【高考试题】2016年全国高考数学试题(浙江卷)★答案(理科)
2016年浙江省高考数学试卷理科【精华版】
2016年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(﹣2,3]C.[1,2) D.(﹣∞,﹣2]∪[1,+∞)2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n3.(5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=()A.2 B.4 C.3 D.64.(5分)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x25.(5分)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.(5分)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列 D.{d n2}是等差数列7.(5分)已知椭圆与双曲线C2:﹣y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1 8.(5分)已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(4分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是.10.(6分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.11.(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.12.(6分)已知a>b>1,若log a b+log b a=,a b=b a,则a=,b=.13.(6分)设数列{a n}的前n项和为S n,若S2=4,a n+1=2S n+1,n∈N*,则a1=,S5=.14.(4分)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P 和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.15.(4分)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.17.(15分)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.18.(15分)已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min (p,q)=(Ⅰ)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求F(x)的最小值m(a)(ii)求F(x)在[0,6]上的最大值M(a)19.(15分)如图,设椭圆C:+y2=1(a>1)(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20.(15分)设数列满足|a n﹣|≤1,n∈N*.(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.2016年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(﹣2,3]C.[1,2) D.(﹣∞,﹣2]∪[1,+∞)【分析】运用二次不等式的解法,求得集合Q,求得Q的补集,再由两集合的并集运算,即可得到所求.【解答】解:Q={x∈R|x2≥4}={x∈R|x≥2或x≤﹣2},即有∁R Q={x∈R|﹣2<x<2},则P∪(∁R Q)=(﹣2,3].故选:B.【点评】本题考查集合的运算,主要是并集和补集的运算,考查不等式的解法,属于基础题.2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【分析】由已知条件推导出l⊂β,再由n⊥β,推导出n⊥l.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m与β相交,l⊂β,∵n⊥β,∴n⊥l.故选:C.【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3.(5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=()A.2 B.4 C.3 D.6【分析】作出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x+y﹣2=0上的投影构成线段R′Q′,即SAB,而R′Q′=RQ,由得,即Q(﹣1,1)由得,即R(2,﹣2),则|AB|=|QR|===3,故选:C.【点评】本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用投影的定义以及数形结合是解决本题的关键.4.(5分)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2【分析】特称命题的否定是全称命题,全称命题的否定是特称命题,依据规则写出结论即可【解答】解:“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是“∃x∈R,∀n∈N*,使得n<x2“故选:D.【点评】本题考查命题的否定,解本题的关键是掌握住特称命题的否定是全称命题,书写答案是注意量词的变化.5.(5分)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【分析】根据三角函数的图象和性质即可判断.【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B.【点评】本题考查了三角函数的最小正周期,关键掌握三角函数的图象和性质,属于中档题.6.(5分)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列 D.{d n2}是等差数列【分析】设锐角的顶点为O,再设|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,判断C,D不正确,设△A n B n B n+1的底边B n B n+1上的高为h n,运用三角形相似知识,h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,进而得到数列{S n}为等差数列.【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,﹣S n+1=S n+1﹣S n,即为S n+2则数列{S n}为等差数列.另解:可设△A1B1B2,△A2B2B3,…,A n B n B n+1为直角三角形,且A1B1,A2B2,…,A n B n为直角边,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n﹣S n+1=S n+1﹣S n,+2则数列{S n}为等差数列.故选:A.【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.7.(5分)已知椭圆与双曲线C2:﹣y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1【分析】由题意可得m2﹣1=n2+1,即m2=n2+2,由条件可得m>n,再由离心率公式,即可得到结论.【解答】解:由题意可得m2﹣1=n2+1,即m2=n2+2,又m>1,n>0,则m>n,由e12•e22=•=•==1+>1,则e1•e2>1.故选:A.【点评】本题考查双曲线和椭圆的离心率的关系,考查椭圆和双曲线的方程和性质,以及转化思想和运算能力,属于中档题.8.(5分)已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100【分析】本题可根据选项特点对a,b,c设定特定值,采用排除法解答.【解答】解:A.设a=b=10,c=﹣110,则|a2+b+c|+|a+b2+c|=0≤1,a2+b2+c2>100;B.设a=10,b=﹣100,c=0,则|a2+b+c|+|a2+b﹣c|=0≤1,a2+b2+c2>100;C.设a=100,b=﹣100,c=0,则|a+b+c2|+|a+b﹣c2|=0≤1,a2+b2+c2>100;故选:D.【点评】本题主要考查命题的真假判断,由于正面证明比较复杂,故利用特殊值法进行排除是解决本题的关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(4分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是9.【分析】根据抛物线的性质得出M到准线x=﹣1的距离为10,故到y轴的距离为9.【解答】解:抛物线的准线为x=﹣1,∵点M到焦点的距离为10,∴点M到准线x=﹣1的距离为10,∴点M到y轴的距离为9.故答案为:9.【点评】本题考查了抛物线的性质,属于基础题.10.(6分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=1.【分析】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)=sin(2x+)+1,∴A=,b=1,故答案为:;1.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.11.(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是80 cm2,体积是40cm3.【分析】由三视图可得,该组合体是一个长方体上面放置了一个小正方体,代入体积公式和面积公式计算即可.【解答】解:由三视图可得,该组合体是一个长方体上面放置了一个小正方体,则其表面积为6×22+2×42+4×2×4﹣2×22=80cm2,其体积为23+4×2×4=40,故答案为:80,40【点评】本题考查了由三视图求几何体的体积和表面积,解题的关键是判断几何体的形状及相关数据所对应的几何量,考查空间想象能力.12.(6分)已知a>b>1,若log a b+log b a=,a b=b a,则a=4,b=2.【分析】设t=log b a并由条件求出t的范围,代入log a b+log b a=化简后求出t的值,得到a与b的关系式代入a b=b a化简后列出方程,求出a、b的值.【解答】解:设t=log b a,由a>b>1知t>1,代入log a b+log b a=得,即2t2﹣5t+2=0,解得t=2或t=(舍去),所以log b a=2,即a=b2,因为a b=b a,所以b2b=b a,则a=2b=b2,解得b=2,a=4,故答案为:4;2.【点评】本题考查对数的运算性质,以及换元法在解方程中的应用,属于基础题.13.(6分)设数列{a n}的前n项和为S n,若S2=4,a n+1=2S n+1,n∈N*,则a1=1,S5=121.【分析】运用n=1时,a1=S1,代入条件,结合S2=4,解方程可得首项;再由n =S n+1﹣S n,结合条件,计算即可得到所求和.>1时,a n+1【解答】解:由n=1时,a1=S1,可得a2=2S1+1=2a1+1,又S2=4,即a1+a2=4,即有3a1+1=4,解得a1=1;=S n+1﹣S n,可得由a n+1S n+1=3S n+1,由S2=4,可得S3=3×4+1=13,S4=3×13+1=40,S5=3×40+1=121.故答案为:1,121.【点评】本题考查数列的通项和前n项和的关系:n=1时,a1=S1,n>1时,a n=S n ,考查运算能力,属于中档题.﹣S n﹣114.(4分)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P 和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.【分析】由题意,△ABD≌△PBD,可以理解为△PBD是由△ABD绕着BD旋转得到的,对于每段固定的AD,底面积BCD为定值,要使得体积最大,△PBD必定垂直于平面ABC,此时高最大,体积也最大.【解答】解:如图,M是AC的中点.①当AD=t<AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,DM=﹣t,由△ADE∽△BDM,可得,∴h=,V==,t∈(0,)②当AD=t>AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,DM=t﹣,由等面积,可得,∴,∴h=,∴V==,t∈(,2)综上所述,V=,t∈(0,2)令m=∈[1,2),则V=,∴m=1时,V max=.故答案为:.【点评】本题考查体积最大值的计算,考查学生转化问题的能力,考查分类讨论的数学思想,对思维能力和解题技巧有一定要求,难度大.15.(4分)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.【分析】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】解:由绝对值不等式得≥|•|+|•|≥|•+•|=|(+)•|,于是对任意的单位向量,均有|(+)•|≤,∵|(+)|2=||2+||2+2•=5+2•,∴|(+)|=,因此|(+)•|的最大值≤,则•≤,下面证明:•可以取得,(1)若|•|+|•|=|•+•|,则显然满足条件.(2)若|•|+|•|=|•﹣•|,此时|﹣|2=||2+||2﹣2•=5﹣1=4,此时|﹣|=2于是|•|+|•|=|•﹣•|≤2,符合题意,综上•的最大值是,法2:由于任意单位向量,可设=,则|•|+|•|=||+||≥||+|=||=|+|,∵|•|+|•|≤,∴|+|≤,即(+)2≤6,即||2+||2+2•≤6,∵||=1,||=2,∴•≤,即•的最大值是.法三:设=,=,=,则=+,=﹣,|•|+|•|=||+||=||≤||,由题设当且仅当与同向时,等号成立,此时(+)2取得最大值6,由于|+|2+|﹣|)2=2(||2+||2)=10,于是(﹣)2取得最小值4,则•=,•的最大值是.故答案为:.【点评】本题主要考查平面向量数量积的应用,根据绝对值不等式的性质以及向量三角形不等式的关系是解决本题的关键.综合性较强,有一定的难度.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【分析】(Ⅰ)利用正弦定理,结合和角的正弦公式,即可证明A=2B(Ⅱ)若△ABC的面积S=,则bcsinA=,结合正弦定理、二倍角公式,即可求角A的大小.【解答】(Ⅰ)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.【点评】本题考查了正弦定理,解三角形,考查三角形面积的计算,考查二倍角公式的运用,属于中档题.17.(15分)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.【分析】(I)先证明BF⊥AC,再证明BF⊥CK,进而得到BF⊥平面ACFD.(II)方法一:先找二面角B﹣AD﹣F的平面角,再在Rt△BQF中计算,即可得出;方法二:通过建立空间直角坐标系,分别计算平面ACK与平面ABK的法向量,进而可得二面角B﹣AD﹣F的平面角的余弦值.【解答】(I)证明:延长AD,BE,CF相交于点K,如图所示,∵平面BCFE⊥平面ABC,∠ACB=90°,∴AC⊥平面BCK,∴BF⊥AC.又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK为等边三角形,且F为CK的中点,则BF⊥CK,∴BF⊥平面ACFD.(II)方法一:过点F作FQ⊥AK,连接BQ,∵BF⊥平面ACFD.∴BF⊥AK,则AK⊥平面BQF,∴BQ⊥AK.∴∠BQF是二面角B﹣AD﹣F的平面角.在Rt△ACK中,AC=3,CK=2,可得FQ=.在Rt△BQF中,BF=,FQ=.可得:cos∠BQF=.∴二面角B﹣AD﹣F的平面角的余弦值为.方法二:如图,延长AD,BE,CF相交于点K,则△BCK为等边三角形,取BC的中点,则KO⊥BC,又平面BCFE⊥平面ABC,∴KO⊥平面BAC,以点O为原点,分别以OB,OK的方向为x,z的正方向,建立空间直角坐标系O﹣xyz.可得:B(1,0,0),C(﹣1,0,0),K(0,0,),A(﹣1,﹣3,0),,.=(0,3,0),=,=(2,3,0).设平面ACK的法向量为=(x1,y1,z1),平面ABK的法向量为=(x2,y2,z2),由,可得,取=.由,可得,取=.∴==.∴二面角B﹣AD﹣F的余弦值为.【点评】本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.18.(15分)已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=(Ⅰ)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求F(x)的最小值m(a)(ii)求F(x)在[0,6]上的最大值M(a)【分析】(Ⅰ)由a≥3,讨论x≤1时,x>1,去掉绝对值,化简x2﹣2ax+4a﹣2﹣2|x﹣1|,判断符号,即可得到F(x)=x2﹣2ax+4a﹣2成立的x的取值范围;(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,求得f(x)和g(x)的最小值,再由新定义,可得F(x)的最小值;(ii)分别对当0≤x≤2时,当2<x≤6时,讨论F(x)的最大值,即可得到F (x)在[0,6]上的最大值M(a).【解答】解:(Ⅰ)由a≥3,故x≤1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;当x>1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),则等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围是[2,2a];(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,则f(x)min=f(1)=0,g(x)min=g(a)=﹣a2+4a﹣2.由﹣a2+4a﹣2=0,解得a1=2+,a2=2﹣(负的舍去),由F(x)的定义可得m(a)=min{f(1),g(a)},即m(a)=;(ii)当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2);当2<x≤6时,f(x)≤g(x)≤max{g(2),g(6)}=max{2,34﹣8a}=max{f(2),f(6)}.则M(a)=.【点评】本题考查新定义的理解和运用,考查分类讨论的思想方法,以及二次函数的最值的求法,不等式的性质,考查化简整理的运算能力,属于中档题.19.(15分)如图,设椭圆C:+y2=1(a>1)(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.【分析】(Ⅰ)联立直线y=kx+1与椭圆方程,利用弦长公式求解即可.(Ⅱ)写出圆的方程,假设圆A与椭圆有4个公共点,再利用对称性有解已知条件可得任意一A(0,1)为圆心的圆与椭圆至多有3个公共点,a的取值范围,进而可得椭圆的离心率的取值范围.【解答】解:(Ⅰ)由题意可得:,可得:(1+a2k2)x2+2ka2x=0,得x1=0或x2=,直线y=kx+1被椭圆截得到的弦长为:=.(Ⅱ)假设圆A与椭圆有4个公共点,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|,记直线AP,AQ的斜率分别为:k1,k2;且k1,k2>0,k1≠k2,由(1)可知|AP|=,|AQ|=,故:=,所以,(k12﹣k22)[1+k12+k22+a2(2﹣a2)k12k22]=0,由k1≠k2,k1,k2>0,可得:1+k12+k22+a2(2﹣a2)k12k22=0,因此a2(a2﹣2)①,因为①式关于k1,k2的方程有解的充要条件是:1+a2(a2﹣2)>1,所以a>.因此,任意点A(0,1)为圆心的圆与椭圆至多有三个公共点的充要条件为:1<a≤,e==得,所求离心率的取值范围是:.【点评】本题考查直线与椭圆的位置关系的综合应用,椭圆与圆的位置关系的综合应用,考查分析问题解决问题的能力,考查转化思想以及计算能力.20.(15分)设数列满足|a n﹣|≤1,n∈N*.(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.【分析】(I)使用三角不等式得出|a n|﹣|a n+1|≤1,变形得﹣≤,使用累加法可求得<1,即结论成立;(II)利用(I)的结论得出﹣<,进而得出|a n|<2+()m•2n,利用m的任意性可证|a n|≤2.【解答】解:(I)∵|a n﹣|≤1,∴|a n|﹣|a n+1|≤1,∴﹣≤,n∈N*,∴=(﹣)+(﹣)+…+(﹣)≤+++…+==1﹣<1.∴|a n|≥2n﹣1(|a1|﹣2)(n∈N*).(II)任取n∈N*,由(I)知,对于任意m>n,﹣=(﹣)+(﹣)+…+(﹣)≤++…+=<.∴|a n|<(+)•2n≤[+•()m]•2n=2+()m•2n.①由m的任意性可知|a n|≤2.否则,存在n 0∈N*,使得|a|>2,取正整数m 0>log且m0>n0,则2•()<2•()=|a|﹣2,与①式矛盾.综上,对于任意n∈N*,都有|a n|≤2.【点评】本题考查了不等式的应用与证明,等比数列的求和公式,放缩法证明不等式,难度较大.。
【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析
考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
2016年浙江卷理科数学高考试卷(原卷 答案)
绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)理科数学本试卷共20题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(C R Q)=A.[2,3]B.(-2,3]C.[1,2)D.(−∞,−2]∪[1,+∞)2.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则A. m∥lB. m∥nC. n⊥lD. m⊥n3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域{x−2≤0 x+y≥0x−3y+4≥0中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A.2√2B.4C. 3√2D.64.命题“∀x∈R,∃n∈N∗,使得n≥x2”的否定形式是A. ∀x∈R,∃n∈N∗,使得n<x2B. ∀x∈R,∀n∈N∗,使得n<x2C. ∃x∈R,∃n∈N∗,使得n<x2D. ∃x∈R,∀n∈N∗,使得n<x25.设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.如图,点列{An}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N∗,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N∗.(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为∆A n B n B n+1的面积,则A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列7.已知椭圆C1:x2m2+y2=1(m>1)与双曲线C2:x2n2−y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<18.已知实数a,b,c.A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a+b2−c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b−c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2−c|≤1,则a2+b2+c2<100二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2016年浙江省湖州市高考数学模拟试卷(理科)(5月份) (2)
2016年浙江省湖州市高考数学模拟试卷(理科)(5月份)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合A={x|x2﹣4x>0},B={x|x>1},则(∁R A)∩B=()A.{x|x>4或x<0}B.{x|1<x<4}C.{x|1<x≤4}D.{x|1≤x≤4}2.(5分)在斜三角形ABC中,“A>”是“tanA>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.(5分)已知{a n}是公比大于1的等比数列,若2a1,a2,a3成等差数列,则=()A.B.C.D.24.(5分)若实数x和y满足,则x2+y2的最小值是()A.2 B.C.3 D.45.(5分)已知函数f(x)=a x﹣b的图象如图所示,则函数g(x)=ax+b的图象可能是()A.B.C.D.6.(5分)已知三棱柱ABC﹣A1B1C1的所有棱长相等,若∠AA1B1=∠AA1C1=60°,则异面直线A1C与AB1所成角的余弦值是()A.B.C.D.7.(5分)若f(x)是定义在(﹣1,1)上的减函数,则下列不等式正确的是()A.f(sinx)>f(cosx)B.f()>f(x)C.f()≥f()D.f()≥f()8.(5分)已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,点A在l上的射影为A1.若|AB|=|A1B|,则直线AB的斜率为()A.±3 B.±2C.±2 D.±二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.(6分)已知tanα=2,则tan(α+)=,cos2α=,=.10.(6分)已知函数f(x)=则f(f(﹣2))=;若f(x)≥2,则实数x的取值范围是.11.(6分)已知函数f(x)=2cos2x+cos(﹣2x),则函数f(x)的最小正周期是,值域是.12.(6分)一个几何体的三视图如图所示(单位:cm),则该几何体的体积是cm3,该几何体的表面积是cm2.13.(4分)已知双曲线﹣y2=1(a>0)的右焦点为F,过点F作一条渐近线的垂线,垂足为P.若点P的纵坐标为,则该双曲线的离心率是.14.(4分)已知单位向量,的夹角为120°,|x+y|=(x,y∈R),则|x﹣y|的取值范围是.15.(4分)在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若将△ABD沿直线BD 折成△A′BD,使得A′D⊥BC,则直线A′B与平面BCD所成角的正弦值是.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(15分)在△ABC中,内角A,B,C的所对边分别为a,b,c.已知a2+b2+5abcosC=0,sin2C=sinAsinB.(Ⅰ)求角C的大小;(Ⅱ)若△ABC的面积为,求sinA的值.17.(15分)在三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC1⊥平面ABC,BC=CA=AC1.(Ⅰ)求证:AC⊥平面AB1C1;(Ⅱ)求二面角A1﹣BB1﹣C的余弦值.18.(15分)已知点C(x0,y0)是椭圆+y2=1上的动点,以C为圆心的圆过点F(1,0).(Ⅰ)若圆C与y轴相切,求实数x0的值;(Ⅱ)若圆C与y轴交于A,B两点,求|FA|•|FB|的取值范围.19.(15分)已知函数f(x)=x2+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m (a);(Ⅱ)设b∈R,若|f(x)+b|≤3对x∈[﹣1,1]恒成立,求3a+b的取值范围.20.(14分)在数列{a n}中,a1=a(a∈R),a n+1=(n∈N*),记数列{a n}的前n项和是S n.(Ⅰ)若对任意的n∈N*,都有a n+1>,求实数a的取值范围;(Ⅱ)若a=1,求证:S n<+1(n∈N*).2016年浙江省湖州市高考数学模拟试卷(理科)(5月份)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2016•湖州模拟)已知集合A={x|x2﹣4x>0},B={x|x>1},则(∁R A)∩B=()A.{x|x>4或x<0}B.{x|1<x<4}C.{x|1<x≤4}D.{x|1≤x≤4}【分析】求出集合A,然后求解(∁R A)∩B.【解答】解:集合A={x|x2﹣4x>0}={x|x>4或x<0},B={x|x>1},则(∁R A)∩B={x|0≤x≤4}∩{x|x>1}={x|1<x≤4}.故选:C.【点评】本题考查集合的基本运算,考查计算能力.2.(5分)(2016•湖州模拟)在斜三角形ABC中,“A>”是“tanA>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【分析】要判断“A>”是“tanA>1”的什么条件,只要判断,其中一个成立时,另一个是否也成立即可,我们可以利用举反例进行判断;【解答】解:当A=时,tanA=﹣,所以△ABC中,“A>”推不出“tanA>1”;在斜三角形ABC中,当tanA>1,可得A>,满足tanA>1,推出A>,∴“A>”是“tanA>1”的必要不充分条件,故选:B.【点评】本题考查了充要条件的判断,做题时一定要细心,此题利用特殊值法进行判断会比较简单,是一道基础题;3.(5分)(2016•湖州模拟)已知{a n}是公比大于1的等比数列,若2a1,a2,a3成等差数列,则=()A.B.C.D.2【分析】设等比数列{a n}的公比为q(q>1),由已知列式求得公比,然后代入等比数列的通项公式及前n项和求得答案.【解答】解:设等比数列{a n}的公比为q(q>1),由2a1,a2,a3成等差数列,得,解得q=1(舍)或q=2.则=.故选:C.【点评】本题考查等比数列的性质,考查了等比数列的前n项和,是基础的计算题.4.(5分)(2016•湖州模拟)若实数x和y满足,则x2+y2的最小值是()A.2 B.C.3 D.4【分析】作出不等式组对应的平面区域,根据点到直线的距离公式进行转化求解即可.【解答】解:作出不等式组对应的平面区域,z=x2+y2的几何意义是区域内的点到原点的距离的平方,由图象知O到直线AB:3x+2y﹣6=0的距离最小,此时d==,则x2+y2的最小值为z=d=()2=,故选:B.【点评】本题主要考查线性规划的应用,结合点到直线的距离公式进行转化求解是解决本题的关键.5.(5分)(2016•湖州模拟)已知函数f(x)=a x﹣b的图象如图所示,则函数g(x)=ax+b 的图象可能是()A.B.C.D.【分析】根据指数函数图象递减可知0<a<1,再有平移可知向右平移了小于1个单位,得出0<b<1,可得出选项.【解答】解:根据指数函数图象和平移可知:0<a<1,0<b<1,故一次函数g(x)=ax+b的图象为A.故选:A.【点评】考查了指数函数,图象的平移和一次函数的图象.属于基础题型,应熟练掌握.6.(5分)(2016•湖州模拟)已知三棱柱ABC﹣A1B1C1的所有棱长相等,若∠AA1B1=∠AA1C1=60°,则异面直线A1C与AB1所成角的余弦值是()A.B.C.D.【分析】设,再设三棱柱ABC﹣A1B1C1的棱长为m,利用平面向量的数量积运算求出cos,则异面直线A1C与AB1所成角的余弦值可求.【解答】解:设,再设三棱柱ABC﹣A1B1C1的棱长为m,则,,,∴==.=,=m.∴cos==.则异面直线A1C与AB1所成角的余弦值是.故选:A.【点评】本题考查异面直线所成的角,考查了空间想象能力和思维能力,训练了利用平面向量的数量积运算求夹角,是中档题.7.(5分)(2016•湖州模拟)若f(x)是定义在(﹣1,1)上的减函数,则下列不等式正确的是()A.f(sinx)>f(cosx)B.f()>f(x)C.f()≥f()D.f()≥f()【分析】由三角函数线可判断出时,sinx>cosx,根据f(x)的单调性便可判断选项A的正误,而对于B,C,D各选项可通过对自变量的值进行作差,配方,通分及提取公因式等方法,根据x的范围及指数函数的单调性便可判断出自变量值的大小关系,从而由f(x)的单调性即可判断出对应函数值的大小关系,从而判断选项的正误.【解答】解:A.x∈时,sinx>cosx;∵f(x)在(﹣1,1)上为减函数;∴f(sinx)<f(cosx),∴该选项错误;B.x∈(﹣1,1);∴>0;∴,且f(x)在(﹣1,1)上单调递减;∴,∴该选项错误;C.=;∵x∈(﹣1,1);∴x∈(﹣1,0)时,;∴,且f(x)在(﹣1,1)上为减函数;∴,∴该选项错误;D.=;∴①x∈(﹣1,0]时,;∴;②x∈(0,1)时,;∴;∴综上得,;∵f(x)为(﹣1,1)上的减函数;∴,∴该选项正确.故选D.【点评】考查根据三角函数线比较sinx,cosx大小的方法,减函数的定义,作差法比较两个式子的大小,配方法的应用,以及指数函数的单调性.8.(5分)(2016•湖州模拟)已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,点A在l上的射影为A1.若|AB|=|A1B|,则直线AB的斜率为()A.±3 B.±2C.±2 D.±【分析】设A,B到准线的距离分别为2a,a,由抛物线的定义可得|AB|=3a,利用锐角三角函数的定义即可得出直线AB的斜率.【解答】解:设A在第一象限,直线AB的倾斜角为α.过B作准线的垂线BB′,作AA′的垂线BC,∵|AB|=|A1B|,∴C是AA′的中点.设|BB′|=a,则|AA′|=2a,∴|AB|=|AA′|+|BB′|=3a.∴cosα=cos∠BAC==,∴tanα=2,由抛物线的对称性可知当A在第四象限时,tanα=﹣2.∴直线AB的斜率为±2.故选:B.【点评】本题考查抛物线的定义,考查直线的斜率的计算,考查学生的计算能力,属于中档题.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.(6分)(2016•湖州模拟)已知tanα=2,则tan(α+)=﹣3,cos2α=,=.【分析】由已知,利用特殊角的三角函数值及两角和的正切函数公式可求tan(α+)的值,利用同角三角函数基本关系式即可计算求得cos2α,的值.【解答】解:∵tanα=2,∴tan(α+)===﹣3;cos2α====;===.故答案为:﹣3,,.【点评】本题主要考查了特殊角的三角函数值及两角和的正切函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.10.(6分)(2016•湖州模拟)已知函数f(x)=则f(f(﹣2))=2;若f(x)≥2,则实数x的取值范围是x≥1或x≤﹣4.【分析】根据分段函数的表达式利用代入法进行求解即可.【解答】解:由分段函数的表达式得f(﹣2)=log22=1,f(1)=21=2,则f(f(﹣2))=2;若x≥0,由f(x)≥2得2x≥2,得x≥1,若x<0,由f(x)≥2得log2(﹣x)≥2,得﹣x≥4,则x≤﹣4,综上x≥1或x≤﹣4,故答案为:2,x≥1或x≤﹣4.【点评】本题主要考查函数值的计算,以及分段函数的表达式的应用,注意变量的取值范围.11.(6分)(2016•湖州模拟)已知函数f(x)=2cos2x+cos(﹣2x),则函数f(x)的最小正周期是π,值域是[1﹣,1] .【分析】利用三角函数恒等变换的应用化简函数解析式为f(x)=sin(2x+)+1,利用三角函数周期公式可求最小正周期,利用正弦函数的图象和性质可得sin(2x+)∈[﹣1,1],从而可求f(x)的值域.【解答】解:∵f(x)=2cos2x+cos(﹣2x)=1+cos2x+sin2x=sin(2x+)+1,∴函数f(x)的最小正周期T==π,∵sin(2x+)∈[﹣1,1],∴f(x)=sin(2x+)+1∈[1﹣,1].故答案为:π,[1﹣,1].【点评】本题主要考查了三角函数恒等变换的应用,三角函数周期公式的应用,正弦函数的图象和性质的应用,考查了转化思想和数形结合思想,属于基础题.12.(6分)(2016•湖州模拟)一个几何体的三视图如图所示(单位:cm),则该几何体的体积是6cm3,该几何体的表面积是cm2.【分析】根据几何体的三视图得该几何体是一个底面为直角梯形的四棱柱,由三视图求出几何元素的长度,由梯形的面积公式、柱体的体积公式求出该几何体的体积,由四棱柱的各个面的长度求出几何体的表面积.【解答】解:根据几何体的三视图得:该几何体是一个底面为直角梯形的四棱柱,其底面是正视图中的直角梯形,上底为1cm,下底为2cm,高为2cm,由侧视图知四棱柱的高为2cm,所以该几何体的体积V==6(cm3),由正视图可知直角梯形斜腰是,则该几何体的表面积S表面积=2×+=(cm2),故答案为:6;.【点评】本题考查三视图求几何体的体积以及表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.13.(4分)(2016•湖州模拟)已知双曲线﹣y2=1(a>0)的右焦点为F,过点F作一条渐近线的垂线,垂足为P.若点P的纵坐标为,则该双曲线的离心率是.【分析】设右焦点F(c,0),设双曲线的一条渐近线方程为l:y=,由两直线垂直的条件:斜率之积为﹣1,可得直线PF的方程,联立渐近线方程求得P的纵坐标,由条件结合离心率公式计算即可得到所求值.【解答】解:设右焦点F(c,0),且c==,设双曲线的一条渐近线方程为l:y=,由PF⊥l,可得直线PF的方程为y=﹣a(x﹣c),联立消去x,可得y=,即有y===,由点P的纵坐标为,可得=,即有e=.故答案为:.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程和两直线垂直的条件:斜率之积为﹣1,考查运算能力,属于基础题.14.(4分)(2016•湖州模拟)已知单位向量,的夹角为120°,|x+y|=(x,y∈R),则|x﹣y|的取值范围是[1,3] .【分析】由已知求得.再由|x+y|=得到x2+y2﹣xy=3.然后利用配方法及换元法分别求得|x﹣y|的最大值及最小值即可.【解答】解:∵,且,的夹角为120°,∴.∴|x+y|==.即x2+y2﹣xy=3.∴3=x2+y2﹣xy≥2xy﹣xy=xy,即xy≤3;则|x﹣y|==;令x+y=t,则(x+y)2=x2+y2+2xy=t2,∴3+xy+2xy=t2,则,∴|x﹣y|====.∴|x﹣y|的取值范围是[1,3].故答案为:[1,3].【点评】本题考查平面向量的数量积运算,考查了数学转化思想方法,训练了利用配方法及换元法求函数的最值,属难题.15.(4分)(2016•湖州模拟)在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若将△ABD沿直线BD折成△A′BD,使得A′D⊥BC,则直线A′B与平面BCD所成角的正弦值是.【分析】过D作DE⊥BC于E,连结A′E,过A′作A′O⊥DE,连结A′O.则可证明A′O⊥平面BCD,于是∠A′BO为直线A′B与平面BCD所成的角.设AD=1,在直角梯形中根据平面几何知识解出DO,从而得出A′O,得出线面角的正弦值.【解答】解:过D作DE⊥BC于E,连结A′E,过A′作A′O⊥DE,连结A′O.∵BC⊥A′D,BC⊥DE,A′D∩A′O=A′,∴BC⊥平面A′DE,∵A′O⊂平面A′DE,∴BC⊥A′O,又A′O⊥DE,BC∩DE=E,∴A′O⊥平面BCD.∴∠A′BO为直线A′B与平面BCD所成的角.在直角梯形ABCD中,过A作AO⊥BD,交BD于M,交DE于O,设AD=1,则AB=2,∴BD=,∴AM==,∴DM==.由△AMD∽△DMO得,即,∴DO=.∴A′O==.∴sin∠A′BO==.故答案为.【点评】本题考查了线面角的作法与计算,根据条件构造线面垂直得出线面角是解题关键.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(15分)(2016•湖州模拟)在△ABC中,内角A,B,C的所对边分别为a,b,c.已知a2+b2+5abcosC=0,sin2C=sinAsinB.(Ⅰ)求角C的大小;(Ⅱ)若△ABC的面积为,求sinA的值.【分析】(Ⅰ)由余弦定理,正弦定理化简已知可得:7(a2+b2)=5c2,c2=ab,从而利用余弦定理可求cosC=﹣,结合范围C∈(0,π)即可求得∠C的值.(Ⅱ)利用三角形面积公式可求ab=2,由(Ⅰ)知,c2=7,a2+b2=5,联立可求a,b的值,利用正弦定理即可求得sinA的值.【解答】解:(Ⅰ)由题意及余弦定理得,a2+b2+5ab=0,即7(a2+b2)=5c2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意及正弦定理得,c2=ab,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)故cosC===﹣,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)因为C∈(0,π),∠C=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(Ⅱ)因为S△ABC=absinC=,即ab=2 ①.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)由(Ⅰ)知,c2=7,a2+b2=5 ②.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)联立①②得,或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)由正弦定理得,sinA=或sinA=.﹣﹣﹣﹣﹣﹣﹣(15分)【点评】本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.17.(15分)(2016•湖州模拟)在三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC1⊥平面ABC,BC=CA=AC1.(Ⅰ)求证:AC⊥平面AB1C1;(Ⅱ)求二面角A1﹣BB1﹣C的余弦值.【分析】(Ⅰ)推导出BC∥B1C1,AC⊥B1C1,AC1⊥ACC,由此能证明AC⊥平面AB1C1.(Ⅱ)分别取BB1,CC1的中点M、N,连结AM,MN,AN,则∠AMN为二面角A1﹣BB1﹣C的平面角,由此能求出二面角A1﹣BB1﹣C的余弦.【解答】证明:(Ⅰ)因为三棱柱ABC﹣A1B1C1,所以BC∥B1C1.又因为∠ACB=90°,所以AC⊥B1C1,(3分)因为AC1⊥平面ABC,所以AC1⊥ACC,(6分)因为AC1∩B1C1=C1,所以AC⊥平面AB1C1.(7分)解:(Ⅱ)因为点A1在平面A1ABB1内,故只需求A﹣BB1﹣C的二面角.分别取BB1,CC1的中点M、N,连结AM,MN,AN,所以AM⊥BB1.因为AC1⊥平面ABC,∠ACB=90°,所以BC⊥CC1,即平行四边形BCC1B1为矩形,所以MN⊥BB1,所以∠AMN为二面角的平面角.(11分)设BC=CA=AC1=1,则AB=AB1=BB1=,所以AM=,MN=1,AN=.由余弦定理得,cos∠AMN==,所以二面角A1﹣BB1﹣C的余弦值为.(15分)【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.(15分)(2016•湖州模拟)已知点C(x0,y0)是椭圆+y2=1上的动点,以C为圆心的圆过点F(1,0).(Ⅰ)若圆C与y轴相切,求实数x0的值;(Ⅱ)若圆C与y轴交于A,B两点,求|FA|•|FB|的取值范围.【分析】(Ⅰ)当圆C与y轴相切时,|x0|=,再由点C在椭圆上,得,由此能求出实数x0的值.(Ⅱ)圆C的方程是(x﹣x0)2+(y﹣y0)2=(x0﹣1)2+,令x=0,得y2﹣2y0y+2x0﹣1=0,由此利用根的判别式、韦达定理,结合已知条件能求出|FA|•|FB|的取值范围.【解答】解:(Ⅰ)当圆C与y轴相切时,|x0|=,(2分)又因为点C在椭圆上,所以,(3分)解得,(5分)因为﹣,所以.(6分)(Ⅱ)圆C的方程是(x﹣x0)2+(y﹣y0)2=(x0﹣1)2+,令x=0,得y2﹣2y0y+2x0﹣1=0,设A(0,y1),B(0,y2),则y1+y2=2y0,y1y2=2x0﹣1,(8分)由,及得﹣2﹣2<x0<﹣2+2,又由P点在椭圆上,﹣2≤x0≤2,所以﹣2≤,(10分)|FA|•|FB|=•=(12分)===,(14分)所以|FA|•|FB|的取值范围是(4,4].(15分)【点评】本题考查实数值的求法,考查两线段乘积的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、圆、椭圆性质的合理运用.19.(15分)(2016•湖州模拟)已知函数f(x)=x2+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m (a);(Ⅱ)设b∈R,若|f(x)+b|≤3对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)问题转化为3﹣b≤f(x)≤3﹣b对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)f(x)=x2+3|x﹣a|=,①当a≥1时,f(x)=x2﹣3x+3a在x∈[﹣1,1]单调递减,则M(a)=f(﹣1)=4+3a,m(a)=f(1)=﹣2+3a,此时M(a)﹣m(a)=6;②当a≤﹣1时,f(x)=x2+3x﹣3a在x∈[﹣1,1]单调递增,则M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣2﹣3a,此时M(a)﹣m(a)=6;③当﹣1<a<1时,f(x)=,此时f(x)在x∈[﹣1,a]单调递减,在x∈[a,1]单调递增,则m(a)=f(a)=a2,M(a)=max{f(﹣1),f(1)}=max{4+3a,4﹣3a}=4+|3a|,此时M(a)﹣m(a)=4+|3a|﹣a2;因此M(a)﹣m(a)=,(Ⅱ)原问题等价于﹣3﹣b≤f(x)≤3﹣b,由(Ⅰ)知①当a≥1时,则,即,此时3a+b=﹣1;②当a≤﹣1时,则,即,此时b﹣3a=﹣1,此时3a+b≤﹣7;③当﹣1<a<1时,则m(a)=f(a)=a2,,即﹣a2﹣3≤b≤﹣|3a|﹣1,此时﹣a2+3a﹣3≤3a+b≤3a﹣|3a|﹣1;由﹣1<a<1得﹣a2+3a﹣3>﹣7和3a﹣|3a|﹣1≤﹣1,此时﹣7<3a+b≤﹣1,因此3a+b≤﹣1.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.20.(14分)(2016•湖州模拟)在数列{a n}中,a1=a(a∈R),a n+1=(n∈N*),记数列{a n}的前n项和是S n.(Ⅰ)若对任意的n∈N*,都有a n+1>,求实数a的取值范围;(Ⅱ)若a=1,求证:S n<+1(n∈N*).【分析】(Ⅰ)由a n+1=(n∈N*),可得=,当a n+1时,a n,且a n,反之也成立.即可得出.(Ⅱ)由(Ⅰ)知,a=1时,a n,从而a n>0,可得a n+1﹣a n<0,因此,又==,可得:a n+1.利用递推关系与等比数列的前n项和公式可得S n+.进而得出结论.【解答】(Ⅰ)解:∵a n+1=(n∈N*),∴=,当a n+1时,a n,且a n,反之,当a n时,且a n,可得:a n+1.故,且a.(Ⅱ)证明:由(Ⅰ)知,a=1时,a n,从而a n>0,∴a n+1﹣a n==<0,∴,由=,可得:==,由,得,即a n+1.∴++…+≤=<.∴S n+.又+1﹣=≥0,∴S n<+1(n∈N*).【点评】本题考查了递推关系、等比数列的前n项和公式、不等式的性质、“放缩法”,考查了推理能力与计算能力,属于难题.参与本试卷答题和审题的老师有:qiss;sxs123;maths;洋洋;wkl197822;zhczcb;w3239003;gongjy;双曲线;zlzhan;刘老师;沂蒙松(排名不分先后)菁优网2017年1月11日。
高中数学考点6指数函数、对数函数、幂函数(含近年年高考试题)新人教A版[1]
考点6 指数函数、对数函数、幂函数一、选择题1.(2016·全国卷Ⅰ高考理科·T8)若a〉b〉1,0〈c〈1,则()A。
a c〈b c B。
ab c<ba cC.alog b c〈blog a cD.log a c〈log b c【解析】选C。
对A:由于0<c<1,所以函数y=x c在R上单调递增,因此a>b〉1⇔a c>b c,A错误.对B:由于—1〈c-1<0,所以函数y= 1c x-在(1,+∞)上单调递减,所以a>b>1⇔1c a-<1c b-⇔ba c〈ab c,B错误。
对C:要比较alog b c和blog a c,只需比较alnclnb 和blnclna,只需比较lncblnb和lncalna,只需比较blnb和alna,构造函数f(x)=xlnx(x>1),则f'(x)=lnx+1>1>0,f(x)在(1,+∞)上单调递增,因此f(a)〉f(b)>0⇔alna〉blnb>0⇔1alna <1 blnb.又由0<c〈1得lnc<0,所以lncalna >lncblnb⇔blog a c>alog b c,C正确。
对D:要比较log a c和log b c,只需比较lnclna 和lnclnb,而函数y=lnx在(1,+∞)上单调递增,故a>b〉1⇔lna>lnb>0⇔1lna <1lnb。
又由0〈c<1得lnc<0,所以lnclna 〉lnclnb⇔log a c>log b c,D错误.2。
(2016·全国卷Ⅰ高考文科·T8)若a>b 〉0,0<c 〈1,则 ( ) A.log a c<log b c B.log c a 〈log c bC 。
a c<b cD.c a>c b【解析】选B 。
2016年高考数学浙江省(理科)试题及答案【解析版】
2016年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.【2016浙江(理)】已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(﹣2,3]C.[1,2)D.(﹣∞,﹣2]∪[1,+∞)【答案】B【解析】解:Q={x∈R|x2≥4}={x∈R|x≥2或x≤﹣2},即有∁R Q={x∈R|﹣2<x<2},则P∪(∁R Q)=(﹣2,3].【2016浙江(理)】已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【答案】C【解析】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m⊥β,l⊂β,∵n⊥β,∴n⊥l.【2016浙江(理)】在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=()A.2 B.4 C.3D.6【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x+y﹣2=0上的投影构成线段R′Q′,即SAB,而R′Q′=RQ,由得,即Q(﹣1,1),由得,即R(2,﹣2),则|AB|=|QR|===3,【2016浙江(理)】命题“∀x∈R,∂n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∂n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∂x∈R,∂n∈N*,使得n<x2D.∂x∈R,∀n∈N*,使得n<x2【答案】D【解析】解:因为全称命题的否定是特称命题,所以,命题“∀x∈R,∂n∈N*,使得n≥x2”的否定形式是:∂x∈R,∀n∈N*,使得n<x2.【2016浙江(理)】设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关 B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【答案】B【解析】解:∵设函数f(x)=sin2x+bsinx+c,∴c是图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,【2016浙江(理)】如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列【答案】A【解析】解:设锐角的顶点为O,|OA1|=a,|OB1|=b,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,b不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n+2﹣S n+1=S n+1﹣S n,则数列{S n}为等差数列.故选:A.【2016浙江(理)】已知椭圆C1:+y2=1(m>1)与双曲线C2:﹣y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1 【答案】A【解析】解:∵椭圆C1:+y2=1(m>1)与双曲线C2:﹣y2=1(n>0)的焦点重合,∴满足c2=m2﹣1=n2+1,即m2﹣n2=2>0,∴m2>n2,则m>n,排除C,D则c2=m2﹣1<m2,c2=n2+1>n2,则c<m.c>n,e1=,e2=,则e1•e2=•=,则(e1•e2)2=()2•()2====1+=1+= 1+>1,∴e1e2>1,【2016浙江(理)】已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100【答案】D【解析】解:A.设a=b=10,c=﹣110,则|a2+b+c|+|a+b2+c|=0≤1,a2+b2+c2>100;B.设a=10,b=﹣100,c=0,则|a2+b+c|+|a2+b﹣c|=0≤1,a2+b2+c2>100;C.设a=100,b=﹣100,c=0,则|a+b+c2|+|a+b﹣c2|=0≤1,a2+b2+c2>100;二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.【2016浙江(理)】若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是.【答案】9【解析】解:抛物线的准线为x=﹣1,∵点M到焦点的距离为10,∴点M到准线x=﹣1的距离为10,∴点M到y轴的距离为9.【2016浙江(理)】已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.【答案】;1.【解析】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)+1=sin(2x+)+1,∴A=,b=1,【2016浙江(理)】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.【答案】72,32【解析】解:由三视图可得,原几何体为由四个棱长为2cm的小正方体所构成的,则其表面积为22×(24﹣6)=72cm2,其体积为4×23=32,【2016浙江(理)】已知a>b>1,若log a b+log b a=,a b=b a,则a=,b=.【答案】4;2.【解析】解:设t=log b a,由a>b>1知t>1,代入log a b+log b a=得,即2t2﹣5t+2=0,解得t=2或t=(舍去),所以log b a=2,即a=b2,因为a b=b a,所以b2b=b a,则a=2b=b2,解得b=2,a=4,【2016浙江(理)】设数列{a n}的前n项和为S n,若S2=4,a n+1=2S n+1,n∈N*,则a1=,S5=.【答案】1,121.【解析】解:由n=1时,a1=S1,可得a2=2S1+1=2a1+1,又S2=4,即a1+a2=4,即有3a1+1=4,解得a1=1;由a n+1=S n+1﹣S n,可得S n+1=3S n+1,由S2=4,可得S3=3×4+1=13,S4=3×13+1=40,S5=3×40+1=121.【2016浙江(理)】如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P 和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.【答案】【解析】解:如图,M是AC的中点.①当AD=t<AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,DM=﹣t,由△ADE∽△BDM,可得,∴h=,V==,t∈(0,)②当AD=t>AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,DM=t﹣,由等面积,可得,∴,∴h=,∴V==,t∈(,2)综上所述,V=,t∈(0,2)令m=∈[1,2),则V=,∴m=1时,V max=.【2016浙江(理)】已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.【答案】【解析】解:∵|(+)•|=|•+•|≤|•|+|•|≤,∴|(+)•|≤|+|≤,平方得:||2+||2+2•≤6,即12+22+2•≤6,则•≤,故•的最大值是,三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.【2016浙江(理)】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B(Ⅱ)若△ABC的面积S=,求角A的大小.【解析】(Ⅰ)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=2=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.【2016浙江(理)】如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:EF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.【解析】(I)证明:延长AD,BE,CF相交于点K,如图所示,∵平面BCFE⊥平面ABC,∠ACB=90°,∴AC⊥平面BCK,∴BF⊥AC.又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK为等边三角形,且F为CK的中点,则BF⊥CK,∴BF⊥平面ACFD.(II)方法一:过点F作FQ⊥AK,连接BQ,∵BF⊥平面ACFD.∴BF⊥AK,则AK⊥平面BQF,∴BQ⊥AK.∴∠BQF是二面角B﹣AD﹣F的平面角.在Rt△ACK中,AC=3,CK=2,可得FQ=.在Rt△BQF中,BF=,FQ=.可得:cos∠BQF=.∴二面角B﹣AD﹣F的平面角的余弦值为.方法二:如图,延长AD,BE,CF相交于点K,则△BCK为等边三角形,取BC的中点,则KO⊥BC,又平面BCFE⊥平面ABC,∴KO⊥平面BAC,以点O为原点,分别以OB,OK的方向为x,z的正方向,建立空间直角坐标系O﹣xyz.可得:B(1,0,0),C(﹣1,0,0),K(0,0,),A(﹣1,﹣3,0),,.=(0,3,0),=,(2,3,0).设平面ACK的法向量为=(x1,y1,z1),平面ABK的法向量为=(x2,y2,z2),由,可得,取=.由,可得,取=.∴==.∴二面角B﹣AD﹣F的余弦值为.【2016浙江(理)】已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=(Ⅰ)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求F(x)的最小值m(a)(ii)求F(x)在[0,6]上的最大值M(a)【解析】解:(Ⅰ)由a≥3,故x≤1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;当x>1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),则等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围是(2,2a);(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,则f(x)min=f(1)=0,g(x)min=g(a)=﹣a2+4a﹣2.由﹣a2+4a﹣2=0,解得a=2+(负的舍去),由F(x)的定义可得m(a)=min{f(1),g(a)},即m(a)=;(ii)当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2);当2<x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34﹣8a}=max{F(2),F(6)}.则M(a)=.【2016浙江(理)】如图,设椭圆C:+y2=1(a>1)(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.【解析】解:(Ⅰ)由题意可得:,可得:(1+a2k2)x2+2ka2x=0,得x1=0或x2=,直线y=kx+1被椭圆截得到的弦长为:=.(Ⅱ)假设圆A与椭圆由4个公共点,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|,记直线AP,AQ的斜率分别为:k1,k2;且k1,k2>0,k1≠k2,由(1)可知|AP|=,|AQ|=,故:=,所以,(k12﹣k22)[1+k12+k22+a2(2﹣a2)k12k22]=0,由k1≠k2,k1,k2>0,可得:1+k12+k22+a2(2﹣a2)k12k22=0,因此a2(a2﹣2)①,因为①式关于k1,k2;的方程有解的充要条件是:1+a2(a2﹣2)>1,所以a>.因此,任意点A(0,1)为圆心的圆与椭圆至多有三个公共点的充要条件为:1<a<2,e==得,所求离心率的取值范围是:.【2016浙江(理)】设数列满足|a n﹣|≤1,n∈N*.(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.【解析】解:(I)∵|a n﹣|≤1,∴|a n|﹣|a n+1|≤1,∴﹣≤,n∈N*,∴=(﹣)+(﹣)+…+(﹣)≤+++…+==1﹣<1.∴|a n|≥2n﹣1(|a1|﹣2)(n∈N*).(II)任取n∈N*,由(I)知,对于任意m>n,﹣=(﹣)+(﹣)+…+(﹣)≤++…+=<.∴|a n|<(+)•2n≤[+•()m]•2n=2+()m•2n.①由m的任意性可知|a n|≤2.否则,存在n 0∈N*,使得|a|>2,取正整数m0>log且m0>n0,则2•()<2•()=|a|﹣2,与①式矛盾.综上,对于任意n∈N*,都有|a n|≤2.2016年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.【2016浙江(理)】已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(﹣2,3]C.[1,2)D.(﹣∞,﹣2]∪[1,+∞)2.【2016浙江(理)】已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n3.【2016浙江(理)】在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=()A.2 B.4 C.3D.64.【2016浙江(理)】命题“∀x∈R,∂n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∂n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∂x∈R,∂n∈N*,使得n<x2D.∂x∈R,∀n∈N*,使得n<x25.【2016浙江(理)】设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关 B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.【2016浙江(理)】如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列7.【2016浙江(理)】已知椭圆C1:+y2=1(m>1)与双曲线C2:﹣y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1 8.【2016浙江(理)】已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(【2016浙江(理)】若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是.10.【2016浙江(理)】已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.11.【2016浙江(理)】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.12.【2016浙江(理)】已知a>b>1,若log a b+log b a=,a b=b a,则a=,b=.13.【2016浙江(理)】设数列{a n}的前n项和为S n,若S2=4,a n+1=2S n+1,n∈N*,则a1=,S5=.14.(【2016浙江(理)】如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.15.(【2016浙江(理)】已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.16.【2016浙江(理)】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B(Ⅱ)若△ABC的面积S=,求角A的大小.17.【2016浙江(理)】如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:EF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.18.【2016浙江(理)】已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=(Ⅰ)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求F(x)的最小值m(a)(ii)求F(x)在[0,6]上的最大值M(a)19.【2016浙江(理)】如图,设椭圆C:+y2=1(a>1)(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20.【2016浙江(理)】设数列满足|a n﹣|≤1,n∈N*.(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.。
2016浙江高考数学试卷及答案
2016浙江高考数学试卷及答案【篇一:2016年浙江省高考数学试题及答案】数学(文科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集u={1,2,3,4,5,6},集合p={1,3,5},q={1,2,4},则(e)?q= upa.{1}b.{3,5}c.{1,2,4,6}d.{1,2,3,4,5}a.m∥lb.m∥n3.函数y=sinx2的图象是c.n⊥ld.m⊥n?x?y?3?0,?4.若平面区域?2x?y?3?0,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是?x?2y?3?0?5.已知a,b0,且a≠1,b≠1,若log4b1,则a.(a?1)(b?1)?0c. (b?1)(b?a)?0 b. (a?1)(a?b)?0d. (b?1)(b?a)?06.已知函数f(x)=x2+bx,则“b0”是“f(f(x))的最小值与f(x)的最小值相等”的a.充分不必要条件b.必要不充分条件c.充分必要条件d.既不充分也不必要条件7.已知函数f(x)满足:f(x)?x且f(x)?2,x?r.a.若f(a)?b,则a?bb.若f(a)?2,则a?bc.若f(a)?b,则a?bd.若f(a)?2,则a?b8.如图,点列?an?,?bn?分别在某锐角的两边上,且 bbxanan?1?an?1an?2,an?an?2,n?n*,bnbn?1?bn?1bn?2,bn?bn?2,n?n*.(p≠q表示点p与q不重合)若dn?anbn,sn为△anbnbn?1的面积,则22a.?sn?是等差数列 b.sn是等差数列c.?dn?是等差数列 d.dn是等差数列????二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是______cm3.10.已知a?r,方程ax?(a?2)y?4x?8y?5a?0表示圆,则圆心坐标是_____,半径是______.11. 某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3. 22212.设函数f(x)=x+3x+1.已知a≠0,且f(x)–f(a)=(x–b)(x–a),x∈r,则实数a=_____,b=______. 322y213.=1的左、f2.设双曲线x–右焦点分别为f1,若点p在双曲线上,且△f1pf2为锐角三角形,则|pf1|+|pf2|32的取值范围是_______.14.如图,已知平面四边形abcd,ab=bc=3,cd=1,ad成△acd,直线ac与bd所成角的余弦的最大值是______.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(本题满分14分)在△abc中,内角a,b,c所对的边分别为a,b,c.已知b+c=2acos b.(Ⅰ)证明:a=2b;(Ⅱ)若cosb=17.(本题满分15分)设数列{an}的前n项和为sn.已知s2=4,an?1=2sn+1,n?n*.(i)求通项公式an;(ii)求数列{an?n?2}的前n项和.(i)求证:bf⊥平面acfd;(ii)求直线bd与平面acfd所成角的余弦值. 2,求cosc的值. 319.(本题满分15分)如图,设抛物线y?2px(p?0)的焦点为f,抛物线上的点a到y轴的距离等于|af|-1. (i)求p的值;(ii)若直线af交抛物线于另一点b,过b与x轴平行的直线和过f与ab垂直的直线交于点n,an与x2轴交于点m.求m的横坐标的取值范围.20.(本题满分15分)设函数f(x)=x3?11?x,x?[0,1].证明:(i)f(x)?1?x?x2;(ii)334?f(x)?2.2015年普通高等学校招生全国统一考试(浙江卷)数学(文科)一、选择题1.【答案】c2. 【答案】c3. 【答案】d4.【答案】b5. 【答案】d6. 【答案】a7. 【答案】b8. 【答案】a二、填空题9. 【答案】80 ;40.10.【答案】(?2,?4);5.11.1.12.【答案】-2;1.13.【答案】14.【答案】.915.三、解答题16.【答案】(1)证明详见解析;(2)cosc?【解析】试题分析:本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力.试题解析:(1)由正弦定理得sinb?sinc?2sinacosb,故2sinacosb?sinb?sin(a?b)?sinb?sinacosb?cosasinb,于是,sinb?sin(a?b),又a,b?(0,?),故0?a?b??,所以b???(a?b)或b?a?b, 22. 27【篇二:2016年高考浙江卷数学(理)试题含解析】s=txt>一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1. 已知集合p?x?r?x?3,q?x?rx?4, 则p?(erq)?a.[2,3] b.( -2,3 ]c.[1,2) d.(??,?2]?[1,??)【答案】b【解析】根据补集的运算得2. 已知互相垂直的平面?,?交于直线l.若直线m,n满足m∥?,n⊥?,则a.m∥lb.m∥nc.n⊥l d.m⊥n【答案】c .故选b. ???2?l的垂线所得的垂足称为点p在直线l上的投影.由区域?x?2?0? 中的点在直线x+y?2=0上的投影构成的线段记为ab,则│ab│= ?x?y?0?x?3y?4?0?a.b.4 c.d.6【答案】c【解析】如图?pqr为线性区域,区域内的点在直线x?y?2?0上的投影构成了线段r?q?,即ab,而?x?3y?4?0?x?2r?q??pq,由?得q(?1,1),由?得r(2,?2),?x?y?0?x?y?0ab?qr?c.4. 命题“?x?r,?n?n*,使得n?x2”的定义形式是a.?x?r,?n?n*,使得n?x2 b.?x?r,?n?n*,使得n?x2c.?x?r,?n?n*,使得n?x2 d.?x?r,?n?n*,使得n?x2【答案】d【解析】?的否定是?,?的否定是?,n?x的否定是n?x.故选d. 5. 设函数f(x)?sin2x?bsinx?c,则f(x)的最小正周期a.与b有关,且与c有关 b.与b有关,但与c无关c.与b无关,且与c无关 d.与b无关,但与c有关【答案】b 226. 如图,点列{an},{bn}分别在某锐角的两边上,且anan?1?an?1an?2,an?an?2,n?n,(p?q表示点pq与不重合). bnbn?1?bn?1bn?2,bn?bn?2,n?n*,若dn?anbn,sn为△anbnbn?1的面积,则*2a.{sn}是等差数列b.{sn}是等差数列2c.{dn}是等差数列d.{dn}是等差数列【答案】a【解析】sn表示点an到对面直线的距离(设为hn)乘以bnbn?1长度一半,即sn?1hnbnbn?1,由题目2中条件可知bnbn?1的长度为定值,那么我们需要知道hn的关系式,过a1作垂直得到初始距离h1,那么a1,an和两个垂足构成了等腰梯形,那么hn?h1?anan?1?tan?,其中?为两条线的夹角,即为定值,那么sn?11(h1?a1an?tan?)bnbn?1,sn?1?(h1?a1an?1?tan?)bnbn?1,作差后:221sn?1?sn?(anan?1?tan?)bnbn?1,都为定值,所以sn?1?sn为定值.故选a. 2x22x227. 已知椭圆c1:2+y=1(m1)与双曲线c2:2–y=1(n0)的焦点重合,e1,e2分别为c1,c2的离心率,mn则a.mn且e1e21b.mn且e1e21c.mn且e1e21d.mn且e1e21【答案】am2?1n2?111??(1?)(1?),代入【解析】由题意知m?1?n?1,即m?n?2,(e1e2)?2222mnmn22222m2?n2?2,得m?n,(e1e2)2?1.故选a.8. 已知实数a,b,ca.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2100b.若|a2+b+c|+|a2+b–c|≤1,则a2+b2+c2100c.若|a+b+c2|+|a+b–c2|≤1,则a2+b2+c2100d.若|a2+b+c|+|a+b2–c|≤1,则a2+b2+c2100【答案】d二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 若抛物线y2=4x上的点m到焦点的距离为10,则m到y轴的距离是_______.【答案】9【解析】xm?1?10?xm?91【解析】2cos2x?sin2x?x??1,所以a?b?1. ?411. 某几何体的三视图如图所示(单位:cm),则该几何体的表面积是,体积是 cm. 23【答案】7232【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2?(2?2?4)?32,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(2?2?2?2?4?4)?2(2?2)?7212. 已知ab1.若logab+logba=【答案】4 2 5,ab=ba,则a= ,b= . 21t5?t?2?a?b2, 2【解析】设logba?t,则t?1,因为t??2因此ab?ba?b2b?bb?2b?b2?b?2,a?4.13.设数列{an}的前n项和为sn.若s2=4,an+1=2sn+1,n∈n*,则a1s5【答案】1121【答案】1 2【解析】?abc中,因为ab?bc?2,?abc?120?,所以?bad?bca?30.222由余弦定理可得ac?ab?bc?2ab?bccosb ??22?22?2?2?2cos120??12,所以ac?设ad?x,则0?t?dc?x.222在?abd中,由余弦定理可得bd?ad?ab?2ad?abcosa?x2?22?2x?2cos30??x2??4.故bd?在?pbd中,pd?ad?x,pb?ba?2.pd2?pb2?bd2由余弦定理可得cos?bpd?, ??2pd?pb所以?bpd?30. ?ce过p作直线bd的垂线,垂足为o.设po?d ab11bd?d?pd?pbsin?bpd,221d?x?2sin30?,2则s?pbd?解得d?111cd?bcsin?bcd?x)?2sin30??x). 222设po与平面abc所成角为?,则点p到平面abc的距离h?dsin?. 而?bcd的面积s?故四面体pbcd的体积v?11111 s?bcd?h?s?bcddsin??s?bcd?d??x)33332?.?0?x?1?t?2.设t?则|x?(2?x?|x?x?【篇三:2016年浙江省高考数学试卷(文科)及答案,精确校对版】>数学(文科)试卷一、选择题;本大题共8小题,每小题5分,共40分。
2016年浙江省高考数学试卷+理科+解析
D.?x∈R,?n∈N*,使得 n<x2
5.( 5 分)( 2016?浙江)设函数 f (x)=sin2x+bsinx+c ,则 f (x)的最小 正周期( )
A.与 b 有关,且与 c 有关
B .与 b 有关,但与 c 无关
C.与 b 无关,且与 c 无关
D.与 b 无关,但与 c 有关
6.( 5 分)( 2016?浙江)如图,点列 {An} 、{Bn} 分别在某锐角的两边上, 且 |AnAn+1|=|An+1An+2| ,An≠An+1,n∈N*, |BnBn+1|=|Bn+1Bn+2| ,Bn≠Bn+1, n∈N*,( P≠Q表示点 P 与 Q不重合)若 dn=|AnBn| ,Sn 为△ AnBnBn+1的面积,则 ()
, ab=ba,则 a=
,b=
.
13.( 6 分)( 2016?浙江)设数列 {an} 的前 n 项和为 Sn,若 S2=4,
an+1=2Sn+1,n∈N*,则 a1=
, S5=
.
14.( 4 分)( 2016?浙江)如图,在△ ABC中, AB=BC=,2 ∠ ABC=12°0 .若
平面 ABC外的点 P 和线段 AC上的点 D,满足 PD=D,A PB=BA,则四面体 PBCD的体积
18.( 15 分)( 2016?浙江)已知 a≥3,函数 F(x)=min{2|x ﹣1| ,x2﹣ 2ax+4a﹣ 2} ,其中 min(p,q)=
(Ⅰ)求使得等式 F(x)=x2﹣2ax+4a﹣ 2 成立的 x 的取值范围 (Ⅱ)( i )求 F(x)的最小值 m( a) ( ii )求 F(x)在 [0 ,6] 上的最大值 M(a) 19.( 15 分)( 2016?浙江)如图,设椭圆 C: +y2=1(a>1) (Ⅰ)求直线 y=kx+1 被椭圆截得到的弦长(用 a, k 表示) (Ⅱ)若任意以点 A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆 的离心率的取值范围.
2016年高考理科数学浙江卷(含答案解析)
绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1. 答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别书写在试卷和答题纸规定的位置上.2. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上书写作答,在本试卷上作答,一律无效.选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{13}P x x =∈R ≤≤,2{4}Q x x =∈R ≥,则()P Q =R( )A . []2,3B . (]2,3-C . [)1,2D . (][),21,-∞-+∞2.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m α∥,n β⊥,则 ( ) A . m l ∥ B . m n ∥ C . n l ⊥D . m n ⊥2.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域20,0,340,x x y x y -⎧⎪+⎨⎪-+⎩≤≥≥中的点在直线20x y +-=上的投影构成的线段记为AB ,则||AB =( )A . 22B . 4C . 32D . 6 4.命题“*x n ∀∈∃∈R N ,,使得2n x >”的定义形式是( )A . *x n ∀∈∃∈R N ,,使得2n x <B . *x n ∀∈∀∈R N ,,使得2n x <C . *x n ∃∈∃∈R N ,,使得2n x <D . *x n ∃∈∀∈R N ,,使得2n x <5.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A . 与b 有关,且与c 有关B . 与b 有关,但与c 无关C . 与b 无关,且与c 无关D . 与b 无关,但与c 有关6.如图,点列{},{}n n A B 分别在某锐角的两边上,且112||||n n n n A A A A +++=,2n n A A +≠,*n ∈N ,112||||n n n n B B B B +++=,2n n B B +≠,*n ∈N (P Q ≠表示点P 与Q 不重合),若||n n n d A B =,n S 为1n n n A B B +△的面积,则( )A . {}n S 是等差数列B . 2{}nS 是等差数列 C . {}n d 是等差数列 D . 2{}nd 是等差数列 7. 已知椭圆()212211x m C y m +=>:与双曲线()2222–10n x C y n=>:的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则( )A . 121m n e e >>且B . 121m n e e ><且C . 121m n e e <>且D . 121m n e e <<且 8. 已知实数a ,b ,c .( )A . 若22|||1|a b c a b c +++++≤,则222100a b c ++<B . 若22|||1|–a b c a b c ++++≤,则222100a b c ++<C . 若22|||–1|a b c a b c ++++≤,则222100a b c ++<D . 若22|||–1|a b c a b c ++++≤,则222100a b c ++<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9. 若抛物线24y x =上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 10. 已知()()2sin 2cos i 20s n x x A x b A ωϕ+=++>,则A =______,b =________. 11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.12. 已知1a b >>.若log lo 52g a b b a +=,b a a b =,则a = ,b = . 13. 设数列{}n a 的前n 项和为n S 若21421n n S a S n +==+∈*N ,,,则1a = ,5S = .14. 如图,在ABC △中,2120AB BC ABC ==∠=︒,.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA PB BA ==,,则四面体PBCD 的体积的最大值是 .15. 已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是 .-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2cos b c a B +=. (Ⅰ)证明:2A B =; (Ⅱ)若ABC △的面积2=4aS ,求角A 的大小.17.(本小题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,BE =1EF FC ==,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求二面角B AD F --的平面角的余弦值.18.(本小题满分15分) 已知3a ≥,函数2{||min 2}1242F x x x ax a =--+-(),,其中,min{}.,p p q q p q p q ⎨⎩=⎧≤,>, (Ⅰ)求使得等式2242F x x ax a =-+-()成立的x 的取值范围; (Ⅱ)(i )求()F x 的最小值()m a ; (ii )求()F x 在区间[0,6]上的最大值()M a .19.(本小题满分15分)如图,设椭圆22211x y a a+=(>).(Ⅰ)求直线1y kx =+被椭圆截得的线段长(用a ,k 表示);(Ⅱ)若任意以点0,1A ()为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.20.(本小题满分15分)设数列{}n a 满足1||12n n a a +-≤,n ∈*Ν. (Ⅰ)证明:112(||2)n n a a --≥,n ∈*Ν;(Ⅱ)若3||2nn a ≤(),n ∈*Ν,证明:||2n a ≤,n ∈*Ν.2016年普通高等学校招生全国统一考试(浙江卷)理科数学答案解析选择题部分一、选择题 1.【答案】B【解析】2{|}{Q x x 4x |x 2x 2}=∈≥=∈≥≤R R 或﹣,即有R{|Q x 2}x 2-=∈<<R ,则R P(Q)23](,=-【提示】运用二次不等式的解法,求得集合Q ,求得Q 的补集,再由两集合的并集运算,即可得到所求 【考点】并集及其运算 2.【答案】C【解析】∵互相垂直的平面α,β交于直线l ,直线m ,n 满足m α∥,∴m β∥,m ⊆β或m ⊥β,l ⊆β,∵n ⊥β,∴n l ⊥.故选:C . 【提示】由已知条件推导出l ⊆β,再由n ⊥β,推导出n l ⊥ 【考点】直线与平面垂直的判定 3.【答案】C【解析】做出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x y 20+-=上的投影构成线段R Q '',即SAB ,而R Q RQ ''=,由x 3y 44x y 0-+=⎧⎨+=⎩得x 1y 1=-⎧⎨=⎩,即Q(1,1)-,由x 2x y 0=⎧⎨+=⎩得x 2y 2=⎧⎨=-⎩,即R(2,2)﹣,则AB QR ==故选:C【提示】做出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可 【考点】简单线性规划的应用. 4.【答案】D【解析】因为全称命题的否定是特称命题,所以,命题“x ∀∈R ,n ∃∈*N ,使得2n x ≥”的否定形式是:x ∃∈R ,n ∀∈*N ,使得2n x <.故选:D .【提示】直接利用全称命题的否定是特称命题写出结果即可 【考点】命题的否定. 5.【答案】B【解析】∵设函数2f (x)sin x bsinx c =++,∴c 是图像的纵坐标增加了c ,横坐标不变,故周期与c 无关,当b 0=时,211f (x)sin x bsinx c cos2x c 22=++=-++的最小正周期为2πT π2==,当b 0≠时,11f x cos2x bsinx c 22=-+++(), ∵y cos2x =的最小正周期为π,y bsinx =的最小正周期为2π, ∴f (x)的最小正周期为2π,故f (x)的最小正周期与b 有关,故选:B. 【提示】根据三角函数的图像和性质即可判断 【考点】三角函数的周期性及其求法. 6.【答案】A【解析】设锐角的顶点为O ,1|OA |a =,1|OB |b =,n n 1n 1n 2A A A |||A b |+++==,n n 1n 1n 2B B B |||B d |+++==,由于a ,b 不确定,则n {d }不一定是等差数列,2n {d }不一定是等差数列,设n n n 1A B B +△的底边n n 1B B +上的高为n h ,由三角形的相似可得n n n 1n 1h OA a (n 1)bh OA a nb+++-==+,n 2n 2n 1n 1h OA a (n 1)bh OA a nb++++++==+, 两式相加可得n n 2n 1h h 2a 2b2h a nb ++++==+,即有n n 2h h 2++=,由n n 1S d h 2=,可得n n 2n 1S S 2S +++=,即为n 2n 1n 1n S S S S +++-=-,则数列n {S }为等差数列.故选:A .【提示】设锐角的顶点为O ,1|OA |a =,1|OB |b =,n n 1n 1n 2A A A |||A b |+++==,n n 1n 1n 2B B B |||B d |+++==,由于a ,b 不确定,判断C ,D 不正确,设n n n 1A B B +△的底边n n 1B B +上的高为n h ,运用三角形相似知识,n n 2n 1h h 2h +++=,由n n 1S d h 2=,可得n n 2n 1S S 2S +++=,进而得到数列n {S }为等差数列 【考点】数列与函数的综合. 7.【答案】A【解析】∵椭圆2212C y 1,(x 1m ):m +=>与双曲线2222C y 1,(x )m0:n =->的焦点重合,∴满足222c m 1n 1-==+,即22m n 20-=>,∴22m n >,则m n >,排除C ,D 则222c m 1m -=<,222c n 1n =+>,则c m <、c n >,1c e m =,2ce n=, 则212c c c e e m n mn==, 则221222222222222222222c c (e e m n m n (m 1)(n 1)m n (m n )1m m n m n n 111m n )11-+----⎛⎫==⎛⎫= ⎪⎝⎭=+=+> ⎪⎝⎭∴12e e 1>,故选:A .【提示】根据椭圆和双曲线有相同的焦点,得到222c m 1n 1-==+,即22m n 2-=,进行判断,能得m n>,求出两个离心率,先平方进行化简进行判断即可 【考点】椭圆的简单性质,双曲线的简单性质. 8.【答案】D【解析】A .设a b 10==,c 110=-,则22a b c ||a c 1||b 0+++++=≤,222a b c 100++>;B .设a 10=,b 100=-,c 0=,则22a b c ||a b c 0|1|++++-=≤,222a b c 100++>;C .设a 100=,b 100=-,c 0=,则22a b c a b c 0|||1|+++-=≤+,222a b c 100++>;故选:D .【提示】本题可根据选项特点对a ,b ,c 设定特定值,采用排除法解答 【考点】命题的真假判断与应用.非选择题部分二、填空题 9.【答案】9【解析】解:抛物线的准线x 1=-,∵点M 到焦点的距离为10,∴点M 到准线x 1=-的距离为10,∴点M 到y 轴的距离为9,故答案为:9【提示】根据抛物线的性质得出M 到准线x 1=-的距离为10,故到y 轴的距离为9 【考点】抛物线的简单性质. 10.【解析】∵22cos x sin2x 1cos2x sin2x +=++1122⎫=+++⎪⎪⎭π2x 14⎛⎫=++ ⎪⎝⎭,∴A =b 1=【提示】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案 【考点】两角和与差的正弦函数. 11.【答案】72 32【解析】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,则其表面积为222(246)72cm ⨯-=,其体积为34232⨯=,故答案为:72,32【提示】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,代入体积公式和面积公式计算即可. 【考点】由三视图求面积、体积 12.【答案】4 2【解析】解:设b t log a =,由a b 1>>知t 1>,代入a b 5log b log a 2+=得15t t 2+=,即22t 5t 20-+=,解得t 2=或1t 2=(舍去),所以b log a 2=,即2a b =,因为b a a b =,所以2b a b b =,则2a 2b b ==,解得b 2=,a 4=, 故答案为:4;2.【提示】设b t log a =并由条件求出t 的范围,代入a b 5log b log a 2+=化简后求出t 的值,得到a 与b 的关系式代入b a a b =化简后列出方程,求出a 、b 的值. 【考点】对数的运算性质. 13.【答案】1 121【解析】由n 1=时,11a S =,可得211a 2S 12a 1=+=+,又2S 4=,即12a a 4+=, 即有13a 14+=,解得1a 1=;由n 1n 1n a S S ++-=,可得n 1n S 3S 1+=+,由2S 4=,可得3S 34113=⨯+=,4S 313140=⨯+=,5S 3401121=⨯+= 故答案为:1,121.【提示】运用n 1=时,11a S =,代入条件,结合2S 4=,解方程可得首项;再由n 1>时,n 1n 1n a S S ++-=,结合条件,计算即可得到所求和.【考点】数列的概念及简单表示法. 14.【答案】12【解析】如图,M 是AC 的中点.①当AD t AM3=<=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AE ,DM t =,由ADE BDM △∽△,可得h 1, ∴h =,22211t 13(3t)V (23t)1326(3t)1(3t)--=-=-+-+,t ∈ ②当AD t AM 3=>=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AH ,DM t =,由等面积,可得11AD BM BD AH 22=,∴11t 1(t 22= ∴h =,∴22211t 13(3t)V (23t)1326(3t)1(3t)--=-=-+-+,t ∈综上所述,213(3V 6(3t)--=-,t ∈令[)m 1,2则214m V 6m-=,∴m 1=时,max 1V 2=. 故答案为:12【提示】由题意,ABD PBD △≌△,可以理解为PBD △是由△ABD 绕着BD 旋转得到的,对于每段固定的AD ,底面积BCD 为定值,要使得体积最大,PBD △必定垂直于平面ABC ,此时高最大,体积也最大. 【考点】棱柱、棱锥、棱台的体积.15.【答案】12【解析】∵(a b)e a e b e a e b e 6+=+≤+≤,∴(a b)e a b 6+=+≤,平方得:22a b 2a b 6++≤,即22122a b 6++≤,则1a b 2≤,故a b 的最大值是12,故答案为:12.【提示】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论 【考点】平面向量数量积的运算. 三、解答题16.【答案】(Ⅰ)由正弦定理得sinB sinC 2sinAcosB +=2sinAcosB sinB sin(A B)sinB sinAcosB cosAsinB =++=++,于是sinB sin(A B)=-又A,B (0,π)∈, 故0A B π<-<,所以B π(A B)=--或B A B =-, 因此A π=(舍去)或A 2B =, 所以,A 2B =(Ⅱ)由2a S 4=得21a absinC 24=,故有1sinBsinC sin2B sinBcosB 2==, 因sinB 0≠,得sinC cosB =.又B,C (0,π)∈,所以C B 2π=±.当πB C 2+=时,πA 2=;当πC B 2-=时,πA 4=.综上,πA 2=或πA 4=.【提示】(Ⅰ)利用正弦定理,结合和角的正弦公式,即可证明A 2B =(Ⅱ)若ABC △的面积2a S 4=,则21a absinC 24=,结合正弦定理、二倍角公式,即可求角A 的大小.【考点】余弦定理,正弦定理.17.【答案】解:(Ⅰ)延长AD ,BE ,CF 相交于一点K ,如图所示. 因为平面BCFE ABC ⊥平面,且AC BC ⊥, 所以,AC ⊥平面BCK , 因此,BF AC ⊥.又因为EFBC ∥,BE EF FC 1===,BC 2=, 所以BCK △为等边三角形,且F为CK 的中点, 则BF CK ⊥,所以BF ⊥平面ACFD .(Ⅱ)过点F 作FQ AK ⊥,连结BQ . 因为BF ⊥平面ACK ,所以BF AK ⊥,则AK ⊥平面BQF , 所以BQ AK ⊥.所以BQF ∠是二面角B AD F --的平面角. 在Rt ACK △中,AC 3=,CK 2=,得FQ 在Rt BQF △中,FQ =BF =,得cos BQF ∠=所以,二面角B AD F --的平面角的余弦值为4.【提示】(Ⅰ)先证明BF AC ⊥,再证明BF CK ⊥,进而得到BF ⊥平面ACFD . (Ⅱ)先找二面角B AD F --的平面角,再在Rt BQF △中计算,即可得出; 【考点】二面角的平面角及求法,空间中直线与直线之间的位置关系. 18.【答案】解:(Ⅰ)由于a 3≥,故当x 1≤时,22(x 2ax 4a 2)2x 1x 2(a 1)(2x)0-+---=+-->,当x 1>时,2(x 2ax 4a 2)2x 1(x 2)(x 2a)-+---=--.所以,使得等式2F(x)x2ax 4a 2=-+-成立的x 的取值范围为[2,2a].(Ⅱ)(ⅰ)设函数f (x)2x 1=-,2g(x)x 2ax 4a 2=-+-,则min f (x)f (x)0==,2min g(x)g(a)a 4a 2==-+-,所以,由F(x)的定义知{}m(a)min f (1),g(a)=,即20,3a 2m(a)a 4a 2,a 2⎧≤≤+⎪=⎨-+->+⎪⎩ (ⅱ)当0x 2≤≤时,{}F(x)f (x)max f (0),f (2)2F(2)≤≤==,当2x 6≤≤时,F(x)g(x)max{g(2),g(6)}max{2,348a}max{F(2),F(6)}≤≤=-=.所以,348a,3a 4M(a)2,a 4-≤<⎧=⎨≥⎩. 【提示】(Ⅰ)由a 3≥,讨论x 1≤时,x 1>,去掉绝对值,化简2x 2ax 4a 22x 1-+---,判断符号,即可得到2F(x)x 2ax 4a 2=-+-成立的x 的取值范围;(Ⅱ)(ⅰ)设f (x)2x 1=-,2g(x)x 2ax 4a 2=-+-,求得f (x)和g(x)的最小值,再由新定义,可得F(x)的最小值;(ⅱ)分别对当0x 2≤≤时,当2x 6<≤时,讨论F(x)的最大值,即可得到F(x)在[0,6]上的最大值M【考点】函数最值的应用,函数的最值及其几何意义.19.【答案】解:(Ⅰ)设直线y kx 1=+被椭圆截得的线段为AP ,由222y kx 1x y 1a=+⎧⎪⎨+=⎪⎩,得2222(1a k )x 2a kx 0++=,故1x 0=,22222a k x 1a k =-+.因此2212222a k AP x 1k 1a k =-=++.(Ⅱ)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP AQ =.记直线AP ,AQ 的斜率分别为1k ,2k ,且1k ,2k 0>,12k k ≠.由(Ⅰ)知,1AP =2AQ =12=,所以22222222121212(k k )[1k k a (2a )k k ]0-+++-=.由于12k k ≠,1k ,2k 0>得22222212121k k a (2a )k k 0+++-=,因此22221211111a (a 2)k k ⎛⎫⎛⎫++=+- ⎪⎪⎝⎭⎝⎭①因为①式关于1k ,2k 的方程有解的充要条件是:221a (a 2)1+->,所以a >因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1a 2<≤,由c e a ==得,所求离心率的取值范围为0e 2<≤【提示】(Ⅰ)联立直线y kx 1=+与椭圆方程,利用弦长公式求解即可.(Ⅱ)写出圆的方程,假设圆A 与椭圆由4个公共点,再利用对称性有解已知条件可得任意A(0,1)为圆心的圆与椭圆至多有3个公共点,a 的取值范围,进而可得椭圆的离心率的取值范围.【考点】椭圆的简单性质;圆与圆锥曲线的综合. 20.【答案】解:(Ⅰ)由n 1n a a 12+-≤得n n 11a a 12+-≤,故n n 1n n 1n a a 1222++-≤,n ∈*Ν, 所以1n1223n 1n 1n 1223n 1n 12n 1a a a a a a a a 111122222222222---⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+-≤++⋅⋅⋅+< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因此n 1n 1a 2(a 2)-≥-.(Ⅱ)任取n ∈*Ν,由(Ⅰ)知,对于任意m n >,n m n n 1n 1n 2m 1m nmnn 1n 1n 2m 1m n n 1m 1n 1a a a a a a a a 1111222222222222+++-+++-+--⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+-≤++⋅⋅⋅+< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故m mm n n nn n 1m n 1m a 11133a 2222222224--⎡⎤⎛⎫⎛⎫⎛⎫<+≤+=+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦.从而对于任意m n >,均有mn n 3a 224⎛⎫<+ ⎪⎝⎭.由m 的任意性得n a 2≤①否则,存在0n ∈*Ν,有0n a 2>,取正整数00n 03n 4a 2m log 2->且00m n >,则n 003n 040a 2m log 2m n n 3322a 244-⎛⎫⎛⎫<=- ⎪ ⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n ∈*Ν,均有n a 2≤ 【提示】(Ⅰ)使用三角不等式得出n 1n a a 12+-≤,变形得n n 1n n 1na a 1222++-≤,使用累加法可求得n n 11a a 12+-≤,即结论成立; (Ⅱ)利用(Ⅰ)的结论得出n m n m n 1a a 1222--<,进而得出mn n 3a 224⎛⎫<+ ⎪⎝⎭,利用m 的任意性可证n a 2≤ 【考点】数列与不等式的综合。
浙江省名校新高考研究联盟2024-2025学年高三上学期第一次联考(暑假返校考)数学试题(解析版)
Z20名校联盟(浙江省名校新高考研究联盟)2025届高三第一次联考数学试题卷(答案在最后)考生须知:1.本卷满分150分,考试时间120分钟.2.答题前务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的地方.3.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范答题,在本试卷纸上答题一律无效.4.考试结束后,只需上交答题卷.第Ⅰ卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合{}220,{230}A x x xB x x =--≤=-<∣∣,则A B = ()A.[]2,1- B.31,2⎡⎫-⎪⎢⎣⎭C.3,2⎛⎫-∞ ⎪⎝⎭D.(],1-∞-【答案】B 【解析】【分析】根据题意求集合,A B ,再结合交集运算求解.【详解】由题意可得:{}3|12,|2A x x B x x ⎧⎫=-≤≤=<⎨⎬⎩⎭,所以3|12A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭.故选:B .2.7212x x ⎛⎫- ⎪⎝⎭的展开式中21x 项的系数是()A.672B.420- C.84D.560-【答案】D【解析】【分析】根据题意结合二项式定理可得()7731712C rr rr r T x --+=-⋅⋅⋅,令732r -=-运算求解即可.【详解】由题意可知:7212x x ⎛⎫- ⎪⎝⎭的展开式通项为()()777317721C 212C ,0,1,,7rrr rr rr r T x x r x ---+⎛⎫=-=-⋅⋅⋅=⋅⋅⋅ ⎪⎝⎭,令732r -=-,解得3r =,所以21x项的系数是()343712C 560-⋅⋅=-.故选:D .3.已知等差数列{}n a 前n 项和为n S ,若751213a a =,则139SS =()A.913B.1213 C.75D.43【答案】D 【解析】【分析】根据给定条件,利用等差数列前n 项和公式、等差数列性质计算即得.【详解】在等差数列{}n a 中,由751213a a =,得113137199513()131312429()991332a a S a a a S a +===⨯=+.故选:D4.已知随机变量X 的分布列如下表所示,则()21E X +=()X123P13a16A.116B.113C.143D.223【答案】C 【解析】【分析】根据分布列的性质可得12a =,进而可得11()6E X =,再根据期望的性质分析求解.【详解】由分布列可得11136++=a ,解得12a =,则11111()1233266E X =⨯+⨯+⨯=,所以14(21)2()13E X E X +=+=.故选:C .5.已知函数22)()log ,(f x x ax a =-∈R ,则“2a ≤”是“函数()f x 在(1,)+∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据给定条件,求出函数()f x 在(1,)+∞上单调递增等价条件,再利用充分条件、必要条件的定义判断即得.【详解】由函数()f x 在(1,)+∞上单调递增,得1210a a ⎧≤⎪⎨⎪-≥⎩,解得1a ≤,所以“2a ≤”是“函数()f x 在(1,)+∞上单调递增”的必要不充分条件.故选:B6.函数π()cos(0)6f x x ωω=+>的图象在区间(0,1)上恰有一个对称中心,则ω的取值范围为()A.π2π(,]63 B.π4π(,]63C.π4π(,33D.π7π(,]33【答案】C 【解析】【分析】求出相位的范围,结合余弦函数的性质列出不等式求解即得.【详解】由(0,1)x ∈,得πππ666x ωω<+<+,由()f x 的图象在区间(0,1)上恰有一个对称中心,得ππ3π262ω<+≤,所以π4π33ω<≤.故选:C7.若某圆台有内切球(与圆台的上下底面及每条母线均相切的球),且母线与底面所成角的余弦值为13,则此圆台与其内切球的体积之比为()A.74B.2C.32D.53【答案】A 【解析】【分析】将圆台还原成圆锥,作出圆锥的轴截面,再结合给定角求出圆锥底面圆半径、高与内切球半径的关系即可计算得解.【详解】将圆台母线延长交于点S ,得圆锥1SO ,作圆锥1SO 的轴截面,等腰梯形ABCD 为圆台的轴截面,截内切球O 得大圆,并且是梯形ABCD 的内切圆,令SA 切圆O 于T,如图,设底面圆直径2AB R =,依题意,11cos 3SAO ∠=,3SA R =,1SO =,设内切球半径为r ,则12OT OO OO r ===,1cos 3SOT ∠=,3SO r =,14SO r ==,于是=R ,且2O 为1SO 的中点,而内切球体积314π3V r =,圆台的体积222321111117π7πππ())43322243V R SO R SO r r =⋅-⋅=⋅=,所以圆台与其内切球的体积比为2174V V =.故选:A8.设函数2π()(1)1,()cos 22xf x a xg x ax =--=-,若函数()()()h x f x g x =-在区间(1,1)-上存在零点,则实数a 的取值范围是()A.2a ≤B.112a <≤C.122a <≤ D.12a <≤【答案】C【解析】【分析】利用函数零点的定义,转化为函数2()1F x ax a =+-,π()cos 2xG x =在(1,1)-上的图象有公共点求解.【详解】由()()()0h x f x g x =-=,得2π(1)1cos22xa x ax --=-,依题意,2π1cos2x ax a +-=在(1,1)-上有解,记2()1F x ax a =+-,π()cos 2x G x =,因此函数(),()F x G x 在(1,1)-上的图象有公共点,0()1G x <≤,如图,当0a ≤时,2()11F x ax a =+-≤-,显然函数(),()F x G x 在(1,1)-上的图象无公共点,当0a >时,函数(),()F x G x 图象都关于y 对称,得(0)(0)(1)(1)F G F G ≤⎧⎨>⎩,即11210a a -≤⎧⎨->⎩,解得122a <≤,所以实数a 的取值范围是122a <≤.故选:C【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f (x )=0的解;(2)图象法:作出函数f (x )的图象,观察与x 轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.已知正实数,,a b c 满足2510a b c ==,则()A.b c a +=B.a b c >>C.111a b c+= D.49a b c+≥【答案】BCD 【解析】【分析】对于A :举反例说明即可;对于B :设25101a b c t ==>=,可得2510log ,log ,log a t b t c t ===,结合对数函数性质分析判断;对于C :利用换底公式分析判断;对于D :可得111c a b ⎛⎫+= ⎪⎝⎭,结合基本不等式运算求解.【详解】对于选项A :若1,2510a b c ===,则25log 10,log 10a b ==,则25log 10log 101a b c =≠+=+,故A 错误;对于选项B :因为0a b c >,,,设25101a b c t ==>=,则2510ln ln ln log ,log ,log ln 2ln 5ln10t t t a t b t c t ======,又ln 0,0ln 2ln 5ln10t ><<<,可得ln ln ln ln 2ln 5ln10t t t>>,所以a b c >>,故B 正确;对于选项C :因为111log 2,log 5,log 10t t t a b c===,所以111log 2log 5log 10t t t a b c+=+==,故C 正确;对于选项D :因为111a b c +=,即111c a b ⎛⎫+= ⎪⎝⎭,可得1144(4)1459b a a b c a b c c c a b a b ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4b aa b=,即2a b =时,等号成立,所以49a b c +≥,故D 正确.故选:BCD.10.若直线()y kx k =∈R 与圆()()22:111C x y -+-=交于不同的两点,A B O 、为坐标原点,则()A.当2k =时,AB =B.CA CB ⋅的取值范围为[]1,1-C.1OA OB ⋅=D.线段AB 【答案】AC 【解析】【分析】对于A :求圆心()1,1C 到直线20x y -=的距离,结合垂径定理运算求解;对于B :根据数量积可得cos CA CB ACB ⋅=∠uu r uu r,进而可得结果;对于C :分析可得221OA OB OC r ⋅=-=,即可得结果;对于D :分析可知点M 的轨迹是以OC 为直径的半圆(除去,E F ),即可得结果.【详解】由题意可知:圆()()22:111C x y -+-=的圆心为()1,1C ,半径为1r =,且直线()y kx k =∈R 过定点0,0,设线段AB 中点为M ,对于选项A :当2k =时,则直线为2y x =,即20x y -=,圆心()1,1C 到直线20x y -=的距离为55d CM ===,所以||2||AB AM ==A 正确;对于选项B :因为cos cos CA CB CA CB ACB ACB ⋅=⋅∠=∠,因为点,A B 不重合,所以cos 1ACB ∠<,故B 错误;对于选项C :因为()()·OA OB OM MA OM MA⋅=+-()222222OM MA OC d r d =-=---221OC r =-=,所以1OA OB ⋅=,故C 正确;对于选项D :因为线段AB 中点M 满足OM CM ⊥,设OC 的中点为N ,圆C 与x 、y 分别切于点E 、F ,可知圆N 过点E 、F ,且90ECF ∠=︒,可知点M 的轨迹是以OC 为直径的半圆(除去,E F ),所以轨迹长为1222ππ222⨯⨯=,故D 错误.故选:AC.11.若函数()cos 1cos ,Z f x nx n =-∈,则下列说法正确的是()A.若2n =,则函数()f x 的最大值为2B.若3n =,则函数()f x 为奇函数C.存在Z n ∈,使得()sin 1sin f x nx =-D.若()()sin cos 2f x f x +=,则42,Z n k k =+∈【答案】ACD 【解析】【分析】对于A :整理可得[]2()22,1,1f x x x =-∈-,结合二次函数求最值;对于B :举反例说明即可;对于C :取1n =,代入检验即可;对于D :根据题意结合诱导公式可得()πcos cos 2ππ,2n nx nx k k ⎛⎫-=--∈ ⎪⎝⎭Z ,进而可得π2ππ,2n k k =+∈Z ,运算求解即可.【详解】因为[]cos 1,1x ∈-,可知()f x 的定义域为[]1,1-,对于选项A :当2n =时,2(cos )1cos 222cos f x x x =-=-,可得[]2()222,1,1f x x x =-≤∈-,当且仅当0x =时,等号成立,所以函数()f x 的最大值为2,故A 正确;对于选项B :当3n =时,则()cos 1cos3f x x =-,令π2x =,则π3πcos cos022==,可得()010f =≠,所以函数()f x 不为奇函数,故B 错误;对于选项C :当1n =时,(cos )1cos f x x =-,则[]()1,1,1f x x x =-∈-,且对任意R x ∈,则[]sin 1,1x ∈-,所以(sin )1sin f x x =-,故C 正确.对于选项D :因为πππ(sin )cos 1cos 1cos 222n f x f x n x nx ⎡⎤⎛⎫⎛⎫⎛⎫=-=--=--⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,若π(sin )(cos )1cos 1cos 22n f x f x nx nx ⎛⎫+=--+-= ⎪⎝⎭,可得()πcos cos cos 2ππ,Z 2n nx nx nx k k ⎛⎫-=-=--∈ ⎪⎝⎭,则π2ππ,Z 2n k k =+∈,解得42,Z n k k =+∈,故D 正确.故选:ACD.【点睛】关键点点睛:对于BC :对于直接说明比较麻烦的问题时,常取特值,举例说明即可.第Ⅱ卷三、填空题:本题共3小题,共15分.12.已知,a b 是两个单位向量,若()3a b b -⊥ ,则向量,a b 夹角的余弦值为______.【答案】13【解析】【分析】根据垂直条件及数量积运算律,再由夹角公式即可求解.【详解】由(3)a b b -⊥ ,得231a b b ⋅== ,则1cos ,3|||a b a b a b ⋅〈〉== .故答案为:1313.若复数z 满足2,2z z z z +=⋅=,则2z z -=__________.【答案】【解析】【分析】根据给定条件,设出复数z 的代数形式,结合复数相等、共轭复数及模的意义计算得解.【详解】设i,,R z a b a b =+∈,则i z a b =-,22z z a +==,解得1a =,由2z z ⋅=,得222a b +=,解得21b =,又23i z z a b -=-+,所以|2|z z -=.14.如图,设双曲线G22−22=1>0,>0的左焦点为F ,过F 作倾斜角为60o 的直线l 与双曲线C 的左支交于,A B 两点,若4AF FB =,则双曲线C的渐近线方程为__________.【答案】5y x =±【解析】【分析】利用双曲线定义,结合余弦定理求出,a b 的关系即可得解【详解】令双曲线的右焦点为F ',半焦距为c ,设||BF t =,则||4AF t =,由双曲线定义得||2BF t a '=+,||42AF t a '=+,由直线AB 倾斜角为60o ,得60120BFF AFF ⎧∠=⎨∠='⎩' ,由余弦定理得222222|||2|cos 60|||2|cos120BF BF FF BF FF AF AF FF AF FF ⎧=+''''''-⎪⎨=+-⎪⎩,即222222(2)42(42)1648t a t c tc t a t c tc ⎧+=+-⎨+=++⎩,整理得2222(2)22(42)a c t c a a c t c a ⎧+=-⎨-=-⎩,于是65ca =,5b a =,所以双曲线C 的渐近线方程为5y x =±.故答案为:5y x =±【点睛】关键点点睛:求出双曲线渐近线方程,关键是由给定条件,结合余弦定理求出b a值.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.已知三棱锥,A BCD AD -⊥底面,,2BCD BC CD AD BC CD ⊥===,点P 是AD 的中点,点Q 为线段BC 上一动点,点M 在线段DQ 上.(1)若PM ∥平面ABC ,求证:M 为DQ 的中点;(2)若Q 为BC 的中点,求直线DQ 与平面ABC 所成角的正弦值.【答案】(1)证明见详解(2)105【解析】【分析】(1)由线面平行的性质可得//PM AQ ,即可得结果;(2)方法一:建系标点,利用空间向量求线面夹角;方法二:做辅助线,可证DN⊥平面ABC ,进而可得线面夹角;方法三:利用等体积法求D 到平面ABC 的距离,进而可得线面夹的正弦值.【小问1详解】连结AQ ,因为PM ∥平面,ABC PM ⊂平面ADQ ,平面ADQ 平面ABC AQ =,则//PM AQ ,又因为P 是AD 的中点,所以M 是DQ 中点.【小问2详解】方法一:因为AD ⊥底面,BCD BC CD ⊥,如图建立坐标系,则(2,0,0)D ,(0,2,0)B ,(2,0,2)A ,(0,1,0)Q ,可得(2,1,0)DQ =-uuu r,(2,0,2)CA = ,(0,2,0)CB = ,设平面ABC 的法向量为(,,)n x y z = ,则22020n CA x z n CB y ⎧⋅=+=⎪⎨⋅==⎪⎩,令1x =-,则0,1y z ==,可得(1,0,1)n =-,则cos ,5DQ n DQ n DQ n⋅==⋅,因此直线DQ 与平面ABC所成角的正弦值为5;方法二:取AC 中点N,因为DA DC =,则DN AC ⊥,因为AD ⊥底面BCD ,⊂BC 底面BCD ,则AD BC ⊥,且BC CD ⊥,AD CD D = ,,AD CD ⊂平面ACD ,则⊥BC 平面ACD ,由DN ⊂平面ACD ,可得BC DN ⊥,且AC BC C = ,,AC BC ⊂平面ABC ,所以DN ⊥平面ABC ,可知DQN ∠即为直线DQ 与平面ABC 所成角,且DN DQ ==10sin5DN DQN DQ ∠===.所以直线DQ 与平面ABC 所成角的正弦值为5;方法三:设D 到平面ABC 的距离为d ,可得1242333A BCD BCD V AD S -=⋅=⨯=△,则12ABC S BC AC =⋅=△即1433A BCD D ABC ABC V V d S --==⋅==△,解得d =则DQ =所有直线DQ 与平面ABC 所成角的正弦值5d DQ ==.16.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,满足cos 2a cB c-=.(1)若π3A =,求B ;(2)若ABC V 是锐角三角形,且4c =,求b 的取值范围.【答案】(1)4π9B =(2)(【解析】【分析】(1)根据利用正弦定理结合三角恒等变换可得2B C =,结合π3A =即可得结果;(2)由锐角三角形可得ππ64C <<,利用正弦定理运算求解即可.【小问1详解】因为cos 2a cB c -=,由正弦定理可得sin sin cos 2sin A C B C-=,则2sin cos sin sin sin()sin sin cos sin cos sin C B A C B C C B C C B C =-=+-=+-,整理得sin sin cos sin cos sin()C B C C B B C =-=-,因为(),0,πB C ∈,则()π,πB C -∈-,则C B C =-,即2B C =,由π3A =,得23π3B C C +==,则2π9C =,4π9B =.【小问2详解】因为ABC V 是锐角三角形,则π22π32B C B C C ⎧=<⎪⎪⎨⎪+=>⎪⎩,解得ππ64C <<,则cos 2C <<由正弦定理得sin sin c bC B =,得sin 4sin 28cos sin sin c B C b C C C===,可得b <<b的取值范围为(.17.已知椭圆G22+22=1>>0的离心率为12e =,左、右顶点分别为,,A B O 为坐标原点,M 为线段OA 的中点,P 为椭圆上动点,且MPB △.(1)求椭圆E 的方程;(2)延长PM 交椭圆于Q ,若6BP BQ ⋅=,求直线PQ 的方程.【答案】(1)22143x y +=(2)1)y x =+【解析】【分析】(1)根据离心率和面积关系列式求,,a b c ,进而可得方程;(2)设直线()()1122:(1),,,,PQ y k x P x y Q x y =+,联立方程,利用韦达定理结合数量积的坐标运算求解即可,注意讨论直线的斜率是否存在.【小问1详解】由条件得12c e a ==,即2a c=,则b =,则12OM a c ==,()2max 13333()222BMP S b a c c =+==,解得2,1a b c ===,所以椭圆E 的方程为22143x y +=.【小问2详解】由题意可知:()()2,0,2,0A B -,则()1,0M -,且直线PQ与椭圆必相交,若直线PQ 的斜率不存在,可知1PQ x =-:,联立方程221143x x y =-⎧⎪⎨+=⎪⎩,解得32y =±,不妨取331,,1,22P Q ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,则333,,3,22BP BQ ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭ ,可得9279644BP BQ ⋅=-=≠ ,不合题意;若直线PQ 的斜率存在,设直线()()1122:(1),,,,PQ y k x P x y Q x y =+,则()112,BP x y =- ,()222,BQ x y =-,与椭圆联列方程得22(1)3412y k x x y =+⎧⎨+=⎩,消去y 得()22223484120k x k x k +++-=,可得221212228412,3434k k x x x x k k-+=-=++,则212121212(2)(2)(2)(2)(1)(1)BP BQ x x y y x x k x x ⋅=--+=--+++()()()()()()2222222212122214128212443434k k k kkx x k x x kkk k +--=++-+++=-++++2227634k k==+,可得26k =,解得k =所以直线PQ的方程为1)y x =+;综上所述:直线PQ 的方程为)1y x =+.【点睛】方法点睛:与相交有关的向量问题的解决方法在解决直线与圆锥曲线相交,所得弦端点的有关的向量问题时,一般需利用相应的知识,将该关系转化为端点坐标满足的数量关系,再将其用横(纵)坐标的方程表示,从而得到参数满足的数量关系,进而求解.18.已知函数()()ln 0f x x x x =>;(1)设函数()()()1g x f x f x =+-,求函数()g x 的极值;(2)若不等式()(),f x ax b a b ≥+∈R 当且仅当在区间[)e,+∞上成立;求ab 的最大值(3)实数,m n 满足0m n <<,求证:()()ln 1ln 1f n f m m n n m-+<<+-.【答案】(1)极小值ln 2-,无极大值(2)e4(3)证明见解析【解析】【分析】(1)求出函数()g x 的导函数并判断出其单调性,即可得出极值;(2)结合函数图象将不等式恒成立转化为图象之间位置关系,得出等量关系并求得ab 的表达式利用二次函数性质可求出结论;(3)分别对不等式左右两边利用作差法并构造函数,由导函数求得其单调性即可证明得出结论.【小问1详解】()()(1)ln (1)ln(1),01g x f x f x x x x x x =+-=+--<<,令()()()1ln ln 11ln ln 1x x x x g x +---=-=-',令()0g x '=,得12x =,当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,当1,12x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,可得()g x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫⎪⎝⎭上单调递增,所以()g x 有极小值1ln 22g ⎛⎫=- ⎪⎝⎭,无极大值.【小问2详解】()1ln 0f x x '=+=,得1ex =,易知()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e⎛⎫+∞ ⎪⎝⎭上单调递增,即可得在[)e,+∞上()f x 单调递增;易知()f x 在()e,e 处的切线方程为()e 2e y x -=-,即2e y x =-;若不等式()(),f x ax b a b ≥+∈R 当且仅当在区间[)e,+∞上成立;结合()f x 及y ax b =+的图象可知,需满足(e)e e 2f a ba ==+⎧⎨≤⎩,可得e e b a =-,2a ≤.于是21e e (1)e 24ab a a a ⎛⎫=-=--+ ⎪⎝⎭,易知当12a =时,取得最大值,故()maxe 4ab =.【小问3详解】先证明左边:作差()()ln ln ln ln ln f n f m n n m m n m m mm n m n m ---+-=--(ln ln )ln 1nn n m n m n n m m m-==--;因为0m n <<,令1n t m=>,则(ln ln )ln ln 111n n m t tt n m t t-==---;令()()ln 1,1ln 1ln h t t t t h t tt '=-+=+-=当1t >时,()0h t '>,函数()h t 在(1,)+∞上是增函数,所以()ln 1(1)0h t t t t h =-+>=,因此ln 1t t t >-,所以ln 11t tt >-,即()()ln 1f n f m m n m -->-,故()()ln 1f n f m m n m ->+-;对于右边()()ln ln ln ln ln f n f m n n m m n n m nn n m n m---+-=--(ln ln )1ln1m n m n n n m m m-==--令(ln ln )ln 1,11n m n m t t m n m t -=>=<--,令()ln 1t t φt =-+,则()1110φt t tt-=='-<恒成立;所以()t ϕ在()1,+∞上单调递减,可得()()10t ϕϕ<=,即()ln 10t t t ϕ=-+<,所以ln 1t t <-,即ln 11tt <-,即()()ln 1f n f m n n m --<-,故()()ln 1f n f m n n m-<+-.综上得()()ln 1ln 1f n f m m n n m-+<<+-.【点睛】关键点点睛:在证明不等式时关键是先利用作差法再根据表达式特征,构造函数并利用导数求出函数单调性及其最值,即可得出结论.19.混沌现象普遍存在于自然界和数学模型中,假设在一个混沌系统中,用n x 来表示系统在第n 个时刻的状态值,且该系统下一时刻的状态值1n x +满足1()n n x f x +=,已知初始状态值0(0,1)x ∈,其中2()()f x ax ax a =-∈R ,这样每一时刻的状态值012,,,,n x x x x 构成数列{}()n x n ∈N .(1)若数列{}n x 为等比数列,求实数a 的取值范围;(2)若01,12x a ==-,证明:①11112n nx x +<-≤;②212(2)ni i n x n =+≤+∑.【答案】(1)1a <-;(2)①证明见解析;②证明见解析.【解析】【分析】(1)根据给定条件,利用等比数列定义,结合0(0,1)x ∈求解即得.(2)①把1a =-代入,变形得11111n n nx x x +-=-,再探讨n x 的符号及数列{}n x 的单调性推理得证;②由已知结合累加法得21012nin i xx +==-∑,再由①结合累加法求得1124n x n +≥+即可推理得证.【小问1详解】由{}n x 是等比数列,得212n n n x x x ++=,且120,0n n n x x x a ++⋅⋅≠≠,依题意,21n n n x ax ax +=-,则22111(())n n n n n n x ax ax x ax ax +++-=-,于是1n n ax a ax a +-=-,即21n n n n x x ax ax +==-,整理得01n a x x a+==,因此101a a +<<,即110a-<<,解得1a <-,所以实数a 的取值范围是1a <-.【小问2详解】①由1a =-知,211)1111,11(n n n n n n n nx x x x x x x x ++=-+==+--,则11111n n n x x x +-=-,由210n n n x x x +-=-<,得数列{}n x 是递减数列,则011111,221n n n nx x x x x +≤=-=≤-;又110n n n x x x +=->,则1,n n x x +同号,有n x 与0x 同号,即0n x >,于是111111n n nx x x +-=>-,所以11112n nx x +<-≤.②由21nn n x x x +=-,得2101101(2)n nin n n n i i x x x x x x +++===-=-=-∑∑,由①知,1112n n x x +-≤,则10112(1)24n n n x x +≤++=+,又0n x >,因此1124n x n +≥+,所以210111122242(2)ni n i n x x n n +=+=-≤-=++∑.【点睛】思路点睛:涉及给出递推公式探求数列性质的问题,认真分析递推公式并进行变形,可借助累加、累乘求通项的方法分析、探讨项间关系而解决问题.。
浙江高考数学(理科卷)试题真题,历年(07年08年09年10年11年),含答案解析,完美终结版
浙江高考数学(理科卷)试题真题,历年(07年08年09年10年11年),含答案解析,完美终结版2021年普通高等学校招生全国统一考试数学(理科)(浙江省)一、多项选择题(本主题共有10个子题,每个子题得5分,共计50分。
在每个子题给出的四个选项中,只有一个符合问题的要求。
??x,x?0(1)设函数f(x)??2,若f(a)?4,则实数a?x、 x?0(a)?4还是?2(b)?4或2(c)?2或4(d)?2或2(2)记录复形Z的共轭复形为Z,I为虚单位。
如果z=1+I,那么(1?z)?Z(a) 3号?i(b)3?i(c)1?3I(d)3(3)如果图中显示了几何图形的三个视图,则几何图形的视觉视图可以是(4)下列命题中错误的是..(a)如果是飞机?⊥ 飞机飞机呢?一定有一条平行于平面的直线吗?(b)如果是飞机?不垂直于平面?,飞机呢?一定没有垂直于平面的直线吗?(c)如果是飞机?⊥ 飞机飞机⊥ 飞机⊥, ⊥?,???? l、所以我⊥ 飞机(d)如果是飞机?⊥ 飞机飞机呢?所有直线都垂直于平面吗??x?2y?5?0?(5)设实数x、y是不等式组?2x?y?7?0,若x、y为整数,则3x?4y的最小值是? 十、0,y?0(a)14(b)16(c)17(d)19(6)如果0????2.1.3.0,因为(??)因为(?)那为什么?2432423(a)33536(b)?(c)(d)?9933(7)如果a和B是实数,“0?AB?1”是“a?11还是B?”BA(a)充分和不必要条件(b)必要和不充分条件(c)充分和必要条件(d)既不充分也不必要条件x2y2y22?1有公共的焦点,c2的一条(8)已知椭圆c1:2?2?1(a>b>0)与双曲线c2:x?ab4渐近线与以c1的长轴为直径的圆相交于a,b两点,若c1恰好将线段ab三等分,则(a)a?2131222(b)a?13(c)b?(d)b?222(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本。
2016年高考试题(化学)浙江卷解析版
2016年普通高等学校招生全国统一考试(浙江卷)化学7 .下列说法不止确.的是A •储热材料是一类重要的能量存储物质,单位质量的储热材料在发生熔融或结晶时会吸收或释放较大的热量B . Ge (32号元素)的单晶可以作为光电转换材料用于太阳能电池C. Ba2+浓度较高时危害健康,但BaS04可服人体内,作为造影剂用于X-射线检查肠胃道疾病D .纳米铁粉可以高效地去除被污染水体中的Pb2+、Cu2+、Cd2+、Hg2+等重金属离子,其本质是纳米铁粉对重金属离子较强的物理吸附【答案】D【解析】试题分析:纳米铁粉可以高效地去除被污染水体中的Cn汽Cd^\ Hgi等重金属离子,其本质原因是铁是活泼金属,能与Pb沢Hg;堆离子发生蛊换反应:从而过滤除去,答案选6【考点定位】生产、生活中的各种材料【名师点睛】在日常生活中随处都是化学知识。
例如胃酸的主要成分为盐酸,硫酸钡不溶于水或盐酸,可以做钡餐,但碳酸钡因为能溶于盐酸,而会造成钡离子中毒不能代替硫酸钡。
纳米铁粉可以和污水中的离子发生置换反应进而除去重金属离子,利用了金属的活动性顺序。
8.下列叙述不正确.的是A .钾、钠、镁等活泼金属着火时,不能用泡沫灭火器灭火B .探究温度对硫代硫酸钠与硫酸反应速率的影响时,若先将两种溶液混合并计时,再用水浴加热至设定温度,则测得的反应速率偏高C .蒸馏完毕后,应先停止加热,待装置冷却后,停止通水,再拆卸蒸馏装置D .为准确配制一定物质的量浓度的溶液,定容过程中向容量瓶内加蒸馏水至接近刻度线时,改用滴管滴加蒸馏水至刻度线【答案】B【解析】试题分析:该实验要求开始时温度相同,然后改变温度,探究温度对反应速率的影响,应先分别水浴加热硫代硫酸钠溶液、硫酸溶液到一定温度后再混合,若是先将两种溶液混合后再用水浴加热,随着热量的散失,测得的反应速率偏低,答案选B。
【考点定位】考查化学实验安全与处理,探究实验方案的设计,蒸馏和溶液的配制等知识。
高考数学《集合》专项练习(选择题含答案)(汇编)
《集合》专项练习参考答案1.(2016全国Ⅰ卷,文1,5分)设集合,,则A ∩B =( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【解析】集合A 与集合B 的公共元素有3,5,故}5,3{=B A ,故选B .2.(2016全国Ⅱ卷,文1,5分)已知集合,则A ∩B =( ) (A ) (B ) (C ) (D ) 【解析】由29x <得33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =,故选D .3.(2016全国Ⅲ卷,文1,5分)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念,得{0,2,6,10}AB =,故选C .4.(2016全国Ⅰ卷,理1,5分)设集合,, 则A ∩B =( ) (A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得,x 1=1,x 2=3,所以A ={x |1<x <3}(大于取两边,小于取中间).对于集合B :2x -3>0,解得x >23.3{|3}2A B x x ∴=<<.选D .5.2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限,应满足3010m m +>⎧⎨-<⎩,解得31m -<<,故选A .6.(2016全国Ⅲ卷,理1,5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>,则S ∩T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)7.(2016北京,文1,5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =( ) (A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或【解析】画数轴得,,所以,故选C .8.(2016北京,理1,5分)已知集合,,则( ) (A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2,两边同时平方{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2(2,3)AB ={|||2}A x x =<{1,0,1,2,3}B =-A B ={0,1}{0,1,2}{1,0,1}-{1,0,1,2}-得x 2<4,解方程x 2=4得,x 1=-2,x 2=2,所以A ={x |-2<x <2}(大于取两边,小于取中间).所以A ∩B ={-1,0,1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1,0,1}.故选C . 9.(2016上海,文理1,5分)设x ∈R ,则不等式31x -<的解集为_______. 【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x ,故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1,两边同时平方得(x -3)2<1,解方程(x -3)2=1得,x 1=2,x 2=4,所以A ={x |2<x <4}. 【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1,解得2<x <4).A ={x |2<x <4}. 10.(2016山东,文1,5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B =(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} 【答案】A11.(2016山东,理2,5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 【答案】C【解析】对于集合A :∵y =2x >0,∴A ={y |y >0}.对于集合B :∵x 2-1=0,解得x =±1,∴B ={x |-1<x <1}(大于取两边,小于取中间).∴A ∪B =(1,)-+∞12.(2016四川,文2,5分)设集合A ={x |1≤x ≤5},Z 为整数集,则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3 【答案】B【解析】{1,2,3,4,5}A =Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A Z 中元素的个数为5,选B .13.(2016四川,理1,5分)设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3(B )4(C )5(D )6 【答案】C【解析】由题意,知{2,1,0,1,2}A =--Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故AZ 中元素的个数为5,选C .14.(2016天津,文1,5分)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =(A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{【答案】A【解析】∵},12|{A x x y y B ∈-==,∴当x =1时,y =2×1-1=1;当x =2时,y =2×2-1=3;当x =3时,y =2×3-1=5.∴{1,3,5},{1,3}B A B ==.选A .15.(2016天津,理1,5分)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A (A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D【解析】∵}{A x x y y B ∈-==,23,∴当x =1时,y =3×1-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =4×3-2=10.∴{14710}{14}B =A B =,,,,,.选D .16.(2016浙江,文1,5分)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( ) A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5} 【答案】C17.(2016浙江,理1,5分)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(C R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(−∞,−2]∪[1,+∞)【答案】B【解析】对于集合Q :∵x 2=4,解得x =±2,∴B ={x |x ≤-2或x ≥2}(大于取两边,小于取中间). 18.(2016江苏,文理1,5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B _______. 【答案】{}1,2- 【解析】{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-19.(2015全国Ⅰ卷,文1,5分)已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 【答案】D【解析】由已知得A ={2,5,8,11,14,17,…},又B ={6,8,10,12,14},所以A∩B ={8,14}. 20.(2015全国Ⅱ卷,文1,5分)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3) 【答案】A【解析】因为A =(-1,2),B =(0,3),所以A ∪B =(-1,3),故选A . 21.(2014全国Ⅰ卷,文1,5分)已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}. 22.(2014全国Ⅱ卷,文1,5分)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A∩B =( )A .∅B .{2}C .{0}D .{-2}【答案】B【解析】∵集合A ={-2,0,2},B ={x |x 2-x -2=0}={2,-1},∴A∩B ={2},故选B . 23.(2013全国Ⅰ卷,文1,5分)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A},则A∩B=( )A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【解析】∵B ={x |x =n 2,n ∈A}={1,4,9,16},∴A∩B ={1,4},故选A . 24.(2013全国Ⅱ卷,文1,5分)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1} 【答案】C【解析】由题意得M∩N ={-2,-1,0}.选C . 25.(2012全国卷,文1,5分)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2},B ={x |-1<x <1},则B ⊂≠A ,故选B . 26.(2011全国卷,文1,5分)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个【答案】B【解析】由题意得P =M∩N ={1,3},∴P 的子集为⌀,{1},{3},{1,3},共4个.27.(2010全国卷,文1,5分)已知集合,则 (A )(0,2)(B )[0,2](C )|0,2|(D )|0,1,2|【解析】,,选D28.(2009全国卷,文2,5分)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集,则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】,.故选A .29.(2008全国卷,文1,5分)已知集合M ={x |(x +2)(x -1)<0},N ={x |x +1<0},则M∩N =( )A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2) 【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-M N x x 30.(2007全国卷,文1,5分)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂=2,,4,|A x x x R B x x Z =≤∈=∈A B ={}|22,{0,1,2}A x x B =-≤≤={}0,1,2AB =U A B =()UA B {3,4,5,7,8,9}A B ={4,7,9}(){3,5,8}UA B A B =∴=A.∅B.1{|}2x x<C.5{|}3x x>D.15{|}23x x-<<【答案】D.。
2016年高考试题(地理)浙江卷(Word版,含答案解析)
绝密★启封前2016年普通高等学校招生全国统一考试(浙江卷)地理注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必在将自己的姓名、考生号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3. 回答第Ⅱ卷时,将答案卸载答题卡上,写在试卷上无效。
4. 考试结束,将本试卷和答题卡一并交回。
选择题部分(共140分)选择题部分共35小题,每小题4分,共140份。
在每题给出的四个选项中,只有一项是符合题目要求的。
云杉(亚寒带代表性针叶树种)分布与全球气候变化密切相关。
为研究北美洲气候变化,用回复历史植物分布的方法,得到距今2.1万年(图甲)、距今5千年(图乙)和距今5百年(图丙)北美洲云杉主要分布区图,完成1、2题。
1.云杉主要分布区北界的移动,反映了A. 甲到丙时期北美气温持续上升B. 乙到丙时期北美气温略有下降C. 甲到丙时期太阳辐射持续增强D. 乙到丙时期北美沿岸暖流加强2.运用地理信息技术得到甲、乙、丙三幅云杉主要分布区图,其研究过程是①实验分析并建立云杉主要分布区地理信息数据库②运用GPS对野外采样点进行空间定位③运用GIS分析和输出云杉主要分布区地理信息数据A. ①②③B. ①③②C. ③②①D. ②①③【答案】1.B 2.D考点:全球气候变化和地理信息技术应用。
【名师点睛】从图表中读取云杉林分布区变化和冰盖面积变化信息,来综合分析全球气候变化状况。
3S技术的各自主要应用领域需要重点辨别:RS主要针对面的事物的信息获取;GPS主要针对点事物的信息获取;GIS是地理信息系统,主要针对信息的分析处理。
近年来,我国流动人口一直维持在2亿人以上,且持续增长,城乡间人口流动是主要的流动形式。
完成3、4题。
3.城乡间人口流动与城市经济发展、农村经济水平提高联系密切,下面三者关系排序应是①城乡间人口流动②农业专业化发展③城市工业、服务业发展A. ①→②→③B. ①→③→②C. ③→②→①D. ③→①→②4.关于我国人口流动的叙述,正确的是A. 人口流动扩大了城乡收入差距B.生态环境是人口流动的主要因素C.区域协调发展会减缓流动人口增长D.小城镇人口向大城市流动可提高城市化水平【答案】3.D 4.C【解析】试题分析:3.该题需要理解三者的关系,城市工业、服务业的发展,需要大量劳动力,因而导致大量农村人口流入城市,促进城乡间人口流动,带来农村经济发展,从而促进农业专业化发展。
2016年高考数学(新课标版) 专题06 三角化简求值 含解析
2016年高考三轮复习系列:讲练测之核心热点 【全国通用版】 热点六 三角化简求值 【名师精讲指南篇】 【高考真题再现】1.【2013⋅新课标全国】设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______【答案】;2.【2013⋅新课标全国】已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10(B )9(C )8(D )5【答案】D ;【解析】因为225cos 10A -=,且锐角△ABC,故1cos 5A =,故2222cos a b c bc A =+-,解得5b =.3.【2014高考全国1文】若0tan >α,则( )A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 【答案】C 【解析】试题分析:由sin tan 0cos ααα=>,可得:sin ,cos αα同正或同负,即可排除A 和B,又由sin 22sin cos ααα=⋅,故sin 20α>.4.【2014全国1高考理】设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) (A ) 32παβ-= (B )32παβ+=(C )22παβ-=(D )22παβ+=【答案】C5.【2015全国1理】sin 20cos10cos160sin10-=( ).A..12- D .12B.原式sin 20cos10cos 20sin10=+=1sin 302=.故选D . 【热点深度剖析】三角函数的化简、求值及最值问题,主要考查同角三角函数的基本关系式,三角函数的诱导公式,和、差、倍、半、和积互化公式在求三角函数值时的应用,考查利用三角公式进行恒等变形的技能,以及基本运算的能力,特别突出算理方法的考查. 2013年试题主要考查三角恒等变换,及倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力. 2014年的试题文主要考查三角函数的同角的三角函数关系,理科考查三角函数的同角的三角函数关系,三角恒等变换.2015主要考查两角和与差的三角函数公式.通过三年试题来看,二倍角公式,同角的三角函数关系是考试的重点.从近几年的高考试题来看,利用同角三角函数的关系改变三角函数的名称,利用诱导公式、和差角公式及二倍角公式改变角的恒等变换是高考的热点,常与三角函数式的求值、三角函数的图象与性质、三角形中三角恒等变化,向量等知识综合考查,既有选择题、填空题,又有解答题,属中低档题.预测2016年会加大对三角客观题考查的力度,同角三角函数基本关系式、诱导公式及三角恒等变换是考查重点. 【重点知识整合】 一.三角函数诱导公式1.对于形如2,,()k a a a k Z ππ±-±∈即满足2nπα+中n 取偶数时:等于角α的同名三角函数,前面加上一个把α看成是锐角时,该角所在象限的符号; 2.对于形如3,()22a a k Z ππ±±∈即满足2nπα+中n 取奇数时:等于角α的余名三角函数,前面加上一个把α看成是锐角时,该角所在象限的符号.3.口诀:奇变偶不变,符号看象限(看原函数,同时可把α看成是锐角).4.运用诱导公式转化角的一般步骤:(1)负化正:当已知角为负角时,先利用负角的诱导公式把这个角的三角函数化为正角的三角函数值;(2)正化负:当已知角是大于360的角时,可用360k α⋅+的诱导公式把这个角的三角函数值化为主区间0360→内的三角函数值;(3)主化锐:当已知角是90到360内的角时,可利用180,270,360ααα---的诱导公式把这个角的三角函数值化为0到90内的角. 二. 两角和与差的三角函数公式1. 两角和与差的正弦公式:()sin αβ±=sin cos cos sin αβαβ±. 变形式:()()sin sin αβαβ++-=2sin cos αβ()();sin sin αβαβ+--=2cos sin αβ;2.两角和与差的余弦公式:()cos αβ±=cos cos sin sin αβαβ变形式:()()cos cos αβαβ++-=2cos cos αβ;()()cos cos αβαβ+--=2sin sin αβ;3.两角和与差的正切公式:()tan αβ±=tan tan 1tan tan αβαβ±())2k k Z παβαβπ+≠+∈(、、.变形式:tan tan αβ±=()()tan 1tan tan αβαβ±.注意:运用两角和与差的三角函数公式的关键是熟记公式,我们不仅要记住公式,更重要的是抓住公式的特征,如角的关系,次数关系,三角函数名等抓住公式的结构特征对提高记忆公式的效率起到至关重要的作用,而且抓住了公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点.三.二倍角公式的正弦、余弦、正切1.二倍角的正弦公式:sin 2α=2sin cos αα;二倍角的余弦公式:cos 2α=22cos sin αα-=22cos 1α-=212sin α-;二倍角的正切公式:tan 2α= 22tan 1tan αα- .2. 降幂公式:sin cos αα=1sin 22α;2sin α=1cos 22α-;2cos α=1cos 22α+. 3.升幂公式:1sin 2α+=2(sin cos )αα+;1cos 2α+=22cos α;1cos 2α-=22sin α.注意:在二倍角公式中,两个角的倍数关系,不仅限于2α是α的二倍,要熟悉多种形式的两个角的倍数关系,同时还要注意απαπα-+442,,三个角的内在联系的作用,⎪⎭⎫⎝⎛±⎪⎭⎫ ⎝⎛±=⎪⎭⎫⎝⎛±=απαπαπα4cos 4sin 222sin 2cos 是常用的三角变换. 【应试技巧点拨】1. 利用诱导公式求值:给角求值的原则和步骤 (1)原则:负化正、大化小、化到锐角为终了.(2)步骤:利用诱导公式可以把任意角的三角函数转化为02π:之间角的三角函数,然后求值,其步骤为:给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现2π的倍数,则通过诱导公式建立两者之间的联系,然后求解. 常见的互余与互补关系 (1)常见的互余关系有:3πα+与6πα-;3πα-与6πα+;4πα+与4πα-等.(2)常见的互补关系有:3πα+ 与23πα-;4πα+与34πα-等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题. 2.利用诱导公式化简三角函数的原则和要求(1)原则:遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行三角函数名称转化,以保证三角函数名称最少.(2)要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2. 利用诱导公式证明三角恒等式的主要思路 (1)由繁到简法:由较繁的一边向简单一边化简.(2)左右归一法:使两端化异为同,把左右式都化为第三个式子. (3)转化化归法:先将要证明的结论恒等变形,再证明.提醒:由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如()()cos 5cos cos παπαα-=-=-. 4. 正、余弦三兄妹“sin cos x x ±、sin cos x x ⋅”的应用sin cos x x ±与sin cos x x ⋅通过平方关系联系到一起,即2(sin cos )12sin cos x x x x ±=±,2(sin cos )1sin cos ,2x x x x +-=21(sin cos )sin cos .2x x x x --=因此在解题中若发现题设条件有三者之一,就可以利用上述关系求出或转化为另外两个. 5.如何利用“切弦互化”技巧(1)弦化切:把正弦、余弦化成切得结构形式,这样减少了变量,统一为“切”得表达式,进行求值. 常见的结构有:① sin ,cos αα的二次齐次式(如22sin sin cos cos a b c αααα++)的问题常采用“1”代换法求解;②sin ,cos αα的齐次分式(如sin cos sin cos a b c d αααα++)的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式tan α=sin cos αα,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧.6.三角函数的化简、计算、证明的恒等变形的基本思路基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心.第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点.基本的技巧有:(1)巧变角:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等. (2)三角函数名互化:切割化弦,弦的齐次结构化成切. (3)公式变形使用:如()()()()()()()()cos cos sin sin cos tan 1tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan .αββαββααβαβαβαβαβαβαβαβαβαβαβ+++=+-=++=+--+++=+,,,(4)三角函数次数的降升:降幂公式与升幂公式. (5)式子结构的转化.(6)常值变换主要指“1”的变换:221sin cos x x =+22sec tan tan cot x x x x =-=⋅tan sin 42ππ===等.(7)辅助角公式:()sin cos a x b x x θ+=+(其中θ角所在的象限由a b 、的符号确定,θ的值由tan baθ=确定.在求最值、化简时起着重要作用,这里只要掌握辅助角θ为特殊角的情况即可.如sin cos ),sin 2sin(cos 2sin()436x x x x x x x x x πππ±=±±=±±=±等.【考场经验分享】1.在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点.OP r =一定是正值.2.同角三角函数关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围判断符号,正确取舍.3.使用诱导公式时一定要注意三角函数值在各象限的符号,特别是在具体题目中出现类似kπ±α(k ∈Z)的形式时,需要对k 的取值进行分类讨论,从而确定三角函数值的正负.4.重视三角函数的“三变”: “三变”是“变角”,“ 变名”,“ 变式”;变角为:对角的拆分要尽可能化为同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4.两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在学习时应注意以下几点:(1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉; (2)善于拆角、拼角如()ββαα-+=,()()()αβαβαβαβαα++=+-++=22,等; (3)注意倍角的相对性 (4)要时时注意角的范围(5)化简要求熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等.5.证明三角等式的思路和方法.(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式.(2)证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等.6.解答三角高考题的策略.(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”.(2)寻找联系:运用相关公式,找出差异之间的内在联系.(3)合理转化:选择恰当的公式,促使差异的转化.7.加强三角函数应用意识的训练由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成思维障碍,思路受阻.实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点.总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法. 8.变为主线、抓好训练变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化变意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律.针对高考中题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法.另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点.同时应掌握三角函数与二次函数相结合的题目.三角函数求值中要特别注意角的范围,如根据21cos2sin2αα-=求sinα的值时,sinα=中的符号是根据角的范围确定的,即当α的范围使得sin0α≥时,取正号,反之取负号.注意在运用同角三角函数关系时也有类似问题.9.本热点一般难度不大,属于得全分的题目,一般放在选择题与填空题的中间位置,但是因题目解法的灵活性造成在紧张的考试氛围里面,容易一时的思路堵塞,需冷静处理,如果一时想不到化简的方向,可暂且放一放,不要钻牛角尖,否则可能造成心理负担,情绪受到影响,因新课标高考对这个热点考查难度已经降低,学生应有必胜的信心.【名题精选练兵篇】ns s i2cos B +2sin B =,B.tanα=2,则=. B . C . D .=sinαcosα===,tanx=,(+x .B .C .D .tanx=+x==+ ++=,10.【2016届甘肃省河西五市部分普通高中高三第一次联考】已知sin 2cos αα=,则tanα=2tan则= 【答案】:∵tanα=2tan,======== ,故答案为:.sincos22sin cos22παπαπαπα++-=---( )A .12 B .12- C .2 D .2- 【答案】B.【解析】由题意3sin 5α=-,因为α是第三象限的角,所以4cos 5α=-,因此222sincoscossin(cossin )1sin 1222222cos 2sin cos cos sin cos sin 222222παπααααααπαπαααααα++-+++====------. 13. 【惠安一中、养正中学、安溪一中2015届高三上学期联合考试】已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边上一点()1,2P --,则sin 2θ 等于( ) A .45-B .35-C .35D .45【答案】D.【解析】根据任意角的三角函数的定义,sin θ=,cos θ=4sin 22sin cos 5θθθ==.14. 【宿迁市2015届高三年级摸底考试】若1cos()33απ-=,则sin(2)απ-6的值是 . 【答案】97-. 【解析】9719121)3(cos 2)322cos()2322sin()62sin(2-=-⨯=--=-=+-=-παπαππαπα.15. 【浙江省效实中学2015届高三上学期期末考试】化简:22cos ()12πα--=A .cos αB .cos α-C .cos 2αD .cos 2α- 【答案】D 【解析】22cos ()12πα--=ααπαπ2cos )2cos()2(2cos -=-=-,答案D.16. 【拉萨中学高三年级(2015届)第三次月考试卷】若⎥⎦⎤⎢⎣⎡∈24ππθ,, 8732sin =θ,则θsin =( )A. 53B. 54C. 47D. 43或47【答案】D.17. 若202παβπ<<<<-,1cos()43πα+=,cos()42πβ-=则cos()2βα+= A .33B .33-C .935 D .96-【答案】C. 【解析】因为202παβπ<<<<-,1cos()43πα+=,所以4344παππ<+<,且322)4sin(=+απ;又因为cos()42πβ-=且02<<-βπ,所以2244πβππ<-<,且36)24sin(=-βπ.又因为)24()4(2βπαπβα--+=+,所以)24sin()4sin()24cos()4cos()]24()4cos[()2cos(βπαπβπαπβπαπβα-++-+=--+=+935363223331=⨯+⨯=.故应选C. 18. 【北京101中学2014—2015学年度高三第一学期期中模拟】在ABC ∆中,若=+=C B C B A tan tan ,cos cos 2sin 则 .【答案】2【解析】因为C B A cos cos 2sin =,所以()2tan tan cos sin cos sin sin cos cos 2=+⇒+=+=C B B C C B C B C B【名师原创测试篇】1. 若锐角θ满足3sin 5θ=,则tan(2)4πθ-的值为( ) A.1731 B.1625 C.3117- D.2516- 【答案】A2. 已知1sin 22α=,则11tan tan 2αα-=____. 【答案】2【解析】由已知得2222sin cos 2tan 1sin 2sin cos 1tan 2ααααααα===++,所以11tan tan 2αα-=2211tan 1tan 2tan 2tan 2tan ααααα-+-==. 3. 已知第三象限角α的终边经过点P ()3,4a a ,则cos α=( ) A.35 B.45 C.35- D.45- 【答案】C【解析】由题可得,因为角α是第三象限角,所以0a <,根据三角函数的概念可得33cos 55a a α===--,故选C. 4. 执行如图所示的程序框图,则输出结果S 的值为( )C.12- D.12cos3。
2016-2020年高考理科数学试题分类汇编专题06三角函数及解三角形试题及答案
专题06 三角函数及解三角形【2020年】1.(2020·新课标Ⅰ)设函数()cosπ()6f x xω=+在[π,π]-的图像大致如下图,则f(x)的最小正周期为()A.10π9B.7π6C.4π3D.3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,将它代入函数()f x可得:4cos096ππω⎛⎫-⋅+=⎪⎝⎭又4,09π⎛⎫- ⎪⎝⎭是函数()f x图象与x轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x的最小正周期为224332Tπππω===2.(2020·新课标Ⅰ)已知π()0,α∈,且3cos28cos5αα-=,则sinα=()A.53 B. 23C. 13 D. 59【答案】A【解析】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴==3.(2020·新课标Ⅱ)若α为第四象限角,则( ) A. cos2α>0 B. cos2α<0C. sin2α>0D.sin2α<0 【答案】D 【解析】当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误;当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确;4.(2020·新课标Ⅱ)已知△ABC 且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )B.32C. 1 【答案】C【解析】设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴===∴球心O 到平面ABC 的距离1d =.5.(2020·新课标Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A.19B.13C.12D.23【答案】A 【解析】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB = 由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 6.(2020·新课标Ⅲ)已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A. –2 B. –1C. 1D. 2【答案】D 【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 7.(2020·山东卷)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D.5πcos(2)6x -【答案】BC【解析】由函数图像可知:22362Tπππ=-=,则222Tππωπ===,所以不选A,当2536212xπππ+==时,1y=-∴()5322122k k Zππϕπ⨯+=+∈,解得:()223k kϕππ=+∈Z,即函数的解析式为:2sin22sin2cos2sin236263y x k x x xππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos2cos(2)66x xππ⎛⎫+=--⎪⎝⎭8.(2020·北京卷)若函数()sin()cosf x x xϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Zππ+∈均可)【解析】因为()()()()22cos sin sin1cos cos sin1sinf x x x xϕϕϕϕθ=++=+++,所以()22cos sin12ϕϕ++=,解得sin1ϕ=,故可取2ϕπ=.9.(2020·山东卷)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC 的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=35,BH DG∥,EF=12 cm,DE=2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2.【答案】542π+【解析】设==OB OA r,由题意7AM AN==,12EF=,所以5NF=,因为5AP =,所以45AGP ︒∠=, 因//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形; 在直角OQD △中,252OQ r =-,272DQ r =-, 因为3tan 5OQ ODC DQ ∠==,所以32522125r r -=-, 解得22r =; 等腰直角OAH△的面积为11222242S =⨯⨯=; 扇形AOB 的面积()221322324S ππ=⨯⨯=, 所以阴影部分的面积为1215422S S ππ+-=+.10.(2020·浙江卷)已知tan 2θ=,则cos2θ=________;πtan()4θ-=______. 【答案】 (1).35 (2). 13【解析】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++, tan 1211tan()41tan 123πθθθ---===++,11.(2020·江苏卷)已知2sin ()4πα+ =23,则sin 2α的值是____.【答案】13【解析】221sin ())(1sin 2)42παααα+==+121(1sin 2)sin 2233αα∴+=∴= 12.(2020·江苏卷)将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____. 【答案】524x π=-【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈当1k =-时524x π=-故答案为:524x π=-13.(2020·江苏卷)在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________.【答案】【解析】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PABSd ≤⋅+=令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去) 当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为14.(2020·新课标Ⅰ)如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos∠FCB =______________.【答案】14- 【解析】AB AC ⊥,3AB =,1AC =,由勾股定理得222BC AB AC =+=,同理得6BD =,6BF BD ∴==,在ACE △中,1AC =,3AE AD ==,30CAE ∠=,由余弦定理得22232cos301321312CE AC AE AC AE =+-⋅=+-⨯⨯⨯=, 1CF CE ∴==,在BCF 中,2BC =,6BF =,1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.【2019年】1.【2019·全国Ⅰ卷】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D .2.【2019·全国Ⅰ卷】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确. 当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误. 当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确. 综上所述,①④正确,故选C . 3.【2019·全国Ⅱ卷】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B , 故选A .图1图2图34.【2019·全国Ⅱ卷】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B 55C 33D 255【答案】B【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin α∴=,故选B . 5.【2019·全国Ⅲ卷】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】D【解析】①若()f x 在[0,2π]上有5个零点,可画出大致图象, 由图1可知,()f x 在(0,2π)有且仅有3个极大值点.故①正确;②由图1、2可知,()f x 在(0,2π)有且仅有2个或3个极小值点.故②错误;④当()f x =sin (5x ωπ+)=0时,5x ωπ+=k π(k ∈Z ),所以ππ5k x ω-=,因为()f x 在[0,2π]上有5个零点,所以当k =5时,π5π52πx ω-=≤,当k =6时,π6π52πx ω-=>,解得1229510ω≤<, 故④正确.③函数()f x =sin (5x ωπ+)的增区间为:πππ2π2π252k x k ω-+<+<+,732π2π1010k k x ωω⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭<<.取k =0,当125ω=时,单调递增区间为71ππ248x -<<, 当2910ω=时,单调递增区间为73ππ2929x -<<,综上可得,()f x 在π0,10⎛⎫⎪⎝⎭单调递增.故③正确.所以结论正确的有①③④.故本题正确答案为D.6.【2019·天津卷】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2- B. CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=;又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 7.【2019·北京卷】函数f (x )=sin 22x 的最小正周期是__________. 【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2. 8.【2019·全国Ⅱ卷】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==11sin 22ABC S ac B ==⨯=△ 9.【2019·江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=,解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭ 2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+-⨯ ⎪+⎝⎭; 当1tan 3α=-时,上式=22112()1()2233[]=1210()13⨯-+--⨯-+. 综上,π2sin 2.410α⎛⎫+= ⎪⎝⎭ 10.【2019·浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________. 【答案】1225,7210【解析】如图,在ABD △中,由正弦定理有:sin sin AB BDADB BAC=∠∠,而3π4,4AB ADB =∠=, 225AC =AB +BC =,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以1225BD =. ππ72cos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【2018年】1.【2018·全国Ⅲ卷】若1sin 3α=,则cos2α=A .89B .79 C .79-D .89-【答案】B【解析】2217cos 212sin 12()39αα=-=-⨯=.故选B. 2.【2018·全国卷II 】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .π4 B .π2C .3π4D .π【答案】A【解析】因为()πcos sin 4f x x x x ⎛⎫=-=+ ⎪⎝⎭,所以由π02ππ2π()4k x k k +≤+≤+∈Z 得π3π2π2π()44k x k k -+≤≤+∈Z , 因此[]π3ππ3ππ,,,,,,044444a a a a a a a ⎡⎤-⊂-∴-<-≥-≤∴<≤⎢⎥⎣⎦,从而a 的最大值为π4,故选A.3.【2018·天津】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为ππsin 2sin2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦. 则函数的单调递增区间满足()ππ2π22π22k x k k -≤≤+∈Z ,即()ππππ44k x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦. 函数的单调递减区间满足:()π3π2π22π22k x k k +≤≤+∈Z ,即()π3πππ44k x k k +≤≤+∈Z , 令1k =可得一个单调递减区间为:5π7π,44⎡⎤⎢⎥⎣⎦. 故选A.4.【2018·浙江卷】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A ,B ;因为π,π2x ⎛⎫∈⎪⎝⎭时,()0f x <,所以排除选项C ,故选D. 5.【2018·全国Ⅱ】在ABC △中,5cos2C =1BC =,5AC =,则AB = A .42B 30CD .【答案】A【解析】因为223cos 2cos 121,255C C ⎛=-=⨯-=- ⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则,故选A.6.【2018·全国Ⅲ】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3 C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C.7.【2018·浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sinB =___________,c =___________.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 37B == 由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).8.【2018·全国Ⅰ】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】2-【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时sin 22x x =-=-,所以()min2f x ⎛=⨯= ⎝⎭2-. 9.【2018·北京卷】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________. 【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值, 所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω, 因为0>ω,所以当0k =时,ω取最小值为23.10.【2018·全国Ⅲ】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点. 11.【2018·江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________. 【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ 【2017年】1.【2017·全国Ⅰ】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.2.【2017·全国Ⅲ】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x =D .()f x 在(π2,π)单调递减 【答案】D【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.3.【2017·天津卷】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .23ω=,12ϕπ= B .23ω=,12ϕ11π=- C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π= 【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π, 由ϕ<π得12ϕπ=,故选A . 4.【2017·山东卷】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B = D .2B A =【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=, 故选A.5.【2017·浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【答案】24【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==,∴1sin 2BCD S BD BC DBC =⨯⨯⨯∠=△. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=或cos BDC ∠=(舍去).综上可得,△BCD ,cos BDC ∠=.6.【2017·全国Ⅱ】函数()23sin 4f x x x =-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【答案】1【解析】化简三角函数的解析式:()222311cos cos cos 144f x x x x x x ⎛=-+-=-++=-+ ⎝⎭, 由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当cos x =时,函数()f x 取得最大值1. 7.【2017·北京卷】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 【答案】79-【解析】因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1sin sin 3βα==,cos cos αβ=-=cos cos βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 8.【2018·全国Ⅱ】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【答案】12-【解析】因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα 所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα9.【2017·江苏卷】若π1tan(),46α-=则tan α= ▲ .【答案】75【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【2016年】1. 【2016高考新课标1卷】已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】 因为π4x =-为()f x 的零点,π4x =为()y f x =图像的对称轴,所以ππ()444T kT --=+,即π41412π244k k T ω++==⋅,所以*41()k k ω=+∈N ,又因为()f x 在π5π,1836⎛⎫⎪⎝⎭单调,所以5πππ2π36181222T ω-=≤=,即12ω≤,则ω的最大值为9.故选B.2.【2016年高考四川理数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D【解析】由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 3.【2016高考新课标3理数】在ABC △中,π4B ,BC 边上的高等于13BC ,则cos A ( )(A )31010 (B )1010 (C )1010 (D )31010【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD =.由余弦定理,知22222225910cos 210225AB AC BC AD AD AD A AB AC AD AD +-+-===-⋅⨯⨯,故选C . 4.【2016高考新课标2理数】若3cos()45πα-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725-【答案】D【解析】2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.5.【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) (A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B. 6.【2016高考新课标3理数】若3tan 4α= ,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】 由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .7.【2016高考浙江理数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B 【解析】21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B .8.【2016年高考北京理数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >)个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.2t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.2t =,s 的最小值为3π【答案】A【解析】由题意得,ππ1sin(2)432t =⨯-=,当s 最小时,'P 所对应的点为π1(,)122,此时min πππ4126s ==-,故选A. 9.【2016年高考四川理数】22cossin 88ππ-= . 【答案】22【解析】由二倍角公式得22cossin 88ππ-=2cos.42=π10.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形的内角,所以312sin ,sin 513A C ==,63sin sin[π()]sin()sin cos cos sin 65B AC A C A C A C =-+=+=+=,又因为sin sin a b A B =,所以sin 21sin 13a B b A ==.11.【2016高考浙江理数】已知2cos 2x +sin 2x =Asin(ωx +φ)+b (A >0),则A =______,b =________.2 1【解析】22cos sin 22)14x x x π+++,所以2, 1.A b ==12.【2016高考新课标3理数】函数sin 3y x x =的图像可由函数sin 3y x x =的图像至少向右平移_____________个单位长度得到. 【答案】32π【解析】因为sin 32sin()3y x x x π=+=+,sin 32sin()3y x x x π==-=2sin[()]33x π2π+-,所以函数sin 3y x x =-的图像可由函数sin 3y x x =+的图像至少向右平移32π个单位长度得到.13.【2016高考山东理数】函数f (x )=x +cos x )cos x –sin x )的最小正周期是( ) (A )2π(B )π (C )23π(D )2π【答案】B【解析】()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B.14.【2016高考天津理数】在△ABC 中,若AB ,BC=3,120C ∠= ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.15.【2016高考江苏卷】定义在区间[0,3]π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 ▲ . 【答案】7【解析】由1sin 2cos cos 0sin 2x x x x =⇒==或,因为[0,3]x π∈,所以3551317,,,,,,,2226666x πππππππ=共7个 16.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8.【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C ==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因此tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.。
2016年高考数学试题研究浙江卷第20题_徐彦辉
浙江卷第 2 0题
故
a | n |<
ɤ
题目
3 , 证明 : n ɪ N* , 2 a n ɪ N* . | ɤ2, n| a n+ 1 )由 a 证法 1 ( 得 1 ɤ1, n 2 1 a a | - | ɤ1, n| n+ 1| 2 a a | | 1 n| n+ 1| 即 n ɪ N* , - n+1 ɤ n , n 2 2 2 a1 | | a | n| 所以 - n 1 2 2 ( )若 | 2 a ɤ n| =
a n+ 1 n ɪ N* , a ɤ1, n 2 n 1 ( )求证: ) , 1 a a n ɪ N* ; | ȡ2 ( | -2 n| 1|
设数列 { 满足 a n}
3 n ㊃2 . =2+ 4 从而对于任意 m > n, 均有
( [
am | 1 | n ㊃2 n1+ m 2 2
1 1 3 n1+ m 2 2 2
于是 所以
3 n ㊃2 a . | <2+ n| 4 由 m 的任意性得 | a ɤ2. n| , 综上 对于任意 n ɪ N* , 均有
()
m
) ( )]
n ㊃2
()
m
a | -2ɤ n|
a a a a | | | | n| n+ 1| n+ 1| n+ 2| = - n+1 + - n+2 + n n+ 1 2 2 2 2
高考数学高分之路
‘ 数理天地 “ 高中版
ห้องสมุดไป่ตู้()
3 2
n
, 证明 : n ɪ N* ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高考试题】2016年全国高考数学试题(浙江卷)★答案(理科)
一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.
1. 已知集合{}
{
}
2
13,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð A .[2,3] B .( -2,3 ] C .[1,2) D .(,2][1,)-∞-⋃+∞ 【答案】B
【解析】根据补集的运算得{
}
[](]2
4(2,2),()(2,2)1,32,3=<=-∴=-=- R R Q x x P Q 痧
.故选B . 2. 已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则 A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】
C
3. 在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域
200
340x x y x y -≤⎧⎪
+≥⎨⎪-+≥⎩
中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │= A .22 B .4 C .32 D .6 【答案】C
【解析】如图∆PQR 为线性区域,区域内的点在直线20x y +-=上的投影构成了线段''R Q ,即AB ,而
''=R Q PQ ,由3400-+=⎧⎨+=⎩x y x y 得(1,1)-Q ,由2
=⎧⎨+=⎩x x y 得(2,2)-R ,
22(12)(12)32==--++=AB QR .故选C .
4. 命题“*x n ∀∈∃∈,R N ,使得2n x >”的定义形式是
A .*x n ∀∈∃∈,R N ,使得2n x <
B .*x n ∀∈∀∈,R N ,使得2n x <
C .*x n ∃∈∃∈,R N ,使得2n x <
D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】D
【解析】∀的否定是∃,∃的否定是∀,2
n x ≥的否定是2
n x <.故选D . 5. 设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B
6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*
N , 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则
A .{}n S 是等差数列
B .2
{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列
【答案】A
【解析】n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即11
2
n n n n S h B B +=
,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么
1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那
么1111(tan )2n n n n S h A A B B θ+=
+⋅,111111
(tan )2
n n n n S h A A B B θ+++=+⋅,作差后:1111
(tan )2
n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A .学科&网
7. 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n
–y 2
=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,
则
A .m >n 且e 1e 2>1
B .m >n 且e 1e 2<1
C .m <n 且e 1e 2>1
D .m <n 且e 1e 2<1 【答案】A
【解析】由题意知2
2
11-=+m n ,即2
2
2=+m n ,222
122222
1111
()(1)(1)-+=
⋅=-+m n e e m n m n ,代入222=+m n ,得212,()1>>m n e e .故选A .
8. 已知实数a ,b ,c
A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100
B .若|a 2+b +c |+|a 2+b –c |≤1,则a 2+b 2+c 2<100
C .若|a +b +c 2|+|a +b –c 2|≤1,则a 2+b 2+c 2<100
D .若|a 2+b +c |+|a +b 2–c |≤1,则a 2+b 2+c 2<100 【答案】D
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.
9. 若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9
【解析】1109M M x x +=⇒=
10. 已知2cos 2x +sin 2x =Asin(ωx +φ)+b (A >0),则A =______,b =________. 【答案】2 1
【解析】22cos sin 22sin(2)14
x x x π
+=+
+,所以2, 1.A b ==
11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2
,体积是 cm 3
.
【答案】72 32
【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯= 12. 已知a >b >1.若log a b +log b a =5
2
,a b =b a ,则a = ,b = . 【答案】4 2
【解析】设log ,1b a t t =>则,因为215
22
t t a b t +=
⇒=⇒=, 因此2
2222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==
13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= . 【答案】1 121
14. 如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是
.
【答案】
1
2
【解析】ABC ∆中,因为2,120AB BC ABC ==∠= , 所以30BAD BCA ∠==
.
由余弦定理可得222
2cos AC AB BC AB BC B =+-⋅ 2222222cos12012=+-⨯⨯= ,
所以23AC =.
设AD x =,则023t <<,23DC x =-.
在ABD ∆中,由余弦定理可得222
2cos BD AD AB AD AB A =+-⋅
22222cos30x x =+-⋅ 2234x x =-+.
故2234BD x x =
-+.
在PBD ∆中,PD AD x ==,2PB BA ==.
由余弦定理可得2222222(234)3
cos 2222
PD PB BD x x x BPD PD PB x +-+--+∠===⋅⋅⋅,
所以30BPD ∠=
.
E
D
C
B
A
P
过P 作直线BD 的垂线,垂足为O .设PO d =
则11
sin 22
PBD S BD d PD PB BPD ∆=⨯=⋅∠, 即2112342sin 3022
x x d x -+⨯=⋅ , 解得2
234
x d x x =
-+.
而BCD ∆的面积111
sin (23)2sin 30(23)222
S CD BC BCD x x =⋅∠=-⋅=- . 设PO 与平面ABC 所成角为θ,则点P 到平面ABC 的距离sin h d θ=.
故四面体PBCD 的体积211111sin (23)33332234
BcD BcD BcD x
V S h S d S d x x x θ∆∆∆=
⨯=≤⋅=⨯-⋅
-+ 21(23)
6234
x x x x -=
-+.
设22234(3)1t x x x =
-+=-+,因为023x ≤≤,所以12t ≤≤.
则2|3|1x t -=-
.
(2)当323x <≤时,有2|3|31x x t -=-=-, 故231x t =+-.
此时,221(31)[23(31)]6t t V t
+--+-=。