第二章清华数字电子技术第五版阎石课件共81页文档
合集下载
课件数字电技术基础第五版教学课件清华大学阎石王红.ppt
D Q Q*
0 0
1 1
0 1
0 1
0 0
1 1
2.特性方程 : Q* D
3.状态转换图
4.符号
。。。。
《数字电子技术基础》第五版
逻辑功能: 是 Q * 与输入及 Q 在CLK作用后稳态之间的关系 (RS, JK, D, T)
电路结构形式: 具有不同的动作特点(转换状态的动态过程) (同步,主从,边沿)
《数字电子技术基础》第五版
( 5 )有异步置1,置0端
二、动作特点 Q * 变化发生在 clk的上升沿(或下降沿) , Q * 仅取决于上升沿到达时 输入的状态,而与此前 、后的状态无关
《数字电子技术基础》第五版
5.6 触发器的逻辑功能及其描述方法
5.6.1 触发器按逻辑功能的分类 时钟控制的触发器中 由于输入方式不同(单端,双端输入)、次态( Q * )随输 入变化的规则不同
J K CLK
Q S 主 R Q’ 从
Q Q’
《数字电子技术基础》第五版
J Q S 主 R Q’ 从 Q
K
CLK
Q’ (1)若J 1, K 0则clk 1时,
Q* 1 “主”保持 , 1 * Q 0,“主” 1
Q* 1,“主” 0 * Q 0,“主”保持 0
1. 主从 SR 触发器 ( 1 )clk 1时,“主”按 S , R翻转,“从”保持 ( 2 )clk下降沿到达时,“主” 保持, “从”根据“主”的状 态翻转 所以每个 clk周期,输出状态只可能 改变一次
0
1
1 1
1 0
0
1*
1
1 1
1*
《数字电子技术基础》第五版
2. 主从 JK触发器 为解除约束 即使出现 S R 1的情况下, Q * 也是确定的
0 0
1 1
0 1
0 1
0 0
1 1
2.特性方程 : Q* D
3.状态转换图
4.符号
。。。。
《数字电子技术基础》第五版
逻辑功能: 是 Q * 与输入及 Q 在CLK作用后稳态之间的关系 (RS, JK, D, T)
电路结构形式: 具有不同的动作特点(转换状态的动态过程) (同步,主从,边沿)
《数字电子技术基础》第五版
( 5 )有异步置1,置0端
二、动作特点 Q * 变化发生在 clk的上升沿(或下降沿) , Q * 仅取决于上升沿到达时 输入的状态,而与此前 、后的状态无关
《数字电子技术基础》第五版
5.6 触发器的逻辑功能及其描述方法
5.6.1 触发器按逻辑功能的分类 时钟控制的触发器中 由于输入方式不同(单端,双端输入)、次态( Q * )随输 入变化的规则不同
J K CLK
Q S 主 R Q’ 从
Q Q’
《数字电子技术基础》第五版
J Q S 主 R Q’ 从 Q
K
CLK
Q’ (1)若J 1, K 0则clk 1时,
Q* 1 “主”保持 , 1 * Q 0,“主” 1
Q* 1,“主” 0 * Q 0,“主”保持 0
1. 主从 SR 触发器 ( 1 )clk 1时,“主”按 S , R翻转,“从”保持 ( 2 )clk下降沿到达时,“主” 保持, “从”根据“主”的状 态翻转 所以每个 clk周期,输出状态只可能 改变一次
0
1
1 1
1 0
0
1*
1
1 1
1*
《数字电子技术基础》第五版
2. 主从 JK触发器 为解除约束 即使出现 S R 1的情况下, Q * 也是确定的
阎石第五版数字电路技术课件
数字电路基础
触发器概述
触发器的分类
触发器的工作原理
触发器的应用
01
02
03
04
触发器是一种具有记忆功能的电路,能够存储二进制信息。
根据工作原理的不同,触发器可以分为RS触发器、D触发器、JK触发器和T触发器等。
触发器通过接收输入信号,根据不同的工作模式,将存储的信息保持或翻转。
触发器广泛应用于数字系统的设计和实现,如寄存器、计数器等。
详细描述
总结词
数字电路技术的发展历程
详细描述
数字电路技术自20世纪40年代诞生以来,经历了从小规模到大规模,再到超大规模集成电路的发展历程。随着半导体工艺的不断进步,数字电路技术的集成度越来越高,性能越来越强大,应用领域也越来越广泛。
总结词
数字电路技术的应用领域
详细描述
数字电路技术广泛应用于计算机、通信、控制、测量仪器、航空航天、军事等领域。在计算机领域,数字电路技术用于构建中央处理器、存储器、输入输出接口等关键部件。在通信领域,数字电路技术用于信号传输、调制解调、信道编码等。在控制领域,数字电路技术用于实现各种控制算法和控制系统。在测量仪器领域,数字电路技术用于提高测量精度和自动化程度。在航空航天和军事领域,数字电路技术用于实现高速数据处理和精确控制系统。
数字电路的分析与设计
根据逻辑函数表达式或真值表,设计实现特定逻辑功能的组合逻辑电路。
组合逻辑电路设计
根据给定的逻辑函数和触发器类型,设计实现特定功能的时序逻辑电路。
时序逻辑电路设计
利用可编程逻辑器件的资源和编程语言,设计实现各种数字电路和系统。
可编程逻辑器件设计
使用硬件描述语言(如Verilog或VHDL)进行数字电路和系统的设计和仿真。
数字电子技术基础第五版
(1000 1111 1010 1100 0110 )2
《数字电子技术基础》第五版
五、八进制数与二进制数的转换
例:将(011110.010111)2化为八进制
(011 110. 010 111 )2
(3 6 . 2 7)8
例:将(52.43)8化为二进制
(5
2 . 4
3)8
(101 010 . 100 011 )2
《数字电子技术基础》第五版
《数字电子技术基础》(第五版)教学课件
清华大学 阎石 王红
联系地址:清华大学 自动化系 邮政编码:100084 电子信箱:wang_hong@ 联系电话:(010)62792973
《数字电子技术基础》第五版
第一章
数制和码制
《数字电子技术基础》第五版
1 2 3 4 7
k n 2 n1 k n1 2 n 2 k1 2( k n 2 n 2 k n1 2 n3 k 2 ) k1
0
故 (173)10 (10101101 )2
5 6
《数字电子技术基础》第五版
二、十-二转换
1 2 m ( S ) k 2 k 2 k 2 10 1 2 m 小数部分: 左右同乘以 2
1.1 概述 数字量和模拟量
• 数字量:变化在时间上和数量上都是不连 续的。(存在一个最小数量单位△) • 模拟量:数字量以外的物理量。 • 数字电路和模拟电路:工作信号,研究的 对象,分析/设计方法以及所用的数学工具 都有显著的不同
《数字电子技术基础》第五版
数字量和模拟量
• 电流值来表示信息
《数字电子技术基础》第五版
1.4二进制数运算
1.4.2 反码、补码和补码运算
数字电子技术基础阎石主编PPT课件
Y0 ((DB)(DC)) DB DC
第7页/共114页
由真值表知:该电路可用来判别输入的4位二进制数数值的范围。
第8页/共114页
A B (A B) CI ( A B)CI
AB
S A B CI CO (A B)CI AB
第9页/共114页
S A B CI CO (A B)CI AB
0 1 1 1 1 1 0 × ×低电平1表示“0 电路1 工 1 0 0 1 1 1 1 1 1 0 ×作,且1有编码1 输入0 ” 1 0
0 11111110
1 1 1 10
输入:逻辑0(低电平)有效 输出:逻辑0(低电平)有效
第24页/共114页
例4.3.1:试用两片74LS148组成16线-4线优先编码器。
f
gb
e
c
d
第43页/共114页
ab cd
a
f
b
g
e
c
d
ef gh (a) 外形图
a b c d e f g h
(b) 共阴极
第44页/共114页
+VCC a b c d e f g
h (c) 共阳极
a
510
Ya
510 b
Yb
g
510
Yg
a
发
f
g
b
光
二
极 管
e
c
d
Ya-Yg: 控制信号 高电平时,对应的LED亮 低电平时,对应的LED灭
1
1
第19页/共114页
4.3 若干常用的组合逻辑电路
§4.3.1 编码器
编码:用二进制代码来表示某一信息(文 字、数字、符号)的过程。
第7页/共114页
由真值表知:该电路可用来判别输入的4位二进制数数值的范围。
第8页/共114页
A B (A B) CI ( A B)CI
AB
S A B CI CO (A B)CI AB
第9页/共114页
S A B CI CO (A B)CI AB
0 1 1 1 1 1 0 × ×低电平1表示“0 电路1 工 1 0 0 1 1 1 1 1 1 0 ×作,且1有编码1 输入0 ” 1 0
0 11111110
1 1 1 10
输入:逻辑0(低电平)有效 输出:逻辑0(低电平)有效
第24页/共114页
例4.3.1:试用两片74LS148组成16线-4线优先编码器。
f
gb
e
c
d
第43页/共114页
ab cd
a
f
b
g
e
c
d
ef gh (a) 外形图
a b c d e f g h
(b) 共阴极
第44页/共114页
+VCC a b c d e f g
h (c) 共阳极
a
510
Ya
510 b
Yb
g
510
Yg
a
发
f
g
b
光
二
极 管
e
c
d
Ya-Yg: 控制信号 高电平时,对应的LED亮 低电平时,对应的LED灭
1
1
第19页/共114页
4.3 若干常用的组合逻辑电路
§4.3.1 编码器
编码:用二进制代码来表示某一信息(文 字、数字、符号)的过程。
《数字电子技术基础》第五版教学课件清华大学阎石王红.pdf
8.7 现场可编程门阵列FPGA
一、基本结构
1. IOB 2. CLB 3. 互连资源 4. SRAM
1. IOB
《数字电子技术基础》第五版
可以设置为输入/输出; 输入时可设置为:同步(经触发器)
异步(不经触发器)
2. CLB
《数字电子技术基础》第五版
本身包含了组合电路和触发器,可构成小的时序电路 将许多CLB组合起来,可形成大系统
8.4.3 GAL的输入和输出特性
GAL是一种较为理想的高输入阻抗器件
GAL输出缓冲级
《数字电子技术基础》第五版
《数字电子技术基础》第五版
8.5 可擦除的可编程逻辑阵列EPLD
一、结构特点 相当于 “不-或”阵列(PAL) + OLMC
二、采用EPROM工艺 集成度提高
《数字电子技术基础》第五版
《数字电子技术基础》第五版
isp器件的编程接口(Lattice)
开发 环境
• 使用ispPLD的优点:
• *丌再需要与用编程器 • *为硬件的软件化提供可能 • *为实现硬件的远程构建提供可能
3. “装载”结束后,进入编程设定的 工作状态
!!每次停电后,SRAM中数据消失 下次工作仍需重新装载
《数字电子技术基础》第五版
8.8 在系统可编程通用数字开关(ispGDS)
ispGDS22的 结构框图
《数字电子技术基础》第五版
8.9 PLD的编程
以上各种PLD均需离线进行编程操作,使用开发系统
3. 互连资源
《数字电子技术基础》第五版
《数字电子技术基础》第五版
4. SRAM 分布式 每一位触发器控制一个编程点
二、编程数据的装载
《数字电子技术基础》第五版
一、基本结构
1. IOB 2. CLB 3. 互连资源 4. SRAM
1. IOB
《数字电子技术基础》第五版
可以设置为输入/输出; 输入时可设置为:同步(经触发器)
异步(不经触发器)
2. CLB
《数字电子技术基础》第五版
本身包含了组合电路和触发器,可构成小的时序电路 将许多CLB组合起来,可形成大系统
8.4.3 GAL的输入和输出特性
GAL是一种较为理想的高输入阻抗器件
GAL输出缓冲级
《数字电子技术基础》第五版
《数字电子技术基础》第五版
8.5 可擦除的可编程逻辑阵列EPLD
一、结构特点 相当于 “不-或”阵列(PAL) + OLMC
二、采用EPROM工艺 集成度提高
《数字电子技术基础》第五版
《数字电子技术基础》第五版
isp器件的编程接口(Lattice)
开发 环境
• 使用ispPLD的优点:
• *丌再需要与用编程器 • *为硬件的软件化提供可能 • *为实现硬件的远程构建提供可能
3. “装载”结束后,进入编程设定的 工作状态
!!每次停电后,SRAM中数据消失 下次工作仍需重新装载
《数字电子技术基础》第五版
8.8 在系统可编程通用数字开关(ispGDS)
ispGDS22的 结构框图
《数字电子技术基础》第五版
8.9 PLD的编程
以上各种PLD均需离线进行编程操作,使用开发系统
3. 互连资源
《数字电子技术基础》第五版
《数字电子技术基础》第五版
4. SRAM 分布式 每一位触发器控制一个编程点
二、编程数据的装载
《数字电子技术基础》第五版
数字电子技术基础第二章
• 逻辑图 用逻辑图形符号表示逻辑运算关系,与逻辑电路 的实现相对应。
• 波形图 将输入变量所有取值可能与对应输出按时间顺序排 列起来画成时间波形。
《数字电子技术基础》第五版
《数字电子技术基础》第五版
• 卡诺图
• EDA中的描述方式 HDL (Hardware Description Language)
VHDL (Very High Speed Integrated Circuit …) Verilog HDL
EDIF DTIF 。。。
《数字电子技术基础》第五版
举例:举重裁判电路
YA(BC)
《数字电子技术基础》第五版
各种表现形式的相互转换:
• 真值表 逻辑式 例:奇偶判别函数的真值表
• A=0,B=1,C=1使 A′BC=1 • A=1,B=0,C=1使 AB′C=1 • A=1,B=1,C=0使 ABC′ =1
ACBCADBCD
《数字电子技术基础》第五版
2.5 逻辑函数及其表示方法
• 2.5.1 逻辑函数 • Y=F(A,B,C,······)
------若以逻辑变量为输入,运算结果为输 出,则输入变量值确定以后,输出的取值 也随之而定。输入/输出之间是一种函数关 系。
注:在二值逻辑中, 输入/输出都只有两种取值0/1。
• 逻辑式 逻辑图
《数字电子技术基础》第五版
1. 用图形符号代替逻辑式中的逻辑运算符。
YA(BC)
• 逻辑式 逻辑图
《数字电子技术基础》第五版
1. 用图形符号代替逻辑式中的逻辑运算符。
2. 从输入到输出逐级写出每个图形符号对应 的逻辑运算式。
(AB)
(( A B) ( A B)) ( A B)( A B)
• 波形图 将输入变量所有取值可能与对应输出按时间顺序排 列起来画成时间波形。
《数字电子技术基础》第五版
《数字电子技术基础》第五版
• 卡诺图
• EDA中的描述方式 HDL (Hardware Description Language)
VHDL (Very High Speed Integrated Circuit …) Verilog HDL
EDIF DTIF 。。。
《数字电子技术基础》第五版
举例:举重裁判电路
YA(BC)
《数字电子技术基础》第五版
各种表现形式的相互转换:
• 真值表 逻辑式 例:奇偶判别函数的真值表
• A=0,B=1,C=1使 A′BC=1 • A=1,B=0,C=1使 AB′C=1 • A=1,B=1,C=0使 ABC′ =1
ACBCADBCD
《数字电子技术基础》第五版
2.5 逻辑函数及其表示方法
• 2.5.1 逻辑函数 • Y=F(A,B,C,······)
------若以逻辑变量为输入,运算结果为输 出,则输入变量值确定以后,输出的取值 也随之而定。输入/输出之间是一种函数关 系。
注:在二值逻辑中, 输入/输出都只有两种取值0/1。
• 逻辑式 逻辑图
《数字电子技术基础》第五版
1. 用图形符号代替逻辑式中的逻辑运算符。
YA(BC)
• 逻辑式 逻辑图
《数字电子技术基础》第五版
1. 用图形符号代替逻辑式中的逻辑运算符。
2. 从输入到输出逐级写出每个图形符号对应 的逻辑运算式。
(AB)
(( A B) ( A B)) ( A B)( A B)
清华大学《数字电子技术基本教程》教学课件.pptx
Mealy型:Y F ( X , Q) Moore型:Y F (Q)
与X、Q有关 仅取决于电路状态
6.2 时序电路的分析方法
《数字电子技术基本教程》
分析:找出给定时序电路的逻辑功能 即找出在输入和CLK作用下,电路的次态和输出。
一般步骤:
①根据给定的逻辑图写出存储电路中每个触发器输入端的逻 辑函数式,得到电路的驱动方程。
R’D S1 S0 工作状态 0 X X 置零 1 0 0 保持 1 0 1 右移 1 1 0 左移 1 1 1 并行输入
《数字电子技术基本教程》
6.3.3 计数器
• 用于计数、分频、定时、产生节拍脉冲等
• 分类: 按时钟分,同步、异步 按计数过程中数字增减分,加、减
……
1. 异步计数器
异步二进制加法计数器 在末位+1时,从低位到高位逐位进 位方式工作。 原则:每1位从“1”变“0”时,向高
6.1 时序逻辑电路的特点和逻辑功能的描述 一、时序逻辑电路的特点 1. 功能上:任一时刻的输出不仅取决于该时刻的输入,还
与电路原来的状态有关。 例:串行加法器,两个多位数从低位到高位逐位相加
2. 电路结构上 ①包含存储电路和组合电路 ②存储器状态和输入变量共同决定输出
《数字电子技术基本教程》
二、时序电路的一般结构形式与功能描述方法
因为 触发器有延迟时间t pd 所以 CLK 到达时,各触发器按前一级触发器原来的状态翻转
数据依次右移1位
《数字电子技术基本教程》
应用: 代码转换,串 并 数据运算
《数字电子技术基本教程》
器件实例:74LS 194A,左/右移,并行输入,保持,异步 置零等功能
并行输入
并行输出
《数字电子技术基本教程》
与X、Q有关 仅取决于电路状态
6.2 时序电路的分析方法
《数字电子技术基本教程》
分析:找出给定时序电路的逻辑功能 即找出在输入和CLK作用下,电路的次态和输出。
一般步骤:
①根据给定的逻辑图写出存储电路中每个触发器输入端的逻 辑函数式,得到电路的驱动方程。
R’D S1 S0 工作状态 0 X X 置零 1 0 0 保持 1 0 1 右移 1 1 0 左移 1 1 1 并行输入
《数字电子技术基本教程》
6.3.3 计数器
• 用于计数、分频、定时、产生节拍脉冲等
• 分类: 按时钟分,同步、异步 按计数过程中数字增减分,加、减
……
1. 异步计数器
异步二进制加法计数器 在末位+1时,从低位到高位逐位进 位方式工作。 原则:每1位从“1”变“0”时,向高
6.1 时序逻辑电路的特点和逻辑功能的描述 一、时序逻辑电路的特点 1. 功能上:任一时刻的输出不仅取决于该时刻的输入,还
与电路原来的状态有关。 例:串行加法器,两个多位数从低位到高位逐位相加
2. 电路结构上 ①包含存储电路和组合电路 ②存储器状态和输入变量共同决定输出
《数字电子技术基本教程》
二、时序电路的一般结构形式与功能描述方法
因为 触发器有延迟时间t pd 所以 CLK 到达时,各触发器按前一级触发器原来的状态翻转
数据依次右移1位
《数字电子技术基本教程》
应用: 代码转换,串 并 数据运算
《数字电子技术基本教程》
器件实例:74LS 194A,左/右移,并行输入,保持,异步 置零等功能
并行输入
并行输出
《数字电子技术基本教程》
数字电子技术(阎石第五版)第2章
2021/4/21
课 本 上 用 真 值 表 证 明
21
二、常用公式
1. A+AB = A
2. A+A′B= A+B A′+AB= A′+B
A(A′+B)= AB A′(A+B)= A′B
注: 红色变量被吸收 掉!统称 吸收律
2021/4/21
22
证明:
A+A′B =(A+A′) •(A+B) ;分配律
替等式中的B,根据代入定理,等式仍然成立,即有:
(A (B C)) A (B C) A B C
2021/4/21
28
二、 反演定理
对于任何一个逻辑表达式Y,如果将表达式中
的所有“·”换成“+”,“+”换成“·”,“0”
换成“1”,“1”换成“0”,原变量换成反变量,
反变量换成原变量,那么所得到的表达式就是函
例2.5.3 Y (A BC) ABC C
2021/4/21
46
4、逻辑图→逻辑式
方法:从输入端到输出端逐级写出每个图形符 号对应的逻辑式,即得到对应的逻辑函数式.
(A B)
B A
(A B)
Y ((A B) (A B)) (A B)(A B) AB AB
2021/4/21
AAAA
B B BB
EEEE
2021/4/21
电路图
YYYY
AAA接、、通BB都、都断B接断开通开,,,灯灯灯不亮不亮。亮。 。
A断开、B接通,灯不亮。
4
将开关接通记作1,断开记作0;灯亮记作1,灯灭 记作0。可以作出如下表格来描述与逻辑关系:
功能表
开关 A 开关 B 灯 Y
课 本 上 用 真 值 表 证 明
21
二、常用公式
1. A+AB = A
2. A+A′B= A+B A′+AB= A′+B
A(A′+B)= AB A′(A+B)= A′B
注: 红色变量被吸收 掉!统称 吸收律
2021/4/21
22
证明:
A+A′B =(A+A′) •(A+B) ;分配律
替等式中的B,根据代入定理,等式仍然成立,即有:
(A (B C)) A (B C) A B C
2021/4/21
28
二、 反演定理
对于任何一个逻辑表达式Y,如果将表达式中
的所有“·”换成“+”,“+”换成“·”,“0”
换成“1”,“1”换成“0”,原变量换成反变量,
反变量换成原变量,那么所得到的表达式就是函
例2.5.3 Y (A BC) ABC C
2021/4/21
46
4、逻辑图→逻辑式
方法:从输入端到输出端逐级写出每个图形符 号对应的逻辑式,即得到对应的逻辑函数式.
(A B)
B A
(A B)
Y ((A B) (A B)) (A B)(A B) AB AB
2021/4/21
AAAA
B B BB
EEEE
2021/4/21
电路图
YYYY
AAA接、、通BB都、都断B接断开通开,,,灯灯灯不亮不亮。亮。 。
A断开、B接通,灯不亮。
4
将开关接通记作1,断开记作0;灯亮记作1,灯灭 记作0。可以作出如下表格来描述与逻辑关系:
功能表
开关 A 开关 B 灯 Y
数字电路课件(第二章)
序号 1 2 3 公 式 序号 10 0A=0 1A=A AA=A 11 12 13 公 式 1′ = 0; 0′= 1 1 + A= 1 0 +A=A A+A=A
4
5 6 7 8 9
A A′= 0
AB=BA A (B C) = (A B) C A (B +C) = A B + A C (A B) ′ = A′ + B′基础》第五版
公式(17)的证明(真值表法):
ABC BC A+BC A+B A+C
(A+B)(A+C)
0 0 0 1 1 1 1 1
000 001 010 011 100 101 110 111
0 0 0 1 0 0 0 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
• 卡诺图 • EDA中的描述方式 HDL (Hardware Description Language)
VHDL (Very High Speed Integrated Circuit …) Verilog HDL
EDIF DTIF 。。。
《数字电子技术基础》第五版
举例:举重裁判电路
A B C Y
3
《数字电子技术基础》第五版
最小项的编号:
最小项
A B C A B C A B C A BC A B C A B C AB C ABC
取值 对应 A B C 十进制数 0 0 0 0 0 0 1 1 0 1 0 2 0 1 1 3 1 0 0 4 1 0 1 5 1 1 0 6 1 1 1 7
非
• 条件不具备,结果发生 • Y A NOT A
4
5 6 7 8 9
A A′= 0
AB=BA A (B C) = (A B) C A (B +C) = A B + A C (A B) ′ = A′ + B′基础》第五版
公式(17)的证明(真值表法):
ABC BC A+BC A+B A+C
(A+B)(A+C)
0 0 0 1 1 1 1 1
000 001 010 011 100 101 110 111
0 0 0 1 0 0 0 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
• 卡诺图 • EDA中的描述方式 HDL (Hardware Description Language)
VHDL (Very High Speed Integrated Circuit …) Verilog HDL
EDIF DTIF 。。。
《数字电子技术基础》第五版
举例:举重裁判电路
A B C Y
3
《数字电子技术基础》第五版
最小项的编号:
最小项
A B C A B C A B C A BC A B C A B C AB C ABC
取值 对应 A B C 十进制数 0 0 0 0 0 0 1 1 0 1 0 2 0 1 1 3 1 0 0 4 1 0 1 5 1 1 0 6 1 1 1 7
非
• 条件不具备,结果发生 • Y A NOT A
数字电子技术基础第五版阎石课件
2006年
24
8.4 通用阵列逻辑GAL
要使用GAL器件,就要先进行设计。GAL器件的开发 工具包括硬件开发工具和软件开发工具。硬件开发工 具有编程器,软件开发工具有ABEL-HDL程序设计语言 和相应的编译程序。编程器的主要用途是将开发软件 生成的熔丝图文件按JEDEC格式的标准代码写入选定 的GAL器件。
8.1 概 述
图8.1.1 PLD电路中门电路的惯用画法 (a)与门
(b)输出恒等于0的与门 (c)或门 (d)互补输出的缓冲器 (e)三态输出的缓冲器
2006年
返回
1
图8.1.1 PLD电路中门电路的惯用画法
(a)与门(b)输出恒等于0的与门(c)或门 (d)互补输出的缓冲器(e)三态输出的缓冲器
辑模式(c)单乘积项模式 图8.8.7 输入/输出单元( IOC )的电路结构 图8.8.8 IOC的各种组态 图8.8.9 ispLSI器件的编程接口 图8.8.10 ispGDS22的结构框图 图8.8.11 ispGDS22的输入/输出单元( IOC )
支持不同厂家生产的,各种型号的PAL,GAL, EPLD,FPGA产品开发。
PLD开发系统包括软件和硬件俩部分。 开发系统软件是指PLD专用的编程语言和相 应的汇编程序或编译程序。开发系统软件大体
上可以分为汇编型,编译型和原理图收集型三
种。
2006年
58
8.8 在系统可编程逻辑器件(ISP-PLD)
图8.8.1 ispGAL16z8的电路结构框图 图8.8.2 ispGAL16z8编程操作流程图 图8.8.3 ispLSI1032的电路结构框图 图8.8.4 ispLSI1032的逻辑功能划分框图 图8.8.5 通用逻辑模块(GLB)的电路结构 图8.8.6 GLB的其它几种组态模式(a)高速旁路模式(b)异或逻
数字电子技术第五版课件
10 i-表示第i位的权值,10为基数,即采用数码的个数
n、m-为正整数, n为整数部分的位数, m为小数部分的位数
团结 信赖 创造 挑战
例如: (249.56)10=2×102+ 4×101+ 9×100
+ 5×10–1+ 2×10-2
其中n=3,m=2
若用N表示任意进制(称为N进制)的基数,则展成十进制数的通式为
团结 信赖 创造 挑战
二、二进制:
进位规则是“逢二进一”,任意一个n位整数、m位小数的二进制可表示
为
(D )2 kn 1 kn 2 k0 k 1 k m
n 1
kn 1 2 n 1 ko 2 0 k 1 2 1 k m 2 m ki 2 i i m
数码的编写形式是多样的,其遵循的原则称为码制。码制的编写不受限 制,但有一些通用的码制,如十进制、二进制、八进制和十六进制等等。下 面就介绍这几种常用的码制。
团结 信赖 创造 挑战
1.2 几种常用的数制
数制:就是数的表示方法,把多位数码中每一位的构成方法以及按从低位到 高位的进位规则进行计数称为进位计数制,简称数制
为:期末考试成绩(笔试,70%)+平时成绩(实验、作业及考勤,30%) ,
参考书:《数字电子技术基础》 阎石主编,高等教育出版社
加油啦!!!☺
团结 信赖 创造 挑战
第一章 数码和码制
内容提要 本章首先介绍有关数制和码制的一些基本概念和术语,然后给出数字
电路中常用的数制和编码。此外,还将具体讲述不同数制之间的转化方法 和二进制数算术运算的原理和方法。
(D )N k n 1 k n 2 k 0 k 1 k m
n 1
k n 1 N n 1 k o N 0 k 1 N 1 k m N m k i N i i m
n、m-为正整数, n为整数部分的位数, m为小数部分的位数
团结 信赖 创造 挑战
例如: (249.56)10=2×102+ 4×101+ 9×100
+ 5×10–1+ 2×10-2
其中n=3,m=2
若用N表示任意进制(称为N进制)的基数,则展成十进制数的通式为
团结 信赖 创造 挑战
二、二进制:
进位规则是“逢二进一”,任意一个n位整数、m位小数的二进制可表示
为
(D )2 kn 1 kn 2 k0 k 1 k m
n 1
kn 1 2 n 1 ko 2 0 k 1 2 1 k m 2 m ki 2 i i m
数码的编写形式是多样的,其遵循的原则称为码制。码制的编写不受限 制,但有一些通用的码制,如十进制、二进制、八进制和十六进制等等。下 面就介绍这几种常用的码制。
团结 信赖 创造 挑战
1.2 几种常用的数制
数制:就是数的表示方法,把多位数码中每一位的构成方法以及按从低位到 高位的进位规则进行计数称为进位计数制,简称数制
为:期末考试成绩(笔试,70%)+平时成绩(实验、作业及考勤,30%) ,
参考书:《数字电子技术基础》 阎石主编,高等教育出版社
加油啦!!!☺
团结 信赖 创造 挑战
第一章 数码和码制
内容提要 本章首先介绍有关数制和码制的一些基本概念和术语,然后给出数字
电路中常用的数制和编码。此外,还将具体讲述不同数制之间的转化方法 和二进制数算术运算的原理和方法。
(D )N k n 1 k n 2 k 0 k 1 k m
n 1
k n 1 N n 1 k o N 0 k 1 N 1 k m N m k i N i i m
清华数字电子技术第五版阎石课件
清华数字电子技术第五版 阎石课件
一门全面介绍数字电子技术的课程,涵盖了引言、门电路与触发器、组合逻 辑电路基础、组合逻辑电路优化与综合、时序逻辑电路基础、时序逻辑电路 设计以及软件设计方法与应用等内容。
引言
1 数字电子技术的重要
性
掌握数字电子技术对于当 代信息社会至关重要,它 广泛应用于计算机、通信 等领域。
2 课程目标
通过本课程,我们将深入 了解数字电子技术的基本 原理和应用,为日后的学 习和工作打下坚实基础。
3 学习方法
本课程将采用理论讲解、 实践操练和案例分析相结 合的方式,帮助学生更好 地理解和应用所学知识。
门电路与触发器
门电路
门电路是数字电子技术中最基 本的单元,包括与门、或门、 非门等多种类型。
流水线是一种将运算任务分为多个阶段依次执 行的时序逻辑电路,可以提高运算速度。
软件设计方法与应用
软件设计流程 软件开发模型 软件工程方法
需求分析 → 设计 → 编码 → 测试 → 维护 瀑布模型、敏捷开发、迭代开发等 面向对象、结构化分析与设计等
JK触发器、T触发器等,用于存储和传输
信息。
3
时钟信号
时序逻辑电路的工作需要时钟信号作为 基准,在特定时间点对输入进行采样。
时序逻辑元件
时序逻辑元件包括计数器、移位寄存器 等,用于实现特定的时序功能。
时序逻辑电路设计
状态机
状态机是一种常见的时序逻辑电路,根据输入 和当前状态确定下一状态及输出。
流水线
触发器
触发器是用来存储和传输信息 的元件,常用于时序电路中。
逻辑运算
通过门电路和触发器的组合, 可以实现多种逻辑运算,如与、 或、非、异或等。
组合逻辑电路基础
一门全面介绍数字电子技术的课程,涵盖了引言、门电路与触发器、组合逻 辑电路基础、组合逻辑电路优化与综合、时序逻辑电路基础、时序逻辑电路 设计以及软件设计方法与应用等内容。
引言
1 数字电子技术的重要
性
掌握数字电子技术对于当 代信息社会至关重要,它 广泛应用于计算机、通信 等领域。
2 课程目标
通过本课程,我们将深入 了解数字电子技术的基本 原理和应用,为日后的学 习和工作打下坚实基础。
3 学习方法
本课程将采用理论讲解、 实践操练和案例分析相结 合的方式,帮助学生更好 地理解和应用所学知识。
门电路与触发器
门电路
门电路是数字电子技术中最基 本的单元,包括与门、或门、 非门等多种类型。
流水线是一种将运算任务分为多个阶段依次执 行的时序逻辑电路,可以提高运算速度。
软件设计方法与应用
软件设计流程 软件开发模型 软件工程方法
需求分析 → 设计 → 编码 → 测试 → 维护 瀑布模型、敏捷开发、迭代开发等 面向对象、结构化分析与设计等
JK触发器、T触发器等,用于存储和传输
信息。
3
时钟信号
时序逻辑电路的工作需要时钟信号作为 基准,在特定时间点对输入进行采样。
时序逻辑元件
时序逻辑元件包括计数器、移位寄存器 等,用于实现特定的时序功能。
时序逻辑电路设计
状态机
状态机是一种常见的时序逻辑电路,根据输入 和当前状态确定下一状态及输出。
流水线
触发器
触发器是用来存储和传输信息 的元件,常用于时序电路中。
逻辑运算
通过门电路和触发器的组合, 可以实现多种逻辑运算,如与、 或、非、异或等。
组合逻辑电路基础
关于数电第五版阎石课件
转换步骤:
(1)写出已有触发器和待求触发器的特性方程。
(2)变换待求触发器的特性方程,使之形式与已有 触发器的特性方程一致。
(3)比较已有和待求触发器的特性方程,根据两个 方程相等的原则求出转换逻辑。
(4)根据转换逻辑画出逻辑电路图。
JK 触发器→RS触发器
变换RS触发器的特性方程,使之形式与 JK触发器的特性 方程一致:
1 1
J=1 K=1 时, Q=0,G 7 输出0,主触发器置1,CLK↓,Q *=1; Q=1,G 8 输出0,主触发器置0,CLK↓,Q *=0。
Q *=Q′
JK 触发器的特性表
JKQ
Q*
0
0
0
0
0
0
1
1
0
1
0
0
0
1
1
0
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
0
功能
Q* ? Q
保持
Q* ? 0 置 0
例5.4.3
第二三个CLK==1 1期期间间,, Q=10,,J=J0=,KK==11,, 主触发 发器器被被置置1,0虽;然虽然CLK C下L降K沿下到降达沿时到又达回时到 又J=0回, 从到触K=发0器, 但保从持触输 发出器Q *输=1出。Q *=0.
1 0 11 0
四、边沿触发的触发器
1.用两个电平触发 D触发器组成的边沿触发器
CP
CP D Q2
5.6 触发器的逻辑功能及其描述方法
一、触发器按逻辑功能的分类
按 逻
SR触发器
辑
功
JK 触发器
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字电子技术基础》第五版
公式(17)的证明(公式推演法):
右 ( A B)( A C ) A AB AC BC A(1 B C ) BC A BC 左
《数字电子技术基础》第五版
公式(17)的证明(真值表法):
ABC BC 000 0 001 0 010 0 011 1 100 0 101 0 110 0 111 1
A
Y
0
1
1
0
《数字电子技术基础》第五版
《数字电子技术基础》第五版
几种常用的复合逻辑运算
• 与非
或非
与或非
《数字电子技术基础》第五版
几种常用的复合逻辑运算
• 异或 • Y= A B
AB Y 00 0 01 1 10 1 11 0
《数字电子技术基础》第五版
几种常用的复合逻辑运算
• 同或 • Y= A ⊙B
《数字电子技术基础》第五版
第二章 逻辑代数基础
2.1 概述
《数字电子技术基础》第五版
• 基本概念
逻辑: 事物的因果关系 逻辑运算的数学基础: 逻辑代数 在二值逻辑中的变量取值: 0/1
《数字电子技术基础》第五版
2.2 逻辑代数中的三种基本运算
与(AND)
或(OR)
非(NOT)
以A=1表示开关A合上,A=0表示开关A断开; 以Y=1表示灯亮,Y=0表示灯不亮; 三种电路的因果关系不同:
A+BC 0 0 0 1 1 1 1 1
A+B A+C (A+B)(A+C)
0
0
0
0
1
0
1
00
1
1
1
1
1
1
1
11
1
1
1
1
1
1
2.3.2 若干常用公式23 24 25
26
公
式
A+AB=A
A +A ′B = A + B
A B + A B′ = A
A ( A + B) = A
输出
Y1 Y2 ···· 输出对应的取值
《数字电子技术基础》第五版
• 逻辑式
将输入/输出之间的逻辑关系用与/或/非的运算式
表示就得到逻辑式。
• 逻辑图 用逻辑图形符号表示逻辑运算关系,与逻辑电路的 实现相对应。
• 波形图 将输入变量所有取值可能与对应输出按时间顺序排 列起来画成时间波形。
《数字电子技术基础》第五版
注:在二值逻辑中, 输入/输出都只有两种取值0/1。
《数字电子技术基础》第五版
2.5.2 逻辑函数的表示方法
• 真值表 • 逻辑式 • 逻辑图 • 波形图 • 卡诺图 • 计算机软件中的描述方式
各种表示方法之间可以相互转换
《数字电子技术基础》第五版
•真值表
输入变量
A B C···· 遍历所有可能的输 入变量的取值组合
《数字电子技术基础》第五版
与
• 条件同时具备,结果发生 • Y=A AND B = A&B=A·B=AB
AB Y 0 00 0 10 1 00 1 11
或
• 条件之一具备,结果发生 • Y= A OR B = A+B
AB Y 00 0 01 1 10 1 11 1
《数字电子技术基础》第五版
非
• 条件不具备,结果发生 • YANOT A
公式
0A=0 1A = A AA=A A A′= 0 AB=BA A (B C) = (A B) C A (B +C) = A B + A C (A B) ′ = A′ + B′ (A ′) ′ = A
序号 10 11 12 13 14 15 16 17 18
公式 1′ = 0; 0′= 1
1 + A= 1 0 +A=A A+A=A A + A′ = 1 A +B = B + A A + (B +C) = (A + B) + C A + B C = (A +B)(A +C) (A+ B) ′ = A′B′
A B + A′ C + B C = A B + A′ C
A B+ A′ C + B CD = A B + A′ C
A (AB) ′ = A B′ ; A′ (AB) ′ = A′
2.4 逻辑代数的基本定理
《数字电子技术基础》第五版
• 2.4.1 代入定理
------在任何一个包含A的逻辑等式中,若 以另外一个逻辑式代入式中A的位置,则等 式依然成立。
( A B C ) A ( BC ) A B C
《数字电子技术基础》第五版
2.4 逻辑代数的基本定理
• 2.4.2 反演定理
变换顺序 先括号, 然后乘,最后加
-------对任一逻辑式 YY
•,•,01,10,
原变量 反变量
反变量 原变量 不属于单个变量的 上的反号保留不变
2.4.2 反演定理
《数字电子技术基础》第五版
• 卡诺图
• EDA中的描述方式 HDL (Hardware Description Language)
VHDL (Very High Speed Integrated Circuit …) Verilog HDL
EDIF DTIF 。。。
举例:举重裁判电路
《数字电子技术基础》第五版
2.4.1 代入定理
• 应用举例: 式(17) A+BC
《数字电子技术基础》第五版
= (A+B)(A+C)
A+B(CD) = (A+B)(A+CD) = (A+B)(A+C)(A+D)
2.4.1 代入定理
《数字电子技术基础》第五版
• 应用举例: 式 (8)
( A B ) A B 以 B C 代入 B
《数字电子技术基础》第五版
• 应用举例:
YA(BC)CD Y(ABC)(CD)
ACBCADBCD
《数字电子技术基础》第五版
2.5 逻辑函数及其表示方法
• 2.5.1 逻辑函数 • Y=F(A,B,C,······)
------若以逻辑变量为输入,运算结果为输 出,则输入变量值确定以后,输出的取值 也随之而定。输入/输出之间是一种函数关 系。
AB Y 00 1 01 0 10 0 11 1
《数字电子技术基础》第五版
2.3 逻辑代数的基本公式和常用公式
2.3.1 基本公式 2.3.2 常用公式
《数字电子技术基础》第五版
2.3.1 基本公式
证明方法:推演 真值
表
• 根据与、或、非的定义,得表2.3.1的布尔恒等式
序号
1 2 3 4 5 6 7 8 9
YA(BC)
AB 00 00 01 01 10 10 11 11
CY 00 10 00 10 00 11 01 11
《数字电子技术基础》第五版
各种表现形式的相互转换:
• 真值表 逻辑式 例:奇偶判别函数的真值表