PCB板布局原则

合集下载

PCB布板布线规则

PCB布板布线规则

细述PCB板布局布线基本规则PCB又被称为印刷电路板(PrintedCircuitBoard),它可以实现电子元器件间的线路连接和功能实现,也是电源电路设计中重要的组成部分。

今天就将以本文来介绍PCB板布局布线的基本规则。

、元件布局基本规则1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4.元器件的外侧距板边的距离为5mm;5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。

定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。

特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。

电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9.其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。

重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。

二、元件布线规则1、画定布线区域距PCB板边W1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。

PCB板布线技巧

PCB板布线技巧

PCB板布线布局一.PCB布局原则首先,要考虑PCB尺寸大小。

PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。

在确定PCB 尺寸后.再按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性,按工艺设计规范的要求进行尺寸标注。

最后,根据电路的功能单元,对电路的全部元器件进行布局。

1. 布局操作的基本原则A.位于电路板边缘的元器件,离电路板边缘一般不小于2mm。

电路板的最佳形状为矩形。

长宽比为3:2成4:3。

B. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.C. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.D. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.E. 以每个功能电路的核心元件为中心,围绕它来进行布局。

元器件应均匀、整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。

F.相同结构电路部分,尽可能采用“对称式”标准布局;同类型插装元器件在X或Y方向上应朝一个方向放置;同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。

2.布局操作技巧1. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。

2.元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。

3. IC去耦电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。

4.尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。

易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

5.某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。

PCB布局原则

PCB布局原则

PCB布局原则PCB设计是电子工程师必不可少的技能之一,而PCB布局则是一个成功产品的关键之一。

PCB布局不仅仅决定了电路板的尺寸,还决定了信号的传输和电路的性能。

下面我们来具体介绍PCB布局的原则和技巧。

一、电源和地面分割注意事项PCB布局中,电源线和地面线的分割是非常重要的。

在布局中,需要确保具有高流量的线路和信号线路分离得足够远,以减少对信号的影响。

其次,需要注意电源和地面不能交错使用,这样容易导致电源噪声和地面回路的噪声混合在一起,进而增强了干扰噪声的影响。

最后,应该保证电源以及地面电压分别连接到合适的地方,以最大限度地减少噪声对电路的影响。

二、排列元件的位置在PCB布局中,需要排列元件的位置,并确定元件与其他元件的距离。

这一过程需要注意这几个问题:1.电路模块分组将具有相似功能的元件分组在同一区域,可以减少干扰和循环传导的可能。

2.电路模块布置在同一电路板上,多个电路模块应设计成适当的布局。

过分追求面积的小型化会导致干扰影响电路工作。

因此,我们需要按照元器件的尺寸,合理安排每个元器件的布局,并确保电路板空间的充分利用。

3.检测电路板的热量和线路走向在元件安装布局的过程中,我们还需要同时考虑电路布局的热量分配以及线路的走向。

在确保散热方案的同时保证信号线路的准确性和稳定性。

三、电路的缩短尽量减少元件之间的距离和连接器的数量,可以有效减少元件的损耗和信号延迟,并可以最大化地提高信号的传输速率和精度。

四、过孔和电阻设计在PCB布局中,需要加入过孔和电阻。

过孔要设置在接地平面之间,并且尽量位置协调一致。

电阻的正确使用可以改善信号成型,降低信噪比,并最大化地提高整个电器系统的可靠性和稳定性。

五、布线的走向须注意在焊接元件的时候,我们需要通过减少信号线的遮盖和干扰,改善信号线的传输质量。

在布线走向的过程中,应该避免进行直线和尖角排布,减少网络潜在的噪声影响和串扰,同时要避免使用平面布线。

六、布局的可服务性和可操作性PCB布局中,要注意提高布局的可操作性和可维护性。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。

比如,将稳压电路、放大电路、数字电路等放在不同的区域内。

-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。

因此,尽量把线路缩短,减少线路长度。

-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。

因此,尽量避免线路的交叉,使布局更加清晰。

-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。

-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。

2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。

-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。

-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。

-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。

-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。

总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。

通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。

PCB板布局原则

PCB板布局原则

PCB板布局原则1.元件排列规则1).在通常条件下,所有的元件均应布置在印制电路的同一面上,只有在顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻。

贴片电容。

贴IC 等放在底层。

2).在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐。

美观,一般情况下不允许元件重叠;元件排列要紧凑,输入和输出元件尽量远离。

3).某元器件或导线之间可能存在较高的电位差,应加大它们的距离,以免因放电。

击穿而引起意外短路。

4).带高电压的元件应尽量布置在调试时手不易触及的地方。

5).位于板边缘的元件,离板边缘至少有2个板厚的距离6).元件在整个板面上应分布均匀。

疏密一致。

2.按照信号走向布局原则1).通常按照信号的流程逐个安排各个功能电路单元的位置,以每个功能电路的核心元件为中心,围绕它进行布局。

2).元件的布局应便于信号流通,使信号尽可能保持一致的方向。

多数情况下,信号的流向安排为从左到右或从上到下,与输入。

输出端直接相连的元件应当放在靠近输入。

输出接插件或连接器的地方。

3.防止电磁干扰1).对辐射电磁场较强的元件,以及对电磁感应较灵敏的元件,应加大它们相互之间的距离或加以屏蔽,元件放置的方向应与相邻的印制导线交叉。

2).尽量避免高低电压器件相互混杂。

强弱信号的器件交错在一起。

3).对于会产生磁场的元件,如变压器。

扬声器。

电感等,布局时应注意减少磁力线对印制导线的切割,相邻元件磁场方向应相互垂直,减少彼此之间的耦合。

4).对干扰源进行屏蔽,屏蔽罩应有良好的接地。

5).在高频工作的电路,要考虑元件之间的分布参数的影响。

4.抑制热干扰1).对于发热元件,应优先安排在利于散热的位置,必要时可以单独设置散热器或小风扇,以降低温度,减少对邻近元件的影响。

2).一些功耗大的集成块。

大或中功率管。

电阻等元件,要布置在容易散热的地方,并与其它元件隔开一定距离。

3).热敏元件应紧贴被测元件并远离高温区域,以免受到其它发热功当量元件影响,引起误动作。

PCB设计规范

PCB设计规范

PCB设计规范一.PCB 设计的布局规范(一)布局设计原则1. 组件距离板边应大于5mm。

2. 先放置与结构关系密切的组件,如接插件、开关、电源插座等。

3. 优先摆放电路功能块的核心组件及体积较大的元器件,再以核心组件为中心摆放周围电路元器件。

4. 功率大的组件摆放在利于散热的位置上,如采用风扇散热,放在空气的主流通道上;若采用传导散热,应放在靠近机箱导槽的位置。

5. 质量较大的元器件应避免放在板的中心,应靠近板在机箱中的固定边放置。

6. 有高频连线的组件尽可能靠近,以减少高频信号的分布参数和电磁干扰。

7. 输入、输出组件尽量远离。

8. 带高电压的元器件应尽量放在调试时手不易触及的地方。

9. 手焊元件的布局要充分考虑其可焊性,以及焊接时对周围器件的影响。

手焊元件与其他元件距离应大于1.5mm.10. 热敏组件应远离发热组件。

对于自身温升高于30℃的热源,一般要求:a.在风冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于2.5mm;b.自然冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于4.0mm。

若因为空间的原因不能达到要求距离,则应通过温度测试保证温度敏感器件的温升在额定范围内。

11. 可调组件的布局应便于调节。

如跳线、可变电容、电位器等。

12. 考虑信号流向,合理安排布局,使信号流向尽可能保持一致。

13. 布局应均匀、整齐、紧凑。

14. 表贴组件布局时应注意焊盘方向尽量取一致,以利于装焊。

15. 去耦电容应在电源输入端就近放置。

16. 可调换组件(如: 压敏电阻,保险管等) ,应放置在明显易见处17. 是否有防呆设计(如:变压器的不对称脚,及Connect)。

18. 插拔类的组件应考虑其可插拔性。

影响装配,或装配时容易碰到的组件尽量卧倒。

(二)对布局设计的工艺要求1. 外形尺寸从生产角度考虑,理想的尺寸范围是“宽(200 mm~250 mm)×长(250 mm ~350 mm)”。

pcb板器件放置原则

pcb板器件放置原则

在PCB(印刷电路板)设计中,器件的放置原则是至关重要的。

它直接影响到电路的性能、稳定性和可制造性。

以下是一些主要的PCB板器件放置原则:1. 功能原则:首先,应根据电路的功能需求来放置器件。

同一功能模块的器件应尽可能靠近,以减少信号线的长距离传输,降低信号损耗和干扰。

2. 热设计原则:功率器件如二极管、晶体管、集成电路等会产生大量的热量,如果不及时散热,可能会导致器件过热而损坏。

因此,这些器件应放置在PCB上易于散热的位置,如靠近边缘或顶部。

3. 电磁兼容性原则:高频、高速电路的器件应远离模拟电路和电源电路,以防止电磁干扰。

同时,电源线和地线应尽量宽,以减小电阻,降低电磁辐射。

4. 机械稳定性原则:较重的器件应放在PCB的底部,以防止因重力作用而移动或倾斜。

同时,器件之间的距离应适当,以便于安装和维修。

5. 信号完整性原则:高速信号线应尽可能短,且避免交叉。

同时,信号线应尽量避免经过大面积的铜箔区域,以减少阻抗不匹配和信号反射。

6. 可制造性原则:器件的尺寸和形状应适合PCB的制造工艺。

例如,过小的器件可能无法焊接,过大的器件可能会超出PCB的尺寸限制。

7. 电源和地线布局原则:电源和地线应尽量靠近,以减小电源噪声。

同时,电源线和地线应尽量宽,以减小电阻,降低电磁辐射。

8. 信号流向原则:在多层PCB设计中,信号流向应遵循“从上到下”或“从下到上”的原则,以减少信号线的长度和交叉。

9. 测试点布局原则:为了方便测试和调试,应在关键部位设置测试点。

测试点应尽量靠近器件,且易于访问。

10. 预留扩展空间原则:在设计PCB时,应预留一定的扩展空间,以便于后期的修改和升级。

以上就是PCB板器件放置的一些基本原则,但在实际设计中,还需要根据具体的电路特性和设计要求,灵活运用和调整这些原则。

PCB设计规范

PCB设计规范

A.本规范归定了我司PCB设计的流程和设计原则,主要目的是为PCB设计者提供必须遵循的规则和约定。

B.提高PCB设计质量和设计效率。

C.提高PCB的可生产性、可测试、可维护性(一) 布局设计原则1.距板边距离应大于5mm。

2.先放置与结构关系密切的元件,如接插件、开关、电源插座等。

3.优先摆放电路功能块的核心元件及体积较大的元器件,再以核心元件为中心摆放周围电路元器件。

4.功率大的元件摆放在利于散热的位置上,如采用风扇散热,放在空气的主流通道上;若采用传导散热,应放在挨近机箱导槽的位置。

5.质量较大的元器件应避免放在板的中心,应挨近板在机箱中的固定边放置。

6.有高频连线的元件尽可能挨近,以减少高频信号的分布参数和电磁干扰。

7.输入、输出元件尽量远离。

8.带高电压的元器件应尽量放在调试时手不易触及的地方。

9.热敏元件应远离发热元件。

10.可调元件的布局应便于调节。

如跳线、可变电容、电位器等。

11.考虑信号流向,合理安排布局,使信号流向尽可能保持一致。

12.布局应均匀、整齐、紧凑。

13.表贴元件布局时应注意焊盘方向尽量取一致,以利于装焊,减少桥连的可能。

14.去耦电容应在电源输入端就近放置。

(二) 对布局设计的工艺要求当开始一个新的PCB 设计时,按照设计的流程我们必须考虑以下的规则:1.建立一个基本的 PCB 的绘制要求与规则(示意如图)建立基本的PCB 应包含以下信息:1) PCB 的尺寸、边框和布线区A.PCB 的尺寸应严格遵守结构的要求。

B.PCB 的板边框(Board Outline) 通常用0.15 的线绘制。

C.布线区距离板边缘应大于 5mm。

2) PCB 的机械定位孔和用于SMC 的光学定位点。

A.对于PCB 的机械定位孔应遵循以下规则:要求■机械定位孔的尺寸要求PCB 板机械定位孔的尺寸必须是标准的 (见下表和图) ,如有特殊必须通知生产经理,以下单位为mm。

B.机械定位孔的定位机械定位孔的定位在PCB 对角线位置如图:■对于普通的PCB,推荐:机械定位孔直径为3mm,机械定位孔圆心与板边缘距离为5mm。

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则PCB(Printed Circuit Board)板是现代电子产品中不可或缺的重要部件。

它起着连接和支持电子元器件的作用,承载着电子元器件的布局和连接。

1.PCB板的结构:PCB板通常由基板、导线和孔洞组成。

基板可以选择不同的材料,如传统的FR-4玻璃纤维复合材料,或者高级材料如陶瓷或柔性材料。

导线则可以是铜箔,通过化学腐蚀或机械加工的方式形成。

孔洞用于连接不同层次的电路元件。

2.PCB板的层次:PCB板可以有单面、双面或多层结构。

单面板只有一层的导线;双面板有两层,分别连接在板的两侧;而多层板则有三层以上的导线层,中间用绝缘层隔开。

布局原则:1.电路图转换:将电路图转换成PCB板设计时,首先需要考虑布局。

将具有相同功能或者相关的电子元件放在一起,以提高信号和功耗的性能。

2.器件放置:放置器件应遵循自顶向下的原则,常用的元件应放置在最上层,而不怎么使用或者高频的元件应放置在下层。

此外,还应确保元件之间有适当的间距,并且避免布局中的干扰。

3.热管理:在布局时,还应考虑热管理。

将高功耗的元器件放置在通风良好的位置以便散热,并确保不会影响其他元器件的工作温度。

布线技巧:1.信号和功耗的分隔:将信号和功耗线分隔开,以减少干扰。

信号线应尽量短,并且与功耗线交叉时需要保持垂直或平行。

2.地线的规划:地线是PCB设计中最重要的部分之一、地线应尽可能宽和短,并与信号线平行或垂直摆放,以减少信号噪声。

3.电容和电阻的布局:在布线时,电容和电阻应紧密连接在其需要的电路位置,以减少可能的干扰。

设计规则:1.宽度和间距:根据设计要求,需要给出导线的最小宽度和间距。

这取决于所使用的材料和所需的电流容量。

2.层间距:PCB板的层间距取决于所需的阻抗和电气性能。

较大的层间距可提高板的强度和电缆外形。

3.最小外形尺寸:为了适应生产过程和安装要求,PCB板应满足一定的最小外形尺寸。

4.孔洞和焊盘:孔洞应满足适当的尺寸以容纳所需的引脚大小。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布局原则布线技巧一、布局原则:1.功能分区:将电路按照其功能划分为若干区域,不同功能的电路相互隔离,减少相互干扰。

2.信号流向:在布局过程中应保持信号流向规则和简洁,避免交叉干扰。

3.重要元件位置:将较重要的元件、信号线和电源线放置在核心区域,以提高系统的可靠性和抗干扰能力。

4.散热考虑:将产热较大的元件、散热器等布局在较为开阔的地方,利于散热,避免过热导致不正常工作。

5.地线布局:地线的布局和连通应该注意短、宽、粗、低阻、尽可能铺满PCB板的底层,减少环路面积,避免回流信号干扰。

二、布线技巧:1.差分信号布线:对于高速传输的差分信号(如USB、HDMI等),应采用相对的布线方式,尽量保持两条信号线的长度、路径和靠近程度等因素相等。

2.信号线长度控制:对于高速信号线,要控制传输时间差,避免信号的串扰,可以采用长度相等的原则,对多个信号线进行匹配。

3.距离和屏蔽:信号线之间应保持一定的距离,减少串扰。

对于敏感信号线,可以采用屏蔽,如使用屏蔽线或者地层或电源面直接作为屏蔽。

4.平面分布布线:将电路面分布在PCB板的一面,减少控制层(可减少电磁干扰),易于维护。

对于比较大的PCB板,可以将电路分布在多层结构中,减小板子尺寸。

5.电源线和地线:电源线和地线尽量粗而宽,以降低线路阻抗和电压降。

同时,尽量减少电源线和地线与其它信号线的交叉和共面长度,减小可能的电磁干扰。

6.设备端口布局:对于外部设备接口,宜以一边和一角为原则,将各种本机接口尽量分布在同一区域,以保持可维护性和布局的简洁性。

7.组件布局:对于IC和器件的布局,可以按照电路的工作顺序、重要程度和电路结构等因素综合考虑,优先放置重要元件,如主控芯片、存储器等。

三、布局规则:1.尽量缩短信号线的长度,减少信号传输的延迟和串扰。

2.尽量减小信号线的面积,减少对周围信号的干扰。

3.尽量采用四方对称布线,减少线路不平衡引起的干扰。

4.尽量降低线路阻抗,提高信号的传输质量。

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则PCB(Printed Circuit Board)板是电子产品中常用的一种电路元件,它由导线和电子元器件组成。

在进行PCB板的设计时,需要遵循一些基础知识、布局原则、布线技巧和设计规则,以确保电路板的稳定性和可靠性。

一、PCB板基础知识1.PCB板的分类:单面板、双面板、多层板。

2.PCB板的材料:常用的材料有FR-4玻璃纤维布基板和铝基板。

3.PCB板的层次结构:底层、封装层(元器件的焊接)、布线层(导线的布局)。

4.PCB板的元器件封装:常用的有DIP封装、SMD封装和BGA封装。

二、布局原则1.分区布局原则:将整个电路板划分为功能区、电源区和信号区,使各个区域之间的干扰最小。

2.元件布局原则:将功能相似的元器件尽量靠近,减少导线长度,降低电磁干扰。

3.重要性能电路布局原则:将音频、射频等重要性能电路放置在相对比较靠近电源接口的位置,以避免电源和地的干扰。

4.高功率元件布局原则:高功率元件(如继电器、驱动板等)应远离低功率元件,以避免高功率元件的热与电磁干扰对低功率元件产生不利影响。

三、布线技巧1.信号线布线技巧:要尽量避免信号线的交叉,使信号线按照逻辑关系进行布线,减少互相干扰的可能。

2.电源线布线技巧:按照电流大小和电压的需求进行布线,尽量减小电源线的长度和电阻。

3.地线布线技巧:要保证地线的连续性和稳定性,避免形成环路和过长的回流路径。

4.时钟信号布线技巧:时钟信号的布线应尽量短且相等,以避免时钟偏差和信号失真。

5.差分信号布线技巧:差分信号的正负线要尽量靠近,长度要保持一致,以降低互相干扰的可能性。

四、设计规则1.间距规则:不同电压等级之间、信号与电源之间、信号与地之间要有足够的间距以保证安全性和稳定性。

2.导线规则:要根据电流大小和导线的宽度选择合适的线宽,以确保导线的稳定性和通气性。

3.焊盘规则:要根据元器件的引脚数目确定焊盘的大小,以保证焊接的可靠性和稳定性。

PCB板布局布线基本规则

PCB板布局布线基本规则

PCB板布局布线基本规则一、元件布局基本规则1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm (对于M2.5)、4mm(对于M3)内不得贴装元器件;3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4.元器件的外侧距板边的距离为5mm;5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。

定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。

特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。

电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9.其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。

重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。

二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。

PCB板布局原则

PCB板布局原则

PCB板布局原则1.保持信号完整性:在PCB布局中,需要避免高速信号线与其他信号线或电源线交叉。

交叉会导致信号串扰和干扰,从而降低电路的性能。

为了保持信号完整性,可以采用分层布局,即将信号线、电源线和地线分别布局在不同的层上,以防止信号间的干扰。

2.确保电源稳定:电源稳定对于电路的正常工作至关重要。

在PCB布局中,需要将电源线和地线尽量短且粗,以降低电源电阻和电感,减少电流回路中的电压降。

此外,还可以通过布置电源滤波器和稳压器等元件来提高电源稳定性。

3.控制信号传输:PCB布局还需要考虑信号传输的控制。

高速信号线和信号源之间的距离应尽量短,以减小传输延迟和信号损耗。

此外,需要避免信号线与地线之间的相互干扰,可以采用屏蔽等措施来控制信号传输。

4.确保热管理:在PCB布局中,需要考虑到电路产生的热量。

高功率元件和散热器应尽量靠近并紧密连接,以提高散热效果。

此外,还需考虑到热量在电路板上的分布,尽量避免热量集中,并留出足够的散热空间。

5.避免电磁干扰:电子产品通常会受到周围环境的电磁干扰。

在PCB布局中,需要避免高速信号线与高频信号线交叉,以减小串扰和辐射。

此外,还可以采用屏蔽罩、地线铺设等方法来减小电磁干扰。

6.优化组件布局:PCB布局还需要考虑到组件之间的布局优化。

相互关联的组件应尽量靠近,以减小连接线的长度和复杂度。

此外,还需考虑到组件与组件之间的间隔,避免相互之间的干扰。

7.良好的可维护性:PCB布局设计应考虑到电路板的可维护性。

组件的布局应合理,便于焊接、排线和更换。

电路板上应标注清晰的元件编号和引脚标记,方便日后的维护和检修。

总之,PCB布局是电子产品设计中的一项重要工作,影响着电路性能和可靠性。

在进行PCB布局时,需要遵循上述原则,并结合具体的电路需求和设计要求,灵活应用。

通过合理的布局设计,能够提高电路的性能、稳定性和可维护性。

PCB电路板布局布线基本原则

PCB电路板布局布线基本原则

PCB电路板布局布线基本原则1.电源分配:电源的布局是电路布局的首要考虑因素。

电源线应该尽量短,粗,走直线,避免与其他信号线相交,以减少干扰和电源噪声。

2.信号与地平面的分离:为了防止信号间的串扰和杂散电磁辐射,应尽量隔离模拟信号和数字信号以及高频信号和低频信号。

同时,需要设置大面积的地平面,以提供良好的地连接,降低噪声。

3.分区规划:将电路板划分为不同的模块或功能区,根据信号层次、噪声敏感度和功率特性来确定布局,各个区域之间应平衡布局,避免相互干扰。

4.元件布局:元件之间的布局应考虑信号的流向、施加特性和相互关系。

一般来说,从输入到输出的信号流向应是逐渐增强的。

另外,重要的元件和模块应放在离输入和输出较近的位置,以便于调试和维护。

5.确定关键信号线:在布局和布线中,关键信号线,如时钟信号、高速差分信号等,需要特别关注。

这些信号线需要尽量走最短的路径,减少路径中的阻抗变化和反射,同时需要与其他信号线保持最小的距离,以减少串扰。

6.信号层次:不同的信号层次应通过合理的布局和布线来满足设计要求。

高频信号需要使用内层铜箔进行引导,而尽量与数字信号、低频信号和电源线分开。

对于高频信号,尽量使用短而宽的线路,并使用适当的层间连接技术来减小阻抗。

7.传导和辐射:在布局和布线中需要考虑到传导和辐射两个方面的干扰。

传导干扰可以通过合理的布局和接地设计来减少,而辐射干扰则需要通过电路板的屏蔽和接地设计来避免。

8.压降和散热:在布线中需要注意电流路径的压降问题,尽量使用宽而短的线路来减小电阻和电压降。

同时,需要合理设计散热结构,确保电路板的温度在可接受范围内。

综上所述,PCB电路板布局和布线的基本原则主要包括电源分配、信号与地平面的分离、分区规划、元件布局、关键信号线的处理、信号层次设计、传导和辐射的控制、压降和散热的考虑等。

这些原则可以帮助设计师设计出性能优良、可靠稳定的PCB电路板。

PCB布局原则

PCB布局原则

PCB布局原则2009-12-11 09:07整体布局主要有如下的一些要求:流向原则按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向,输入在左边,输出在右边;或者以每个功能电路的核心元件为中心,围绕它来进行布局。

最近相邻原则布局的最重要的原则之一是保证布线的布通率,移动器件时要注意网线的连接,把有网线关系的器件放在一起,而且能大致达成互连最短,要注意如果两个器件有多个网线的连接时要通过旋转来使网线的交叉最少。

均布原则放置器件时要考虑以后的焊接,不要太密集,元件分布要尽可能均匀,例如大的器件再流焊时热容量比较大,过于集中容易使局部温度低而造成虚焊。

抗干扰原则这涉及的知识点就比较丰富了,如数字器件和模拟器件要分开,尽量远离;尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰,易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离;去耦电容尽量靠近器件的VCC,贴片器件的退耦电容最好在布在板子另一面的器件肚子位置等,这一原则涉及到的很多方面都是依靠经验来进行的,读者可以参阅后面关于可靠性设计一章。

热效应原则1:发热元器件应尽可能远离其它元器件,一般放置在边角,机箱内通风位置,发热器件一般都要用散热片,所以要考虑留出合适的空间安装散热片,此外发热器件的发热部位与印制电路板的距离一般不小于2mm。

2:对温度敏感的元器件要远离发热元器件。

易维修原则大型器件的四周要留出一定的维修空间(留出SMD返修设备加热头能够进行操作的尺寸),需要经常更换的元件应置于便于更换的位置,如保险管等。

易调节原则对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求,若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。

抵抗受力原则固定孔一般放在接线端子、插拔器件、长串端子等经常受力作用的器件中央,并留出相应的空间;重量超过15g的元器件、应当用支架加以固定,然后焊接。

PCB布板布线规则

PCB布板布线规则

细述PCB板布局布线基本规则的线路连接和功能实现,也是电源电路设计中重要的组成部分。

今天就将以本文来介绍PCB 板布局布线的基本规则。

一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。

定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。

特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。

电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。

重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。

二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。

Pcb布局规则和技巧

Pcb布局规则和技巧

Pcb布局规则和技巧Pcb布局规章1、在通常状况下,全部的元件均应布置在电路板的同一面上,只有顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴片IC等放在低层。

2、在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,在一般状况下不允许元件重叠;元件排列要紧凑,元件在整个版面上应分布匀称、疏密全都。

3、电路板上不同组件相临焊盘图形之间的最小间距应在1MM 以上。

4、离电路板边缘一般不小于2MM.电路板的最佳外形为矩形,长宽比为3:2或4:3.电路板面尺大于200MM乘150MM时,应考虑电路板所能承受的机械强度。

Pcb布局技巧在PCB的布局设计中要分析电路板的单元,依据其功能进行布局设计,对电路的全部元器件进行布局时,要符合以下原则:1、根据电路的流程支配各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持全都的方向。

2、以每个功能单元的核心元器件为中心,围绕他来进行布局。

元器件应匀称、整体、紧凑的排列在PCB上,尽量削减和缩短各元器件之间的引线和连接。

3、在高频下工作的电路,要考虑元器件之间的分布参数。

一般电路应尽可能使元器件并行排列,这样不但美观,而且装旱简单,易于批量生产。

特别元器件的位置在布局时一般要遵守以下原则:1、尽可能缩短高频元器件之间的连接,设法削减他们的分布参数及和相互间的电磁干扰。

易受干扰的元器件不能相互离的太近,输入和输出应尽量远离。

2一些元器件或导线有可能有较高的电位差,应加大他们的距离,以免放电引起意外短路。

高电压的元器件应尽量放在手触及不到的地方。

3、重量超过15G的元器件,可用支架加以固定,然后焊接。

那些又重又热的元器件,不应放到电路板上,应放到主机箱的底版上,且考虑散热问题。

热敏元器件应远离发热元器件。

4、对与电位器、可调电感线圈、可变电容器、微动开关等可调元器件的布局应考虑整块扳子的结构要求,一些常常用到的开关,在结构允许的状况下,应放置到手简单接触到的地方。

PCB基板排版原则

PCB基板排版原则

PCB基板排版原则PCB(Printed Circuit Board)指的是印刷电路板,是现代电子产品中不可或缺的组成部分。

PCB基板排版原则指的是在设计PCB时需要遵循的一系列规则和原则,以确保电路板的性能、可靠性和生产效率。

1.尽量简化电路板布局:在进行PCB设计时,应该尽可能地简化布局。

避免过于复杂的线路,使布局变得紧凑而混乱。

简单的布局不仅更易于理解和维护,而且能够提高PCB的生产效率和性能。

2.分区布局:根据电路板的功能和信号特性,将电路板划分为不同的区域进行布局。

例如,将模拟电路和数字电路分开布局,以避免干扰。

此外,还可以根据信号的频率和敏感度来划分不同的区域。

3.布局对称性:在设计布局时,应尽量保持布局的对称性。

对称布局有助于降低电磁干扰、信号串扰和噪音。

此外,对称布局还能提高电路板的外观美观性和可维护性。

4.信号与电源的分离:在布局PCB时,应将信号线和电源线分开布置,以避免信号串扰和电源干扰。

如果信号线和电源线必须交叉布置,应尽量减小其交叉的区域和长度,并采取适当的屏蔽和隔离措施。

5.信号线的长度和走向:为了保证信号的稳定性和可靠性,应尽量保持信号线的长度短和走向直。

较长的信号线容易引入损耗、延迟和串扰,从而影响电路性能。

6.降低电磁干扰:电磁干扰是PCB设计中常见的问题。

为了降低电磁干扰,可以采取屏蔽、地平面、消除回路、防止截止频率等措施。

7.热管理:在PCB设计中,应充分考虑热管理。

电路元件工作时会产生热量,如果不能得到有效散热,可能会影响电路的性能和寿命。

因此,应设计合适的散热器和散热通道,确保电路的正常工作温度。

8.电路板边缘保留间隙:为了避免PCB边缘的损坏或烧焦,应在设计布局时预留一定的边缘间隙。

这样在生产过程中,电路板的边缘就不容易受到损坏。

9.元件布局:在布置元件时,应尽量考虑到元件之间的连通性和可维护性。

相互连接的元件应尽量接近,减少连线的长度和阻抗。

此外,还应留出足够的空间进行维修。

pcb布局的基本原则

pcb布局的基本原则

pcb布局的基本原则
PCB布局的基本原则是要分隔逻辑路径上的电子元件和线路,使元件
可以更加高效地连接,而线路则可以最小化或甚至完全避免可能出现的干扰。

布局原则也被称为“把元件放在一起,把线路放在一起”。

能够改善
电路板数字和模拟性能,避免跑线和混乱。

具体来说,PCB布局基本原则有以下几点:
一、让线路尽量近似直线:要求电路的线路尽可能的模仿正弦曲线,
而不是斜线,以减少转角处的分布,从而延长电气线路的寿命;
二、保证线路之间及元件之间的距离:当两个线路非常接近时,就会
产生电容耦合,这时就要求在线路之间维持一定的间距,或者在元件之间
维持一定的间距;
三、考虑对线路的影响:在考虑线路布局时,应考虑可能产生的干扰,如静电、磁场、抗反干扰能力等,并采取合理的措施来避免这些干扰;
四、保证电路的灵活性:电路的灵活性可以避免芯片的设计和维护,以及未来技术的发展和改进;
五、考虑PCB板厚度:当考虑一个PCB板时,应审慎考虑PCB板的厚度,以便确保PCB板能够承受电脉冲的振动,而不会发生内部断裂或外部
电气损坏。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCB板布局原则1.元件排列规则1).在通常条件下,所有的元件均应布置在印制电路的同一面上,只有在顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴IC等放在底层。

2).在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,一般情况下不允许元件重叠;元件排列要紧凑,输入和输出元件尽量远离。

3).某元器件或导线之间可能存在较高的电位差,应加大它们的距离,以免因放电、击穿而引起意外短路。

4).带高电压的元件应尽量布置在调试时手不易触及的地方。

5).位于板边缘的元件,离板边缘至少有2个板厚的距离6).元件在整个板面上应分布均匀、疏密一致。

2.按照信号走向布局原则1).通常按照信号的流程逐个安排各个功能电路单元的位置,以每个功能电路的核心元件为中心,围绕它进行布局。

2).元件的布局应便于信号流通,使信号尽可能保持一致的方向。

多数情况下,信号的流向安排为从左到右或从上到下,与输入、输出端直接相连的元件应当放在靠近输入、输出接插件或连接器的地方。

3.防止电磁干扰1).对辐射电磁场较强的元件,以及对电磁感应较灵敏的元件,应加大它们相互之间的距离或加以屏蔽,元件放置的方向应与相邻的印制导线交叉。

2).尽量避免高低电压器件相互混杂、强弱信号的器件交错在一起。

3).对于会产生磁场的元件,如变压器、扬声器、电感等,布局时应注意减少磁力线对印制导线的切割,相邻元件磁场方向应相互垂直,减少彼此之间的耦合。

4).对干扰源进行屏蔽,屏蔽罩应有良好的接地。

5).在高频工作的电路,要考虑元件之间的分布参数的影响。

4. 抑制热干扰1).对于发热元件,应优先安排在利于散热的位置,必要时可以单独设置散热器或小风扇,以降低温度,减少对邻近元件的影响。

2).一些功耗大的集成块、大或中功率管、电阻等元件,要布置在容易散热的地方,并与其它元件隔开一定距离。

3).热敏元件应紧贴被测元件并远离高温区域,以免受到其它发热功当量元件影响,引起误动作。

4).双面放置元件时,底层一般不放置发热元件。

5.可调元件的布局对于电位器、可变电容器、可调电感线圈或微动开关等可调元件的布局应考虑整机的结构要求,若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应;若是机内调节,则应放置在印制电路板于调节的地方。

印刷电路板的设计SMT线路板是表面贴装设计中不可缺少的组成之一。

SMT线路板是电子产品中电路元件与器件的支撑件,它实现了电路元件和器件之间的电气连接。

随着电子技术发展,PCB板的体积越来越小,密度也越来越高,并且PCB板层不断地增加,因此,要求PCB在整体布局、抗干扰能力、工艺上和可制造性上要求越来越高。

印刷电路板设计的主要步骤;..1:绘制原理图。

..2:元件库的创建。

..3:建立原理图与印制板上元件的网络连接关系。

..4:布线和布局。

..5:创建印制板生产使用数据和贴装生产使用数据。

..印制电路板的设计过程中要考虑以下问题:1、要确保电路原理图元件图形与实物相一致和电路原理图中网络连接的正确性。

2、印制电路板的设计不仅仅是考虑原理图的网络连接关系,而且要考虑电路工程的一些要求,电路工程的要求主要是电源线、地线和其他一些导线的宽度,线路的连接,一些元件的高频特性,元件的阻抗、抗干扰等。

3、印制电路板整机系统安装的要求,主要考虑安装孔、插头、定位孔、基准点等都要满足要求,各种元件的摆放位置和准确地安装在规定的位置,同时要便于安装、系统调试、以及通风散热。

4、印制电路板的可制造性上和它的工艺性上的要求,要熟悉设计规范和满足生产工艺要求,使设计出的印制电路板能顺利地进行生产。

5、在考虑元器件在生产上便于安装、调试、返修,同时印制电路板上的图形、焊盘、过孔等要标准,确保元器件之间不会碰撞,又方便地安装。

6、设计出印制电路板的目的主要是应用,因此我们要考虑它的实用性和可靠性,同时减少印制电路板的板层和面积,从而来降低成本,适当大一些的焊盘、通孔、走线等有利于可靠性的提高,减少过孔,优化走线,使其疏密均匀,一致性好,使板面的整体布局美观一些。

..一、要使所设计的电路板达到预期的目的,印刷电路板的整体布局、元器件的摆放位置起着关键作用,它直接影响到整个印刷电路板的安装、可靠性、通风散热、布线的直通率。

..印刷电路板的外层尺寸优先考虑,PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加,过小,则散热不好,且邻近线条易受干扰,因此,首先对PCB的大小和外形,给出一个合理的定位。

再确定特殊元件的位置和单元电路等,要按电路的流程把整个电路分为几个单元电路或模块,并以每个单元电路的核心元件(如集成电路)为中心,其它的元件要按一定的顺序均匀、整齐紧凑地排列在PCB板上,但不要太靠近这些大的元件,要有一定的距离,特别一些比较大、比较高的元件周围要保持一定的距离,这样有助于焊接和返修。

对于功率较大的集成电路要考虑彩散热片,要给它留有足够的空间,并且放于印制板的通风散热好的位置。

同时也不要过于集中,几个大的元件在同一板子上,要有一定距离,并且要使他们在45角的方向上,稍小的一些集成电路如(SOP)要沿轴向排列,电阻容元件则垂直轴向排列,所有这些方向都相对PCB的生产过程的传送方向。

这样使元器件有规律的排列,从而减少在焊接中产生的缺陷。

做显示用的发光二极管等,因在应用过程中要用来观察,应该考虑放于印制板的边缘处。

..一些开关、微调元件等应该放在易于操作的地方。

在同频电路中应考虑元器件之间的分布参数,一般高频电路中应考虑元器件之间的分布参数,一般电路尽可能使元器件平行排列,这样不但美观,而且易于装焊,同时易于批生产,位于电路板边缘的元器件,距离边缘一定要有3-5厘米的距离。

在考虑元件位置的同时要对PCB板的热膨胀系数、导热系数、耐热性以及弯曲强度等性能进行全面考虑,以免在生产中对元件或PCB产生不良影响。

..PCB上的元件位置和外形确定后,再考虑PCB的布线。

..有了元件的位置,根据元件位置进行布线,印制板上的走线尽可能短是一个原则。

走线短,占用通道和面积都小,这样直通率会高一些。

在PCB板上的输入端和输出端的导线应尽量避开相邻平行,最好在二线间放有地线。

以免发生电路反馈藕合。

印制板如果为多层板,每个层的信号线走线方向与相邻板层的走线方向要不同。

对于一些重要的信号线应和线路设计人员达成一致意见,特别差分信号线,应该成对地走线,尽力使它们平行、靠近一些,并且长短相差不大。

PCB板上所有元件尽量减少和缩短元器件之间的引线和连接,PCB板中的导线最小宽度主要由导线与绝缘层基板间的粘附强度和流过它们的电流值决定。

当铜箔厚度为0. 05mm,宽度为1-1.5mm时,通过2A的电流,温度不会高于3度。

导线宽度1.5mm时可满足要求,对于集成电路,尤其是数字电路,通常选用0.02-0.03mm。

当然,只要允许,我们尽可能的用宽线,特别是PCB板上的电源线和地线,导线的最小间距主要是由最不坏情况下的线间绝缘电阻和击穿电压决定。

对于一些集成电路(IC)以工艺角度考虑可使间距小于5-8 mm。

印制导线的弯曲处一般用圆弧最小,避免使用小于90度弯的走线。

而直角和夹角在高频电路中会影响电性能,总之,印制板的布线要均匀,疏密适当,一致性好。

电路中尽量避开使用大面积铜箔,否则,在使用过程中时间过长产生热量时,易发生铜箔膨胀和脱落现象,如必须使用大面积铜箔时,可采用栅格状导线。

导线的端口则是焊盘。

焊盘中心孔要比器件引线直径大一些。

焊盘太大在焊接中易形成虚焊,焊盘外径D一般不小于(d+1.2)mm,其中d为孔径,对于一些密度比较大的元件的焊盘最小直径可取(d+1.0)mm,焊盘设计完成后,要在印制板的焊盘周围画上器件的外形框,同时标注文字和字符。

一般文字或外框的高度应该在0.9mm左右,线宽应该在0.2mm左右。

并且标注文字和字符等线不要压在焊盘上。

如果为双层板,则底层字符应该镜像标注。

..二、为了使所设计的产品更好有效地工作,PCB在设计中不得不考虑它的抗干扰能力,并且与具体的电路有着密切的关系。

..线路板中的电源线、地线等设计尤为重要,根据不同的电路板流过电流的大小,尽量加大电源线的宽度,从而来减小环路电阻,同时电源线与地线走向以及数据传送方向保持一致。

有助于电路的抗噪声能力的增强。

PCB上即有逻辑电路又有线性电路,使它们尽量分开,低频电路可采用单点并联接地,实际布线可把部分串联后再并联接地,高频电路采用多点串连接地。

地线应短而粗,对于高频元件周围可采用栅格大面积地箔,地线应尽量加粗,如果地线很细的导线,接地电位随电流的变化,使抗噪性能降低。

因此应加粗接地线,使其能达到三位于电路板上的允许电流。

如果设计上允许可以使接地线在2-3mm以上的直径宽度,在数字电路中,其接地线路布成环路大多能提高抗噪声能力。

PCB的设计中一般常规在印制板的关键部位配置适当的退藕电容。

在电源入端跨线接10-100uF的电解电容,一般在20-30管脚的附近,都应布置一个0.01PF的瓷片电容,一般在20-30管脚的集成电路芯片的电源管脚附近,都应布置一个0.01PF的磁片电容,对于较大的芯片,电源引脚会有几个,最好在它们附近都加一个退藕电容,超过200脚的芯片,则在它四边上都加上至少二个退藕电容。

如果空隙不足,也可4-8个芯片布置一个1-10PF钽电容,对于抗干扰能力弱、关断电源变化大的元件应在该元件的电源线和地线之间直接接入退藕电容,以上无论那种接入电容的引线不易过长。

..三、线路板的元件和线路设计完成后,接上来要考虑它的工艺设计,目的将各种不良因素消灭在生产开始之前,同时又要兼顾线路板的可制造性,以便生产出优质的产品和批量进行生产。

..前面在说元件得定位及布线时已经把线路板的工艺方面涉及到一些。

线路板的工艺设计主要是把我们设计出的线路板与元件通过SMT生产线有机的组装在一起,从而实现良好电气连接达到我们设计产品的位置布局。

焊盘设计,布线以抗干扰性等还要考虑我们设计出的板子是不是便于生产,能不能用现代组装技术-SMT技术进行组装,同时要在生产中达到不让产生不良品的条件产生设计高度。

具体有以下几个方面:..1:不同的SMT生产线有各自不同的生产条件,但就PCB的大小,pcb的单板尺寸不小于2 00*150mm。

如果长边过小可以采用拼版,同时长与宽之比为3:2或4:3电路板面尺寸大于200×150mm时,应考虑电路板所受的机械强度。

..2:当电路板尺寸过小,对于SMT整线生产工艺很难,更不易于批量生产,最好方法采用拼板形式,就是根据单板尺寸,把2块、4块、6块等单板组合到一起,构成一个适合批量生产的整板,整板尺寸要适合可贴范围大小。

相关文档
最新文档