件产品可获利润y (元)与x 之间的函数关系式.(2)若乙产品每件利润为100元,且每天生产件数不少于2件且不多于10件,该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.解析:(1)()13025y x x =-≥;(2)当x =8时,可获得的最大利润为2510元.【分析】(1)根据乙产品的利润和数量之间的关系,可得出y 与x 之间的函数关系式;(2)根据每天甲、丙两种产品的产量相等得到m 与W 之间的关系式,再利用一次函数的性质求解即可.【详解】解:(1)在乙每件120元获利的基础上,每增加1件,当天平均每件利润减少2元,则乙产品的每件利润为120-2(x-5)=130-2x .∴y =130﹣2x (x ≥5).(2)设该企业安排m 人生产甲产品,则安排2m 人生产丙产品,安排(65-3m )人生产乙产品,依题意,得:W=15×2m+30×2m+100(65-3m)=-210m+6500,∵2≤65-3m≤10, 解得:118212≤≤m , 又∵k=-210<0, ∴W 随m 的增大而减小,∵m 是非负整数,∴取m=19时,W 最大值=-210×19+6500=2510,∴x=65-3m=65-57=8(人),答:安排19人生产甲产品,安排38人生产丙产品,安排8人生产乙产品时,可获得的最大利润为2510元.【点睛】本题考查一次函数的实际应用,解题的关键是理解题意,理清题中的数量关系.23.每年“双11"天猫商城都会推出各种优惠活动进行促销,今年,王阿姨的“双11“到来之前准备在两家天期店铺中选择一家购买原价均为1000元/条的被子2条和原价均为600元/个的颈椎枕若干个,已如网家店铺在活动明间分别给子以下优惠:A店铺:"双11"当天购实所有商品可以享受8折优惠:B店铺:买2条被子,赠送1个预椎枕、同时“双11"当天下单,还可立减160元;设购买颈椎枕x(个),若王阿姨在“双11"当天下单,A,B两个店铺优惠后所付金额分别为y A(元)、y B(元).(1)试分别表示y A、y B与x的函数关系式;(2)王阿姨准备在”双11"当天购买4个颈椎枕,通过计算说明在哪家店铺购买更省钱?解析:(1)y A=480x+1600,y B=600x+1240;(2)在A店铺购买更省钱.【分析】(1)根据两个店铺的优惠方案即可得到结果;x 代入到(1)的式子中,即可得解;(2)把4【详解】(1)解:由题意得:.y A=1000×2×0.8+0.8×600x=480x+1600;y B=1000×2+600(x-1)-160=600x+1240;(2)解:当x=4时,y a=480×4+1600=3520;y B=600×4+1240=3640;∵3520<3640,∴在A店铺购买更省钱.【点睛】本题主要考查了一次函数的应用,准确理解题意列式计算是解题的关键.24.天府七中科创小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,经过7min同时到达C 点,乙机器人始终以60m/min的速度行走,如图是甲、乙两机器人之间的距离y(m)与他们的行走时间x(min)之间的图象,请结合图象,回答下列问题.(1)A、B两点之间的距离是________m,甲机器人前2min的速度为________m/min.(2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.解析:(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m ,由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.25.某草莓种植基地迎来了收获旺季.草莓的销售有两种形式,即直接销售和加工销售,假设当天都能销售完并且没有损耗.已知直接销售是4元/kg ,加工销售是15元/kg ,该基地聘用采摘工人与加工工人共20人,每人每天可采摘60kg 或加工30 kg 草莓.(1)设采摘工人x 人,剩下的工人加工草莓,若基地一天的总销售额为y 元,请列出y 与x 的函数表达式;(2)为了使得一天的销售额最大,如何分配工人?试求出销售额的最大值.解析:(1)y =-90x +6600;(2)安排7名工人采摘,13名工人加工,最大值是5970元【分析】(1)根据题意可以列出相应的函数关系式,注意加工之前必须先采摘才可以; (2)根据题意和(1)中的函数解析式可以解答本题.【详解】解:(1)由题意可得,y =[60x -(20-x )×30]×4+30(20-x )×15=-90x +6600,即y 与x 的函数关系式是y =-90x +6600;(2)∵60x ≥30(20-x ),∴x ≥203, ∵x 是整数且x ≤20,∴7≤x ≤20,∵y =-90x +6600,-90<0,∴当x =7时,y 取得最大值,此时y =-90×7+6600=5970,20-x =13,答:安排7名工人采摘,13名工人加工,才能使一天的销售收入最大,最大值是5970元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用一次函数的性质解答.26.在平面直角坐标系中,已知一次函数4y kx =+与12y x b =-+的图象都经过()2,0A -,且分别与y 轴交于点B 和点C .(1)求,k b 的值;(2)设点D 在直线12y x b =-+上,且在y 轴右侧,当ABD ∆的面积为15时,求点D 的坐标. 解析:(1)2,k =1b =-;(2)()4,3D -.【分析】(1)依据一次函数4y kx =+与12y x b =-+的图象都经过点A (−2,0),将点A 的坐标分别代入两个一次函数表达式,即可得到k 和b 的值; (2)根据解析式求得B 、C 两点的坐标,然后依据S △ABC +S △BCD =15,即可得到点D 的横坐标,进而得出点D 的坐标.【详解】()1将()20A -,代入4y kx =+,得:240k -+= 解得2k =.将()20A -,代入12y x b =-+,得:10b +=, 解得:1b =-. ()2如图,过D 作DE y ⊥轴于E ,在24y x =+中,令0x =,则4y =,所以点B 的坐标为()04,. 在112y x =--中, 令0x =,则1y =-. 所以点C 的坐标为()01-,. 所以5BC =.15ABD ABC BCD S S S ∆∆∆=+=,即1111255152222AO BC DE BC DE ⨯+⨯=⨯⨯+⨯⨯=. 解得4DE =在112y x =--中,令4x =,得3y =-. 所以点D 的坐标为()43-,. 【点睛】本题主要考查了一次函数的图象问题,关键是掌握一次函数图象上点的坐标特征,并弄清题意,学会综合运用其性质解决问题.27.去年我县某学校计划租用6辆客车送240名师生到县学生实训基地参加社会实践活动.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x 辆,租车总费用为y 元.(2)求出自变量的取值范围;(3)选择怎样的租车方案所需的费用最低?最低费用多少元?解析:(1)y =﹣80x +1680;(2)0≤x ≤2且x 为整数;(3)租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【分析】(1)根据题意和表格中的数据,可以得到y (元)与x (辆)之间函数关系式; (2)根据题意和表格中的数据,可以计算出自变量的取值范围;(3)根据一次函数的性质和x 的取值范围,可以得到选择怎样的租车方案所需的费用最低,最低费用多少元.【详解】解:(1)由题意可得,y =200x +280(6﹣x )=﹣80x +1680,即y (元)与x (辆)之间函数关系式是y =﹣80x +1680;(2)由题意可得,30x +45(6﹣x )≥240,解得,x ≤2,又∵x ≥0,∴自变量的取值范围是0≤x ≤2且x 为整数;(3)由(1)知y =﹣80x +1680,故y 随x 的增大而减小,∵0≤x ≤2且x 为整数,∴当x =2时,y 取得最小值,此时y =1520,6﹣x =4,即租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.28.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x 千米,应付给个体车主的月费用是1y 元,应付给出租车公司的月租费用是2y 元,1y ,2y 分别与x 之间的函数关系图象如图,观察图象回答下列问题:(1)求1y ,2y 分别与x 之间的函数关系式;(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2400千米,那么这个单位租哪一家的车合算,并说明理由?解析:(1)143y x =,2210003y x =+;(2)当每月行驶1500千米时,租两家的费用相同;(3)当每月行驶的路程为2400千米时,选择出租车公司合算.【分析】 (1)1y 是正比例函数,2y 是一次函数,利用待定系数法求解即可;(2)根据函数图象分析即可;(3)当路程为2400千米时,求出1y ,2y ,比较大小即可;【详解】解:(1)设11y k x =,根据题意,得120001500k =,解得143k =, ∴143y x =, 设22y k x b =+,根据题意,得,1000b =,①220001500k b =+②,将①代入②得223=k , ∴2210003y x =+; (2)当每月行驶1500千米时,租两家的费用相同.。

人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试题(有答案解析)(2)

人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试题(有答案解析)(2)

一、选择题1.若对(0,)t ∀∈+∞,都有22(1)3x t x t+<+成立,则x 的取值范围是( ) A .()2,6-B .(,3)(2,6)-∞--C .(,3)(2,)-∞-⋃-+∞D .(,3)(2,)-∞-⋃-+∞2.现有以下结论: ①函数1y x x=+的最小值是2; ②若a 、b R ∈且0ab >,则2b aa b+≥;③y =2;④函数()4230y x x x=-->的最小值为2-. 其中,正确的有( )个A .0B .1C .2D .33.已知a ,b 均为正数,且20a b ab +-=,则22124b a a b -+-的最大值为( )A .9-B .8-C .7-D .6-4.已知(1,0),(1,0)A B -,点M 是曲线x =上异于B 的任意一点,令,MAB MBA αβ∠=∠=,则下列式子中最大的是( )A .|tan tan |αβ⋅B .|tan tan |αβ+C .|tan tan |αβ-D .tan tan αβ5.小明从甲地到乙地前后半程的速度分别为a 和()b a b <,其全程的平均速度为v ,则下列不正确的是( )A .a v <<B .v <C 2a bv +<<D .2abv a b=+ 6.若正数a ,b 满足1a >,1b >,且3a b +=,则1411a b +--的最小值为( ) A .4B .6C .9D .167.若直线220ax by +-=(),a b R +∈平分圆222460xy x y +---=,则21a b+的最小值是( ).A .1B .5C .D .3+8.若对于任意的x >0,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( )A .a ≥15B .a >15 C .a <15 D .a ≤159.不等式28610x x -+<的解集为( ) A .11(,)42B .11(,)(,)42-∞+∞ C .11(,)34--D .11(,)(,)34-∞--+∞ 10.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .611.已知01a <<,1b >,则下列不等式中成立的是( )A .4aba b a b+<+ B 2aba b<+C <D .a b +12.已知3x >,13y x x =+-,则y 的最小值为( ) A .2B .3C .4D .5二、填空题13.若对(,1]x ∈-∞-时,不等式21()2()12xxm m --<恒成立,则实数m 的取值范围是____________.. 14.已知,x y R +∈,且1112x y+=,则x y +的最小值为________ 15.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.16.已知a ,b ,c 均为正数,且abc =4a +9b ,则a +b +c 的最小值为_____.17.已知实数0a >,0b >是8a 与2b 的等比中项,则62a b+的最小值是_________. 18.已知向量1a =,向量b 满足4a b a b -++=,则b 的最小值为______.19.函数()2436x x f x x ++=-的值域为__________.20.已知正实数,x y 满足3x+y+=xy ,则x y +的最小值为__________.三、解答题21.已知0,0x y >>,且440x y +=. (1)求xy 的最大值;(2)求11x y+的最小值.22.已知不等式()()2330,ax a x b a b R +--<∈的解集为{}31A x x =-<<.(1)求实数a ,b 的值;(2)设()22()2ax bx f x x A x +-=∈-,当x 为何值时()f x 取得最大值,并求出其最大值.23.已知命题p :方程240x mx ++=无实数根:命题q :不等式()2310x m x +-+>在x ∈R 上恒成立.(1)如果命题p 是假命题,请求出实数m 的取值范围;(2)如果命题p q ∨为真命题,且命题p q ∧为假命题,请求出实数m 的取值范围.24.设m ∈R ,不等式()()231210mx m x m -+++>的解集记为集合P .(1)若{}12P x x =-<<,求m 的值; (2)当0m >时,求集合P .25.(理)已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >. (1)求实数a ,b 的值;(2)解关于x 的不等式()()0ax b x c -->(c 为常数).26.已知正数,,a b c 满足3a b c ++=. (Ⅰ)若221a b +=,求c 的取值范围; (Ⅱ)求证:3bc ac aba b c++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先利用基本不等式得到2(1)4t t +≥,再根据题意得到243x x <+,解不等式即可.【详解】令()2(1)t t t f +=,()0,t ∈+∞,()2)2(11t t f t t t==+++,因为()0,t ∈+∞,所以()1224f t t t=++≥=, 当1t t=即1t =时取等号,又因为(0,)t ∀∈+∞,都有22(1)3x t x t +<+,所以243x x <+即可.由243x x <+得()243033x x x x +-<++,即241203x x x --<+, ()()241230xx x --+<,所以()()()6230x x x -++<,解得3x <-或26x -<<. 故选:B. 【点睛】易错点点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】取0x <,可判断①的正误;利用基本不等式可判断②③④的正误. 【详解】对于①,当0x <时,10y x x=+<,①错误;对于②,若a ,b R ∈且0ab >,说明0b a >,0a b >,则2b a a b +≥=,当且仅当22a b =时取等号,显然成立,②正确;对于③,2y =≥=,=231x +=,显然这样的x 不存在,所以结论不正确,③错误;对于④,因为0x >,所以43x x+≥ 函数()4230y x x x=-->的最大值为2-,所以结论不正确,④错误. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】先利用条件化简222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,巧用“1”的代换证明42b a +≥,再证明222242b a b a ⎛⎫+ ⎪⎝⎭≥+,即得到2214b a ⎛⎫- ⎪⎝⎭+的取值范围,根据等号条件成立得到最值. 【详解】依题意,0,0a b >>,20a b ab +-=可知121a b+=,则222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,122224222b b b a a a a b a b ⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当22b a a b=时,即2ba =时等号成立.22242b ba a ab ≥⋅⋅=+,当且仅当2b a =时,等号成立,则左右同时加上224b a +得,则222222442b b b a a ab a ⎛⎫≥+=⎛⎫+++ ⎪⎝⎝⎭⎭ ⎪,即222242b a b a ⎛⎫+ ⎪⎝⎭≥+,当且仅当2b a =时等号成立, 故2222428422b a b a ⎛⎫+ ⎪⎝⎭≥≥=+,当且仅当2b a =时,即2,4a b ==时等号成立, 故2222121744b b a a a b ⎛⎫-+-=-≤- ⎪⎝⎭+当且仅当2b a =时,即2,4a b ==时等号成立. 即22124b a a b -+-的最大值为7-. 故选:C. 【点睛】 关键点点睛:本题解题关键在于利用基本不等式证明的常用方法证明42b a +≥和222242b a b a ⎛⎫+ ⎪⎝⎭≥+,进而突破难点,取最值时要保证取等号条件成立.4.C解析:C 【分析】化简曲线为221(1)x y x -=≥,易知该曲线为双曲线,分别计算选项的取值范围,即可得答案; 【详解】设直线MA ,MB 的斜率分别为12,k k ,11(,)M x y ,则12tan ,tan k k αβ==-, 对A ,1111|tan tan |||111y yx x αβ⋅=⋅=+-; 对B ,C ,tan 0,tan 0αβ><,∴|tan tan |αβ->|tan tan |αβ+,1|tan tan ||tan |2tan αβαα-=+≥, 对D ,1k 小于双曲线渐近线的斜率,∴2tan tan 1tan ααβ=<, ∴|tan tan |αβ-最大,故选:C. 【点睛】通过将斜率转化为直线倾斜角的正切值,再结合基本不等式是求解的关键.5.C解析:C根据题意,求得v ,结合基本不等式即可比较大小. 【详解】设甲、乙两地之间的距离为2s ,则全程所需的时间为s s a b+, 22s abv s s a b a b∴==++,故D 正确;0b a >>2a b+<,2ab v a b ∴=<=+C 错误;又22222a b ab a b v a b a b +⎛⎫⋅ ⎪+⎝⎭=<=<++B 正确; 22220ab ab a a a v a a a b a b a b---=-=>=+++,v a ∴>,则a v <<A 正确.故选:C 【点睛】关键点点睛:由基本不等式可得22ab a b a b +≤≤≤+等式比较大小,属中档题.6.C解析:C 【分析】由等式3a b +=可以得到111a b -+-=,由1411a b +--乘以111a b -+-=所求得式子和基本不等式进行求解即可. 【详解】由3a b +=,可得111a b -+-=,10,10a b ->->,所以()141414(1)511111111a b a a b b a b a b --⎛⎫+=+=++ ⎪------⎝⎭-+-59≥+= 当且仅当12(1)b a -=-,即54,33b a ==时等号成立. 故选:C关键点点睛:本题注意观察待求式的分母,1,1a b --,结合已知条件,可变形为关于分母的式子111a b -+-=,这样就转化为“1”的常规技巧的应用.7.D解析:D 【分析】根据条件可知直线过圆心,求解出,a b 的关系式,利用常数代换法以及基本不等式求解出21a b +的最小值. 【详解】因为直线220ax by +-=(),a b R+∈平分圆222460xy x y +---=,所以直线220ax by +-=过圆心,又因为圆的方程()()221211x y -+-=,所以圆心为()1,2,所以222a b +=,即1a b +=,所以()21212333b a a b a b a b a b ⎛⎫+=+⋅+=++≥+=+ ⎪⎝⎭ 取等号时222a b =即a =,此时21a b ==,故选:D. 【点睛】本题考查圆的对称性与基本不等式的综合应用,其中涉及到利用常数代换法求解最小值,对学生的理解与计算能力要求较高,难度一般.利用基本不等式求解最值时注意说明取等号的条件.8.A解析:A 【分析】由于x >0,对不等式左侧分子分母同时除以x ,再求出左侧最大值即可求解. 【详解】由题:对于任意的x >0,不等式231xa x x ≤++恒成立,即对于任意的x >0,不等式113ax x≤++恒成立,根据基本不等式:10,335x x x >++≥+=,当且仅当1x =时,取得等号, 所以113x x++的最大值为15,所以15a ≥. 故选:A【点睛】此题考查不等式恒成立求参数范围,通过转化成求解函数的最值问题,结合已学过的函数模型进行求解,平常学习中积累常见函数处理办法可以事半功倍.9.A解析:A 【分析】运用因式分解法,化为一元一次不等式组,解不等式,求并集即可得到所求解集. 【详解】解:28610x x -+<即为(21)(41)0x x --<,即有210410x x ->⎧⎨-<⎩或210410x x -<⎧⎨->⎩,可得x ∈∅或1142x <<, 即解集为1(4,1)2,故选A . 【点睛】本题考查一元二次不等式的解法,考查运算能力,属于基础题.10.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.11.D解析:D【分析】本题先根据完全平方公式与基本不等式得到()22224a b a ab b ab +=++>,所以排除选项A2211aba b a b>=++,所以排除选项B ;接着根据基本>=,所以排除选项C ;最后根据基本不等式得到选项D 正确. 【详解】解:对于选项A :因为01a <<,1b >,所以()22224a b a ab b ab +=++>,故选项A 错误;对于选项B 2211aba b a b>=++,故选项B 错误;对于选项C>=C 错误;对于选项D :()22222222a b a ab b a b +>++=+, 所以a b +<,故选项D 正确. 故选:D . 【点评】本题考查基本不等式的应用、学生的运算能力和转换能力,是基础题.12.D解析:D 【分析】由3x >,得到30x ->,化简113333y x x x x =+=-++--,结合基本不等式,即可求解. 【详解】因为3x >,所以30x ->,则11333533y x x x x =+=-++≥=--, 当且仅当133x x -=-,即4x =时取等号, 故选:D. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中熟记基本不等式的“一正、二定、三相等”的条件,合理运算是解得的关键,着重考查推理与运算能力.二、填空题13.【分析】运用换元法参变分离法来求解不等式恒成立问题【详解】不等式转化为化简为令又则即恒成立令又当时取最小值所以恒成立化简得解不等式得故答案为:【点睛】方法点晴:本题考查了不等式恒成立问题在求解过程中 解析:()2,3-【分析】运用换元法,参变分离法来求解不等式恒成立问题.【详解】不等式()21212x xm m ⎛⎫--< ⎪⎝⎭转化为2214x x m m +-<,化简为2211()22x x m m -<+, 令12xt =,又(],1x ∈-∞-,则[)2,t ∈+∞, 即22m m t t -<+恒成立,令2()f t t t =+,又[)2,t ∈+∞, 当2t =时,()f t 取最小值min ()(2)6f t f ==,所以,26m m -<恒成立,化简得260m m --<,解不等式得23m -<<.故答案为:()2,3-【点睛】方法点晴:本题考查了不等式恒成立问题,在求解过程中运用了参变分离法,注意题目中变量的取值范围.14.【分析】由条件可得利用均值不等式可得答案【详解】当且仅当即也即时取等号故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(2)【分析】由条件可得()2112112x y x y x y x y y x ⎛⎫+=+=++⎪⎭+⎝+,利用均值不等式可得答案. 【详解】 ()11332122212x y x y y x x y x y ⎛⎫+=+=+++++≥+= ⎪⎝⎭当且仅当2x y y x =,即x =,也即x y ⎧=⎪⎪⎨⎪=⎪⎩时取等号.故答案为:32+ 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于 解析:8【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值.【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy∴,当且仅当3232x y ==时,取等号. 则32233838y x x y xy ++==,故答案为:8.【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.16.10【分析】由得出利用基本不等式即可得出答案【详解】(当且仅当时取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用属于中档题 解析:10【分析】由49abc a b =+得出94c a b=+,利用基本不等式即可得出答案. 【详解】 49abc a b =+4994a b c ab ab +∴==+9410a b c a b a b ++=+++≥=(当且仅当3,2a b ==时,取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用,属于中档题.17.32【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得解得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比 解析:32【分析】8a 与2b 的等比中项,求得31a b +=,化简626266()(3)20b a a b a b a b a b+=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >8a 与2b 的等比中项,可得23228a b a b +=⨯=,解得31a b +=,所以626266()(3)202032b a a b a b a b a b +=++=++≥+=, 当且仅当66b a a b +时,即14a b ==时,等号成立, 所以62a b+的最小值是32. 故答案为:32.【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力.18.【分析】根据平行四边形性质可得再结合基本不等式即可求出的最小值【详解】由平行四边形性质可得:由基本不等式可得:当且仅当时等号成立所以即所以所以的最小值为故答案为:【点睛】本题主要考查了向量的数量积的【分析】 根据平行四边形性质可得()22222a b a b a b++-=+,再结合基本不等式即可求出b 的最小值.【详解】 由平行四边形性质可得:()22222a b a b a b ++-=+,由基本不等式可得:()2222a b a b a b a b ++-++-≥,当且仅当a b a b +=-时等号成立, 所以()()22222a b ab a b ++-+≥,即()224212b +≥, 所以3b ≥,所以b 的最小值为.【点睛】 本题主要考查了向量的数量积的运算及基本不等式的应用,属于中档题.19.【分析】设将关于的函数利用基本不等式即可求出值域【详解】设当时当且仅当时等号成立;同理当时当且仅当时等号成立;所以函数的值域为故答案为:【点睛】本题考查函数的值域注意基本不等式的应用属于基础题解析:(),161667,⎡-∞-++∞⎣ 【分析】设6x t -=,将()f x 关于t 的函数,利用基本不等式,即可求出值域.【详解】设21663636,6,()16t t x t x t g t t t t++-==+==++, 当0t >时,()16g t ≥,当且仅当6t x ==时等号成立;同理当0t <时,()16g t ≤-,当且仅当6t x =-=-时等号成立;所以函数的值域为(),161667,⎡-∞-++∞⎣. 故答案为: (),161667,⎡-∞-++∞⎣. 【点睛】本题考查函数的值域,注意基本不等式的应用,属于基础题. 20.6【分析】由题得解不等式即得x+y 的最小值【详解】由题得所以所以所以x+y≥6或x+y≤-2(舍去)所以x+y 的最小值为6当且仅当x=y=3时取等故答案为6【点睛】本题主要考查基本不等式求最值意在考解析:6【分析】由题得2)34x y x+y+=xy +≤(,解不等式即得x+y 的最小值.【详解】 由题得2)34x y x+y+=xy +≤(, 所以2)4(x y x y +-+≥()-120, 所以6)(2)0x y x y +-++≥(, 所以x+y≥6或x+y≤-2(舍去),所以x+y 的最小值为6.当且仅当x=y=3时取等.故答案为6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题21.无22.无23.无24.无25.无26.无。

人教版初中数学八年级数学下册第四单元《一次函数》测试(包含答案解析)(2)

人教版初中数学八年级数学下册第四单元《一次函数》测试(包含答案解析)(2)

一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <22.一次函数y=-3x-2的图象和性质,表述正确的是( )A .y 随x 的增大而增大B .函数图象不经过第一象限C .在y 轴上的截距为2D .与x 轴交于点(-2,0)3.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km 4.关于一次函数2y x b =-+(b 为常数),下列说法正确的是( ) A .y 随x 的增大而增大B .当4b =时,直线与坐标轴围成的面积是4C .图象一定过第一、三象限D .与直线32y x =-相交于第四象限内一点 5.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C的纵坐标为2880.其中错误..的个数是()A.1 B.2 C.3 D.46.若关于x、y的二元一次方程组42313312x y ax ya+=+⎧⎪⎨-=+⎪⎩的解为非负数,且a使得一次函数(1)3y a x a=++-图象不过第四象限,那么所有符合条件的整数a的个数是()A.2 B.3 C.4 D.57.已知56a=-,56b=+,则一次函数y=(a+b)x+ab的图象大致为()A.B.C.D.8.已知一次函数(6)1y a x=-+经过第一、二、三象限,且关于x的不等式组1()0232113axxx⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a的值的和为()A.9 B.11 C.15 D.189.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是()A.①②③B.①②④C.③④D.①③④10.直线y mx b=+与y kx=在同一平面直角坐标系中的图象如图所示,则关于x的不等式mx b kx+<的解集为()A .3x >-B .3x <-C .1x >-D .1x <- 11.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个12.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个二、填空题13.已知一次函数41y x =-和23y x =+的图像交于点(2,7)P ,则二元一次方程组4123y x y x =-⎧⎨=+⎩的解是_. 14.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.15.在平面直角坐标系中,直线6y kx =+与x 轴交于点A ,与y 轴交于点B ,若AOB 的面积为12,则k 的值为_________.16.若函数y =kx+b(k≠0)的图像平行于直线y =3x+2,且与直线y =-x -1交x 轴于同一点,则其函数表达式是_____.17.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.18.在平面直角坐标系中,一次函数4y x =+的图象分别与x 轴,y 轴交于点A ,B ,点P 在一次函数 y x =的图象上,则当ABP ∆为直角三角形时,点P 的坐标是___________.19.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.20.如图,经过点B (﹣4,0)的直线y =kx +b 与直线y =mx 相交于点A (﹣2,﹣4),则关于x 不等式mx <kx +b <0的解集为______.三、解答题21.要从甲、乙两仓库向A 、B 两工地运送水泥.已知甲仓库可运出100吨水泥,乙仓库可运出80吨水泥;A 工地需要70吨水泥,B 工地需要110吨水泥.两仓库到A 、B 两工地的路程和每吨每千米的运费如下表:路程(千米) 运费(元/吨·千米) 甲仓库 乙仓库 甲仓库 乙仓库A 地 20 15 1.2 1.2B 地 2520 1 0.8 B 地水泥__________吨;乙仓库运往A 地水泥________吨,乙仓库运往B 地水泥_______吨.(2)试用x 的代数式表示总运费.(3)总运费能达到3695元吗?若能,求出此时甲仓库应运往A 地多少吨水泥;若不能,说明理由.22.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.23.某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.设每天安排x 人生产乙产品.(1)根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.写出乙每件产品可获利润y (元)与x 之间的函数关系式.(2)若乙产品每件利润为100元,且每天生产件数不少于2件且不多于10件,该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24.如图,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,2B ,与正比例函数32y x =的图象交于点()4,C c . (1)求k 和b 的值. (2)如图1,点P 是y 轴上一个动点,当PA PC -最大时,求点P 的坐标.(3)如图2,设动点D ,E 都在x 轴上运动,且2DE =,分别连结BD ,CE ,当四边形BDEC 的周长取最小值时直接写出点D 和E 的坐标.25.己知,如图,在平面直角坐标系中,直线y kx b =+经过点(3-,4-),(6,2),且分别交x 轴、y 轴于A 、B 两点.(1)确定直线y kx b =+的表达式:(2)求A 、B 两点的坐标;(3)求AOB 的面积;(4)过AOB 的顶点B 的一条直线把AOB 分成面积相等的两部分,求这条直线表达式.26.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值. 所挂物体质量x/kg0 1 2 3 4 5 弹簧长度y/cm 28 30 32 34 36 38是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据正比例函数的大小变化规律判断k的符号.【详解】解:根据题意,知:y随x的增大而减小,则k<0,即m﹣2<0,m<2.故选:D.【点睛】本题考查了一次函数的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.2.B解析:B【分析】根据一次函数y=kx+b(k≠0)的性质:k>0,y随x的增大而增大,函数从左到右上升;k <0,y随x的增大而减小,即可判断A项,解析式特点找到函数通过的象限即可判断B 项;使y=0时,对应的横坐标即可判断C;使x=0时,对应的纵坐标即可判断D.【详解】A. 因为k=-3,所以y随x的增大而减小,故此项不正确;B. 根据函数解析式y=-3x-2特点,函数图象经过第二、三、四象限,故此项正确;C. y=-3x-2与y轴的交点坐标(0,-2),那么在y轴上的截距为-2,故此项不正确;D. y=-3x-2与x轴交于点(23,0),故此项不正确;故选B【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.C解析:C【分析】根据题意得A,B两城相距300km,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案.【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5 乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车 得:()601100x x += ∴32x = ∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误;∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确;故选:C .【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.4.B解析:B【分析】由一次函数的增减性判断A ;通过求直线与坐标轴交点可判断B ;根据一次函数图象与系数的关系判断C ;根据k 值相同而b 值不相同两条直线平行判断D ;.【详解】解:A 、因为-2<0,所以y 随x 的增大而减小,故A 错误;B 、当b=4时,直线与坐标轴的交点分别为(2,0),(0,4),所以与坐标轴围成的面积是4,故B 正确;C 、图象一定过第二、四象限,故C 错误;D 、2y x b =-+与直线y=3-2x 重合或平行,不相交,故D 错误;故选:B .【点睛】本题主要考查了一次函数的图象与性质,采用数形结合的方法求解是关键.5.B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答. 6.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a 的取值范围,再根据一次函数的性质,即可得到答案.【详解】 解:42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x a y a ⎧=+⎪⎪⎨⎪=-+⎪⎩, ∵方程的解是非负数, ∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩,解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.7.C解析:C【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.【详解】解:∵a ++0>,ab==10-<, ∴该函数的图象经过第一、三、四象限,故选:C .【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答. 8.A解析:A【分析】根据关于x 的不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩恰有4个整数解以及一次函数(6)1y a x =-+经过第一、二、三象限,可以得到a 的取值范围,然后即可得到满足条件的a 的整数值,从而可以计算出满足条件的所有整数a 的和,本题得以解决.【详解】 解:由不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩,解得23a x -≤<,∵不等式组恰有4个整数解, ∴123a <≤, ∴36a <≤,∵一次函数(6)1y a x =-+的图象经过第一、二、三象限, ∴60a ->,∴6a <,∴36a <<,又∵a 为整数,∴a=4或5,∴满足条件的所有整数a 的和为4+5=9,故选:A .【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.9.D解析:D【分析】根据函数的图象即可确定在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确; 火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45−5−5=35秒,故③正确;隧道长是:45×30−150=1200(米),故④正确.故选D .【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,是解题的关键.10.C解析:C【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.11.D解析:D【分析】根据甲、乙的图象去分析出甲、乙的行驶过程,从而求出速度,相遇时间等信息,去判断选项的正确性.【详解】解:通过乙的图象可以看出B 、C 两港之间距离是90海里,故①错误,甲从A 港出发,经过B 港,到达C 港,乙从B 港出发,到达C 港,甲比乙快,所以甲、乙只会相遇一次,故②正确,甲的速度:300.560÷=(海里/小时),乙的速度:90330÷=(海里/小时),甲比乙快30海里/小时,故③正确,A 港距离C 港3090120+=(海里),120602÷=(小时),即甲到C 港需要2小时,乙需要3小时,故④正确, ()3060301÷-=(小时),即甲追上乙需要1个小时,1个小时乙行驶了30海里,∴()1,30P ,故⑤正确,正确的有:②③④⑤.故选:D .【点睛】本题考查一次函数的应用,解题的关键是能够根据所给函数图象结合实际意义去进行分析得到想要的信息.12.B解析:B【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,甲始终是匀速行进,乙的行进不是匀速的,故①正确;乙用了50.5 4.5-=个小时到达目的地,故②错误;乙比甲迟出发0.5小时,故③正确;甲在出发不到5小时后被乙追上,故④错误;故选:B .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题13.【分析】根据一次函数数和的图象交点可知点P 的坐标就是的解【详解】解:根据题意可知二元一次方程组的解就是一次函数和的图象的交点P 的坐标∴二元一次方程组的解是故答案为:【点睛】此题考查了一次函数与二元一解析:27x y =⎧⎨=⎩【分析】根据一次函数数41y x =-和23y x =+的图象交点,可知点P 的坐标就是4123y x y x =-⎧⎨=+⎩的解.【详解】解:根据题意可知,二元一次方程组4123y x y x =-⎧⎨=+⎩的解就是一次函数41y x =-和23y x =+的图象的交点P 的坐标,∴二元一次方程组4123y x y x =-⎧⎨=+⎩的解是27x y =⎧⎨=⎩. 故答案为:27x y =⎧⎨=⎩. 【点睛】 此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知方程组的解与一次函数的图象交点P 之间的联系,考查了学生对题意的理解能力.14.或【分析】把点A (12)代入直线方程先求出两条直线的解析式然后求出点MN 的坐标再求出MN 的长度利用三角形的面积公式即可求出答案【详解】解:由图可知点A 为(12)直线与y 轴的交点为(01)把点A (12解析:0m ≤或2m ≥【分析】把点A (1,2)代入直线方程,先求出两条直线的解析式,然后求出点M 、N 的坐标,再求出MN 的长度,利用三角形的面积公式,即可求出答案.【详解】解:由图可知,点A 为(1,2),直线2:l y ax b =+与y 轴的交点为(0,1),把点A (1,2)代入1:l y kx =,则2k =;∴12:l y x =;把点A (1,2)和点(0,1)代入2:l y ax b =+,21a b b +=⎧⎨=⎩,解得:11a b =⎧⎨=⎩; ∴2:1=+l y x ;把x m =分别代入两条直线方程,则12y m =,21y m =+,∴点M 的坐标为(m ,2m ),点N 的坐标为(m ,m+1), ∴2(1)1MN m m m =-+=-,∴△AMN 边MN 上的高为:1m - ∵1112AMN S m m ∆=•-•-, 当AMN 的面积等于12时,则 211111(1)222AMN S m m m ∆=•-•-=-=, ∴2m =或0m =, 结合AMN 的面积不小于12, ∴0m ≤或2m ≥;故答案为:0m ≤或2m ≥.【点睛】本题考查了一次函数的性质,解一元一次不等式,求一次函数的解析式,解题的关键是正确的理解题意,掌握一次函数的性质进行解题. 15.或【分析】求出AB 点坐标在Rt △AOB 中利用面积构造方程即可解得k 值【详解】由直线与y 轴于B 则则∴直线与x 轴于A 令则∴∴∴∴∴解得:由k≠0符合题意则k 的值为或故答案为:或【点睛】本题主要考查了一次 解析:32-或32【分析】 求出A 、B 点坐标,在Rt △AOB 中,利用面积构造方程即可解得k 值.【详解】由直线6y kx =+与y 轴于B ,则0x =,则6y =,∴(0,6)B ,直线6y kx =+与x 轴于A ,令0y =,则60kx +=,6x k=-, ∴6,0A k ⎛⎫- ⎪⎝⎭, ∴6OA k =-,6OB =, ∴1122AOB S OA OB =⋅=△, ∴64k -=, ∴64k-=±, 解得:132k =-,232k =, 由k≠0,符合题意, 则k 的值为32-或32. 故答案为:32-或32. 【点睛】本题主要考查了一次函数问题,掌握图象上点的坐标特征以及利用面积构造方程,会解方程是解题关键. 16.y=3x+3【分析】根据平行直线的解析式求出k 值再把点的坐标代入解析式求出b 值即可【详解】y=-x-1当y=0时x=-1∴线y =-x -1交x 轴于点(-10)∵y=kx+b 的图象平行于直线y=3x+2解析:y=3x+3【分析】根据平行直线的解析式求出k 值,再把点的坐标代入解析式求出b 值即可.【详解】y=-x-1,当y=0时,x=-1,∴线y =-x -1交x 轴于点(-1,0),∵y=kx+b 的图象平行于直线y=3x+2,∴k=3,又∵函数y =kx+b(k≠0)的与直线y =-x -1交x 轴于同一点,∴函数y =kx+b(k≠0)经过点(-1,0),∴-3+b=0,∴b=3,∴函数的表达式是y=3x+3,故答案为:y=3x+3.【点睛】本题考查了求一次函数解析式,涉及了两直线平行的问题,熟知两直线平行时,k 值相等是解题的关键.17.y=-2x 【分析】由题意可设y=kx (k≠0)把xy 的值代入该函数解析式通过方程来求k 的值【详解】解:由题意可设y=kx (k≠0)则2=-k 解得k=-2所以y 关于x 的函数解析式是y=-2x 故答案为:解析:y=-2x【分析】由题意可设y=kx (k≠0).把x 、y 的值代入该函数解析式,通过方程来求k 的值.【详解】解:由题意可设y=kx (k≠0).则2=-k ,解得,k=-2,所以y 关于x 的函数解析式是y=-2x ,故答案为:y=-2x .【点睛】本题考查了待定系数法求正比例函数解析式,利用待定系数法求得解析式是关键. 18.(00)或(22)或(-2-2)【分析】作出图形分别以ABP 为直角顶点三种情况讨论利用勾股定理即可求解【详解】令则令则∴A(0)B(4)∵点P 在一次函数的图象上∴设点的坐标为(xx)==①当∠ABP解析:(0,0)或(2,2)或(-2,-2)【分析】作出图形,分别以A 、B 、P 为直角顶点三种情况讨论,利用勾股定理即可求解.【详解】令0x =,则4y =,令0y =,则4x =-,∴A(4-,0),B(0,4),∵点P 在一次函数 y x =的图象上,∴设点P 的坐标为(x ,x),2AB =224432+=,()222242816PB x x x x =+-=-+,2PA =()22242816x x x x ++=++, ①当∠ABP=90︒时,根据勾股定理得:222AB PB PA +=,即223228162816x x x x +-+=++, 解得:2x =∴点P 的坐标为(2,2);②当∠BAP=90︒时,根据勾股定理得:222AB PA PB +=,即223228162816x x x x +++=-+, 解得:2x =-∴点P 的坐标为(-2,-2);③当∠APB=90︒时,此时点P 与点O 重合,∴点P 的坐标为(0,0);综上,点P 的坐标为(0,0)或(2,2)或(-2,-2).【点睛】本题考查了一次函数与坐标轴的交点,勾股定理,采用了分类讨论的思想,与方程相结合是解决问题的关键.19.【分析】先求出…的横坐标探究总结得到即可根据规律解决问题【详解】解:探究规律:令则令则∴∴…发现并总结规律:∴运用规律:当时故答案为【点睛】本题考查规律型:点的坐标等腰直角三角形的性质等知识解题的关 解析:202222-【分析】先求出123,,B B B …的横坐标,探究总结得到122,n n B x +=-,即可根据规律解决问题.【详解】解:探究规律: :2,l y x =+令0,x = 则2,y =()10,2,A ∴令0,y = 则2,x =-()2,0,A ∴-12,OA OA ∴==∴11121223232,4,8,OB OA B B B A B A B B ======∴12222,B x ==- 23622,B x ==-341422,B x ==-…,发现并总结规律:∴122,n n B x +=-运用规律:当2021n =时,202120222 2.B x ∴=-故答案为20222 2.-【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.20.【分析】由mx <kx+b 可得函数图像上的点在函数的图像上的点的上方由kx+b <0函数图像上的点在轴的下方再结合与函数图像可得答案【详解】解:mx <kx+b 函数图像上的点在函数的图像上的点的上方结合图解析:4 2.x -<<-【分析】由mx <kx +b ,可得函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,由 kx+b <0,函数y kx b =+图像上的点在x 轴的下方,再结合()()2,4,4,0A B ---与函数图像可得答案.【详解】 解: mx <kx +b ,∴ 函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,()24A --,,∴ 结合图像可得:x <2,-kx+b <0,∴ 函数y kx b =+图像上的点在x 轴的下方,()40B -,,∴ 结合函数图像可得:x >4,-从而可得关于x 不等式mx <kx +b <0的解集为4 2.x -<<-故答案为:4 2.x -<<-【点睛】本题考查的是一次函数的图像与不等式组的联系,掌握利用图像法求不等式组的解集是解题的关键.三、解答题21.(1)100x -,70x -,10x +;(2)33920y x =-+;(3)能,75吨【分析】(1)用甲仓库一共可运出的100吨水泥减去x 得到甲仓库运往B 地的水泥吨数,用A 工地需要的水泥减去x 得到乙仓库运往A 工地的水泥吨数,用同样的方法得到乙仓库运往B地的水泥吨数;(2)设总运费是y 元,根据表格中的距离和运费列出总费用的表达式;(3)令(2)中的3695y =,解出x 的值即可.【详解】解:(1)设甲仓库运往A 地水泥x 吨,则甲仓库运往B 地水泥()100x -吨; 乙仓库运往A 地水泥()70x -吨,乙仓库运往B 地水泥()110100x --⎡⎤⎣⎦吨故答案是:100x -,70x -,10x +;(2)设总运费是y 元,()()()1.220125100 1.215700.82010y x x x x =⨯+⨯-+⨯-+⨯+,整理得:33920y x =-+;(3)令3695y =,则339203695x -+=,解得75x =,答:可以,此时甲仓库应运往A 地75吨水泥.【点睛】本题考查一次函数的实际应用,解题的关键是根据题意列出函数关系式进行求解. 22.(1)y =2x+1;(2)(0,1)和(﹣12,0) 【分析】(1)由待定系数法可求得直线l 1的解析式;(2)令x=0可求得其与y 轴的交点坐标,令y=0,可求得其与x 轴的交点坐标.【详解】解:(1)∵直线l 1:y=kx+b 经过点A (12,2)和点B (2,5). ∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12, ∴直线l 1与坐标轴的交点坐标为(0,1)和(-12,0). 【点睛】本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.23.(1)()13025y x x =-≥;(2)当x =8时,可获得的最大利润为2510元.【分析】(1)根据乙产品的利润和数量之间的关系,可得出y 与x 之间的函数关系式;(2)根据每天甲、丙两种产品的产量相等得到m 与W 之间的关系式,再利用一次函数的性质求解即可.【详解】解:(1)在乙每件120元获利的基础上,每增加1件,当天平均每件利润减少2元,则乙产品的每件利润为120-2(x-5)=130-2x .∴y =130﹣2x (x ≥5).(2)设该企业安排m 人生产甲产品,则安排2m 人生产丙产品,安排(65-3m )人生产乙产品,依题意,得:W=15×2m+30×2m+100(65-3m)=-210m+6500,∵2≤65-3m≤10, 解得:118212≤≤m , 又∵k=-210<0, ∴W 随m 的增大而减小,∵m 是非负整数,∴取m=19时,W 最大值=-210×19+6500=2510,∴x=65-3m=65-57=8(人),答:安排19人生产甲产品,安排38人生产丙产品,安排8人生产乙产品时,可获得的最大利润为2510元.【点睛】本题考查一次函数的实际应用,解题的关键是理解题意,理清题中的数量关系. 24.(1)1k =,2b =;(2)()0,6P ;(3)5,02E ⎛⎫⎪⎝⎭,1,02D ⎛⎫ ⎪⎝⎭. 【分析】(1)将C 的坐标代入正比例函数中,求出点C 坐标,进而用待定系数法即可得出结论; (2)利用三角形的两边之差小于第三边,判断出点P 是直线PC'和y 轴的交点,即可得出结论;(3)先判断出点D 的位置,先求出点G 的坐标,进而得出点F 的坐标,利用待定系数法求出直线BF 解析式即可得出结论.【详解】解:(1)把点C (4,c )代入32y x =, 解得:c=6,则点C (4,6),∵一次函数交y 轴于点B (0,2),∴函数表达式为:y=kx+2,把点C 坐标代入上式,解得:k=1,故:k=1,b=2,(2)如图,作A 关于y 轴的对称点A ',连接CA '交y 轴于P 点, 此时PA PC -最大, ()2,0A ',PA PA '=,设A C '的解析式为y ax m =+,将()4,6C ,()2,0A '代入得4620a m a m +=⎧⎨+=⎩,解得36a m =⎧⎨=-⎩, ∴36CA y x '=-PA PC PA PC CA --'==',∴()0,6P -.(3)以下各点的坐标分别为:B (0,2),C (4,6),过点C 作CG ∥DE ,使GC=DE ,则:四边形DECG 为平行四边形,作点G 作关于x 轴的对称点F ,连接BF ,交x 轴于D ,点D 即为所求点,则点G 坐标为(2,6),点F 坐标为(2,-6),则:DF=DG=EC ,DB+CE=BD+DG=BD+DF=BF ,即:BD+CE 最小,而:DE 、BC 长度为常数,故:在图示位置时,四边形BDEC 的周长取最小值,把点B 、F 点坐标代入一次函数表达式:y=nx+b′,解得:BF 所在的直线表达式为:y=-4x+2,令:y=0,则x=12, 则点D 和E 的坐标分别为(12,0)、(52,0), 【点睛】 此题为一次函数综合题,其中(3)的核心是确定点D 的位置,考查了学生综合运用所学知识的能力.25.(1)223y x =-;(2)(3,0)A ,(0,2)B -;(3)3;(4)423y x =-. 【分析】(1)利用待定系数法即可得;(2)求出0y =时,x 的值即可得点A 的坐标,求出0x =时,y 的值即可得点B 的坐标; (3)先根据点A 、B 的坐标可得OA 、OB 的长,再利用直角三角形的面积公式即可得; (4)先根据三角形的中线与面积关系可得这条直线一定经过OA 的中点,再根据点A 的坐标求出中点的坐标,然后利用待定系数法即可得.【详解】(1)由题意,将点(3,4),(6,2)--代入y kx b =+得:3462k b k b -+=-⎧⎨+=⎩, 解得232k b ⎧=⎪⎨⎪=-⎩,则直线y kx b =+的表达式为223y x =-; (2)对于一次函数223y x =-, 当0y =时,2203x -=,解得3x =,即(3,0)A , 当0x =时,2y =-,即(0,2)B -;(3)(3,0),(0,2)A B -,3,2OA OB ∴==,又x 轴y ⊥轴,AOB ∴是直角三角形,则AOB 的面积为1132322OA OB ⋅=⨯⨯=; (4)设这条直线的表达式为y mx n =+,这条直线过AOB 的顶点B ,且把AOB 分成面积相等的两部分,∴这条直线一定经过OA 的中点,(0,0),(3,0)O A ,∴OA的中点的坐标为3(,0) 2,将点3(,0)2和点(0,2)B-代入y mx n=+得:322m nn⎧+=⎪⎨⎪=-⎩,解得432 mn⎧=⎪⎨⎪=-⎩,则这条直线的表达式为423y x=-.【点睛】本题考查了利用待定系数法求一次函数的表达式、求一次函数与坐标轴的交点坐标等知识点,熟练掌握待定系数法是解题关键.26.(1)x,y;(2)40,28;(3)y=2x+28,9kg【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm,重物每增加1kg,弹簧长度增加2cm,据此可求当所悬挂重物为6kg时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x的值即可;【详解】解:(1)上述表格反映了弹簧的长度ycm与所挂物体的质量xkg这两个变量之间的关系.其中所挂物体的质量x是自变量,弹簧的长度y是因变量.(2)由表格可知不挂重物时,弹簧的长度为28cm,∵重物每增加1kg,弹簧长度增加2cm,∴当所悬挂重物为6kg时,弹簧的长度为38+2=40cm;(3)∵重物每增加1kg,弹簧长度增加2cm,∴y=2x+28,把y=46代入y=2x+28,得出:46=2x+28,∴x=9,所以,弹簧的长度为46cm时,此时所挂重物的质量是9kg.【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.。

第12章 一次函数单元测试一、二(含答案)

第12章 一次函数单元测试一、二(含答案)

第12章 一次函数单元测试一一、 填空1、已知点(3,m )与点(n ,-2)关于坐标系原点对称,则mn =_______.2、点A 为直线y=-2x +2上的一点,且到两坐标轴距离相等,那么A 点坐标为_____.3、已知y=3x+4当x_______时,函数值为正数.4、函数 与x 轴交点坐标为_________.5、直线y=-3x -1与坐标轴围成三角形面积为________.6、在函数 的表达式中,自变量x 取值范围__________.7、若函数b ax y +=图象如图所示,则不等式0≥+b ax 解集为_____8.直线 不经过第 象限. 9.函数y=kx-4的图象平行于直线y=-2x ,则函数的表达式为 . 二、 选择题 1、如果直线)1()2(-+-=m x m y 经过第一、二、四象限,则m 的取值范围是( ).A 、m<2B 、m>1C 、m≠2 D、1<m<22、一次函数4+-=x y 和12+=x y 的图象的交点个数为( ).A 、没有B 、一个C 、两个D 、无数个3、汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s (千米)与行驶时间t (小时)的函数关系用图象表示为( ).A B C D 4、已知函数13+=x y ,当自变量x 增加m 时,相应函数值增加( ). A 、3m+1 B 、3m C 、m D 、3m -15、若点A (-2,n )在x 轴上,则B (n -1,n+1)在( ).A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6、m 为整数,点P (3m -9,3-3m )是第三象限的点,则P 点的坐标为( ). A 、(-3,-3) B 、(-3,-2) C 、(-2,-2) D 、(-2,-3) 7.过点(2,3)的正比例函数解析式是 ( ) A. B. 21y x =- C. D. 8.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( ) A. (2,0) B. (-2,0) C. (0,2) D. (0,-2)9.下列函数中,当x>0时,y 随x 的增大而减小的是 ( ) A.x y = B.2+=x y C.2+-=x y D.2x y =10.一次函数y=ax+b 的图像如图所示,则下面结论中正确的是 ( ) (第10题)A .a <0,b <0B .a <0,b >0C .a >0,b >0D .a >0,b <011.直线 y= x +4与 x 轴交于 A ,与y 轴交于B, O 为原点,则△AOB 的面积为( ) A .12 B .24 C .6 D .1012.关于正比例函数y=-2x,下列结论正确的是 ( )A .图像必经过点(-1,-2)B .图像经过第一、三象限C .y 随x 的增大而减小D.不论x 取何值,总有y<013.一次函数y=kx+6,y 随x 的增大而减小,则一次函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限 14. 无论m 取任何非零实数,一次函数y=mx-(3m+2)的图象过定点( )A 、(3,2)B 、(3,-2)C 、(-3,2)D 、(-3,-2) 15.一次函数a x y +=2,b x y +-=的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为( ) A.4 B.5 C.6 D.7 三、解答题1、某校需要刻录一批电脑光盘,若电脑公司刻录,每张需要8元(含空白光盘费);若学校自刻,除租用刻录机需120元外每张还需成本费4元(含空白光盘费),问刻录这批电脑光盘,到电脑公司刻录费用少?还是自刻费用少?说明你的理由.2、有两条直线b ax y +=1,c cx y 52+=,学生甲解出它们的交点坐标为(2,-3),学生乙因把c 抄错了而解出它们的交点坐标为(1,3),求这两条直线解析式.3.已知y 是x 的一次函数,根据下表求出函数表达式,并填空.4.已知函数1)32(-++=m x m y , ⑴若函数图象经过原点,求m 的值;⑵若函数图象在y 轴上的截距为3-,求m 的值; ⑶若函数图象平行于直线1+=x y ,求m 的值; ⑷若该函数的值y 随自变量x 的增大而减小,求m 的取值范围.5.一次函数y=(2a+4)x —(3—b ),当a ,b 为何值时:(1)y 随x 的增大而增大? (2)图象经过二、三、四象限?(3)图象与y 轴交点在x 轴上方? (4)图象过原点?x 1 3 4 9 31 y1522212xy 24204t S24204t S24204tS24204tS21+=x y 8141+=x y 23y x =6y x =32y x =432132y x =-+第12章 一次函数水平测试二一、填空题1、若函数 是正比例函数,则常数m 的值是 。

《一次函数》基础测试卷及答案

《一次函数》基础测试卷及答案

一次函数一、选择题(每小题4分,共12分)1.下列函数:(1)y=-8x,(2)y=3.8,(3)y=9x2,(4)y=5x+8,其中是一次函数的有( )A.0个B.1个C.2个D.3个2.若y+2与2x-3成正比例,则y是x的( )A.正比例函数B.一次函数C.没有函数关系D.以上答案均不正确3.某山山脚的气温是10℃,此山高度每上升1km,气温下降6℃,设比山脚高出x km处的气温为y℃,y与x之间的函数解析式为( )A.y=10-6xB.y=10+6xC.y=6-10xD.y=6x-10二、填空题(每小题4分,共12分)4.下列函数:①y=-3x2+4;②y=x-2;③y=错误!未找到引用源。

x+3;④y=错误!未找到引用源。

+1;⑤y=-错误!未找到引用源。

x,其中是一次函数的有(只写序号).5.已知函数y=(k+2)x+k2-4,当k 时,它是一次函数.当k=_________时,它是正比例函数.6.某企业对自己生产的某种产品进行市场调查,得出这种产品的市场需求量y(千件)和单价x(元)之间的关系式是y=15-3x.(1)单价为2元时,市场需求量是千件.(2)如果单价为5元,那么可能出现的情况是.三、解答题(共26分)7.(8分)已知函数y=(k-2)错误!未找到引用源。

+b+1是一次函数,求k和b的取值范围.8.(8分)(2012·广州中考)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20t,按每吨1.9元收费.如果超过20t,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为xt,应收水费为y元.(1)分别写出每月用水量未超过20t和超过20t,y与x之间的函数解析式.(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨? 【拓展延伸】9.(10分)生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗共2000棵,种植A,B两种树苗的相关信息如表:成活率95%设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数解析式.(2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?答案解析1.【解析】选C.(1)y=-8x符合一次函数的定义,故是一次函数.(2)y=3.8,自变量次数为0,故不是一次函数.(3)y=9x2,自变量次数为2,故不是一次函数.(4)y=5x+8,符合一次函数的定义,故是一次函数.综上可得(1)(4)是一次函数,共2个.2.【解析】选B.由题意可设y+2=k(2x-3)(k≠0),整理得,y=2kx-3k-2,其中2k 与-3k-2都是常数且2k≠0,所以y是x的一次函数.3.【解析】选A.根据气温=山脚的气温-下降的气温可得:y=10-6x.4.【解析】①中自变量的次数是2,④中自变量的次数不是1;所以①④不是一次函数,②③⑤均符合一次函数的定义.答案:②③⑤5.【解析】根据一次函数的定义得,k+2≠0,解得k≠-2.函数y=(k+2)x+k2-4是正比例函数,则k+2≠0,k2-4=0,解得k=2.答案:≠-2 26.【解析】(1)当x=2时,y=15-3×2=9.(2)当x=5时,y=15-3×5=0,说明当单价为5元时,这种产品的市场需求量为0,可能会因定价过高而造成产品大量积压.答案:(1)9 (2)产品大量积压7.【解析】根据题意得:k2-3=1,且k-2≠0,∴k=-2或k=2(舍去),∴k=-2.b是任意的常数.8.【解析】(1)当x≤20时,y=1.9x;当x>20时,y=1.9×20+(x-20)×2.8=2.8x-18.(2)用水量如果未超过20t,按每吨1.9元收费.因为5月份水费平均为每吨2.2元,所以用水量超过了20t.所以2.8x-18=2.2x,解得x=30.答:该户5月份用水30t.9.【解析】(1)y=(15+3)x+(20+4)(2000-x)=-6x+48000.(2)由题意可得:0.95x+0.99(2000-x)=1960.x=500,y=-6×500+48000=45000.所以造这片林的总费用需45000元.。

【期末复习提升卷】浙教版2022-2023学年八上数学第5章 一次函数 测试卷2

【期末复习提升卷】浙教版2022-2023学年八上数学第5章 一次函数 测试卷2

【期末复习提升卷】浙教版2022-2023学年八上数学第5章一次函数测试卷2考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.53.已知一次函数y=(k-2)x+k+1的图象不过第三象限,则k的取值范围是()A.k≠2B.k>2C.-1≤k<2D.0≤k<24.如图,把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB 的解析式是()A.y=-2x-3B.y=-2x-6C.y=-2x+3D.y=-2x+6(第4题)(第5题)(第10题)5.如图,在某中学生耐力测试比赛中,甲、乙两学生测试的路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OABC和线段OD,下列说法正确的是()A.乙比甲先到终点;B.乙测试的速度随时间增加而增大;C.比赛进行到29.4秒时,两人出发后第一次相遇;D.比赛全程甲的测试速度始终比乙的测试速度快。

6.已知直线y=mx-1上有一点B(1,n),它到原点的距离是√10,则此直线与两坐标轴围成的三角形的面积为()A.12B.12或14C.14或18D.18或127.在同一平面直角坐标系中,直线y=kx+b与直线y=bx+k(k、b为常数,且kb≠0)的图象可能是()A.B.C.D.8.已知一次函数y=ax+b(a,b为常数,a为非零整数)的图象过点(98,19),它与X轴的交点为(P,0),与y轴交点为(0,q),若p是质数,q是正整数,那么满足条件的所有一次函数的个数为()。

第19章一次函数测试题(2)

第19章一次函数测试题(2)

第19章一次函数测试题(2)一.选择题(共12小题)1.如图所示的图象分别给出了y与x的对应关系,其中y不是x的函数的是()A.B.C.D.2.一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车分别从A村、B村同时出发前往C村,甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②甲出发2h后到达C村;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了30min或55min时两人相距4km.其中正确的是()A.①③④B.①②③C.①②④D.①②③④3.若正比例函数y=kx(k≠0)的图象经过点(﹣2,3),则k的值为()A.B.﹣2C.D.34.已知一次函数y=(2k﹣1)x+b+2的图象如图所示,则k的取值范围是()A.k<1B.k<﹣1C.k>D.k>﹣5.直线y=﹣kx+k与直线y=kx在同一坐标系中的大致图象可能是图中()A.B.C.D.6.已知直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤x+k的解集为()A.x≥1B.x≤1C.x≥2D.x≤27.已知一次函数y=kx+b(k≠0),如表是x与y的一些对应数值,则下列结论中正确的是()x…﹣1012…y…6420…A.y随x的增大而增大B.函数的图象向上平移4个单位长度得到y=﹣2x的图象C.函数的图象不经过第三象限D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y28.下列一次函数中,y的值随着x的值增大而减小的是()A.y=x﹣1B.y=+2C.y=﹣1+2x D.y=1﹣3x9.一次函数y=kx+b的图象如图所示,下列结论:①k<0;②b=﹣1;③y随x的增大而减小;④不等式kx+b<0的解集是x<2.其中正确的个数是()A.1B.2C.3D.410.甲、乙两车将一批抗疫物资从A地运往B地,两车各自的速度都保持匀速行驶,甲、乙两车离A地的距离s(km)与甲车行驶时间t(h)之间的函数关系如图所示,则下列结论:①A,B两城相距240千米;②乙车比甲车晚出发0.5小时,却早到0.5小时;③乙车行驶的速度是km/h;④乙车在A、B两地的中点处追上甲车.其中正确的结论有()A.1个B.2个C.3个D.4个11.如图1,在矩形ABCD的边AD上取一点E,连接BE.点M,N同时以1cm/s的速度从点B出发,分别沿折线B﹣E﹣D﹣C和线段BC向点C匀速运动.连接MN,DN,设点M运动的时间为ts,△BMN的面积为Scm2,两点运动过程中,S与t的函数关系如图2所示,则当点M在线段ED上,且ND平分∠MNC时,t的值等于()A.2+2B.4+2C.14﹣2D.12﹣212.如图,一次函数l:y=﹣x+2的图象与x轴、y轴分别交于A、B两点,以A为直角顶点在第一象限作等腰直角三角形ABC,则直线BC的解析式是()A.B.C.D.二.填空题(共5小题)13.函数y=+中自变量x的取值范围是.14.已知一次函数y=(1﹣2a)x+a﹣如果函数值y随着自变量x的增大而减小,那么在平面直角坐标系中,这个函数图象与y轴的交点M位于y轴的半轴.(填正或负)15.如图,直线y=kx+b(k≠0)经过点A(﹣3,2),则关于x的不等式kx+b<2解集是.16.如图,已知函数y=2x﹣1和y=5﹣x的图象交于点B,则二元一次方程组的解是.17.A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发、途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地,甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,当乙车修好时,甲车行驶了小时.三.解答题(共6小题)18.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶,设两车出发时间为x(单位:h),货车、轿车与甲地的距离为y1(单位:km),y2(单位:km),图中的线段OA、折线BCDE分别表示y1,y2与x之间的函数关系.(1)货车行驶的速度为km/h;(2)求DE所在直线的函数解析式;(3)直接写出两车出发多长时间相距200km.19.已知y=y1+y2,其中y1与x﹣3成正比例,y2与x2+1成正比例,且当x=0时,y=﹣2,当x=1时,y=4.(1)求y与x的函数关系式;(2)求出该函数与坐标轴的交点坐标.20.如图,已知点A(3,0),B(0,2).(1)求直线AB所对应的函数解析式;(2)若C为直线AB上一点,当△OBC的面积为6时,求点C的坐标.21.一次函数的图象经过点A(2,1)和点B(0,2).(1)求一次函数的表达式;(2)利用图象回答下列问题:①一次函数的图象与x轴的交点坐标是.②当x,时,y≥3.22.北京冬奥会期间,某商店为专注冬奥的商机决定购进A、B两款“冰墩墩、雪容融”纪念品,若购进A款纪念品4件,B款纪念品6件,需要960元;若购进A款纪念品2件,B款纪念品5件,需要640元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进两种纪念品共100件,考虑到资金周转,用于购买这100件纪念品的资金不能超过9920元,那么该商店最多可购进A纪念品多少件.(3)若销售每件A种纪念品每件可获利润30元,B种纪念品每件可获利润20元,在(2)中的各种进货方案中,哪一种方案获利最大?最大利润是多少元?23.小婳家周末驾车游玩,早上8:00从家出发,2.5h后到达A景区,一家人在A景区附近游玩、吃饭,2h后,再次出发,0.5h后到达B景区,在B景区游玩2h,之后给汽车加油10L(给汽车加油的时间忽略不计),然后一家人驾车原路返回.已知整个过程中汽车行驶速度不变,汽车耗油情况如下表所示,汽车油箱内油量与行驶时间的关系图象如下:里程(km)010*******…剩余油量(L)605244…(1)补全表格;(2)小婳家到A景区的路程为km;车速为km/h;(3)在小婳一家从家到A景区这段路程内,求剩余油量与时间之间的关系式及a的值;(4)若小婳需要在19:00去家附近的画室上素描课,她能否准时上课?回到家时汽车油箱内剩余的油量是多少?。

一次函数测试题及答案

一次函数测试题及答案

一次函数测试题及答案一、选择题1. 下列函数中,属于一次函数的是()A. f(x) = 2x^2 + 3x - 4B. f(x) = 4x - 1C. f(x) = √x + 2D. f(x) = 3/x答案:B2. 若一次函数y = kx + b在点P(-1, 3)上的函数值为3,则k和b的值分别为()A. k = 3, b = 1B. k = -3, b = 1C. k = 1, b = 3D. k = -1, b = 3答案:C3. 由点(-3, 2)和(1, 4)所确定的直线方程为()A. y = 2x + 4B. y = 0.5x + 2.5C. y = -0.5x + 4D. y = -2x + 4答案:A二、填空题1. 一次函数y = 2x + 1的x和y的交点为()答案:(-0.5, 0)2. 若一次函数y = kx + 3在点(2, 5)上的函数值为5,则k的值为()答案:13. 若直线y = 3x + b过点(-1, 1),则b的值为()答案:4三、解答题1. 已知一次函数y = 2x - 3和y = kx + 1,若两个方程有且只有一个解,则k的取值范围是多少?解答:两个方程有且只有一个解,即方程组无穷多解。

当且仅当两条直线重合时,才会满足要求。

由于y = 2x - 3和y = kx + 1均为一次函数,只有斜率相等、截距相等时,两条直线才会重合。

因此,k的取值范围为2。

2. 一根电线经过两个塔,从第一个塔底部拉出时与水平面夹角为30度,从第二个塔底部拉出时与水平面夹角为60度,两个塔之间的距离为10米。

假设电线处于水平状态,求电线的长度。

解答:设第一个塔底部坐标为A(0,0),第二个塔底部坐标为B(10,0)。

设电线的长度为L,线与水平面的夹角为α。

根据三角函数的定义,可以得出以下关系:tan30° = L / 10 => L = 10 * tan30° => L ≈ 5.77米3. 一辆汽车从A地到B地开了2小时,途中平均速度为60千米/小时。

一次函数测试题及答案

一次函数测试题及答案

一次函数 测试题(一)一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。

2、若函数y= -2x m+2是正比例函数,则m 的值是 。

3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。

5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。

6、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。

7、已知点A(-21,a), B(3,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。

8、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。

9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。

10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。

(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。

二、选择题11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x 中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个12、下面哪个点不在函数32+-=x y 的图像上( )(A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1)13、直线y=kx+b 在坐标系中的位置如图,则( ) (第13题图)(A)1,1 2k b=-=-(B)1,1 2k b=-=(C)1,1 2k b==-(D)1,1 2k b== 14、下列一次函数中,随着增大而减小而的是()(A)xy3=(B)23-=xy(C)xy23+=(D)23--=xy15、已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0(第15题图)16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m的取值范围是( )(A)34m<(B)314m-<<(C)1m<-(D)1m>-17、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( )(A) (B) (C)(D)18、下图中表示一次函数y=mx+n与正比例函数y=m nx(m ,n是常数,且mn<0)图像的是( ).三、计算题19、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;20、已知y -2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a的值21、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= 12x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。

初中数学人教版八年级下册第十九章 一次函数19.3 课题学习 选择方案-章节测试习题(2)

初中数学人教版八年级下册第十九章 一次函数19.3 课题学习 选择方案-章节测试习题(2)

章节测试题1.【题文】为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.【答案】见解答.【分析】本题考查了一次函数与的应用.【解答】(1)由题意和图象可设:手机支付金额y(元)与骑行时间x(时)的函数解析式为:,由图可得:,解得,∴手机支付金额y(元)与骑行时间x(时)的函数解析式为:.(2)由题意和图象可设会员支付y(元)与骑行时间x(时)的函数解析式为:,由图可得:,由,可得,∴图中两函数图象的交点坐标为(2,1.5),又∵,结合图象可得:当时,李老师用“手机支付”更合算;当时,李老师选择两种支付分式花费一样多;当时,李老师选择“会员支付”更合算.2.【题文】某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费.(1)设工厂每月生产x件产品.用方案一处理废渣时,每月利润为______元;用方案二处理废渣时,每月利润为______元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元?(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【答案】见解答.【分析】本题考查了一次函数与的应用.【解答】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.3.【答题】若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x 的函数关系式及自变量x的取值范围是()A. y=50-2x(0<x<50)B. y=50-2x(0<x<25)C. y=(50-2x)(0<x<50)D. y=(50-x)(0<x<25)【答案】D【分析】本题考查了一次函数的应用.【解答】由题意得2y+x=50,∴y =(50-x),且0,选D.4.【答题】在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是()A. 820元B. 840元C. 860元D. 880元【答案】C【分析】本题考查了一次函数的应用.【解答】设购买量y吨与单价x元之间的一次函数关系式为y=kx+b ,由题意,得,解得,解析式为:y=-10x+9000,当y=400时,400=-10x+9000,,选C.5.【答题】春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开放海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,请你选择一种交通工具()运输工具运输单位(元/吨·千米)冷藏单位(元/吨·小时)过路费(元)装卸及管理费(元)汽车 2 5 200 0A. 当运输货物重量为60吨,选择汽车B. 当运输货物重量大于50吨,选择汽车C. 当运输货物重量小于50吨,选择火车D. 当运输货物重量大于50吨,选择火车【答案】D【分析】本题考查了一次函数的应用.【解答】(1)y1=2×120x+5×(120÷60)x+200=250x+200,y2=1.8×120x+5×(120÷100)x+1600=222x+1600;(2)若y1=y2,则x=50,∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些,选D.6.【答题】学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()A. 270B. 255C. 260D. 265【答案】D【分析】本题考查了一次函数的应用.【解答】由题中的表格知,y是x的一次函数,可设y与x的关系为y=kx+b,由题意得,解得,∴y与x之间的函数关系式为y=5x+50,当x=43时,y=265,选D.7.【答题】如图,小明从A地前往B地,到达后立刻返回,他与A地的距离千米和所用时间小时之间的函数关系如图所示,则小明出发6小时后距A地()A. 120千米B. 160千米C. 180千米D. 200千米【答案】B【分析】本题考查了一次函数的应用.【解答】设当时,y与x的函数关系式为,,得,即当时,y与x的函数关系式为,当时,,即小明出发6小时后距A地160千米,选B.8.【答题】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400m,先到终点的人原地休息.已知甲先出发4min,在整个步行过程中,甲、乙两人的距离y(m)与甲出发的时间t(min)之间的关系如图所示,以下结论:①甲步行的速度为60m/min;②乙走完全程用了32min;③乙用16min追上甲;④乙到达终点时,甲离终点还有300m,其中正确的结论有______(填序号).【答案】①【分析】本题考查了一次函数的应用.【解答】由图可得,甲步行的速度为:240÷4=60米/分,故①正确;乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误;乙追上甲用的时间为:16-4=12(分钟),故③错误;乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故答案为:①.9.【答题】某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:卖出价格x(元/件)50 51 52 53销售量P(件)500 490 480 470则P与x的函数关系式为______,当卖出价格为60元时,销售量为______件.【答案】P=-10x+1000;400【分析】本题考查了一次函数的应用.【解答】(1)P与x成一次函数关系,设函数关系式为P=kx+b,则,解得,∴P=−10x+1000,经检验可知:当x=52,P=480,当x=53,P=470时也适合这一关系式,∴所求的函数关系为P=−10x+1000.(2)当x=60时,P=−10×60+1000=400,故答案为:P=−10x+1000;400.10.【题文】某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神州行”不缴月租费,每通话1min付费0.6元.若一个月内通话xmin,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数解析式;(2)一个月内通话多少分钟,两种通讯业务费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯业务合算些?【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)y1=50+0.4x,y2=0.6x.(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250.∴通话250分钟两种费用相同.(3)令x=300,则y1=50+0.4×300=170,y2=0.6×300=180,∴选择全球通合算.11.【题文】甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x.(2)由题意,得:1680+80x≥1920+64x,解得:x≥15.答:购买的椅子至少15张时,到乙厂家购买更划算.12.【题文】为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)由题意和图象可设:手机支付金额y(元)与骑行时间x(时)的函数解析式为:,由图可得:,解得,∴手机支付金额y(元)与骑行时间x(时)的函数解析式为:.(2)由题意和图象可设会员支付y(元)与骑行时间x(时)的函数解析式为:,由图可得:,由,可得,∴图中两函数图象的交点坐标为(2,1.5),又∵,结合图象可得:当时,李老师用“手机支付”更合算;当时,李老师选择两种支付分式花费一样多;当时,李老师选择“会员支付”更合算.13.【题文】某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费.(1)设工厂每月生产x件产品.用方案一处理废渣时,每月利润为______元;用方案二处理废渣时,每月利润为______元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元?(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.14.【题文】水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元.(1)问小李分别购买精品盒与普通盒多少盒?(2)小李经营着甲、乙两家店铺,每家店铺每天部能售出精品盒与普通盒共30盒,并且每售出一盒精品盒与普通盒,在甲店获利分别为30元和40元,在乙店获利分别为24元和35元.现在小李要将购进的60盒弥猴桃分配给每个店铺各30盒,设分配给甲店精品盒a盒,请你根据题意填写下表:精品盒数量(盒)普通盒数量(盒)合计(盒)甲店a30乙店30小李希望在甲店获利不少于1000元的前提下,使自己获取的总利润W最大,应该如何分配?最大的总利润是多少?【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)设小李购买精品盒x盒,普通盒y盒,根据题意得,解得,答:小李购买精品盒35盒,普通盒25盒.(2)由(1)可知精品盒共35盒,普通盒共25盒,则分给甲店精品盒a盒,则分给乙店精品盒35-a盒,甲店分得普通盒30-a盒,乙店分得普通盒a-5盒.故答案为:30-a;35-a;a-5.获取的总利润W=30a+40×(30-a)+24×(35-a)+35×(a-5)=a+1865,∵甲店获利不少于1000元,∴30a+40×(30-a)=1200-10a≥1000,解得:a≤20,由W=a+1865的增减性可知:当a=20时,W取最大值,最大值为20+1865=1885(元),此时30-a=10;35-a=15;a-5=15.答:甲店分精品盒20盒普通盒10盒,乙店分精品盒15盒普通盒15盒,才能保证总利润最大,总利润最大为1885元.15.【题文】某中学为丰富学生的课余生活,准备购买一批每副售价50元的羽毛球拍和每筒售价10元的羽毛球,购买时,发现商场正在进行两种优惠促销活动.活动甲:买一副羽毛球拍送一筒羽毛球;活动乙:按购买金额打9折付款.学校欲购买这种羽毛球拍10副,羽毛球x(x≥.10)筒.(1)写出每种优惠办法实际付款金额y甲(元),y乙(元)与x(筒)之间的函数关系式;(2)比较购买同样多的羽毛球时,按哪种优惠办法付款更省钱?(3)如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种羽毛球拍10副和羽毛球60筒设计一种最省钱的购买方案.【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)y甲=50×10+10(x-10)=10x+400,y乙=(10x+50×10)×0.9=9x+450,即:y甲=10x+400,y乙=9x+450.(2)由y甲=y乙得10x+400=9x+450,解得x=50;由y甲<y乙得10x+400<9x+450,解得x<50;由y甲>y乙得10x+400>9x+450,解得x>50.∴当10≤x<50时,按活动甲更省钱,当x=50时,两种活动付款一样,当x>50时,按活动乙更省钱.(3)甲活动方案:y甲=10x+400=60×10+400=1000(元);乙活动方案:y乙=9x+450=9×60+450=990(元);两种活动方案买:50×10+50×10×0.9=950(元).∴按甲活动方案购买10副羽毛球拍,其余按乙活动方案购买最省钱,共花950元.。

最新人教版初中数学八年级数学下册第四单元《一次函数》测试(有答案解析)(2)

最新人教版初中数学八年级数学下册第四单元《一次函数》测试(有答案解析)(2)

一、选择题1.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y(米)与出发时间x(分)之间的函数关系如图所示,则下列说法正确的是()A.小明到达球场时小华离球场3150米B.小华家距离球场3500米C.小华到家时小明已经在球场待了8分钟D.整个过程一共耗时30分钟2.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20210x yy x+-=⎧⎨-+=⎩B.20210x yy x-+=⎧⎨+-=⎩C.20210x yy x-+=⎧⎨--=⎩D.2010x yy x++=⎧⎨+-=⎩3.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.4.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A .B .C .D .5.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( )A .21m -<<-B .21m -≤<-C .322m -≤<-D .322m -<≤- 6.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m <B .12m >C .m 1≥D .1m <7.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定 8.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D . 9.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,02⎛⎫ ⎪ ⎪⎝⎭C .10,010⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭ 10.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =- 11.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .12.甲、乙两辆汽车分别从A 、B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为()y km 甲、()y km 乙,甲车行驶的时间为(h)x ,y 甲、y 乙与x 之间的函数图象如图所示,结合图象下列说法不正确的是( )A .甲车的速度是80/km hB .乙车休息前的速度为100/km hC .甲走到200km 时用时2.5hD .乙车休息了1小时二、填空题13.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.14.某生物小组观察一植物生长,得到植物高度y (位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行x 轴)请你算一下,该植物的最大高度是________厘米.15.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.16.如表,y 是x 的一次函数,则m 的值为_____________.x 1-0 1 y3 m0 17.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.18.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.19.某一列动车从A 地匀速开往B 地,一列普通列车从B 地匀速开往A 地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.根据图像进行探究,图中t 的值是__.20.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.三、解答题21.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?22.设一次函数y 1=kx ﹣2k (k 是常数,且k≠0).(1)若函数y 1的图象经过点(﹣1,5),求函数y 1的表达式.(2)已知点P(x 1,m )和Q(﹣3,n )在函数y 1的图象上,若m >n ,求x 1的取值范围. (3)若一次函数y 2=ax+b (a≠0)的图象与y 1的图象始终经过同一定点,探究实数a ,b 满足的关系式.23.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y (千米)与甲出发时间x (小时)的函数关系如图所示.(1)求甲、乙两人的速度.(2)求OC 和BD 的函数关系式.(3)求学校和博物馆之间的距离.24.如图,A ,B ,C 为三个超市,在A 通往C 的道路(粗实线部分)上有一D 点,D 与B 有道路(细实线部分)相通,A 与D ,D 与C ,D 与B 之间的路程分别为25km ,10km ,5km ,现计划在A 通往C 的道路上建一个配货中心H ,每天有一辆货车只为这三个超市送货,该货车每天从H 出发,单独为A 送货1次,为B 送货1次,为C 送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H ,设H 到A 的路程为km x ,这辆货车每天行驶的路程为km y .(1)用含的代数式填空:当025x ≤≤时:货车从H 到A 往返1次的路程为2km x ,①货车从H 到B 往返1次的路程为_______km .②货车从H 到C 往返2次的路程为_______km ,当2535x <≤时,这辆货车每天行驶的路程y =__________.(2)求y 与x 之间的关系式;(3)配货中心H 建在哪段,这辆货车每天行驶的路程最短?最短路程是多少?(直接写出结果,不必写出解答过程)25.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x 千米,应付给个体车主的月费用是1y 元,应付给出租车公司的月租费用是2y 元,1y ,2y 分别与x 之间的函数关系图象如图,观察图象回答下列问题:(1)求1y ,2y 分别与x 之间的函数关系式;(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2400千米,那么这个单位租哪一家的车合算,并说明理由?26.如图直线:x 6=+l y k 与x 轴、y 轴分别交于点B C 、两点,点B 的坐标是()8,0-,点A 的坐标为()6,0-.(1)求k 的值.(2)若点P 是直线l 上的一个动点且在第二象限,当PAC ∆的面积为3时,求出此时点P 的坐标.(3)在x 轴上是否存在点M ,使得BCM ∆为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先设小华的速度为x 米/分,再根据小华返回时与小明相遇时所走的路程之和=小华家与球场之间的距离列出方程求出小华的速度为450米/分,再根据图象求出小明到达球场的时间,从而求出当小时到达球场时小华从球场出发返回家所用的时间为7分钟,所以根据“路程=速度×时间”即可求出当小时到达球场时小华离球场的距离.【详解】解:设小华的速度为x 米/分,则依题意得:(20-18)x+180×20=10x解得:x=450∴(450×10-3600)÷180=5(分)∴当小明到达球场时小华离球场的距离为:450×(5+2)=3150(米).故A 选项正确;小华家距球场450×10=4500米,故B 选项错误;小华到达家时小明在球场呆的时间为:10+8+10-4500÷180=3(分)故C 选项错误;整个过程耗时10+8+10=28(分)故D 选项错误.故选A .【点睛】本题考查了从函数图象上获取信息的能力,注意观察函数图象,设出合适的未知数求出小华的速度是解题的关键.2.B解析:B【分析】由图易知两条直线分别经过(-1,1)、(1,0)两点和(0,2)、(-1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题.【详解】由图知,设经过(-1,1)、(1,0)的直线解析式为y=ax+b (a≠0).将(-1,1)、(1,0)两点坐标代入解析式中,解得1-212a b ⎧=⎪⎪⎨⎪=⎪⎩故过(-1,1)、(1,0)的直线解析式y=1122x -+,对应的二元一次方程为2 y +x -1=0. 设经过(0,2)、(-1,1)的直线解析式为y=kx+h (k≠0).将(0,2)、(-1,1)两点代入解析式中,解得12k h =⎧⎨=⎩ 故过(0,2)、(-1,1)的直线解析式为y=x+2,对应的二元一次方程为x-y+2=0. 因此两个函数所对应的二元一次方程组是+20210x y y x -=⎧⎨+-=⎩故选择:B【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式. 3.B解析:B【分析】根据一次函数y=kx+b 的图象经过第一、二、四象限,可以得到k 和b 的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k 中b ,-k 的正负,从而得到图象经过哪几个象限,从而可以解答本题.【详解】解:∵一次函数y=kx+b 的图象经过第一、二、四象限,∴k <0,b >0,∴b >0,-k >0,∴一次函数y=bx-k 图象第一、二、三象限,故选:B .【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.4.A解析:A【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:①当mn >0,m ,n 同号,同正时y =mx +n 过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y =mx +n 过1,3,4象限或2,4,1象限.故选:A .【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.5.D解析:D【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-. 【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点,此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点,此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-. 故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.6.A解析:A【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m的取值范围.【详解】解:∵点P(-1,y1)、点Q(3,y2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m-1<0,解得m<1,2故选:A.【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.7.B解析:B【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y在y乙上面,即y甲>y乙,甲∴当游泳次数为30次时,选择乙种方式省钱.故选:B.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.8.A解析:A【分析】根据△ABC为等边三角形,得到∠A=∠C=∠ABC=60︒,利用DE//AC,证得△DEB是等边三角形,求出DE=BD=2-x,利用EF⊥DE,求出=,再根据面积公式求出函数解析式,依据函数的性质确定函数图象.【详解】∵△ABC为等边三角形,∴∠A=∠C=∠ABC=60︒,∵DE//AC,∴∠DEB=∠C=60︒,∠EDB=∠A=60︒,∴∠DEB=∠EDB=∠DBE=60︒,∴△DEB是等边三角形,∴DE=BD=2-x,∵EF ⊥DE ,∴∠DEF=90︒,∴∠DFE=30,∴DF=2DE=4-2x, ∴EF=223DF DE =-(2-x),∴△DEF 的面积为y=213(2)3(2)(2)22x x x -⋅-=-(0<x<2), ∵此函数为二次函数,开口向上,对称轴为直线x=2,且0<x<2,故选:A .【点睛】此题考查等边三角形的判定及性质,平行线的性质,勾股定理,直角三角形30度角所对的直角边等于斜边的一半,函数的性质,函数图象,根据题意分别求出DE 、EF ,由此得到函数解析式是解题的关键.9.A解析:A【分析】作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,依据待定系数法即可得到直线A'D 的解析式,进而得出点P 的坐标为2,03⎛⎫ ⎪⎝⎭. 【详解】解:如图所示,作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,∴AP+DP=A'P+DP ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,∵AC=BC=2,AB 的中点为D ,∴A (0,2),B (2,0),D (1,1),A'(0,-2),设直线A'D 的解析式为y=kx+b (k≠0),则12k b b =+⎧⎨-=⎩,解得:32k b =⎧⎨=-⎩, ∴y=3x -2,当y=0时,x=23, ∴点P 的坐标为(23,0), 故选:A .【点睛】本题主要考查了最短路线问题以及等腰直角三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.B解析:B【分析】一次函数y kx b =+中,当0k >时y 的值随着x 值的增大而增大;当0k <时y 的值随着x 值的增大而减小,据此对各选项进行解答即可.【详解】解:A .∵y=-x-1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; B .∵y=0.3x 中k=0.3>0,∴y 的值随着x 值的增大而增大,故本选项正确;C .∵y=-x+1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误;D .∵y=-x 中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误.故选:B .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.11.A解析:A【分析】先作出合适的辅助线,再证明△ADC 和△AOB 的关系,即可建立y 与x 的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x ,OA=1,∠AOB=90°,∠BAC=90°,AB=AC ,点C 的纵坐标是y , 作AD ∥x 轴,作CD ⊥AD 于点D ,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC ,在△OAB 和△DAC 中,AOB ADC OAB DAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OAB ≌△DAC (AAS ),∴OB=CD ,∴CD=x ,∵点C 到x 轴的距离为y ,点D 到x 轴的距离等于点A 到x 的距离1,∴y=x+1(x >0).故选A .【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键. 12.D解析:D【分析】根据题意和函数图象可以判断题目中的各个选项是否正确,从而可以解答本题;【详解】解:由图象可得,甲车的速度为:400580/km h ÷=,故A 正确;乙车休息前行驶的速度为:2002100/km h ÷=,故B 正确;甲车与乙车相遇时,甲车行驶的时间为:(400200)80 2.5h -÷=,故C 正确; 乙车休息的时间为2.520.5h -=,故D 错误.故选:D .【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答;二、填空题13.1<x <4【分析】先解不等式0<mx+n 结合图像可知上的点在轴的上方可得<再解mx+n <kx+b 结合图像可知上的点在的上方可得>从而可得0<mx+n <kx+b 的解集【详解】解:不等式0<mx+n 上的解析:1<x <4【分析】先解不等式0<mx+n ,结合图像可知2l 上的点在x 轴的上方,可得x <4,再解mx+n <kx+b ,结合图像可知1l 上的点在2l 的上方,可得x >1,从而可得0<mx+n <kx+b 的解集. 【详解】 解: 不等式0<mx+n ,2l ∴上的点在x 轴的上方,()40C ,, x <4,mx+n <kx+b ,1l ∴上的点在2l 的上方,()1,A p , x >1,∴ 不等式组0<mx+n <kx+b 的解集为1<x <4,故答案为:1<x <4,【点睛】本题考查的是一次函数与不等式组的关系,掌握利用一次函数的图像解不等式组是解题的关键.14.16【分析】根据平行线间的距离相等可知50天后植物的高度不变也就是停止长高设直线AC 的解析式为y=kx+b (k≠0)然后利用待定系数法求出直线AC 的解析式再把x=50代入进行计算即可得解【详解】设直解析:16【分析】根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高,设直线AC 的解析式为y=kx+b (k≠0),然后利用待定系数法求出直线AC 的解析式,再把x=50代入进行计算即可得解.【详解】设直线AC 的解析式为y=kx+b (k≠0),∵经过点A (0,6),B (30,12),∴63012b k b =⎧⎨+=⎩,解得156k b ⎧=⎪⎨⎪=⎩.所以,直线AC 的解析式为165y x =+(0≤x≤50), 当x=50时,15065y =⨯+=16cm . 答:该植物最高长16cm .【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.15.【分析】设点P 的坐标为过点B 作轴于点C 由旋转的性质得到再根据角的和差解得继而证明由全等三角形对应边相等解得进一步得到点的坐标为由此知点在直线上运动设直线与x 轴交于点E 与y 轴交于点F 作点O 关于直线的对解析:【分析】设点P 的坐标为()0,m ,过点B 作BC y ⊥轴于点C ,由旋转的性质得到PA PB =,90BPA ∠=︒再根据角的和差解得PBC APO ∠=∠,继而证明(AAS)BPC PAO △≌△,由全等三角形对应边相等解得,BC OP PC AO ==,进一步得到点B 的坐标为(,8)m m +,由此知点B 在直线8y x =+上运动,设直线8y x =+与x 轴交于点E ,与y 轴交于点F ,作点O 关于直线8y x =+的对称点为O ',连接O F ',O E ',O A ',O B ',由三角形三边关系可得O B BA '+的最小值为O A ',继而证明四边形O EOF '为正方形,得到O '的坐标为(8,8)-,再利用勾股定理解得O A '的长,即可解题.【详解】解:∵点P 为y 轴上一动点,∴设点P 的坐标为()0,m ,如图所示,过点B 作BC y ⊥轴于点C ,∵线段PA 绕着点P 按逆时针方向旋转90°到PB ,,90PA PB BPA ∴=∠=︒,又BC y ⊥轴,90POA ∠=︒,90BCP POA ∴∠=∠=︒,∴在BCP 中,18090BPC PBC BCP ∠+∠=︒-∠=︒,又18090BPC APO BPA ∠+∠=-∠=︒︒,PBC APO ∴∠=∠, ∴在BPC △和PAO 中,BCP POA PBC APO PB AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BPC PAO ∴△≌△,,BC OP PC AO ∴==,又(0,),(8,0)P m A ,,8BC OP m PC AO ∴====,∴点B 的坐标为(,8)m m +,设,8x m y m ==+,8y x ∴=+,∴点B 在直线8y x =+上运动,如图所示,设直线8y x =+与x 轴交于点E ,与y 轴交于点F ,作点O 关于直线8y x =+的对称点为O ',连接O F ',O E ',O A ',O B ',则O B OB '=,EF 垂直平分OO ',BO BA O B BA '∴+=+,又O B BA O A ''+,O B BA '∴+的最小值为O A ',即BO BA +的最小值为O A ',又8OE OF ==,45FEO ∴∠=︒,∴四边形O EOF '为正方形, ∴O '的坐标为(8,8)-,O A '∴===故BOBA +的最小值为,故答案为【点睛】本题考查轴对称—最短路线问题、坐标与图形变化—旋转、全等三角形的判定与性质、勾股定理、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键. 16.【分析】首先利用待定系数法求得一次函数的解析式然后把x=0代入解析式即可解决问题【详解】解:设一次函数的解析式为y=kx+b 则有解得∴一次函数的解析式为当x=0时m=故答案为:【点睛】本题考查了一次解析:32【分析】首先利用待定系数法求得一次函数的解析式,然后把x=0代入解析式即可解决问题.【详解】解:设一次函数的解析式为y=kx+b ,则有30k b k b -++⎧⎨⎩==, 解得3232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数的解析式为3322y x =-+, 当x=0时,m=32. 故答案为:32. 【点睛】本题考查了一次函数图象上点的坐标特征和用待定系数法求一次函数的解析式,能求出一次函数的解析式是解此题的关键.17.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟 解析:()15,0+()15,0-()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =,22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2), 故答案为:()15,0+、()15,0-、()0,2. .【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.18.22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1A2A3的坐标即可根据正方形的性质得出C1C2C3的纵坐标根据点的坐标的变化可找出变化规律:点Cn 的纵坐标为2n-1再代入n解析:22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A 1,A 2,A 3的坐标,即可根据正方形的性质得出C 1,C 2,C 3的纵坐标,根据点的坐标的变化可找出变化规律:点C n 的纵坐标为2n-1,再代入n=2020即可得出结论.【详解】解:作1C D ⊥x 轴于D ,当x=0时,y=x+1=1,当y=0时,x=-1,∴点A 1的坐标为(0,1),点A 的坐标为(-1,0),∵四边形A 1B 1C 1A 2为正方形,∴∠111A AO A B A ∠==∠1145C B D =︒,∴11111A A A B C B ==,∴Rt △1A AO ≅Rt △11C B D ,∴11A O C D =,∴点C 1的纵坐标与点A 1的纵坐标相同,都为1,当x=1时,y=x+1=2,∴点A 2的坐标为(1,2).同理,点C 2的纵坐标为2.同理,可知:点A 3的坐标为(3,4),点C 3的纵坐标为4.……,∴点C n 的纵坐标为2n-1,∴点C 2020的纵坐标为22019.故答案为:22019.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律:点C n 的纵坐标为2n-1是解题的关键.19.4【分析】根据题意和函数图象中的数据:AB 两地相距900千米两车出发后3小时相遇普通列车全程用12小时即可求得普通列车的速度和两车的速度和进而求得动车的速度解答即可【详解】由图象可得:AB 两地相距9【分析】根据题意和函数图象中的数据:AB 两地相距900千米,两车出发后3小时相遇,普通列车全程用12小时,即可求得普通列车的速度和两车的速度和,进而求得动车的速度,解答即可.【详解】由图象可得:AB 两地相距900千米,两车出发后3小时相遇, 普通列车的速度是:90012=75千米/小时, 动车从A 地到达B 地的时间是:900÷(9003-75)=4(小时), 故填:4.【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.20.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k ,再求出b ,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b ,∵y=2x+b 的图象经过A (4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.三、解答题21.(1)y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)30本【分析】(1)根据题意,可以分别写出y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式; (2)将y=24分别代入甲和乙的函数解析式,求出相应的x 的值,然后比较大小,即可得到最多可以买多少本练习本.解:(1)由题意可得,y 甲=10×1+(x ﹣10)×1×0.7=0.7x+3,y 乙=x×1×0.85=0.85x ,即y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)当y 甲=24时,24=0.7x+3,解得x =30,当y 乙=24时,24=0.85x ,解得x≈28,∵30>28,∴小明现有24元,最多可以买30本练习本.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22.(1)151033y x =-+;(2)当k <0时,x 1<﹣3;当k >0时,x 1>﹣3;(3)2a +b =0.【分析】(1)将点(﹣1,5)代入y 1=kx ﹣2k ,求得k 值,即可得出函数解析式;(2)根据一次函数的性质,由k 值判断函数自变量的大小,即可得出结论;(3)根据一次函数y 1=kx ﹣2k 得y 1=k (x ﹣2),可得函数图象经过的定点为(2,0),再将定点坐标代入y 2=ax+b 即可求出实数a ,b 满足的关系式.【详解】解:(1)∵函数y 1的图象经过点(﹣1,5),∴5=﹣k ﹣2k ,解得k =53-, 函数y 1的表达式151033y x =-+; (2)当k <0时,若m >n ,则x 1<﹣3;当k >0时,若m >n ,则x 1>﹣3;(3)∵y 1=kx ﹣2k =k (x ﹣2),∴函数y 1的图象经过定点(2,0),当y 2=ax +b 经过(2,0)时,0=2a +b ,即2a +b =0.【点睛】本题考查了一次函数图象与性质,掌握一次函数的图象与性质并能准确理解题意进行解答是解题的关键.23.(1)甲、乙的速度分别是80千米/小时,40千米/小时;(2)OC 的函数关系式为:80y x =,BD 的函数关系式为:4030y x =+;(3)140千米.【分析】(1)根据函数图像,甲0.75小时行驶60千米,计算得出甲的速度;结合题意,乙行驶60千米时,所用总时间为:(0.750.75)+小时,计算得出乙的速度.(2)观察函数图像,根据A 点坐标,计算得出OC 的函数解析式;根据题意得出A 、B 两点的坐标,用待定系数法求出BD 的函数解析式.(3)设甲行驶时间为x 小时,根据甲乙两人行驶路程相等,列出一元一次方程,计算得出行驶时间,根据“路程=速度×时间”计算得出学校和博物馆之间的距离.【详解】解:(1)甲的速度:600.7580÷=(千米/小时),从8:00到8:45经过0.75小时,乙的速度为:60(0.750.75)40÷+=(千米/小时),甲、乙的速度分别是80千米/小时,40千米/小时.(2)∵根据题意得:A 点坐标为(0.75,60),当乙运动了45分钟后即0.75小时,距离学校:400.7530⨯=(千米),∴B 点坐标为(0,30).∵设直线OC 的函数关系式为1y k x =,将点A 代入得:1600.75k =,解得:180k =,∴直线OC 的函数关系式为80y x =,∵设BD 的函数关系式为2y k x b =+,将A 、B 两点的坐标值代入得:220.7560030k b k b +=⎧⎨⨯+=⎩,解得:24030k b =⎧⎨=⎩, ∴直线BD 的函数关系式为:4030y x =+.(3)∵设甲的行驶时间为x 小时,则乙所用的时间为:0.751 1.75x x ++=+(小时),列方程为:()8040 1.75x x =+ 解得:74x =, 7801404⨯=(千米). ∴学校和博物馆之间的距离是140千米.【点睛】本题考查一次函数的实际应用,从函数图像中获取相关信息是解题关键.24.(1)①602x -;②1404x -;100;(2)2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩;(3)建在CD 段,100km .【分析】(1)根据当0≤x ≤25时,结合图象分别得出货车从H 到A ,B ,C 的距离,进而得出y 与x 的函数关系,再利用当25<x ≤35时,分别得出从H 到A ,B ,C 的距离,即可得出y =100;(2)利用(1)的结论可得y 与x 的函数关系;(3)根据一次函数的性质解答即可.【详解】解:(1)①如图1,当025x ≤≤时,货车从H 到A 往返1次路程为22km AH S x =货车从H 到B 往返1次的路程为:()22(255)HD DB S S x +=-+2(30)x =-602x =-;②货车从H 到C 往返2次的路程为:()44(2510)DH CD S S x +=-+4(35)x =-1404x =-,如图2,25DH S x =-,25,10(25)35DH CH S x S x x =-=--=-,∴2535x <≤时,货车从H 到A 往返1次路程为:2x ,货车从H 到B 往返1次的路程为:2(525)240x x +-=-,货车从H 到C 往返2次的路程为:4(35)1404x x -=-,∴这辆货车每天行驶的路程为:22401404100km y x x x =+-+-=.(2)由(1)可得:025x ≤≤时,26021404y x x x =+-+-2004x =-,2535x <≤时,100y =,∴2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩.(3)由②得,025x ≤≤时,4200y x =-+,2535x <≤时,100y =,如图所示,由图象可知,配货中心建在CD 段时,这辆货车每天行驶的路程最短为100km .【点睛】此题主要考查了一次函数的应用,利用已知分别表示出从P 到A ,B ,C ,D 距离是解题关键.25.(1)143y x =,2210003y x =+;(2)当每月行驶1500千米时,租两家的费用相同;(3)当每月行驶的路程为2400千米时,选择出租车公司合算.【分析】 (1)1y 是正比例函数,2y 是一次函数,利用待定系数法求解即可;(2)根据函数图象分析即可;(3)当路程为2400千米时,求出1y ,2y ,比较大小即可;【详解】解:(1)设11y k x =,根据题意,得120001500k =,解得143k =, ∴143y x =, 设22y k x b =+,根据题意,得,1000b =,①220001500k b =+②,将①代入②得223=k , ∴2210003y x =+; (2)当每月行驶1500千米时,租两家的费用相同. (3)当2400x =时,14240032003y =⨯=(元), 222400100026003y =⨯+=(元),12y y >, 所以,当每月行驶的路程为2400千米时,选择出租车公司合算.。

一次函数测试(二)

一次函数测试(二)

一次函数测试2一、选择题1.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y =31-x +b 上,则y 1,y 2,y 3的值的大小关系是( ) A .y 1>y 2>y 3;B .y 1<y 2<y 3;C .y 3>y 1>y 2;D .y 3<y 1<y 2;2.在下列各关系式中,y 不是x 的函数的是( )A .y =x 2B .y =12x + C .│y │2=x D .y =│x │ 3.对下列函数(1)y =x +1,(2)y =x +x 0,(3)y1的说法中正确的是( )A .(1)和(2)是同一函数,B .(1)和(3)是同一函数,C .(1)、(2)、(3)是同一函数D .都不是同一函数4.当3-=x 时,函数732--=x x y 的函数值为 ( )A .-25B .-7C . 8D .115.某装满水的水池按一定的速度放掉水池的一半水后,停止放水并立即按一定的速度注水;水池注满后,停止注水,又立即按一定的速度放完水池的水,若水池的存水量为V (立方米),放水或存水的时间为t (分钟),则V 与t 的关系的大致图象只能是图中的( )A .;B .;C .;D .;6.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离s (km )和骑行时间t (h )之间的函数关系如图所示,给出下列说法:(1)他们都骑行了20km ;(2)乙在途中停留了0.5h ;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个B .2个C .3个D .4个 7.函数y x 的取值范围是( ) A .x ≥-2且x ≠2且x ≠-1;B .x ≥-2且x ≠2;C .x ≥-2且x ≠-1;D .x ≥-2;8.无论m 为何实数,直线y =2x +m 与y =-x +4的交点不可能在 ( )A .第一象限;B .第二象限;C .第三象限;D .第四象限;9.弹簧的长度y cm 与所挂物体的质量x (kg )的关系是一次函数,图象如图所示,则弹簧不挂物体时的长度是( )A .9cmB .10cmC .10.5cmD .11cm10.已知函数y =(m +2)x -2,要使函数值y 随x 的增大而增大,则m 的取值范围是( )A .m ≥-2B .m >-2C .m ≤-2D .m <-211.下列图形中,表示一次函数y =mx + n 与正比例函数y =mnx (m 、n 为常数,且mn ≠0)的图象的是 ( )12.学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43(原鞋码)的运动鞋,则这双运动鞋的新鞋码是( )A .270B .255C .260D .265二、填空题13.一次函数y =3x +7的图像与y 轴的交点在二元一次方程-•2x +•by =•18•上,•则b =_________.14.已知关于x 的函数同时满足下列三个条件:①函数的图象不经过第二象限;②当x <2时,对应的函数值y <0;③当x <2时,函数值y 随x 的增大而增大.你认为符合要求的函数的解析式可以是: (写出一个即可).15.一次函数y =(1-3k )x +2k -1的图象过原点,则一次函数解析式为____________.16.如果点P (a ,b )关于x 轴的对称点P′在第三象限,那么直线y =ax +b 的图像不经过第_________象限.17.如右图:一次函数y kx b =+的图象经过A 、B 两点,则△AOC 的面积为___________.A B C18.直线32-=x y 可由直线x y 2=向____________平移____________个单位得到.三、解答题19.(1)甲品牌拖拉机开始工作时,油箱中有油30升.如果每小时耗油6升,求油箱中的余油量y (升)与工作时间x (时)之间的函数关系式.(2)如图,线段AB 表示乙品牌拖拉机在工作时油箱中的余油量y (升)与工作时间x (时)之间的函数关系的图象. 若甲、乙两种品牌的拖拉机在售价、质量、性能、售后服务等条件上都一样.根据图象提供的信息,你愿意购买哪种品牌的拖拉机,并说明理由.20.点P′ 是P (-3,5)关于x 轴的对称点,且一次函数过P ′ 和A (1,-2),求此一次函数的表达式,并画出此一次函数的图像.21.有甲、乙两家通讯公司,甲公司每月通话(不区分通话地点)的收费标准如图所示,乙公司每月通话收费如右表所示,为几项收费的总和.⑴①观察图形,写出甲公司用户,月通话时间不超过400 分钟应付的话费;②求出甲公司的用户通话400 分钟后,每分钟的通话费;⑵王先生由于工作需要,从 4 月份开始经常去外市出差,估计每月各种通话费的比例是:本地接听时间:本地拨打时间:外地通话时间=2︰1︰1 ,你认为王先生的每月通话时间不少于多少分钟时,入乙通讯公司更合算?请说明理由.22.如图15-1和15-2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M 重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图15-1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN 成轴对称的图形;(2)如图15-2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt △ABC 向右平移的过程中,请你说明当x 取何值时,y 取得最大值和最小值?最大值和最值分别是多少?为什么?23.已知等腰三角形的周长为20cm ,①写出底边长y cm 与腰长x cm 之间的函数关系(x 为自变量).②写出自变量取值范围.③在直角坐标系中,画出函数图象.24.在同一坐标系内分别画出y =x +1和y =x -1,观察两条直线,能总结出什么规律?再通过解方程组⎩⎨⎧-=-=-11y x y x 验证一下你的猜想.25.在同一直角坐标系内作出一次函数y =23x -21和y =-32x -37图像,直线y =-23x -21与直线y =-32x ON PQM C AB 图15—2 MB 1 A 1AB图15—1-37的交点坐标是多少?你能据此求出方程组⎩⎨⎧-=+-=+732123y x y x 的解吗?26.如图①,在矩形 ABCD 中,AB =10cm ,BC =8cm .点P 从A 出发,沿A 、B 、C 、D 路线运动,到D 停止;点Q 从D 出发,沿 D →C →B →A 路线运动,到A 停止.若点P 、点Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,a 秒时点P 、点Q 同时改变速度,点P 的速度变为每秒b cm ,点Q 的速度变为每秒d cm .图②是点P 出发x 秒后上△APD 的面积S 1(cm 2)与x (秒)的函数关系图象;图③是点Q 出发x 秒后△AQD 的面积S 2(cm 2)与x (秒)的函数关系图象.①) ②)③(1) 参照图②,求a 、b 及图②中c 的值;(2) 求d 的值;(3) 设点P 离开点A 的路程为y 1(cm ),点Q 到点A 还需走的路程为y 2(cm ),请分别写出动点P 、Q 改变速度后y 1、y 2与出发后的运动时间x (秒)的函数关系式,并求出P 、Q 相遇时x 的值.(4) 当点Q 出发 秒时,点P 、点Q 在运动路线上相距的路程为25cm 。

《一次函数》水平测试2

《一次函数》水平测试2

1 第十五章一次函数整章水平测试题一、填一填(每小题5分,共20分) 1.一个一次函数的图象过点(1,2),且y 随x 的增大而增大,则这个函数的解析式是 .(任写一个)2.函数y 1=k 1x ,的图象通过(2,3)点,且与函数y 2=k 2x 的图象关于y 轴对称,那么它们的解析式为y 1=___,y 2=_____.3.某人从甲地出发骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2小时,已知摩托车行驶的路程s(千米)与行驶时间t(小时)之间的函数关系由图象ABCD 给出,若这辆摩托车平均每行驶100千米的耗油量为2升,根据图1中给出的信息,从甲到乙地,这辆摩托车共耗油______升.图14.为了加强公民的节约用水的意识,某市制定了如下节约用水的收费标准:每户每月的用水不超过10吨时,水价为1.2元,超过10吨时,超过部分按每吨1.8元收费.该市某户居民5月份用水x 吨(x>10),应交水费y 元,则y 关于x 的关系式是_______. 二、选一选(每小题5分,共40分)1.结合正比例函数y=4x 的图象回答:当x>1时,y 的取值范围是( ) (A)y<1 (B)1≤y<4 (C) y=4 (D) y>4 2.关于函数y=-2x ,下列判断正确的是( ).(A) 图象必过点(-1,-2) (B) 图象经过第一、三象限 (C)y 随x 的增大而减小 (D)不论x 为何值,总有y<03.点A(-5,y 1)、(-2,y 2)都在直线y=-0.5x 上,则y 1与y 2的关系是( ) (A)y 1≤y 2 (B) y 1=y 2 (C0 y 1<y 2 (D)y 1>y 24. 已知正比例函数 x m y )12(-= 的图象上两点A (1x ,1y ),B (2x ,2y ),当21x x <时,有21y y >,那么的取值范围是( ) (A )21<m (B )21>m (C )2<m (D )0>m 5. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修后,因怕耽误上课,他比修车前加快了骑车速度继续匀速行驶,下面是行驶路程S(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是( )(A) (B) (C) (D)6. 星期天晚饭后,小红从家里出去散步,图3描述了她散步过程中离家的距离s (米)与散步所用时间t (分)之间的函数关系.依据图象,下面描述符合小红散步情景的是( )图3(A )从家出发,到了一个公共阅报栏,看了一会儿报,就回家了(B )从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了 (C )从家出发,一直散步(没有停留),然后回家了(D )从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回7.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),那么这个一次函数的解析式为( ) (A ) y=321-x (B )y=-2x+3 (C )y=3x-2 (D )y=-3x+2 8.拖拉机开始工作时,油箱中有油40升,如果每小时耗油5升,那么工作时,油箱中的余油量Q (升)与 工作时间 t (小时)的函数关系用图像可表示为( )(A ) (B )(C ) (D )三、做一做(8+10+10+12=40分)1.一次函数的表示的直线经过A(1,2)、B(-1,-4),试判断点P(2,5)是否在直线AB上.2.已知正比例函数y=k1x的图象与一次函数y=k2x+b的图象交于点P(3,-6).(1)求k1、k2的值;(2)如果一次函数与轴交于点A,求A点的坐标。

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试(包含答案解析)(2)

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试(包含答案解析)(2)

一、选择题1.已知a >0,b >0,a +b =1,则下列等式可能成立的是( ) A .221a b += B .1ab = C .212a b +=D .2212a b -=2.已知函数22(0)y ax bx c a =+->的图象与x 轴交于()2,0A 、()6,0B 两点,则不等式220cx bx a +-< 的解集为( ) A .(6,2)-- B .11,,62⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭C .11,26--⎛⎫⎪⎝⎭D .11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭3.若,a b ∈R ,且0ab >,则下列不等式中恒成立的是( )A .222a b ab +>B .a b +≥C .11a b +>D .2b aa b+≥ 4.下列函数中,最大值为12的是( )A .22116y x x=+B .yC .241x y x =+D .()422y x x x =+>-+ 5.函数2()f x x bx c =++对任意实数t 满足()(4)f t f t =-,则(1),(2),(4)f f f 的大小关系是( ) A .(1)(2)(4)f f f << B .(2)(1)(4)f f f << C .(4)(2)(1)f f f <<D .(4)(1)(2)f f f <<6.已知不等式20ax bx c ++>的解集是{}41x x -<<,则不等式2(1)(3)0b x a x c -+++>的解集为( )A .{}14x x -<< B .413x x ⎧⎫-<<⎨⎬⎩⎭C .413x x x⎧⎫⎨⎬⎩⎭或 D .{}21x x x -或7.已知2x >,那么函数42y x x =+-的最小值是( ) A .5B .6C .4D .88.若对于任意的x >0,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( )A .a ≥15B .a >15C .a <15D .a ≤159.两个正实数a ,b 满足3a ,12,b 成等差数列,则不等式2134m m a b+≥+恒成立时实数m 的取值范围是( ) A .[]4,3- B .[]2,6- C .[]6,2- D .[]3,4-10.若不等式2210ax ax ++>对任意的x ∈R 恒成立,则实数a 的取值范围是( )A .[)0,1B .[)0,+∞C .(](),01,-∞+∞ D .()0,111.下列命题正确的是( ) A .若a bc c>,则a b > B .若22a b >,则a b >C .若2211a b>,则a b < D <a b <12.若a >b ,则下列不等式一定成立的是( ). A .11a b< B .55a b > C .22ac bc >D .a b >二、填空题13.已知函数2()22b a f x ax x =+-,当[1,1]x ∈-时,1()2f x ≥-恒成立,则+a b 的最大值为________.14.定义,,a a ba b b a b ≥⎧⊗=⎨<⎩,若,0x y >,则222241616xy y x xy x y μ⎛⎫⎛⎫++=⊗ ⎪ ⎪⎝⎭⎝⎭的最小值____________.15.已知函数2()21f x x ax =-+,若对∀(]0,2x ∈,恒有()0f x ≥,则实数a 的取值范围是___________.16.已知正实数m ,n 满足119222m n m n +++=,则2m n +的最小值是_______. 17.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.18.若命题“对任意实数0a >,0b >且4a b +=,不等式41m a b+>恒成立”为假命题,则m 的取值范围为_______.19.一批救灾物资随51辆汽车从某市以/vkm h 的速度匀速直达灾区,已知两地公路线长400km ,为了安全起见,两辆汽车的间距不得小于2800v km ,那么这批物资全部到达灾区,最少需要______.h20.已知函数3()3f x x x =-,若对任意的实数x ,不等式()()(0)f x t f x t t +>+≠恒成立,则实数t 的取值范围__________.三、解答题21.近年来,某西部乡村农产品加工合作社每年消耗电费24万元.为了节能环保,决定修建一个可使用16年的沼气发电池,并入该合作社的电网.修建沼气发电池的费用(单位:万元)与沼气发电池的容积x (单位:米3)成正比,比例系数为0.12.为了保证正常用电,修建后采用沼气能和电能互补的供电模式用电.设在此模式下,修建后该合作社每年消耗的电费C (单位:万元)与修建的沼气发电池的容积x (单位:米3)之间的函数关系为()50kC x x =+(0x ≥,k 为常数).记该合作社修建此沼气发电池的费用与16年所消耗的电费之和为F (单位:万元).(1)解释()0C 的实际意义,并写出F 关于x 的函数关系;(2)该合作社应修建多大容积的沼气发电池,可使F 最小,并求出最小值.(3)要使F 不超过140万元,求x 的取值范围.22.对于四个正数x y z w ,,,,如果xw yz <,那么称()x y ,是()z w ,的“下位序对”. (1)对于23711,,,,试求()27,的“下位序对”; (2)设a b c d ,,,均为正数,且()a b ,是()c d ,的“下位序对”,试判断c a a cd b b d++,,之间的大小关系.23.已知关于x 的不等式2120x mx +-<的解集为(6,)n -. (1)求实数m ,n 的值;(2)正实数a ,b 满足22na mb +=. ①求11a b+的最小值; ②若2160a b t +-≥恒成立,求实数t 的取值范围.24.已知不等式()21460a x x --+>的解集为{}31x x -<<.(1)解不等式()2220x a x a +-->;(2)b 为何值时,230ax bx ++≥的解集为R ?25.已知二次函数()f x 满足()01f =,()()125f x f x x +-=+. (1)求()f x 的解析式;(2)若[]3,1x ∈-,若()25f x m m ≤-恒成立,求实数m 的取值范围.26.已知0a b c d >>>>,ad bc =. (Ⅰ)证明:a d b c +>+; (Ⅱ)证明:a b c b c a a b c a b c >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据已知条件由2()2a b ab +≤可求出2212a b +≥,又由完全平方公式可得221a b +<,即可判断A 、B ;由已知条件可知01b <<,则2b b >,因此22212a b a b +>+≥,可判断C ;由平方差公式可得12a b -=,与1a b +=联立可求出满足条件的a 、b ,故D 可能成立. 【详解】001a b a b >>+=,,2222211()21212()12()222a b a b a b ab ab +∴+=+-=-≥-⋅=-⨯=, 当且仅当12a b ==时等号成立, 又0ab >,222()2121b a b a ab a b +=+-=-<∴,22112a b ≤+<∴,则221a b +=不可能成立; 2211()()224a b ab ≤==+,当且仅当12a b ==时等号成立,故1ab =不可能成立;001a b a b >>+=,,,01b ∴<<,2b b ∴>,22212b a b a +>+≥∴(由A 可知),则212a b +=不可能成立; ()()2212a b a b a b a b -=+-=-=,联立112a b a b +=⎧⎪⎨-=⎪⎩,解得31,44a b ==,满足条件,D 成立. 故选:D2.D解析:D 【分析】利用函数图象与x 的交点,可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,再利用根与系数的关系,转化为4b a =-,12c a =-,最后代入不等式220cx bx a +-<,求解集.【详解】由条件可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,则226b a +=-,26ca⨯=-,得4b a =-,12c a =-, 22201280cx bx a ax ax a ∴+-<⇔---<,整理为:()()21281021610x x x x ++>⇔++>, 解得:16x >-或12x <-, 所以不等式的解集是11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭. 故选:D 【点睛】思路点睛:本题的关键是利用根与系数的关系表示4b a =-,12c a =-,再代入不等式220cx bx a +-<化简后就容易求解.3.D解析:D 【分析】利用基本不等式的性质来逐一判断正误即可. 【详解】对于A ,222a b ab +≥,当且仅当a b =时,等号成立,故A 错误;对于B 、C ,虽然0ab >,只能说明,a b 同号,若,a b 都小于0时,则不等式不成立,故B ,C 错误;对于D ,0ab >,,0b aa b∴>,2b a a b ∴+≥,当且仅当a b =时,等号成立,故D 正确; 故选:D. 【点睛】易错点睛:本题考查基本不等式的相关性质,利用基本不等式求最值时,要注意其必须满足的三个条件:一正、二定、三相等,考查学生的逻辑推理能力,属于基础题.4.C解析:C 【分析】 用排除法求解. 【详解】由于20x >,因此22116y x x=+无最大值,A 错;[0,1]y =,最小值为0,最大值为1,B 错; 2x >-,20x +>,42y x x =++无最大值,D 错, 只有C 正确、 故选:C . 【点睛】关键点点睛:本题考查求函数的最大值.对于单选题可以从简单入手,利用排除法确定正确选项.实际上C 可以用基本不等式求解:24()1x f x x =+,0x =时,(0)0f =,0x ≠时,221()1f x x x =+, 而2212x x +≥,当且仅当1x =±时等号成立,∴10()2f x <≤, 综上有()f x 的值域是1[0,]2,最大值为12. 5.B解析:B 【分析】由题意知()f x 关于2x =对称,结合函数解析式即可判断(1),(2),(4)f f f 的大小. 【详解】由对任意实数t 满足()(4)f t f t =-,知:()f x 关于2x =对称, 由函数2()f x x bx c =++知:图象开口向上,对称轴为22bx =-=, ∴()f x 在[2,)+∞上单调递增,而(1)(41)(3)f f f =-=,∴(2)(1)(4)f f f <<. 故选:B 【点睛】本题考查了二次函数的性质,根据对称性,结合二次函数的性质比较函数值的大小,属于基础题.6.B解析:B 【分析】根据不等式的解集与对应的方程根的关系的关系求得3,4b a c a ==-且0a <,化简不等式为2340x x +-<,结合一元二次不等式的解法,即可求解. 【详解】由题意,不等式20ax bx c ++>的解集是{}41x x -<<, 可得4x =-和1x =是方程20ax bx c ++=的两根,且0a <,所以4141b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,可得3,4b a c a ==-,所以不等式2(1)(3)0b x a x c -+++>可化为23(1)(3)40a x a x a -++->, 因为0a <,所以不等式等价于23(1)(3)40x x -++-<, 即234(1)(34)0x x x x +-=-+<,解得413x -<<, 即不等式2(1)(3)0b x a x c -+++>的解集为413x x ⎧⎫-<<⎨⎬⎩⎭. 故选:B. 【点睛】解答中注意解一元二次不等式的步骤:(1)变:把不等式变形为二次项系数大于零的标准形式; (2)判:计算对应方程的判别式;(3)求出对应的一元二次方程的根,或根据判别式说明方程有没有实根; (4)利用“大于取两边,小于取中间”写出不等式的解集.7.B解析:B 【分析】根据基本不等式可求得最小值. 【详解】 ∵2x >,∴442+24+2622y x x x x =+=+-≥==--,当且仅当422x x =--,即4x =时等号成立.∴y 的最小值是6. 故选:B . 【点睛】本题考查用基本不等式求最值,利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8.A解析:A 【分析】由于x >0,对不等式左侧分子分母同时除以x ,再求出左侧最大值即可求解. 【详解】由题:对于任意的x >0,不等式231xa x x ≤++恒成立,即对于任意的x >0,不等式113ax x≤++恒成立,根据基本不等式:10,335x x x >++≥+=,当且仅当1x =时,取得等号, 所以113x x++的最大值为15, 所以15a ≥. 故选:A【点睛】此题考查不等式恒成立求参数范围,通过转化成求解函数的最值问题,结合已学过的函数模型进行求解,平常学习中积累常见函数处理办法可以事半功倍.9.C解析:C 【分析】由题意利用等差数列的定义和性质求得13a b =+,再利用基本不等式求得112ab,根据题意,2412m m +,由此求得m 的范围. 【详解】解:两个正实数a ,b 满足3a ,12,b 成等差数列, 13a b ∴=+,123ab ∴,112ab∴,∴112ab. ∴不等式2134m m a b ++恒成立,即234a b m m ab++恒成立, 即214m m ab+恒成立. 2412m m ∴+,求得62m -,故选:C . 【点睛】本题主要考查等差数列的定义和性质,不等式的恒成立问题,基本不等式的应用,属于基础题.10.A解析:A 【分析】设函数()221f x ax ax =++,把不等式2210ax ax ++>在x ∈R 上恒成立,转化为()0f x >对于x R ∀∈恒成立,结合函数的性质,即可求解.【详解】解:设函数()221f x ax ax =++,则不等式2210ax ax ++>在x ∈R 上恒成立,即()0f x >对于x R ∀∈恒成立, 当0a =时,()10f x =>,显然成立; 当0a ≠时,要使()0f x >在x ∈R 上恒成立,需函数()221f x ax ax =++开口向上,且与x 轴没有交点,即20(2)410a a a >⎧⎨∆=-⨯⨯<⎩,解得01a <<, 综上知,实数a 的取值范围为[0,1).故选:A. 【点睛】本题主要考查了不等式的恒成立问题,以及二次函数的图象与性质的应用,其中解答中把不等式的恒成立问题转化为利用二次函数的性质求解是解答的关键,着重考查转化思想,以及推理与计算能力.11.D解析:D 【分析】A 项中,需要看分母的正负;B 项和C 项中,已知两个数平方的大小只能比较出两个数绝对值的大小.【详解】A 项中,若0c <,则有a b <,故A 项错误;B 项中,若22a b >,则a b >,故B 项错误;C 项中,若2211a b>则22a b <即a b <,故C 项错误;D <定有a b <,故D 项正确. 故选:D 【点睛】本题主要考查不等关系与不等式,属于基础题.12.B解析:B 【分析】利用函数的单调性、不等式的基本性质即可判断出结论. 【详解】 a >b ,则1a 与1b的大小关系不确定;由函数y =x 5在R 上单调递增,∴a 5>b 5; c =0时,ac 2=bc 2;取a =-1,b =-2,|a |>|b |不成立.因此只有B 成立. 故选B . 【点睛】本题考查了函数的单调性、不等式的基本性质,考查了推理能力与计算能力,属于基础题.二、填空题13.2【分析】由时恒成立转化为恒成立根据中ab 系数相等令求解【详解】因为时恒成立所以恒成立令则或当时即当时即要使时的等号成立则即解得函数图象开口向上对称轴为所以则的最大值为2故答案为:2【点睛】关键点点解析:2 【分析】由[1,1]x ∈-时,1()2f x ≥-恒成立,转化为211222xa xb ⎛⎫-+≥- ⎪⎝⎭恒成立,根据+a b中,a ,b 系数相等,令2122xx -=求解. 【详解】因为[1,1]x ∈-时,1()2f x ≥-恒成立, 所以2211()22222b a x f x ax x a x b ⎛⎫=+-=-+≥- ⎪⎝⎭恒成立, 令2122x x -=,则12x =-或1x =,当1x =时,()21122a b f =+≥- ,即1a b +≥-, 当12x =-时,112442a b f ⎛⎫-=--≥- ⎪⎝⎭,即2a b +≤, 要使12x =-时,1()2f x ≥-的等号成立, 则min 11()22f x f ⎛⎫=-=- ⎪⎝⎭,即14211114422b a a b a ⎧-=-⎪⎪⎨⎪--=-⎪⎩, 解得2343a b ⎧=⎪⎪⎨⎪=⎪⎩,203a =>,函数图象开口向上,对称轴为12x =-, 所以则+a b 的最大值为2,故答案为:2【点睛】关键点点睛:由+a b 中,a ,b 系数相等,令2122x x -=是本题求解的关键.. 14.【分析】换元判定单调性利用基本不等式求解【详解】令则在为增函数在在为减函数从而当且仅当时取等号故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就 解析:94【分析】换元判定单调性,利用基本不等式求解【详解】 令y t x =,则 22244xy y t t x+=+在()0,∞+为增函数, 22216111616x xy y t t+=+在在()0,∞+为减函数, 从而22111942164t t t t μ⎛⎫≥+++≥ ⎪⎝⎭, 当且仅当12t =时取等号. 故答案为:94【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.【分析】利用参变分离得在上恒成立结合双勾函数性质求出的最小值即可【详解】解:由题意知:在上恒成立所以在上恒成立又因为函数在上单调递减在上单调递增所以当时最小为2所以即故答案为:【点睛】方法点睛:在解 解析:1a ≤【分析】 利用参变分离得2112x a x x x+≤=+在(]02x ∈,上恒成立,结合双勾函数性质求出1y x x=+的最小值即可. 【详解】 解:由题意知:()2210f x x ax =-+≥在(]02x ∈,上恒成立,所以2112x a x x x +≤=+在(]02x ∈,上恒成立, 又因为函数1y x x=+在()01x ∈,上单调递减,在()12x ∈,上单调递增,所以当1x =时,1x x+最小为2, 所以2a ≤2,即1a ≤,故答案为:1a ≤.【点睛】方法点睛:在解决二次函数的恒成立问题,常常采用参变分离法,如此可以避免对参数进行分类讨论.16.【分析】利用基本不等式可求得再结合可得从而可求出的取值范围即可得到的最小值【详解】由题意当且仅当时等号成立又所以令则解得所以即的最小值是故答案为:【点睛】关键点点睛:本题考查求代数式的最值解题关键是 解析:32【分析】()1112222n m m n m n m n ⎛⎫++=+++ ⎪⎝⎭,利用基本不等式,可求得()119222m n m n ⎛⎫++≥ ⎪⎝⎭,再结合()119222m n m n +=-+,可得()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的取值范围,即可得到2m n +的最小值.【详解】由题意,()11155922222222n m m n m n m n ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当n m m n=时,等号成立, 又()119222m n m n +=-+,所以()()()1199222222m n m n m n m n ⎛⎫⎡⎤++=+-+≥ ⎪⎢⎥⎝⎭⎣⎦, 令2m n t +=,则9922t t ⎛⎫-≥ ⎪⎝⎭,解得332t ≤≤, 所以32,32m n ⎡⎤+∈⎢⎥⎣⎦,即2m n +的最小值是32. 故答案为:32. 【点睛】关键点点睛:本题考查求代数式的最值,解题关键是利用基本不等式求出()119222m n m n ⎛⎫++≥ ⎪⎝⎭,再根据()119222m n m n ⎛⎫+++= ⎪⎝⎭,可得到只包含2m n +的关系式()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.17.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于 解析:8【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值.【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy∴,当且仅当3232x y ==时,取等号.则32233838y x x y xy ++==,故答案为:8. 【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.18.【分析】利用基本不等式求出的最小值可得不等式恒成立时的取值范围再取其补集即可【详解】若不等式对任意实数且恒成立则当且仅当且即时等号成立所以故命题为假命题时的取值范围为故答案为:【点睛】本题主要考查命 解析:94m ≥ 【分析】 利用基本不等式求出41a b +的最小值,可得不等式41m a b+>恒成立时,m 的取值范围,再取其补集即可.【详解】若不等式41m a b+>对任意实数0a >,0b >且4a b +=恒成立,则411411419()()(5)5)4444b a a b a b a b a b +=++=++≥=, 当且仅当4b a a b =且4a b +=,即83a =,43b =时等号成立. 所以94m <,故命题为假命题时,m 的取值范围为94m ≥. 故答案为: 94m ≥【点睛】本题主要考查命题的真假,基本不等式的应用,属于中档题.19.10【分析】用速度v 表示时间结合基本不等式计算最小值即可【详解】当最后一辆车子出发第一辆车子走了小时最后一辆车走完全程共需要小时所以一共需要小时结合基本不等式计算最值可得故最小值为10小时【点睛】考 解析:10【分析】用速度v 表示时间,结合基本不等式,计算最小值,即可.【详解】当最后一辆车子出发,第一辆车子走了25080016v v v ⋅=小时,最后一辆车走完全程共需要400v 小时,所以一共需要40016v v +小时,结合基本不等式,计算最值,可得4001016v v +≥=,故最小值为10小时 【点睛】考查了基本不等式计算函数最值问题,关键利用a b +≥中等.20.【分析】代入函数解析式可得不等式等价于任意的实数恒成立利用判别式小于0即可求解【详解】不等式恒成立即恒成立整理得恒成立可知则任意的实数恒成立解得(舍去)或实数的取值范围是故答案为:【点睛】本题考查一 解析:()4,+∞【分析】代入函数解析式可得不等式等价于223340x tx t 任意的实数x 恒成立,利用判别式小于0即可求解.【详解】 3()3f x x x =-,不等式()()(0)f x t f x t t +>+≠恒成立,即()()3333x t x t x x t +-+>-+恒成立,整理得2233340tx t x t t 恒成立,可知0t >,则223340x tx t 任意的实数x 恒成立,2234340t t ,解得4t <-(舍去)或4t >, ∴实数t 的取值范围是()4,+∞.故答案为:()4,+∞.【点睛】本题考查一元二次不等式的恒成立,属于基础题.三、解答题21.(1)()0C 的实际意义是未修建沼气发电池时,该合作社每年消耗的电费;192000.1250F x x =++,0x ≥;(2)该合作社应修建容积为350立方米的沼气发电池时,可使F 最小,且最小值为90万元;(3)3050100,3⎡⎤⎢⎥⎣⎦. 【分析】(1)根据题中函数关系式,可直接得到()0C 的实际意义;求出k ,进而可得F 关于x 的函数关系;(2)根据(1)中F 的函数关系,利用基本不等式,即可求出最小值;(3)将140F ≤,转化为关于x 的不等式,求解即可.【详解】(1)()0C 的实际意义是修建这种沼气发电池的面积为0时的用电费用,即未修建沼气发电池时,该合作社每年消耗的电费;由题意可得,()02450k C ==,则1200k =; 所以该合作社修建此沼气发电池的费用与16年所消耗的电费之和为120019200160.120.125050F x x x x =⨯+=+++,0x ≥; (2)由(1)()19200192000.120.125065050F x x x x =+=++-++690≥=, 当且仅当()192000.125050x x =++,即350x =时,等号成立, 即该合作社应修建容积为350立方米的沼气发电池时, 可使F 最小,且最小值为90万元;(3)为使F 不超过140万元,只需192000.1214050F x x =+≤+, 整理得2333503050000x x -+≤,则()()330501000x x --≤,解得30501003x ≤≤, 即x 的取值范围是3050100,3⎡⎤⎢⎥⎣⎦【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.无23.无24.无25.无26.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数测试题(2)
一、选择题(每小题3分,共30分,答案请填在表格中) 1、一次函数23--=x y 中,y 随x 的增大而( ) A 、增大 B 、减小 C 、不变 D 、不确定 2、函数5)2(3+-=x y 的图象与y 轴交点的纵坐标为( ) (A )5 (B )3 (C )-1 (D )-2
3.地面气温020,每上升1km ,气温就下降06,则气温t 与高度h 的函数关系式是( )
A 、h t 620+=
B 、h t 620+-=
C 、206+-=h t
D 、h t -=20 4、函数2+=x y 的图象( )
(A ) 过第一、二,三象限 (B ) 过第一,三、四象限 (C ) 过第二、三,四象限 (D ) 过第一,二、四象限
5.一个图案上各点的横坐标都不变,纵坐变为原来的相反数,但图案却未发生任何变化,则下列叙述正确的是( )
A .图案各点一定都在x 轴上
B .原图案各点一定都在y 轴上
C .原图案是轴对称图形,对称轴是x 轴
D .原图案是轴对称图形,对称轴是y 轴
6、已知点(4-,1y )与(2,2y )都在直线22+-=x y 上,则1y 与2y 的大小关系是( )
A 、1y >2y
B 、1y =2y
C 、1y <2y
D 、不能确定
7、一次函数42+-=x y 与x 轴、y 轴的交点为A ,B ,则线段AB 的长为( ) A 、5 B 、52 C 、32 D 、53
8. 若一次函数y=kx+b 的图象经过一、三、四象限,则k ,b 应满足( ). A.k >0,b >0
B.k >0,b <0
C.k <0,b >0
D.k <0,b <0
9.无论m 为何实数,直线m x y 2+=与4+-=x y 的交点不可能在( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 10.已知正比例函数y=kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y=kx+k 的图象大致是( )
二、填空题(每小题4分,共28分)
11、一次函数24y x =-+的图像经过的象限是 ,它与x 轴的交点坐标是 ,与y 轴的交点坐标是 , y 随x 的增大而 .
12、函数x y x y 242=+=的图象是将的图象向
平移
个单位而得到。

13、黑龙江省某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响
车辆行驶速度,货车行驶的路程()km y 与行驶时间()h x 的函数关系如图所示,2小时后货车的速度是________km/h .
D .
C .
B .
A .
y
y
x
x
O
O
y
x
O
O
y
x
y (元)
x (万件)
O
400
8001
14、若一次函数y=kx+b 交于y 轴的负半轴,且y 的值随x 的增大 而减小,则
k_____0, b______0.(填">"、"="、或"<")
15、已知直线5 3+=-=+=x y x y b kx y 平行且与直线与直线相交,交 点在y 轴上,则k= ,b= 。

16、老师给出一个一次函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象经过第一象限;乙:函数的图象经过第二象限;丙:在每个象限内,y 随x 的增大而减小。

请你根据他们的叙述构造满足上述性质的一个函数: 。

17、一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内
只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,
容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是 _____________
三、解答题(共62分)
18、(6分)一轻型汽车的油箱最多可储20L ,加满油后,油箱中的油的余油量y (L )与轻型汽车行驶的路程x (km )之间的关系如图所示。

(1)一箱油可供汽车行驶多少千米?(2)行驶100km 消耗多少汽油?(3)写出y 与x 的关系式。

19.(6分)已知y+2与x-1成正比例,且x=-1,y=-14。

(1)求y 与x 之间的函数关系式;(2)当x=7时,求y 的值。

20、(7分)如图所示,图中反映的是某公司销售员工月收入y (元)与销售量x (万件)之间的关系。

如果销售人员的底薪均为400元,根据图象求:(1)y 与x 的关系式;(2)如果销售人员想月收入达到2000元,那么他每月至少要销售多少万件?
O
y
x
5102015100200400300
21、(8分)如图是粗细不一样的甲、乙两支蜡烛燃烧时所剩长度y (cm )与时间t (分)之间的关系图,已知刚开始时甲蜡烛长30cm ,乙蜡烛长20cm ,根据所给的图象求:(1)哪支蜡烛燃烧得快些(长度减少得快)? (2)两支蜡烛高度是否有可能在某同一时刻一样?为什么?
22、(8分)表格中的两组对应值满足一次函数y kx b =+,现画出了它的图象为直线l ,
如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.
(1)求直线l 的解析式;
(2)请在图上画出..直线l '(不要求列表计算), 并求直线l '被直线l 和y 轴所截线段的长;
y (cm )
O 10
20301
2
3
2 1 2
3
4
5 -1
-2 -5 -3 -4 1
3 4
-3 -4
23、(9分)小张和小李进行百米赛跑,小张让小李在前面10m ,图中1L ,2L 分别表示两人的路程y (m )与小张追赶时间t (s )的关系。

(1)哪条线表示小张的路程与时间的关系?
(2)分别求出1L ,2L 中y 与t 之间的关系式;(3)第10s 时,谁跑在前面。

24、(9分)某校校长暑假将带领该校市级“三好学生”去北京旅游。

甲旅行社说:“如果校长买全票一张,那么其余学生可享受半价优惠。

” 乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)。

”若全票价为240元。

(1)按学生数为x ,甲旅行社收费为1y ,乙旅行社的收费为2y ,分别写出两家旅行社的收费的函数表达式;(2)学生数x 为多少人时,选择甲旅行社?(3)学生数x 为多少人时,选择乙旅行社?
s )
25、(9分)(如下图)直线b ax y +=1与m kx y +=2的图象相交于A (-0.2,2.4)
1y 与y 轴相交于M 点,与X 轴相交于K 点,2y 与y 轴相交于B 点,与X 轴相交于
F 点
请你根据图象回答问题: (1)当=x 时,0y 1>; (2)当x 时,01<y ; (3)当x 时,01=y 。

(4)当2y 时,0x >; (5)当2y 时,0x <; (6)当2y 时,0x =; (7)当x 时,21y y >。

(8)当x 时,21y y <。

(9)当x 时,21y y =。

相关文档
最新文档