2014 Early Signaling JXB
陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(下册)
(4)若对3的结果M点DFT,且M>N,其中,对x(n)在N点之后补MN个零,试可以通过增大M来提高模拟频率分辨率吗?为什么?[西安交 通大学研]
解:
数字频率
(2)因为 ;x(n)为周期的,进行N点DFT时,应取
(4)不能提高连续频率的分辨率。 8.某连续时间信号的离散时间处理系统如图6-7所示。
图6-7
(1)数字滤波器的系统函数H(z)(应确定常数H0)及其收敛域;
(2)数字滤波器的频率响应 (或 )),并仍以N=2为例,概画出 幅频响应 和相频响应 它是什么类型(低通、高通、带通、全 通、线性相位等)滤波器?
(3)数字滤波器的单位冲激响应h(n),它是FIR还是IIR滤波器?并 以N=2为例,概画出h(n)的序列图形。
(1)求出h(t);
(2)证明: 解:(1) 利用对称性质,有
[电子科技大学研]
所以
(2)①证明:由于
所以
由于f(t)为实值信号,故
由于 为实偶函数,故其原函数f(τ)*f(-τ)为实偶函数,而 为奇函数,所以h(r)f(r)*f(-τ)为奇函数。
由①式可见
12.若f(t)的傅里叶变换F(ω)为ω的实因果信号,即F(ω)
图6-16 F(j ω)的最高频率
,故
14.如图6-17(a)输入信号f(t)的频谱F(j ω)如图6-17(b)所示,
,假设
,则
(1)要使采样信号 不发生混叠,T的最大值是多少?并画出此时 的频谱图;
(2)试问使得y(t)=f(t),滤波器H(jω)应选择何种类型的?其 H(j ω)的表达式是什么?[国防科技大学研]
图6-17 解:(1)由于
取其傅里叶变换,得
图6-17(c)画出当 时的 (虚线为n=1和n=-1时的结果)。从该 图中可看出,当 时,将发生混叠。所以为使采样信号不发生混叠, T的最大值应为 。图6-17(c)就是此时 频谱图。 (2)由图6-17(c)可看出,为使y(t)=f(t),滤波器H(j ω)应选 带通滤波器,其表达式为
2014年南京航空航天大学821信号系统与数字信号处理考研初试真题(A卷)
是否时不变?___________,如果系统稳定应满足条件___________,如果系统因果应满足
条件___________;
4. 理想低通滤波器的幅频响应曲线在通带内是常数,相频曲线是过原点的斜线。阶跃信号 通过理想低通滤波器时其前沿会发生__________,其原因是由于__________。信号的起
4. 求 t 0 时 L 上的全响应电压 u t ;
C
+ R1 K
-
R2
+ L u(t)
-
5. 求 t 0 时 L 上的零状态响应电压 uzs t 。
五、(20 分)有一线性移不变离散时间系统由以下差分方程描述: y(n) x(n) 17 x(n 2) x(n 4) 4
1. 试求系统的系统函数 H (z) ,且指明 H (z) 的零点与极点及收敛域;
3. 试求 x3 (n) x1(m)x1(n m) R16 (n) 与 x3 (n) 的 16 点离散傅里叶变换 X3 (k) DFT[x3 (n)]; m
4. 试求 x4 (n)
x1(m)x1(m n 16r) R16 (n) 与 x4 (n) 的 16 点离散傅里叶变换
r m
的取值范围。
...
-T
p(t)
1
0
T
... t
2T
科目代码:821 科目名称:信号系统与数字信号处理 第 2 页 共 4 页
三、(20 分) y(k 2) 0.1y(k 1) 0.06y k 2x(k 2) 0.1x(k 1) 为因果离散时间系统的差 分方程,其中 x k 是激励, y k 为响应。
2
1. 求该系统的频率响应 H(e j ) ,并且说明该系统是否为线性相位系统;
信号与系统 第一章信号与系统
.
(2)单位阶跃(unit-step)序列u[n]
u[n]10
n0 n0
δ[n]和u[n]间的关系为
[n]u[n]u[n1]
u [n ] [n m ] [n ] [n 1 ] [n 2 ] m 0
令n-m=k代入上式,得
n
u[n] [k] k
.
注:
由 n-m=k知,当m=0时,k=n;
当m=∞时,k=-∞
x(n)
x(n-1)
Байду номын сангаас
x(n+1)
-1 0 1 2
n
-1 0 1 2
n
-1 0 1 2
n
图1.2 序列的移位
(2)时间反转:
若序列为x[n],则x[-n]就是以n=0为对称轴 将序列x[n]加以时间反转。
x(n)
x(-n)
n
n
图1.3 序列的翻褶
(3)尺度变换: 对序列x[n],其尺度变换序列为x[mn]或
系统的互联
• 通过简单子系统的互联可形成更复杂的 系统;
• 通过互联可调节系统的响应。
互联有三种基本的形式: (1)级联(又称串联)(Cascade); (2)并联(Parallel); (3)反馈(Feedback).
.
方框图 级联 并联 反馈
.
例1 RLC电路
Ri(t) L di(t) y(t) x(t) dt
y[n]0,y(t)x2(t) 不可逆系统
.
因果性(Causality) :
如果一个系统在任何时刻的输出只决定 于当前输入或过去的输入 ,与未来的输入无 关,则该系统称为因果系统。 • 所有的实时物理系统都是因果的,因为时间 仅向前移动; • 因果性并不适用于空间变量的信号; • 因果性并不适用于处理记录信号的系统。
自适应信号处理参考文献
自适应信号处理参考文献自适应信号处理是一种运用数学和算法来处理信号的技术。
它可以根据信号的特性和环境的变化自动调整参数和算法,从而提高信号处理的性能。
这项技术被广泛应用于通信、雷达、阵列信号处理、音频处理等领域。
在自适应信号处理领域,有许多经典的参考文献值得注意。
下面将介绍三篇具有代表性的文章。
1. Widrow, B., & Hoff, M. E. (1960). Adaptive Switching Circuits. IRE Convention Record, 4, 96-104.这是自适应信号处理的里程碑之一。
Widrow 和 Hoff 开发了一种自适应滤波器,被称为LMS(Least Mean Squares)算法。
这个算法通过最小化误差平方和来自适应地调整滤波器的权重。
它在信号处理和系统辨识中被广泛应用,并为后来的自适应算法奠定了基础。
2. Haykin, S. (1996). Adaptive Filter Theory. Prentice-Hall.这本书是自适应信号处理领域的经典教材之一。
作者 Simon Haykin 是自适应滤波器领域的权威,他在本书中系统地介绍了自适应滤波器的原理、算法和应用。
这本书向读者深入解释了自适应信号处理的理论和方法,对于学习和研究自适应信号处理非常有用。
3. Sadjadi, F. A. (2013). An overview of adaptive signal processing: Theory and applications. International Journal of Computer Science Issues (IJCSI), 10(1), 377-385.这篇综述文章从理论和应用的角度对自适应信号处理进行了全面的概述。
作者Fakhreddine A. Sadjadi 在文章中总结了自适应信号处理的主要概念、算法和应用领域,并讨论了该领域的未来发展方向。
适用于轴承故障诊断的数据增强算法
2021577轴承故障诊断在制造业的故障预测和健康管理中起着十分重要的作用。
除了传统的故障诊断方法以外,学者们将改进过的机器学习[1-4]和深度学习算法[5-8]应用于故障诊断领域,其诊断效率与准确率得到了较大的提高。
在大部分应用中,这些算法有两个共同点[9]:第一、根据经验风险最小化原则(Empirical Risk Minimization,ERM)[10]训练故障诊断模型。
第二、使用此原则训练的诊断模型的性能优劣主要取决于所使用的训练样本的数量和质量。
但在工业应用中,数据集中正负样本的比例不平衡:故障数据包含着区分类别的有用信息,但是所占比例较少。
此外由于机器的载荷、转轴转速等工况的不同,所记录的数据并不服从ERM原则中的独立同分布假设。
这两点使得ERM原则不适用于训练工业实际场景中的故障诊断模型,并且文献[11]表明使用ERM原则训练的模型无法拥有较好的泛化性能。
数据增强算法是邻域风险最小化原则[12](Vicinal Risk Minimization,VRM)的实现方式之一,能够缓解ERM原则所带来的问题。
在VRM中通过先验知识来构建每个训练样本周围的领域区域,然后可从训练样本的领域分布中获取额外的模拟样本来扩充数据集。
例如,对于图像分类来说,通过将一个图片的领域定义为其经过平移、旋转、翻转、裁剪等变化之后的集合。
但与机器学习/深度学习中的数据不同,故障诊断中的数据(例如轴承故障诊断中的振动信号)具有明显的物理意义和机理特征,适用于机器视觉的数据增强方法可能导致物理意义的改变。
因此,本文从信号处理和信号分析的角度出发,设计了一种适用于轴承故障诊断中振动信号的数据增强方法。
适用于轴承故障诊断的数据增强算法林荣来,汤冰影,陈明同济大学机械与能源工程学院,上海201804摘要:针对在轴承故障诊断中存在的故障数据较少、数据所属工况较多的问题,提出了一种基于阶次跟踪的数据增强算法。
该算法利用阶次跟踪中的角域不变性,对原始振动信号进行时域重采样从而生成模拟信号,随后重新计算信号的幅值来抵消时域重采样以及环境噪声对原始信号能量的影响,最后使用随机零填充来保证信号在变化过程中采样长度不变。
一种乘性和加性噪声中谐波信号频率估计方法[发明专利]
专利名称:一种乘性和加性噪声中谐波信号频率估计方法专利类型:发明专利
发明人:杨世永,熊紫佳
申请号:CN201510405639.2
申请日:20150712
公开号:CN105301354A
公开日:
20160203
专利内容由知识产权出版社提供
摘要:本发明公开了一种乘性和加性噪声中谐波信号频率估计方法,其包括以下步骤:计算循环协方差;构造循环协方差矩阵;特征值分解;构建噪声子空间矩阵;计算空间谱;计算频率估计值。
本发明的乘性和加性噪声中谐波信号频率估计方法,能提高频率估计的精度和频率分辨率,且易于实现。
申请人:九江学院
地址:332005 江西省九江市前进东路551号九江学院科技处
国籍:CN
代理机构:南昌市平凡知识产权代理事务所
代理人:张文杰
更多信息请下载全文后查看。
《基于机器学习的黄砂岩声发射平静期识别研究》范文
《基于机器学习的黄砂岩声发射平静期识别研究》篇一一、引言黄砂岩作为一种常见的地质材料,其内部结构复杂且具有多变的物理性质。
在矿产开采、地质勘探、岩石力学等领域,对黄砂岩的声发射行为进行研究具有重要意义。
声发射(Acoustic Emission,简称AE)是一种由材料内部结构变化引起的弹性波现象,通过对声发射信号的监测和分析,可以了解材料内部的应力分布、裂纹扩展等重要信息。
然而,在复杂的黄砂岩声发射信号中,识别出平静期(即声发射信号的间歇期)是一项具有挑战性的任务。
本文旨在利用机器学习方法对黄砂岩声发射平静期进行识别研究,为相关领域提供新的技术手段。
二、文献综述近年来,机器学习在声发射信号处理中得到了广泛应用。
研究者们利用各种算法对声发射信号进行特征提取、模式识别等处理,取得了显著的成果。
在黄砂岩声发射研究方面,虽然已有一些学者开展了相关研究,但针对平静期的识别仍存在诸多问题。
目前,传统的时域和频域分析方法在处理复杂多变的黄砂岩声发射信号时,往往难以准确识别出平静期。
因此,利用机器学习方法对黄砂岩声发射平静期进行识别研究具有重要的理论和实践意义。
三、研究方法本研究采用机器学习方法对黄砂岩声发射平静期进行识别。
首先,收集黄砂岩声发射数据,对数据进行预处理,包括去噪、归一化等操作。
然后,利用特征提取技术从声发射信号中提取出有意义的特征,如峰值、谷值、波形等。
接着,采用机器学习算法对特征进行训练和分类,如支持向量机(SVM)、随机森林(Random Forest)等。
最后,通过交叉验证等方法评估模型的性能。
四、实验结果与分析1. 特征提取本研究从黄砂岩声发射信号中提取了多种特征,包括时域特征、频域特征、波形特征等。
通过对比分析,发现某些特征对于平静期的识别具有较好的效果。
例如,峰值和谷值特征可以反映出声发射信号的强度变化,波形特征则可以提供更丰富的信息。
2. 机器学习算法选择与训练本研究选择了支持向量机(SVM)和随机森林(Random Forest)两种算法进行训练和分类。
噪声相关带偏差线性系统的滤波融合算法
噪声相关带偏差线性系统的滤波融合算法王宏;葛泉波【摘要】传统线性两阶段Kalman滤波算法无法应对噪声相关情形,导致较低的实际应用性能.针对该问题,以线性系统中状态与测量噪声相关的多传感器偏差估计系统为对象,以基于模型等效变换技术的噪声相关两阶段Kalman滤波器为基本滤波器,分别在序贯分布式和并行式框架下建立两种两阶段Kalman滤波融合算法.其中,序贯分布式融合算法将多个局部两阶段Kalman滤波器的估计结果以序贯加权的形式进行融合;并行式融合算法分别对偏差滤波估计和无偏差滤波估计进行融合,再利用线性方程将融合后的结果进行组合,得到状态估计值.仿真结果表明:相比于两阶段Kalman滤波器和序贯分布式两阶段Kalman滤波融合估计器,并行式两阶段Kalman滤波融合估计器在滤波估计精度上具有更高的性能.【期刊名称】《杭州电子科技大学学报》【年(卷),期】2019(039)005【总页数】8页(P48-55)【关键词】两阶段Kalman滤波算法;偏差估计;噪声相关;序贯分布式融合算法;并行式融合算法【作者】王宏;葛泉波【作者单位】杭州电子科技大学自动化学院 ,浙江杭州310018;杭州电子科技大学自动化学院 ,浙江杭州310018【正文语种】中文【中图分类】TP2730 引言器件老化、漂移以及环境等因素可能导致系统出现相对固定的动态偏差[1]。
当动态偏差存在且影响系统过程和测量时,作为滤波基础的方程组增加了偏差的动态变化方程,标准Kalman滤波算法已不再适用,因此必须对传统算法进行改造[2,3]。
最基本的方法是将偏差与状态合成一个新状态,实现状态估计系统满足传统Kalman滤波条件的等价重写,从而实现两者的联合估计。
但该类集中式方法涉及高维矩阵的计算,计算量大。
为解决上述问题,文献[4]提出两阶段Kalman滤波器(Two-stage Kalman Filter, TSKF),主要思想是利用矩阵求逆定理和转换矩阵将增强状态的滤波器过程分解为无偏差滤波器和偏差滤波器两部分,并用偏差滤波器来对已经过修正后的无偏差滤波器进行补偿,最终得到系统状态的估计值。
一种提升格式的非线性插值小波图像编码方法
一种提升格式的非线性插值小波图像编码方法
李成;李平;宋执环
【期刊名称】《电路与系统学报》
【年(卷),期】2008(013)001
【摘要】在Sweldens等人提出的提升格式(Lifting Scheme)的基础上,提出了一种非线性的避免边缘的小波变换方法.针对信号的局部特性选择提升格式中的预测环节,同时将如何选择预测环节的信息保存在小波系数中,避免了额外的存储空间.对于保存选择信息的小波系数做简单的可逆变换,使其不会因为量化和压缩编码等原因而丢失,从而保证逆变换的稳定性.
【总页数】5页(P143-146,142)
【作者】李成;李平;宋执环
【作者单位】浙江大学,工业控制技术研究所,浙江,杭州,310027;湖南大学,电气与信息学院,湖南,长沙,410082;浙江大学,工业控制技术研究所,浙江,杭州,310027;浙江大学,工业控制技术研究所,浙江,杭州,310027
【正文语种】中文
【中图分类】TP391.4
【相关文献】
1.一种基于小波变换的医学图像数据的高效编码方法 [J], 李鑫
2.用提升格式构造二次平均插值小波 [J], 曾剑芬;马争鸣
3.一种基于小波变换的图像压缩编码方法 [J], 孙罡;解振东;陈孝波
4.一种基于提升小波的改进EZW图像编码方法研究与仿真 [J], 王伟
5.一种基于整数小波和SPHIT算法的静态图像编码方法 [J], 章佳; 李章维; 吴秀章因版权原因,仅展示原文概要,查看原文内容请购买。
一种关于相参脉冲信号频率的最优估计算法
一种关于相参脉冲信号频率的最优估计算法
龚享铱;周良柱
【期刊名称】《电子与信息学报》
【年(卷),期】2004(026)010
【摘要】该文针对噪声干扰下的相参脉冲信号的频率估计问题,提出了一种新的最优估计算法:多级频率估计算法.这种算法是一种最优估计算法,并具有正确概率高、计算量小等优点.通过仿真试验验证了算法的可行性、最优性.
【总页数】7页(P1594-1600)
【作者】龚享铱;周良柱
【作者单位】国防科技大学电子科学与工程学院信号处理研究室,长沙,410073;国防科技大学电子科学与工程学院信号处理研究室,长沙,410073
【正文语种】中文
【中图分类】TN911.23
【相关文献】
1.一种相参脉冲信号频率的估计方法 [J], 万方;郁春来;熊家军
2.相参脉冲信号频率估计算法研究 [J], 张刚兵;刘渝;邓振淼
3.一种CPM信号频率成形脉冲盲估计算法 [J], 周家喜;许小东;徐佩霞;戴旭初
4.一种PCM相参脉冲序列多普勒频率变化率估计算法 [J], 郁春来;万建伟;占荣辉
5.一种关于LFM相参脉冲信号多普勒频率变化率的估计算法 [J], 郁春来;万方;占荣辉;万建伟
因版权原因,仅展示原文概要,查看原文内容请购买。
一种改进的非线性卫星信道自应补偿方法
一种改进的非线性卫星信道自应补偿方法
冯纲;吴诗其
【期刊名称】《电子科技大学学报》
【年(卷),期】1991(020)004
【摘要】提出一种用于非线性带限卫星信道自适应补偿的改进算法,并给出了实现该算法的结构。
计算机模拟结果表明,改进算法具有一定优越性。
【总页数】7页(P351-357)
【作者】冯纲;吴诗其
【作者单位】不详;不详
【正文语种】中文
【中图分类】TN927.2
【相关文献】
1.卫星信道中高阶APSK调制的非线性失真补偿算法 [J], 许光飞;张邦宁;郭道省
2.一种改进的非线性匹配高阶补偿基准源的设计 [J], 唐宁;李佐;李琦
3.一种基于正交基神经网络的非线性卫星信道预失真补偿算法 [J], 许光飞;周长征;葛海龙
4.改进的非线性卫星信道均衡器 [J], 郭业才;徐冉
5.一种改进的适用于数字助听器的基于非线性频率压缩的多通道响度补偿方法(英文) [J], 郭朝阳;汪波;王新安;张国新
因版权原因,仅展示原文概要,查看原文内容请购买。
中低速率语音波形编码
中低速率语音波形编码
李志军;华继钊
【期刊名称】《现代电子技术》
【年(卷),期】2002(000)001
【摘要】提出一种波形编码的新方法,阐述其编码原理,给出编码框图.由于利用了矢量量化技术,所以该编码速率较低且算法简单,恢复的语音质量较好.
【总页数】3页(P21-23)
【作者】李志军;华继钊
【作者单位】扬州大学电子工程系,扬州,225009;扬州大学电子工程系,扬
州,225009
【正文语种】中文
【中图分类】TP3
【相关文献】
1.基于提升小波分解的低速率波形内插语音编码算法 [J], 李如玮;鲍长春
2.中低速率语音波形编码 [J], 李志军;华继钊
3.一种特征波提取速率自适应的波形内插语音编码方案 [J], 王晶;匡镜明;赵胜辉
4.一种中低码率语音波形编码的新方法 [J], 牟峰;俞铁城;杨道淳
5.基于特征波形内插与频带扩展技术的低速率宽带语音编码器 [J], 王晶;匡镜明;谢湘
因版权原因,仅展示原文概要,查看原文内容请购买。
基于深度学习的水声通信信号调制类型识别
基于深度学习的水声通信信号调制类型识别
黄乐;夏志军;周胜增;原玉婷;王静怡
【期刊名称】《舰船科学技术》
【年(卷),期】2024(46)9
【摘要】水声通信信号识别为水声通信侦察和对抗的重要前提,具有重要作用。
然而,传统的水声通信信号识别方法通常是基于信号处理和模式识别技术,依赖领域专家的专业知识和经验进行特征选择和提取,具有较强的主观性,且可能无法利用更复杂的信号特征。
本文基于深度学习提出一种水声通信信号识别的智能方法。
首先利用仿真数据对卷积神经网络进行训练,然后分别使用仿真和湖上试验数据对算法网络进行测试。
仿真结果表明,在SNR=5dB时,该方法对2ASK、4ASK、BPSK、QPSK、2FSK、4FSK和OFDM等7种水下通信信号的识别率均能达到90%以上,7种湖上试验的通信信号类型平均识别率达到97.9%。
这表明该方法具有良好的宽容性。
此外,本文还通过对基于高阶累积量和深度学习方法的比较,验证了本文提出方法具有显著的优越性。
【总页数】8页(P117-124)
【作者】黄乐;夏志军;周胜增;原玉婷;王静怡
【作者单位】上海船舶电子设备研究所;海军大连舰艇学院
【正文语种】中文
【中图分类】TN911.7
【相关文献】
1.一种基于CGAN+CNN的水声通信信号调制识别方法
2.基于迁移学习的水声通信信号调制识别方法
3.基于VMD-ResNet的水声通信信号调制识别方法
4.基于被动时间反转-自编码器的水声通信信号调制识别方法
5.基于GRU和ResNet的短时水声通信信号调制识别
因版权原因,仅展示原文概要,查看原文内容请购买。
连续相位调制信号参数的盲估计的开题报告
连续相位调制信号参数的盲估计的开题报告一、选题背景在通信领域中,连续相位调制是一种常用的调制方式。
在信号传输过程中,信号往往会受到干扰和衰减,导致信号参数难以准确估计。
因此,针对连续相位调制信号参数的盲估计成为了研究的热点。
二、研究目的本文旨在研究连续相位调制信号参数的盲估计,包括信号频率、相位和幅值等参数。
通过研究盲估计算法,提高信号识别的准确率和鲁棒性,为可靠的通信传输提供技术支持。
三、研究内容1. 连续相位调制信号的基础知识,包括连续相位调制的定义、特点和常见的连续相位调制信号类型等。
2. 盲估计的概念和基本原理,包括最大似然估计、信号处理技术和统计方法等。
3. 经典的盲估计算法及其应用,包括后向传播算法、周期图谱法等。
4. 基于机器学习的盲估计算法,包括支持向量机、人工神经网络等。
5. 盲估计算法的性能评估和比较,包括理论性能和实际抗干扰能力等。
四、研究意义1. 提高通信系统的鲁棒性和可靠性,减少信号识别和传输中的误差和失真。
2. 为工程应用提供技术支持,例如雷达、无线通信和卫星通信等领域。
3. 推动信号处理和机器学习等交叉学科的研究和应用。
五、研究方法1. 基于文献综述和模拟仿真分析,总结和比较盲估计算法的优缺点,找出适合不同场景的算法。
2. 统计分析和数学建模,探究盲估计算法的理论性能和误差估计方法。
3. 建立实验平台,进行实验验证和性能测试,考察盲估计算法在真实场景中的表现。
4. 运用数据挖掘和机器学习等方法,探究盲估计算法在大数据环境下的应用。
六、预期结果本研究将针对连续相位调制信号参数的盲估计,提出有效的算法和解决方案,提高信号识别的准确率和鲁棒性,并为工程应用提供技术支持和理论指导。
预计会有以下具体成果:1. 设计和实现针对不同场景的盲估计算法,提高信号鲁棒性和准确性。
2. 提出一种新的数据挖掘和机器学习方法,用于大数据环境下的盲估计。
3. 整理和总结盲估计算法的理论描述和实验结果,形成一份完备的技术报告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Experimental Botany doi:10.1093/jxb/eru480Review PaPeRRole of early signalling events in plant–insect interactionsSimon A. Zebelo 1 and Massimo E. Maffei 2,*1Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn 36849, AL, USA 2Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Via Quarello 15/A, Turin 10135, Italy * To whom correspondence should be addressed. E-mail: massimo.maffei@unito.itReceived 30 September 2014; Revised 3 November 2014; Accepted 3 November 2014AbstractThe response of plants to the stress caused by herbivores involves several different defence mechanisms. These responses begin at the plant cell plasma membrane, where insect herbivores interact physically by causing mechani-cal damage and chemically by introducing elicitors or by triggering plant-derived signalling molecules. The earli-est plant responses to herbivore contact are represented by ion flux unbalances generated in the plant cell plasma membrane at the damaged site. Differences in the charge distribution generate plasma transmembrane potential (V m ) variation, the first event, which eventually leads to the initiation of signal transduction pathways and gene expression. Calcium signalling and the generation of reactive oxygen and nitrogen species are early events closely related to V m variations. This review provides an update on recent developments and advances in plant early signalling in response to herbivory, with particular emphasis on the electrophysiological variations of the plasma membrane potential, calcium signalling, cation channel activity, production of reactive oxygen and nitrogen species, and formation of a systemically moving signal from wounded tissues. The roles of calcium-dependent protein kinases and calcineurin signalling are also discussed.Key words: Biotic stress, calcium signalling, plant electrophysiology, reactive oxygen and nitrogen species, signal transduction, transmembrane potential (V m ).IntroductionOver the course of millions of years of evolution, plants have developed defensive strategies against herbivorous insects that have led to myriad molecular interactions at both the genomic and metabolic levels. The ability of an organism to survive depends on its ability to respond quickly and effi-ciently to external stimuli and to develop effective and sus-tainable defences. These defences are intended to directly protect the plant with toxic compounds (or using mechanical defence structures such as thorns and glandular trichomes) or to indirectly protect it through molecular interactions that may attract predators or parasitoids of the herbivorous attacker (Baldwin, 2010; Wu and Baldwin, 2010). Plantshave evolved means to recognize and respond quickly to herbivory. These means include the perception of molecular patterns and defence effectors (Bos et al., 2010; Bonaventure et al., 2011; Maffei et al., 2012), elevation of cytosolic cal-cium ([Ca 2+]cyt ) (Reddy et al., 2011), depolarization of the plasma transmembrane potential (V m ) (Bricchi et al., 2010), ion efflux/influx (Bricchi et al., 2013), mitogen-activated pro-tein kinase (MAPK) activation and protein phosphorylation (Arimura and Maffei, 2010; Arimura et al., 2011), the activa-tion of NADPH oxidase, and the production of reactive oxy-gen (ROS) and nitrogen (RNS) species (Miller and Mittler, 2006; Bricchi et al., 2010; Arimura et al., 2011; Marino© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@Abbreviations: AP , action potential; CaM, calmodulin; CBL, calcineurin B-like; CIPK, CBL-interacting protein kinases; CML, CaM-like; CPK, calcium-dependent protein kinase; FAC, fatty acid–amino acid conjugates; JA, jasmonic acid; MAPK, mitogen-activated protein kinase; OS, oral secretion; PD, plasmodesmata; RBOH, respiratory-burst oxidase homologue; RNS, reactive nitrogen species; ROS, reactive oxygen species; SA, salicylic acid; SP , system potential; V m , plasma transmembrane potential; VP , variation potential; YC, Yellow Cameleon.Journal of Experimental Botany Advance Access published November 26, 2014Page 2 of 14| Zebelo and Maffeiet al., 2012). These cascades lead to a rise in the production of the phytohormones jasmonic acid (JA) and salicylic acid (SA) (Zipfel, 2009; Consales et al., 2012; Erb et al., 2012; Bricchi et al., 2013), an increase in the production of ethylene (Arimura et al., 2009; Onkokesung et al., 2010; Diaz, 2011; Scala et al., 2013), the expression of late defence response genes involved in the emission of volatile organic compounds (Baldwin, 2010; Wu and Baldwin, 2010; Karban et al., 2011; Maffei et al., 2011), and the production of toxic compounds (Karban, 2010). These events start locally at the feeding site but can spread systemically throughout the plant (Wu and Baldwin, 2009; Maffei, 2010; Bricchi et al., 2012). Although the individual responses that comprise these pathways have been widely catalogued, the connections between them and their interdependence have received little research attention to date.Plant responses to herbivory have previously been reviewed both prior to gene expression changes (Ebel and Mithöfer, 1998; Garcia-Brugger et al., 2006; Maffei et al., 2007; Zipfel, 2009; Arimura et al., 2011) and after gene expression changes (Howe and J ander, 2008; Mithöfer et al., 2009a; Baldwin, 2010; Wu and Baldwin, 2010; Bonaventure et al., 2011; Bonaventure, 2012; Pearse and Karban, 2013). The aim of this review is to provide an update on recent developments and advances in our understanding of early plant signal-ling in response to herbivory, with particular emphasis on the electrophysiological variations of the plasma membrane potential, calcium signalling, cation channel activity, ROS and RNS production, and the presence of a systemically moving signal from the wounded tissues.Defence in preparation for attack: the sensitivity of the plasma membrane andthe role of symplastic signallingThe use of electrophysiology in the study of plant cells has witnessed a slow and steady increase for a number of pur-poses in recent years (Ochatt, 2013). Electrical signals are known to travel along the plant at different rates, carrying different messages (Gurovich and Hermosilla, 2009; Volkov et al., 2010; Oyarce and Gurovich, 2011; Volkov, 2012; Volkov et al., 2013). V m depolarization is correlated to increases in the cytosolic calcium ion levels, ion channel activity, and ROS and RNS bursts. All these events occur seconds to min-utes after herbivory and are among the earliest plant defence responses.The plasma membrane recognizes changes in the environ-ment surrounding the cell, starting a cascade of electric signal-ling that eventually results in specific responses. Leaf damage by insect herbivores implies the direct delivery of elicitors or the indirect generation of plant cell wall-derived elicitors that may bind specific receptors at the plant plasma membrane. Emerging evidence indicates that many high-affinity recep-tors for insect herbivores are located in the plant cell plasma membrane (Maffei et al., 2012). The elicitor–receptor reaction produces variations in the V m, which is defined as the differ-ence in the electrochemical gradient between the interior and exterior of the plant cell. These variations can lead to either more positive (depolarization) or more negative (hyperpo-larization) V m values, and such events eventually lead to the generation of signalling cascades (Zebelo and Maffei, 2012a). In the Spodoptera littoralis–Phaseolus lunatus interaction, both direct herbivory and the insect’s oral secretions (OSs) have been demonstrated to induce a rapid V m depolarization (Maffei et al., 2007; Bricchi et al., 2010; Bricchi et al., 2012). The same response has been shown in higher plant species like Arabidopsis thaliana (Zebelo and Maffei, 2012b; Bricchi et al., 2013) and Ginkgo biloba (Mohanta et al., 2012), as well as in lower plant species like the fern Pteris vittata (Imbiscuso et al., 2009). Interestingly, a significant V m depolarization was observed in response to almost every stylet puncture during Myzus persicae phloem feeding (Bricchi et al., 2012).It is known that systemic signalling induced by biotic stressors is transduced by either chemical or electrical signals (Masi et al., 2009; Zimmermann et al., 2009; Zebelo et al., 2012; Zebelo and Maffei, 2012b; Baluska and Mancuso, 2013; Mousavi et al., 2014; Salvador-Recatala et al., 2014). OSs from some insect herbivores contain effectors that overcome anti-herbivore defences. Herbivores possess diverse microbes in their digestive systems and salivary glands that can modify plant–insect interactions. For example, Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bac-teria in their OSs to suppress the anti-herbivore defences of tomato plants (Solanum lycopersicum) (Chung et al., 2013). Furthermore, applying bacteria isolated from larval OSs to wounded plants confirmed that microbial symbionts are responsible for this defence suppression. A further demonstra-tion that salivary components are necessary to trigger plant responses to herbivore larvae has recently been provided. The ablation of the ventral eversible gland of Spodoptera littoralis prompted a significant reduction in V m depolariza-tion and significantly reduced both the [Ca2+]cyt and the H2O2 burst (Zebelo and Maffei, 2012b). Moreover, ventral eversible gland-ablated larvae induced reduced defence-related enzyme expression and reduced emission of plant volatiles (Zebelo et al., 2014).In general, three mechanisms are recognized for the trans-mission of electrical signals following herbivory: action potentials (APs), variation potentials (VPs), and system potentials (SPs). The OSs of insect herbivores are known to cause both APs and VPs, but it is still unclear whether insect herbivory can cause SPs. SPs have been described as novel electrical long-distance signals in plants that are induced by wounding, acting as the forerunners of slower chemical sig-nals (Zimmermann et al., 2009). SPs serve as back up APs and VPs, and can remain overlapped with APs and VPs in some instances. Although SPs have been demonstrated only in mechanically damaged tissues, it is difficult to exclude the occurrences of SPs following herbivore feeding (Zebelo and Maffei, 2012a).APs comprise a generic long-distance signalling system that may act to potentiate a host response to subsequent sig-nals delivered through alternative long-distance information packages. An AP is a momentary change in the electrical potential of plant cells that sense stimuli from environmentalEarly events in plant–insect interactions | Page 3 of 14stressors, eventually leading to intercellular and intracellular communication. A number of substances strongly depolar-ize the plasma membrane and thus presumably activate volt-age-gated ion channels. Although in principle it is possible that (anion) channels are directly activated by depolariza-tion, the temporal sequence of the ion flux kinetics of barley leaves shows that Ca2+ is lost from the apoplast well before the apoplastic anion concentration (measured as Cl–) starts to increase (Felle and Zimmermann, 2007). Therefore, chan-nel activity is involved in APs. The more the channels are activated, the more rapid the depolarization will be, eventu-ally leading to an accelerated depolarization that is meas-ured as a membrane potential ‘breakthrough’ typical of an AP. APs generated by herbivory propagate as fast electrical signals that travel through the entire plant from the point of origin of the perceived input at a speed of up to 40 cm s–1 (Volkov, 2012). Zebelo et al. (2012) demonstrated that herbi-vore-induced plant volatiles trigger APs and VPs on nearby receiver plants.It is generally accepted that wounded leaves communicate their damaged status to other leaves through a long-distance process. Using non-invasive electrodes, the surface potential changes in A. thaliana were mapped after leaf wounding, and it was found that membrane depolarization is correlated with JA signalling domains in undamaged leaves. Furthermore, of the 34 screened membrane protein mutant lines, the muta-tions in several clade 3 GLUTAMATE RECEPTOR-LIKE genes (GLR3.2, -3.3, and -3.6) attenuated wound-induced surface potential changes, showing a reduced J A-response gene expression in leaves distal to wounds in a glr3.3 glr3.6 double mutant (Mousavi et al., 2013). These results open new avenues for research in organ-to-organ wound signalling, demonstrating the existence of plant genes with functions related to those important for synaptic activity in animals. An open question remains: how are electrical signals propagated through the plant body? While animals have a nervous sys-tem that is specialized in the conduction of electrical signals, nothing similar is present in plants. Central to the success of these defences is the need for local and systemic communica-tion between cells. For plant cells, which are surrounded by cell walls, symplastic continuity is achieved through the pres-ence of plasmodesmata (PD). These plasma membrane-lined channels, bridging the cell wall, provide symplastic continu-ity and provide soluble and membrane environments for the passage of small and large molecules and the potential for electrical conduction (Maule et al., 2011). PD-located pro-teins (PDLPs) are type I membrane proteins with receptor-like properties, although the nature of their potential ligands is not known (Amari et al., 2010). Using Arabidopsis plants mutated for pdlp genes, Bricchi et al. (2013) not only impli-cated PDs directly for their role in defence against herbivory but also showed that some molecular responses to herbivory can be genetically distinguished from each other and from the overall defence response. However, although PDs have been correlated with gap junctions, no synaptic mechanisms of molecules are present to justify what has been demon-strated in the animal nervous system. Little is known about the electrophysiological responses of phloem sieve elements in wounding, and whether natural damaging stimuli induce propagating electrical signals in these tissues. Very recently, the use of living aphids and the direct current version of an electrical penetration graph were used to detect changes in the membrane potential of Arabidopsis sieve elements during caterpillar wounding. Feeding wounds in the lamina induced rapid depolarization waves in the affected leaf, increasing to the maximum amplitude (~60 mV) within 2 s. Major damage to the midvein induced fast and slow depolarization waves in unwounded neighbouring leaves but only slow depolarization waves in non-neighbouring leaves. The slow depolarization waves rose to a maximum amplitude (c. 30 mV) within 14 s. The distal electrical signals elicited by caterpillar cutting are indistinguishable from those elicited by a purely mechani-cal stimulus, demonstrating that the mechanical aspect of insect chewing is sufficient to induce the full electrophysi-ological response recorded in the phloem sieve elements of unwounded leaves (Salvador-Recatala et al., 2014). Moreover, no remote electrical signals were recorded from the sieve ele-ments of glr3.3a glr3.6a plants, indicating that GLR3.3 and/ or GLR3.6 are necessary for the production of both the slow and fast (action potential-like) remote depolarization waves. Therefore, it is conceivable that the depolarization waves pro-duced by the sieve elements in response to remote wounding contributed to the global wound-activated surface potentials (Salvador-Recatala et al., 2014).Genetically encoded voltage-sensitive fluorescent pro-teins are being used in neurobiology as non-invasive tools to study synchronous electrical activities in specific groups of nerve cells. This ‘light-based electrophysiology’ has recently been adapted for use in plant systems. The production of transgenic plants engineered to express different versions of voltage-sensitive fluorescent proteins that are targeted to the plasma membrane and internal membranes of root cells has allowed the recording of concurrent changes in the plasma membrane potential in populations of cells and at multiple membrane systems within single cells in response to various stimuli in living plants. Such coordinated electrical changes may globally orchestrate cell behaviour to elicit successful reactions of the entire root to varying and unpredictable envi-ronments (Matzke and Matzke, 2013).Another interesting connection to electrical signalling could be the recent discovery that plants are able to discrimi-nate between the vibrations caused by chewing and those caused by wind or insect song. A vibration-signalling pathway would complement the known signalling pathways that rely on volatile, electrical, or phloem-borne signals. It has been suggested that vibrations may represent a new long-distance signalling mechanism in plant–insect interactions that might contribute to the systemic induction of chemical defences (Appel and Cocroft, 2014). The mechanisms used by plants to detect and respond to mechanical vibration have received experimental attention from several groups (Gagliano et al., 2012; Monshausen and Haswell, 2013). Mechanoreception is thought to begin with the triggering of mechanosensors in the cell wall and/or plasma membrane, causing fluxes of calcium, ROS, and H+. These trigger downstream responses involving many plant hormones and the rapid expression ofPage 4 of 14| Zebelo and Maffeigenes that respond early to many plant stresses (Appel and Cocroft, 2014). V m changes that occur following herbivory have also been associated with the same signalling events.In the next section, we describe recent findings in early cal-cium signalling and ion concentration variations upon her-bivory following V m depolarization.Calcium and other ions act as second messengers in plant–insect interactionsThe candidate ion species responsible for V m variations in plant cells following herbivory are calcium (Ca2+), protons (H+), potassium (K+), and chlorine (Cl–). Herbivore feeding causes a dramatic Ca2+ cytosolic ion influx limited to a few cell layers lining the wounded zone (Maffei et al., 2004; Howe and Jander, 2008). This response is limited to herbivory or biotrophic activity; neither single nor repeated mechanical wounding induces such significant changes in the cytosolic Ca2+ ion influx (Bricchi et al., 2010). The fact that single or repeated mechanical wounding alone is not sufficient to elicit significant [Ca2+]cyt variations points to oral factors (or herbi-vore-associated elicitors; Bonaventure et al., 2011) as triggers for a [Ca2+]cyt burst. Insect feeding and isolated insect-derived elicitors are known to cause changes in the Ca2+ homeostasis resulting from the tight regulation of protein channels and transporters located in the plasma membrane and organelle membranes (Jammes et al., 2011) and Ca2+ sensors (Arimura and Maffei, 2010; Kudla et al., 2010; Batistic and Kudla, 2012). These events have been associated with V m depolariza-tion (Bricchi et al., 2013). In plants, [Ca2+]cyt is maintained in the nanomolar range (100–200 nM), whereas in many orga-nelles and in the apoplast, [Ca2+] reaches the micromolar range (Dodd et al., 2010). The dynamics of spatial and tem-poral Ca2+ changes in the cytosol and/or in other compart-ments of the plant cell are now accepted to generate ‘calcium signatures’, which might be responsible for the initiation of specific downstream events that could eventually lead to the appropriate responses (Mithöfer et al., 2009b; Batistic and Kudla, 2012; Short et al., 2012).Several techniques have been used and developed to local-ize, measure, and monitor [Ca2+]cyt variations. A large number of fluorescent Ca2+ indicators are available for studying Ca2+ in plant cells (Mithöfer et al., 2009b). The loading of Ca2+-sensitive fluorescent probes into plant cells is an essential step in measuring the activities of cytoplasmic free Ca2+ ions with a fluorescent imaging technique. However, barriers to the load-ing of the test compounds or the Ca2+-sensitive fluorescent dyes could be represented by the low permeability of the cell wall and by a massive cuticle. This would allow the penetra-tion of only a limited number of cell layers, most likely near the infection zone. In addition to bioluminescent techniques using aequorin, two fluorescent Ca2+ indicators have recently been used to successfully demonstrate the induction of Ca2+ signatures upon herbivory: Fluo-3 AM (Kanchiswamy et al., 2010) and Calcium Orange™ (Bricchi et al., 2010, 2013; Mohanta et al., 2012). Despite their proven efficacy, these two indicators do not allow a precise quantification of [Ca2+]cyt variations. Another way to fine-tune the Ca2+ variations is by using the Y ellow Cameleon (YC) Ca2+-sensor (Russell, 2011). Recently, Maffei and co-workers used a Cameleon YC3.6 reporter protein expressed in A. thaliana to quantify [Ca2+]cyt variations upon mechanical damage to leaves, her-bivory by third- and fifth-instar larvae of Spodoptera littoralis and Spodoptera littoralis OSs applied to mechanical damage. YC3.6 allowed a clear distinction between mechanical dam-age and herbivory, and quantitatively discriminated calcium responses between the two larvae instars (Verrillo et al., 2014). Green fluorescent protein probes in particular can be targeted to well-defined subcellular locales, enabling high-resolution mapping of these signals within the cell (Swanson et al., 2011).The development of various Ca2+ probes over the past six decades, the improvements that have been developed in this field, the limitations of each probe, and important points to consider while planning ideal Ca2+ imaging experiments in plant science are all topics that have been reviewed recently (Kanchiswamy et al., 2014).Calcium sensorsCalcium sensors play a major role in calcium signalling upon herbivory. In the standard model, Ca2+-sensor proteins, such as calmodulin (CaM), detect Ca2+ signals and subsequently regu-late downstream targets to advance the signal transduction cas-cade (Du et al., 2011). In Arabidopsis, seven genes encode the four CaM isoforms (CaM1/4, CaM2/3/5, CaM6, and CaM7), which differ only in one to five amino acid residues (Batistic and Kudla, 2012). Arab idopsis SIGNAL RESPONSIVE1 (AtSR1 or CAMTA3) encodes a CaM-binding transcription factor involved in the mediation of biotic stress responses (Galon et al., 2008). AtSR1 is an important component of plant resistance to insect herbivory, as well as one of only three described proteins involved in Ca2+/CaM-dependent sig-nalling to function in the regulation of glucosinolate metabo-lism, providing a novel avenue for future investigations into plant–insect interactions (Laluk et al., 2012). Ca2+/CaM bind-ing is also critical for the AtSR1-mediated herbivore-induced wound response. Interestingly, atsr1 mutant plants are more susceptible to herbivore attack than wild-type plants. The complementation of atsr1 mutant plants by overexpressing the wild-type AtSR1 protein can effectively restore plant resist-ance to herbivore attack. However, when mutants of AtSR1 with impaired CaM-binding ability were overexpressed in atsr1 mutant plants, plant resistance to herbivore attack was not restored, suggesting a key role for Ca2+/CaM binding in wound signalling (Qiu et al., 2012).In addition to CaM, plants possess many CaM-like (CML) proteins (50 in Arabidopsis) that are predicted to function as Ca2+ sensors but which remain largely uncharacterized (Vadassery et al., 2012b). Nevertheless, it is known that most CMLs are cytoplasmic proteins and that some CMLs undergo lipid modifications resulting in membrane binding (Batistic and Kudla, 2012). Among the CMLs, two are par-ticularly involved in the plant immune and biotic response: CML43 and CML42.Early events in plant–insect interactions | Page 5 of 14CML43 displays characteristics typical of Ca2+ sensors, and its β-glucuronidase reporter activity strongly increased when Arabidopsis-transformed plants were exposed to the defence compound SA. Therefore, CML43 functions as a Ca2+ sensor in the plant immune response as well (Bender et al., 2014). The perception of microbe-associated molecu-lar patterns is closely connected to plant responses to insect herbivory. Microbe-associated molecular patterns typically induce a transient Ca2+ burst, resulting in a rapid (within sec-onds) increase in the free cytosolic Ca2+, which subsequently (within minutes) declines to steady-state Ca2+ levels (Frei dit Frey et al., 2012).Plant gene expression induced by OSs revealed the upregu-lation of a gene encoding the CML protein CML42, which negatively regulates plant defence. CML42 is localized to the cytosol and nucleus. Its upregulation is negatively regu-lated by the JA receptor CORONATINE INSENSITIVE1 (COI1), as a loss of functional COI1 results in prolonged CML42 activation. CML42 thus acts as a negative regulator of plant defences by decreasing COI1-mediated JA sensitivity and the expression of JA-responsive genes, independent of herbivory-induced JA biosynthesis. Furthermore, the results indicate that CML42 acts as a crucial signalling component connecting Ca2+ and JA signalling (Vadassery et al., 2012a). CML42 is also involved in abiotic stress responses, as kaemp-ferol glycosides were downregulated in cml42 and impaired in ultraviolet B resistance. Under drought stress conditions, the level of abscisic acid accumulation was higher in cml42 plants. Thus, CML42 might serve as a Ca2+ sensor, with mul-tiple functions in insect herbivory defence and abiotic stress responses. A porin-like protein (PLP), most likely of bacte-rial origin, was identified in the collected OS of Spodoptera littoralis larvae. PLP exhibits channel-forming activity and up-regulates CML42 in Arabidopsis; however, it is not suf-ficient to elevate in vivo [Ca2+]cyt. Because membrane channel formation is a widespread phenomenon in plant–insect inter-actions, this PLP might represent an example of microbial compounds from the insect gut, which are initially involved in plant–insect interactions (Guo et al., 2013).In addition to CaM, plants have two other main families of Ca2+ sensors: calcineurin B-like (CBLs) and calcium-dependent protein kinases (CPKs). After CBL proteins sense Ca2+ signatures, these proteins interact selectively with CBL-interacting protein kinases (CIPKs), thereby forming the CBL–CIPK complexes involved in decoding calcium signals (Kim, 2013; Zhu et al., 2013). The CBL–CIPK system shows variety, specificity, and complexity in response to different stresses, and the CBL–CIPK signalling pathway is regulated by complex mechanisms in plant cells involving crosstalk with other signalling pathways (Yu et al., 2014). In vivo and in vitro data have indicated that the kinase CIPK26, upon inter-action with the calcium sensors CBL1 or CBL9, enhances the activity of the NADPH oxidase RBOHF via phospho-rylation (Drerup et al., 2013; Kimura et al., 2013). Moreover, CBL–CIPK may control the activity of a K+ channel from the Shaker family, VvK1.2 in grapevine (Cuellar et al., 2013), whereas protein kinase CIPK9 interacts with the calcium sensor CBL3 and plays crucial roles in K+ homeostasis in Arabidopsis (Liu et al., 2013). Both ROS and K+ are involved in plant responses to herbivory (see below). In tea (Camelia sin-ensis) leaves exposed to a mild infestation of green leafhopper (Empoasca vitis), a subtractive cDNA library was constructed using a suppression subtractive hybridization strategy. Genes involved in the CBL–CIPK pathway were upregulated by her-bivory. The expression of a CBL-interacting protein kinase 19 gene CsEv9, significantly increased in the Fuzao2 tea cul-tivar infested by the tea leafhopper (by approximately 18-fold with respect to the controls), providing the first evidence for the involvement of the CBL–CIPK pathway in response to herbivory (Yang et al., 2011).CPKs are multifunctional proteins with Ca2+ binding and signalling capabilities in single proteins to directly translate Ca2+ signals into phosphorylation events (Tena et al., 2011; Boudsocq and Sheen, 2013; Valmonte et al., 2014). Recent studies have shown that CPKs play a significant role in herbivore-elicited signalling cascades. Upon herbivory, the plant responds by activating Ca2+ signatures and correspond-ing CPKs such as CPK3 and CPK13 in Arabidopsis. These CPKs transcriptionally regulate the plant defensin gene (PDF1.2) independent of phytohormone signalling cascades in response to Spodoptera littoralis insect damage (Arimura and Maffei, 2010; Kanchiswamy et al., 2010). This regula-tion occurs through the phosphorylation of the HSFB2A transcription factor, which positively regulates the expression of PDF1.2 independent of ethylene, JA, and abscisic acid. CPK3 also induces the negative feedback regulation of her-bivore-induced Ca2+ signals, indicating that CPKs can play redundant and specific roles in plant defence (Kanchiswamy et al., 2010).Ca2+-ATPasesHerbivory induces extracellular stimuli that trigger increases in the [Ca2+]cyt levels, which are detrimental to plants. To cope with such stresses, plants need to develop efficient efflux mech-anisms to maintain ionic homeostasis. The Ca2+-ATPases are members of the P-type ATPase superfamily, which perform many fundamental processes in organisms by actively trans-porting ions across cellular membranes (Bose et al., 2011). Moreover, ATP-dependent P-type calcium ATPases can mod-ulate the biotic stress response by activating the components of signalling pathways. The plasma membrane and endomem-brane-bound Ca2+ channels regulate cytoplasmic [Ca2+] lev-els, promoting Ca2+ homeostasis by mediating the influx and efflux of Ca2+. Furthermore, the type IIB Ca2+-ATPases have a CaM-binding domain, which, upon binding with Ca2+, forms a complex (Ca2+–CaM) and initiates many signal networks (Huda et al., 2013). Upon herbivory, the initial Ca2+ burst is followed by a consistent decrease in the cytosolic [Ca2+], which implies the involvement of a Ca2+ efflux-mediated increased Ca2+-ATPase activity (Maffei et al., 2007).Potassium channelsRecently, the question of whether V m depolarization was caused by a calcium-signalling pathway was addressed. An。