2016年秋遵义市人教版七年级数学上名师测控习题1.4.1有理数的乘法.doc

合集下载

人教版数学七年级上册第1章 1.4.1有理数的乘法 同步练习

人教版数学七年级上册第1章 1.4.1有理数的乘法 同步练习

人教版数学七年级上册第1章 1.4.1有理数的乘法同步练习姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)小于1010而不小于-1011的所有整数的和为()A . 0B . 1009C . -1011D . -20212. (2分)下列说法正确的是()A . 零除以任何数都得零B . 小于-1的数的倒数大于其本身C . 两数相除等于把它们颠倒相乘D . 商小于被除数3. (2分)﹣3的倒数是()A . -3B . 3C . -D .4. (2分)下列说法正确的是()A . 几个有理数相乘,当因数有奇数个时,积为负B . 几个有理数相乘,当正因数有奇数个时,积为负C . 几个有理数相乘,当积为负数时,负因数有奇数个D . 几个有理数相乘,当负因数有偶数个时,积为负5. (2分)我们用有理数的运算研究下面问题.规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天下降4cm,那么3天后的水位变化用算式表示正确的是()A . (+4)×(+3)B . (+4)×(﹣3)C . (﹣4)×(+3)D . (﹣4)×(﹣3)6. (2分)与2÷3÷4运算结果相同的是()A . 4÷2÷3B . 2÷(3×4)C . 2÷(4÷3)D . 3÷2÷47. (2分)下列结论:①若ab>0,则a>0,b>0;②若a÷b<0,则a>0,b<0;③若a>0,b>0,则ab >0;④若a<0,b<0,则a÷b>0,其中,正确的个数是()A . 1B . 2C . 3D . 48. (2分)与﹣3的积为1的数是()A . 3B .C . -D . -39. (2分) (2018·建邺模拟) 下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是()A . 0B . 1C . 0和1D . 1和-110. (2分)两个数的商为正数,则两个数()A . 都为正B . 都为负C . 同号D . 异号11. (2分) (2019七上·凤翔期中) 有理数,在数轴上的位置如图所示,则下列代数式值是负数的是()A .B .C .D .12. (2分)一个数的相反数是最大的负整数,则这个数是()A . -1B . 1C . 0D . ±1二、填空题 (共6题;共6分)13. (1分)北京的国际标准时间为+8,多伦多的国际标准时间为﹣4,若北京时间为当天晚上8点,则多伦多当地时间为________.14. (1分)(2017·丰润模拟) 计算:﹣2×3=________.15. (1分)若a≠b,且a、b互为相反数,则=________16. (1分)计算﹣x(﹣)的结果是________17. (1分)若=﹣1,则x是________(选填“正”或“负”)数18. (1分)计算:x(-)x(-1)2009=________三、计算题 (共4题;共25分)19. (5分)计算:(1);(2);(3);(4) .20. (5分)化简:(1);(2);(3);(4)- .21. (10分) (2018七上·海口期中) 计算(直接写出结果):(1)﹣2+5(2)﹣17+(﹣3)(3)(﹣10)﹣(-6)(4)(﹣1 )×(﹣12)(5)﹣2×(﹣3)2(6)﹣1 ÷(﹣5)(7)﹣1200+(﹣1)200(8)﹣0.125×(﹣2)3(9) |﹣ |(10)22. (5分) (2017七上·泉州期末) 已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+|a+c|.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、计算题 (共4题;共25分) 19-1、19-2、19-3、19-4、20-1、答案:略20-2、答案:略20-3、答案:略20-4、答案:略21-1、21-2、21-3、21-4、21-5、21-6、21-7、21-8、21-9、21-10、22-1、。

秋人教版七年级上《1.4.1有理数的乘法》同步练习含解析

秋人教版七年级上《1.4.1有理数的乘法》同步练习含解析

人教版数学七年级上册第1章 1.4.1有理数的乘法同步练习一、单选题(共12题;共24分)1、下列说法中,不正确的是()A、零是绝对值最小的数B、倒数等于本身的数只有1C、相反数等于本身的数只有0D、原点左边的数离原点越远就越小2、计算(﹣3)× ÷(﹣)×3的结果是()A、﹣9B、9C、1D、﹣13、下列计算错误的是()A、0﹣(﹣5)=5B、(﹣3)﹣(﹣5)=2C、D、(﹣36)÷(﹣9)=﹣44、若有理数a,b满足a+b<0,ab<0,则()A、a,b都是正数B、a,b都是负数C、a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D、a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值5、若a+b<0,ab<0,则()A、a>0,b>0B、a<0,b<0C、a,b两数一正一负,且正数的绝对值大于负数的绝对值D、a,b两数一正一负,且负数的绝对值大于正数的绝对值6、下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)= ;④(﹣4)÷ ×(﹣2)=16.其中正确的个数()A、4个B、3个C、2个D、1个7、如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A、互为相反数但不等于零B、互为倒数C、有一个等于零D、都等于零8、下列说法中,正确的有()①任何数乘以0,其积为0;②任何数乘以1,积等于这个数本身;③0除以任何一个数,商为0;④任何一个数除以﹣1,商为这个数的相反数.A、2个B、3个C、4个D、1个9、下列说法错误的是()A、0不能做除数B、0没有倒数C、0除以任何数都得0D、0的相反数是010、计算×(﹣8)÷(﹣)结果等于()A、8B、﹣8C、D、111、如果mn>0,且m+n<0,则下列选项正确的是()A、m<0,n<0B、m>0,n<0C、m,n异号,且负数的绝对值大D、m,n异号,且正数的绝对值大12、已知5个数中:(﹣1)2017,|﹣2|,﹣(﹣1.5),﹣32,﹣3的倒数,其中正数的个数有()A、1B、2C、3D、4二、填空题(共6题;共6分)13、已知|a+3|+|b﹣1|=0,则ab的值是________.14、若xy>0,z<0,那么xyz________0.15、若ab<0,则=________.16、如果>0,>0,那么7ac________0.17、计算:6÷(﹣)×2÷(﹣2)=________.18、在数2 ,﹣2016,﹣6.3,﹣,5.20,0,31中,所有整数的积为________.三、计算题(共4题;共25分)19、(﹣)×(﹣18)+(﹣)×(﹣3)×2.20、计算:(﹣81)÷2 × ÷(﹣16)21、计算:(1)(﹣36 )÷9(2)(﹣)×(﹣3 )÷(﹣1 )÷3.22、若a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,求20161﹣(a+b)+m2﹣(cd)2016+n(a+b+c+d)的值.答案解析部分一、单选题1、【答案】B【考点】相反数,绝对值,倒数【解析】【解答】解:由于任何数的绝对值都是非负数,所以0是绝对值最小的数,故选项A正确;±1的倒数都等于它本身,故选项B错误;相反数等于它本身的数只有0,故选项C正确;在原点左边,离原点越远数就越小,故选项D正确.故选B.【分析】根据绝对值、倒数、相反数的意义判断每个选项.2、【答案】B【考点】有理数的乘法,有理数的除法【解析】【解答】解:原式=3× ×3×3=9,故选B【分析】原式从左到右依次计算即可得到结果.3、【答案】D【考点】有理数的减法,有理数的乘法,有理数的除法【解析】【解答】解:A、0﹣(﹣5)=5,计算正确;B、(﹣3)﹣(﹣5)=﹣3+5=2,计算正确;C、×(﹣)=﹣,计算正确;D、(﹣36)÷(﹣9)=4,原题计算错误;故选:D.【分析】根据有理数的加法、减法、乘法、除法法则分别进行计算即可.4、【答案】D【考点】正数和负数,绝对值,有理数的加法,有理数的乘法【解析】【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.5、【答案】D【考点】有理数的加法,有理数的乘法【解析】【解答】解:∵ab<0,∴a、b异号,又∵a+b<0,∴负数的绝对值大于正数的绝对值.故选D.【分析】先根据ab<0,结合乘法法则,易知a、b异号,而a+b<0,根据加法法则可知负数的绝对值大于正数的绝对值,解可确定答案.6、【答案】C【考点】有理数的乘法,有理数的除法【解析】【解答】解:①(﹣1)×(﹣2)×(﹣3)=﹣6,故原题计算错误;②(﹣36)÷(﹣9)=4,故原题计算错误;③×(﹣)÷(﹣1)= ,故原题计算正确;④(﹣4)÷ ×(﹣2)=16,故原题计算正确,正确的计算有2个,故选:C.【分析】根据有理数的乘法和除法法则分别进行计算即可.7、【答案】A【考点】有理数的乘法,有理数的除法【解析】【解答】解:∵两个有理数的和除以它们的积,所得的商为零,∴这两个有理数的和为0,且它们的积不等于0,∴这两个有理数:互为相反数但不等于零.故选A.【分析】由两个有理数的和除以它们的积,所得的商为零,可得这两个有理数的和为0,且它们的积不等于0,继而可求得答案.8、【答案】B【考点】有理数的乘法,有理数的除法【解析】【解答】解:①任何数乘以0,其积为0,正确;②任何数乘以1,积等于这个数本身,正确;③0除以一个不为0的数,商为0,故本选项错误;④任何一个数除以﹣1,商为这个数的相反数,正确;正确的有3个.故选B.【分析】根据任何数乘0得0,任何数乘以1得本身,0除以一个不为0的数得0,任何一个数除以﹣1,得这个数的相反数,即可得出答案.9、【答案】C【考点】相反数,倒数,有理数的除法【解析】【解答】解:A、0不能做除数,正确;B、0没有倒数,正确;C、0除以任何不为0的数得0,错误;D、0的相反数是0,正确,故选C【分析】利用相反数,倒数的定义,以及有理数的除法法则判断即可.10、【答案】A【考点】有理数的乘法,有理数的除法【解析】【解答】解:×(﹣8)÷(﹣)=(﹣1)÷(﹣)=8.故选:A.【分析】从左往右依次计算即可求解.11、【答案】A【考点】绝对值,有理数的加法,有理数的乘法【解析】【解答】解:若有理数m,n满足mn>0,则m,n同号,排除B,C,D选项;且m+n<0,则m<0,n<0,故A正确.故选:A.【分析】根据有理数的性质,因由mn>0,且m+n<0,可得n,m同号且两者都为负数可排除求解.12、【答案】B【考点】正数和负数,相反数,绝对值,倒数【解析】【解答】解:(﹣1)2017=﹣1,|﹣2|=2,﹣(﹣1.5)=1.5,﹣32=﹣9,﹣3的倒数是﹣.故正数的个数有2个.故选:B.【分析】根据有理数的乘方求出(﹣1)2007和﹣32,根据绝对值的性质求出|﹣2|,根据相反数的定义求出﹣(﹣1.5),根据倒数的定义求出﹣3的倒数的值即可作出判断.二、填空题13、【答案】-3【考点】有理数的加减混合运算,有理数的乘法,绝对值的非负性【解析】【解答】解:由题意得,a+3=0,b﹣1=0,解得a=﹣3,b=1,所以,ab=(﹣3)×1=﹣3.故答案为:﹣3.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.14、【答案】<【考点】有理数的乘法【解析】【解答】解:∵xy>0,z<0,∴xyz<0.故答案为:<.【分析】由于xy>0,z<0,根据正数与负数的积为负得到xyz<0.15、【答案】0【考点】有理数的乘法,有理数的除法【解析】【解答】解:∵ab<0,则a,b异号,∴=0.故答案为:0.【分析】根据题意得出a,b异号,进而得出答案.16、【答案】>【考点】有理数的乘法,有理数的除法【解析】【解答】解:∵>0,>0,∴a与b同号,b与c同号,即a与c同号,则7ac>0,故答案为:>【分析】利用有理数的乘除法则判断即可.17、【答案】12【考点】有理数的乘法,有理数的除法【解析】【解答】解:6÷(﹣)×2÷(﹣2)=﹣12×2×(﹣)=12;故答案为:12.【分析】根据有理数的除法法则先把除法转化成乘法,再根据有理数的乘法法则进行计算即可得出答案.18、【答案】0【考点】有理数的乘法【解析】【解答】解:整数有:﹣2016,0,31,﹣2016×0×31=0,故答案为:0.【分析】先确定其整数:正整数、负整数、0,再相乘.三、计算题19、【答案】解:原式=4+3=7.【考点】有理数的乘法【解析】【分析】先依据有理数的乘法法则进行计算,然后再将所得结果相加即可.20、【答案】解:原式=81× × × =1【考点】有理数的乘法,有理数的除法【解析】【分析】原式从左到右依次计算即可得到结果.21、【答案】(1)解:原式=﹣(36+ )× ,=﹣(36× + × ),=﹣4(2)解:原式=﹣(× × × ),=﹣【考点】有理数的乘法,有理数的除法【解析】【分析】(1)根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数进行计算即可;(2)首先根据除法法则统一成乘法,然后再确定结果的符号,然后计算即可.22、【答案】解:∵a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,∴a+b=0,cd=1,m=±1,n=0,∴20161﹣(a+b)+m2﹣(cd)2016+n(a+b+c+d)=2016+1﹣1+0=2016.【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】根据相反数以及倒数、绝对值、有理数的定义分别得出各代数式的值进而得出答案.。

人教版七年级数学上册(遵义)习题课件 1.4有理数的乘除

人教版七年级数学上册(遵义)习题课件 1.4有理数的乘除

12.计算:(1-2)×(2-3)×(3-4)×…×(99-100)=_______.
-1
13.计算: (1)(-3)×2×4×(-1);
解:24
(2)(-152)×145×(-23)×(-6);
解: -1
(3)(-1)×(-45)×185×0×43×(-43).
解: 0
14.如图,东东有5张写着不同的数字的卡片,他想从中取出 3张卡片.
(-2)×(-3.1)×(-7);③(-201)×0×7×(-2);④(-3.7)×(-
6)×10×(-5.3)×(-1),其中积为正数的有________,积为负数
的有________,积为0的有_________.(填序号①) ④

③5.计算: (1)(-源自)×(-3)×5×(-1);解:-30

9.个体儿童服装店老板以32元的价格购进30件衣服,针对不 同的顾客,30件衣服的售价不完全相同,若以47元为标准,将 超出的钱数记为正,不足的钱数记为负,记录结果如下表:
问该服装店售完这30件衣服后,赚了多少钱?
解:[3×7+2×6+1×3+0×5+(-1)×4+(-2)×5]+ 47×30-32×30=472(元)
2.有1000个有理数相乘,如果积为0,那么在1000个有理
数中(
)
C
A.全部为0
B.只有一个为0
C.至少有一个为0 D.有两个互为相反数
3.(2017·道真月考)绝对值小于8的所有整数的积是( C )
A.负数
B.正数
C.0
D.非负数
4.判断下列各式乘积的符号:①(-3)×(-4)×(+5.5);②4×
(1)使数字的积最大,应如何抽?最大积是多少? (2)使数字的积最小,应如何抽?最小积是多少?

遵义市人教版初中七年级数学上册第一章《有理数》模拟检测(包含答案解析)

遵义市人教版初中七年级数学上册第一章《有理数》模拟检测(包含答案解析)

一、选择题1.(0分)[ID :67651]下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个 2.(0分)[ID :67649]若b<0,刚a ,a+b ,a-b 的大小关系是( ) A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b 3.(0分)[ID :67645]某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表: 根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定 4.(0分)[ID :67639]下列计算正确的是( )A .|﹣3|=﹣3B .﹣2﹣2=0C .﹣14=1D .0.1252×(﹣8)2=1 5.(0分)[ID :67621]下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->-6.(0分)[ID :67618]计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( )A .54B .27C .272D .07.(0分)[ID :67617]下列说法中,正确的是( )A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数8.(0分)[ID :67604]用计算器求243,第三个键应按( )A .4B .3C .y xD .=9.(0分)[ID :67583]下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则a b =﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A .4个B .5个C .6个D .7个10.(0分)[ID :67582]下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数11.(0分)[ID :67580]据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( ) A .28×10﹣9m B .2.8×10﹣8m C .28×109m D .2.8×108m 12.(0分)[ID :67579]若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1 13.(0分)[ID :67564]已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 14.(0分)[ID :67570]下列计算结果正确的是( )A .-3-7=-3+7=4B .4.5-6.8=6.8-4.5=2.3C .-2-13⎛⎫- ⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫- ⎪⎝⎭=-3+12=-212 15.(0分)[ID :67568]下列各式计算正确的是( ) A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4二、填空题16.(0分)[ID :67744]23(2)0x y -++=,则x y 为______.17.(0分)[ID :67741]已知四个互不相等的整数a ,b ,c ,d 满足abcd=77,则a+b+c+d=___________.18.(0分)[ID :67716]若230x y ++-= ,则x y -的值为________.19.(0分)[ID :67700]计算1-2×(32+12)的结果是 _____. 20.(0分)[ID :67693]我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)21.(0分)[ID :67687]已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.22.(0分)[ID :67678]下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.23.(0分)[ID :67659]下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.24.(0分)[ID :67734]在数轴上,距离原点有2个单位的点所对应的数是________. 25.(0分)[ID :67722]已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.26.(0分)[ID :67706]某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.27.(0分)[ID :67702]某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元. 三、解答题28.(0分)[ID :67889]阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x xx ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 29.(0分)[ID :67888]计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 30.(0分)[ID :67938]设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※. (1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.A2.D3.B4.D5.A6.C7.D8.C9.C10.D11.B12.D13.C14.D15.C二、填空题16.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方17.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±418.【分析】先利用绝对值的非负性求出xy的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性19.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算20.46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:21.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:22.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶23.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(24.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型25.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正数;当原数26.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)27.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070=三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 2.D解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.3.B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.4.D解析:D【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案.【详解】A 、原式=3,故A 错误;B 、原式=﹣4,故B 错误;C 、原式=﹣1,故C 错误;D 、原式=[0.125×(﹣8)]2=1,故D 正确.故选:D .【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.5.A解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6.C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.7.D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B不合题意;绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C不合题意;既没有最大的数,也没有最小的数,正确,故选项D符合题意.故选:D.【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.8.C解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.9.C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a-表示的数不一定是负数,当a为负数时,-a就是正数,故该选项错误;B. a-表示的数不一定是正数,当a为正数时,-a就是负数,故该选项错误;C. a-表示的数不一定是正数或负数,当a为0时,-a也为0,故该选项错误;D. a-可以表示任何有理数,故该选项正确.故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.11.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm用科学记数法可表示为:2.8×10﹣8m,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.D解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.13.C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .14.D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A 选项:3710--=-,故错误;B 选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C 选项:1122()21333---=-+=-,故错误; D 选项运算正确.故选:D .【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可. 15.C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意;C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.二、填空题16.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键. 17.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd 的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a 、b 、c 、d 的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.18.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.19.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12) =1-2×(9+12) =1-2×192 =1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键. 20.46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.此题主要考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab <0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab <0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.22.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶 解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.23.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.24.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2【分析】由绝对值的定义可知:|x|=2,所以x=±2.【详解】设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x|=2,∴x=±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.25.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.26.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.27.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070=解析:225【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),∴第一季度该工厂共获利润:150+80+(5 )=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题.三、解答题28.(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b++; ②0,0a b <<,==11=2a b a b a b a b +-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.29.(1)19-;(2) 3.-【分析】(1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭ 16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.30.(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+, 所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.。

人教版七年级上册 1.4.1 有理数的乘法 同步练习

人教版七年级上册 1.4.1 有理数的乘法 同步练习

有理数的乘法一填空1、正数乘正数积为 数; 负数乘正数积为 数;正数乘负数积为 数;负数乘负数积为 数;乘积的绝对值等于各乘数绝对值的 。

归纳小结:两数相乘,同号得 ,异号得 ,并把 相乘。

任何数同0相乘,都得2、在有理数范围内,我们仍然规定:乘积是1的两个数互为 ,如:数a (a ≠0)的倒数是3、和有理数加法类似,有理数相乘,先确定积的______,再确定积的______。

4、-2的倒数是 ,相反数为___.92的倒数是______,0 倒数(填“有”或“没有”)。

5、 若a+b=0,则a 、b 互为____ _数,若ab=1,则a 、b 互为_____数。

几个不是0的数相乘,负因数的个数是 时,积是正数;负因数的个数是 时,积是负数。

几个数相乘,如果其中有因数为0,积等于6. 乘法交换律:两个数相乘,交换因数的位置,积 ,字母表示:7. 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积字母表示:8、乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

字母表示:9、已知a 与b 互为倒数,m 与n 互为相反数,则21ab+3m+3n= 10、与两个有理数相乘一样,几个不等于0的有理数相乘,先确定积的 ,再确定积的 .11、计算(1)(-31)×73=_______, (2)(-163)×(-916)=_______. (3)x ·x 1=_______. (4)-87×(-103)×0×1917=_______.二、选择1、若mn >0,则m 、n ( )A.都为正B.都为负C.同号D.异号2、若m 、n 互为相反数,则( )A.mn <0 B.mn >0 C.mn ≤0 D.mn ≥03、一个有理数与它的相反数的积 ( ).(A) 是正数 (B) 是负数 (C) 一定不大于0 (D) 一定不小于04.若0>⨯⨯c b a ,其a 、b 、c ( )A 、都大于0B 、都小于0C 、至少有一个大于0D 、至少有一个小于05.五个数相乘,积为负,那么其中负因数的个数是( ).A .1B .3C .5D .1或3或54、计算三、解答题1、计算(1)(-3)×9 (2)-21×(-2) (3)6 ×(-9) (4)(-4)×6(5)(-321)×(-4) (6)(-6)×0 (7)32×(-49) 1(8)()4⎡⎤-⨯--⎢⎥⎣⎦ 2、写出下列各数的的倒数: 1, -1, 31,-31,5,-5, 32,-32. 3、计算题(3)-× (4)4.6×(-2.25) (5)-6-(-2)×14、计算 (1))4(32-⨯⨯-;(2))7()5(6-⨯-⨯-(3))8(25.1)258(-⨯⨯-(4)1411)25.0(6⨯-⨯-5.计算:(1)⨯⨯(-125)(-2)(-8) (2)⨯⨯1319642(7)()(1)---(3)⨯⨯35()(-2)(-15)- (4)⨯⨯⨯(+22)(-33)(-4)0(5)133⨯⨯15(-1)()25- (6)1135⨯⨯⨯1735(-)6.计算:5612(5)(-3)×56×(-14)×(-14)×0;7、计算(1)(—4)×58 ×(—5) (2)(—132)×(—5)×53(3)(-9.99)×(-10)×(-0.1) (4)0.25×(-1.25)×4×(-8);(5)12)216141(⨯-+8、计算(1))30()51()31(-⨯⎥⎦⎤⎢⎣⎡-+- (2) (-36)×(-1276594-+)(3)713×(713-317)×227×2221 (4)25×43—(—25)×21+25×(—41)9、灵活应用乘法的分配律简便运算。

人教版-数学-七年级上册-1.4.1有理数的乘法 同步测试题

人教版-数学-七年级上册-1.4.1有理数的乘法 同步测试题

1.4.1有理数的乘法 同步测试题一、填空题1. (-2)×(-2)×2×(-2)积的符号是________;2. 在算式每一步后面填上这一步应用的运算律:×25=×25(____________)=×25(____________)=4 000×25-5×25.(____________)3.若2x -3与-13互为倒数,则x =________.4.计算:-4×(-85)×(-25)=________.5.若a >0,b >0,则ab ____0;若a >0,b <0,则ab ____0;若a <0,b >0,则ab ___0;若a <0,b <0,则ab ____0.6. 绝对值小于2 016的所有整数的积为________.7.在-6,-5,-1,3,4,7中任取三个数相乘,所得的积最小是 ,最大是 .8. 0.125的倒数是________;-134的倒数是________.9.冰箱每开机1小时,箱内温度下降0.6度,若开机5小时,则冰箱温度下降____度.二、选择题10. 计算(1112-76+34-1324)×(-48)的结果是( )A .2B .-2C .20D .-2011.大于-3且小于4的所有整数的积为( )A.-12B.12C.0D.-14412. 两个互为相反数的有理数相乘,积为( )A .正数B .负数C .零D .负数或零13.下列计算正确的是( )A.(-0.25)×(-16)=-B.4×(-0.25)=-1C.×(-1)=-D.=-414. (-2)×3的结果是( )A .-5B .1C .-6D .615.学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是() A .100 B .80C .50D .12016.列说法正确的是( )A .负数没有倒数B .正数的倒数比自身小C .任何有理数都有倒数D .-1的倒数是-117.计算1×2×12×(-2)的结果是( )A .1B .-1C .2D .-218.式子(13-315+25)×3×5=(13-315+25)×15=5-2+6中,运用的运算律是( ) A .乘法交换律及结合律B .乘法交换律及分配律C .加法结合律及分配律D .乘法结合律及分配律三、解答题19. 用正负数表示水位的变化量,上升为正,下降为负.某水库的水位每天下降3 cm,那么4天后这个水库水位的变化量是多少?20.根据科学测定:海拔32千米以下,高度每增加1千米,气温降低大约6℃,现在地面气温是25℃,某飞机在该地面上空7千米处,那么此时飞机所在高度的气温约是多少度?参考答案一、填空题1. (-2)×(-2)×2×(-2)积的符号是___―_____;2. 在算式每一步后面填上这一步应用的运算律:×25=×25(____乘法交换律 ________)=×25(_______ 乘法结合律 _____)=4 000×25-5×25.(_______ 乘法分配律 _____)3.若2x -3与-13互为倒数,则x =____0____.4.计算:-4×(-85)×(-25)=____―8500____.5.若a >0,b >0,则ab ___>_0;若a >0,b <0,则ab _<___0;若a <0,b >0,则ab _<__0;若a <0,b <0,则ab ___>_0.6. 绝对值小于2 016的所有整数的积为_____0___.7.在-6,-5,-1,3,4,7中任取三个数相乘,所得的积最小是 ―168 ,最大是 210 .8. 0.125的倒数是_____8___;-134的倒数是____-47____.9.冰箱每开机1小时,箱内温度下降0.6度,若开机5小时,则冰箱温度下降_3___度.二、选择题10. 计算(1112-76+34-1324)×(-48)的结果是( A )A .2B .-2C .20D .-2011.大于-3且小于4的所有整数的积为( C )A.-12B.12C.0D.-14412. 两个互为相反数的有理数相乘,积为( D )A .正数B .负数C .零D .负数或零13.下列计算正确的是( B )A.(-0.25)×(-16)=-B.4×(-0.25)=-1C.×(-1)=-D.=-414. (-2)×3的结果是( C )A .-5B .1C .-6D .615.学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是(B )A .100B .80C .50D .12016.列说法正确的是( D )A .负数没有倒数B .正数的倒数比自身小C .任何有理数都有倒数D .-1的倒数是-117. 计算1×2×12×(-2)的结果是( D )A .1B .-1C .2D .-218.式子(13-315+25)×3×5=(13-315+25)×15=5-2+6中,运用的运算律是( D ) A .乘法交换律及结合律B .乘法交换律及分配律C .加法结合律及分配律D .乘法结合律及分配律三、解答题19. 用正负数表示水位的变化量,上升为正,下降为负.某水库的水位每天下降3 cm,那么4天后这个水库水位的变化量是多少?解:下降3cm,记作-3cm .(-3)×4=-12(cm).答:4天后这个水库水位下降了12cm20.根据科学测定:海拔32千米以下,高度每增加1千米,气温降低大约6℃,现在地面气温是25℃,某飞机在该地面上空7千米处,那么此时飞机所在高度的气温约是多少度?解:(-6)×7+25=(-42)+25=-17(℃)。

人教版数学七年级上册1.4有理数的乘除法练习题含答案

人教版数学七年级上册1.4有理数的乘除法练习题含答案

人教版数学七年级上册1.4有理数的乘除法练习题一、选择题1.下列说法正确的是 ()A. 同号两数相乘,取原来的符号B. 一个数与相乘,积为该数的相反数−1C. 一个数与0相乘仍得这个数D. 两个数相乘,积大于任何一个乘数2.若,则下列各式正确的是 a <c <0<b ()A. B. C. D. 无法确定abc <0abc =0abc >03.绝对值小于3的所有整数的积等于( )A. B. 4C. 0D. 6−364.计算等于 1a×(−a)÷(−1a )×a()A. 1B. C. D. a 2−a 1a 25.已知12与a 的积为,则a 比4小 −48()A. 1B. 2C. 4D. 86.的倒数与4的相反数的商是 −114()A. B. 5 C. D.−515−157.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是 ()A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.下列运算中没有意义的是 ()A. B.−2006÷[(−73)×3+7][(−73)×3+7]÷(−2006)C.D.(13−12)÷[0−(−4)]×(−2)213÷(313×6−18)9.a 的倒数是,则a 是 −1.5()A. B. C.D.−3232−232310.下列结论错误的是 ()A. 若a ,b 异号,则,B. 若a ,b 同号,则,a ⋅b <0a b<0a ⋅b >0a b>0C.D.−a b=a −b =−ab−a −b=−ab二、填空题11.a 的相反数是,则a 的倒数是______.−3212.若x ,y 互为倒数,则______.(−xy )2017=13.计算的结果是______ .−163÷43×(−34)14.已知是a 整数,且,则表示a 的所有整数的积是______.−3<a <415.若a ,b ,c ,d 四个数的积为正数,则这四个数中正数有______ 个.16.在整数,,,6中任取三个数相乘,所得的积的最大值为______.−5−3−117.两个因数的积为,其中一个因数是,另一个因数是______.−1−21418.如果,那么 ______ .n <0|n|n=19.若,则的值为______.ab <0a|a|+|b|b+|ab|ab 20.若“”是一种数学运算符号,并且:!,,,,,则1!=12!=2×1=23!=3×2×1=64!=4×3×2×1…______.17!18!=三、计算题21..(−16+34−112)×(−48)22.(−56)÷(−3)×(−145)×(−2)23.运算:24÷(12−13+14−16)24.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求的值.m−cd +a +bm【答案】1. B2. C3. C4. B5. D6. C7. D8. A 9. C10. D11. 2312. −113. 3 14. 015. 0或2或4 16. 90 17. 4918. −119. −120. 11821. 解:原式,=−16×(−48)+34×(−48)−112×(−48)=8−36+4.=−2422. 解:原式,=(−56)×(−13)×(−95)×(−2),=56×13×95×2.=123. 解:原式.=24÷12−8+6−424=24÷14=24×4=96a+b=0cd=1m=2−224. 解:根据题意得:,,或,m=2=2−1+0=1m=−2=−2−1+0=−3当时,原式;当时,原式.。

数学七年级上册人教版1.4.1有理数的乘法同步课时训练(含答案)

数学七年级上册人教版1.4.1有理数的乘法同步课时训练(含答案)

人教版数学七年级上册同步课时训练第一章有理数1.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法法则巩固提升练习1. 计算(-3)×2的结果是()A. 5B. -5C. 6D. -62. 计算(-5)×(-2)的结果是()A. 7B. -10C. 10D. -33. -2的倒数是()A. 2B. -2C. 12 D. -124. 下列说法正确的是()A. 14与-0.25互为倒数 B.14与-4互为倒数C. 0.1与10互为倒数D. 0的倒数是05. 若□×(-5)=1,则□内填一个数应是()A. 15 B. 5 C. -5 D. -156. 下列说法错误的是()A. 一个数同0相乘,仍得0B. 一个数同1相乘,仍得原数C. 一个数同-1相乘,得原数的相反数D. 互为相反数的积为负数7. 若两数的和为负数,它们的积为正数,则这两个数一定()A. 同为负数B. 同为正数C. 有一个数是0D. 为一个正数和一个负数8. 某种商品的单价每提高1元,每月的销售量就减少10件,若将此商品的单价提高5元,则每月的销售量将减少()A. -50件B. 50件C. 10件D. -10件9. 下列说法正确的是()①两个正数中倒数大的反而小;②两个负数中倒数大的反而小;③两个有理数中倒数大的反而小;④两个符号相同的有理数中倒数大的反而小.A. ①②④B. ①C. ①②③D. ①④ 10. 如图,数轴上点A 所表示的数的倒数是( )A. -2B. 2C. 12D. -1211. 如图,A ,B 两点在数轴上表示的数分别是a ,b ,下列式子成立的是( )A. ab >0B. a +b <0C. (b -1)(a +1)>0D. (b -1)(a -1)>0 12. 下列说法正确的有( )①-3的倒数是13;②a 的倒数是1a ;③倒数是它本身的数是1;④正数的倒数是正数,负数的倒数是负数.A. 1个B. 2个C. 3个D. 4个 13. -0.4的倒数是 ,⎪⎪⎪⎪-17的倒数是 ,6的倒数的相反数是 . 14. 用“>”或“<”填空.(1)如果a >b >0,则ab 0,b (a -b ) 0. (2)如果b <0<a ,则ab 0,b (a -b ) 0.15. 在-2,-3,4,-5这四个数中,任取两个数相乘,所得的积最大的是 . 16. 形如⎪⎪⎪⎪⎪⎪ac bd 的式子叫做二阶行列式,它的运算法则用公式表示为⎪⎪⎪⎪⎪⎪ac bd =ad -bc ,依此法则计算⎪⎪⎪⎪⎪⎪21-3 4的结果为 . 17. 计算:(1)(+4)×(-5); (2)(-0.125)×(-8);(3)(-213)×(-37); (4)0×(-13.52).18. 已知|a |=2,|b |=2,求ab 的值.19. 一天中午,地面气温是15℃,七年级某班计划登上一座海拔3000m 的高山,已知每登高1000m 气温的变化量是-6℃,则当同学们登上山顶的时候气温是多少?20. 已知a ,b 互为相反数,c ,d 互为倒数,|x |=2,求10a +10b +cdx 的值.21. 定义:a 是不为1的有理数,我们把11-a 称为a 的差倒数.如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依次类推.(1)求a 2,a 3,a 4的值; (2)猜想a 2019的值.答案:1. D2. C3. D4. C5. D6. D7. A8. B9. A 10. D 11. C 12. A 13. -52 7 -1614. (1)> > (2)< < 15. 15 16. 1117. 解:(1)原式=-20. (2)原式=1. (3)原式=1. (4)原式=0.18. 解:因为|a |=2,|b |=2,所以a =±2,b =±2.(1)当a =b =2时,ab =2×2=4; (2)当a =2,b =-2时,ab =2×(-2)=-4; (3)当a =-2,b =2时,ab =(-2)×2=-4; (4)当a =-2,b =-2时,ab =(-2)×(-2)=4. 18. 解:15+3000÷1000×(-6)=15-18=-3(℃).20. 解:因为a ,b 互为相反数,所以a +b =0.又因为c ,d 互为倒数,所以cd =1.又因为|x |=2,所以x =±2.所以10a +10b +cdx =10(a +b )+cdx =x =±2.21. 解:(1)a 2=11-(-13)=34,a 3=11-34=4,a 4=11-4=-13. (2)a 2019=34.根据差倒数定义:a 1=-13,a 2=34,a 3=4,a 4=-13,…,由以上可知每三个循环一次.又2019÷3=673,故a 2019和a 3的值相等,其值为4,所以a 2019=4.人教版数学七年级上册同步课时训练第一章有理数1.4有理数的乘除法1.4.1有理数的乘法第2课时有理数乘法的运算律及运用1. n个不等于零的有理数相乘,它们的积的符号()A. 由因数的个数决定B. 由正因数的个数决定C. 由负因数的个数决定D. 由负因数的大小决定2. 计算-3×2×(-6)的结果是()A. 9B. -9C. 36D. -363. 下列各式中,积为负数的是()A. (-2)×3×(-5)B. (-3.7)×(+5.6)×(-19)×0×(-4)C. (-1)×(-5)×(-15)×(-7) D. 4×(-2)×(-9)×(-13)4. 在2×(-7)×5=-7×(2×5)中,运用了()A. 乘法交换律B. 乘法结合律C. 乘法分配律D. 乘法交换律和乘法结合律5. 下列变形不正确的是()A. 5×(-6)=(-6)×5B. (14-12)×(-12)=(-12)×(14-12)C. (-16+13)×(-4)=(-4)×(-16)+13×4D. (-25)×(-16)×(-4)=[(-25)×(-4)]×(-16)6. 在-2,3,4,-7这四个数中,任取三个数相乘,所得积的最大值是 .7. 112的相反数与-23的绝对值的积是 . 8. 填空: (1)5×(-6)×(-15)=[5× ]×(-6)= . (2)-0.01×13×(-200)=13×[(-0.01)× ]= .9. 除0以外绝对值小于4的所有整数的积是 .10. 用简便方法计算(-8)×(-12)×(-0.125)×(-4),结果是 .11. 计算:-317×(-3)+(-3)×(517-113) =(-3)×[(-317)+(517-113)] ①=-3×(2-113) ② = . ③ (1)完成以上填空.(2)第①步是 用分配律,第②步是计算-317+517,第③步求括号中的减法,再与-3相乘,得出结果.12. 计算:(1)(-2)×3×4×(-1); (2)710×(-1314)×(-59)×(-613);(3)(-3)×(-1)×2×(-6)×0×(-2); (4)-113×3×(-34);(5)(-12-113+179)×(-34); (5)13×23-57×0.35-13×(-13)-27×0.35.13. 阅读材料,回答问题. (1+12)×(1-13)=32×23=1, (1+14)×(1-15)=54×45=1,(1+12)×(1+14)×(1-13)×(1-15)=32×54×23×45=(32×23)×(54×45)=1.根据以上信息,请求出下式的结果. (1+12)×(1+14)×(1+16)×…×(1+120)×(1-13)×(1-15)×(1-17)×…×(1-121).14. 我们知道:12×23=13,12×23×34=14,12×23×34×45=15,…,12×23×34×…×n n +1=1n +1.试根据以上规律,解答下面两题: (1)计算:(12-1)×(13-1)×(14-1)×…×(1100-1); (2)将2020减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……依此类推,直到减去余下的12020,最后的结果是多少?15. 已知x ,y 为有理数,如果规定一种新运算*,其意义是x *y =xy +1,试根据这种运算完成下列各题: (1)求2*4的值; (2)求(1*4)*(-2)的值;(3)任意选取两个有理数,分别填入下列□和○内,并比较两个运算结果,你有何发现?□*○和○*□(4)根据以上方法,设a ,b ,c 为有理数.请探索a *(b +c )与a *b +a *c 的关系,并用等式把它们表示出来.答案:1. C2. C3. D4. D5. C6. 567. -18. (1)(-15) 6 (2)(-200) 239. -36 10. 211. (1)-2 (2)逆 12. 解:(1)原式=24. (2)原式=-16.(3)原式=0.(4)原式=-43×(-34)×3=3.(5)原式=(-12)×(-34)+(-43)×(-34)+169×(-34)=9+1-43=823.(6)原式=13×(23+13)-0.35×(57+27)=13-0.35=12.65.13. 解:原式=[(1+12)×(1-13)×(1+14)×(1-15)×(1+16)×(1-17)×…×(1+120)×(1-121)]=1×1×…×1=1.14. 解:(1)原式=-(1-12)×(1-13)×(1-14)×…×(1-1100)=-12×23×34×…99100=-1100.(2)由题意,得2020×(1-12)×(1-13)×…×(1-12020)=2020×12×23×34×…×20192020=1.15. 解:(1)9(2)-9(3)若取3,-2,则3*(-2)=3×(-2)+1=-5;(-2)*3=(-2)×3+1=-5.若取-4,0,则-4*0=-4×0+1=1;0*(-4)=0×(-4)+1=1.若取-3,-5,则-3*(-5)=(-3)×(-5)+1=16;(-5)*(-3)=(-5)×(-3)+1=16.可以发现,无论选取任何有理数,总有□*○=○*□,即x*y=y*x,这种运算也有交换律.(4)a*(b+c)=a×(b+c)+1=ab+ac+1=ab+1+ac+1-1=a*b+a*c-1.。

人教版七年级上册数学 1.4.1有理数的乘法 同步练习 有答案

人教版七年级上册数学 1.4.1有理数的乘法 同步练习 有答案

1.4.1有理数的乘法一 选择题1.若a+b <0,ab <0,则( )A .a >0,b >0B .a <0,b <0C .a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D .a ,b 两数一正一负,且负数的绝对值大于正数的绝对值2.七个有理数的积为负数,其中负因数的个数不可能是( )A.1B.3C.6D.73.—20201 的倒数的绝对值是( ) A .-2020 B .20201 C .2 020 D .—20201 4.下列各数中积为正的是( )A .2×3×5×(-4)B .2×(-3)×(-4)×(-3)C. (-2)×0×(-4)×(-5)D. (-2)×(-3)×(-4)×(-5)5.如果两数之和等于零;之积为负数,那么这两个数只能是[ ]A.两个互为相反数的数B.符号不同的两个数C.不为零的两个互为相反数的数D.不是正数的两个数6.在-3,3,4,-7这四个数中,任取两个数相乘,所得积最大的是( )A .12B .-6C .21D .287.如果两个有理数a 、b 互为相反数,则a 、b 一定满足的关系为[ ]A. a ·b=1B. a ·b=-1C. a+b=0D. a -b=08.下列结论:①两数之积为正,这两数同为正;②三数相乘,积为负,这三个数都是负数;③两数之积为负,这两数为异号;④几个数相乘,积的符号由负因数的个数决定. 正确的有 ( )A .0个B .1个C .2个D .3个9.如果abcd <0,a+b=0,cd >0,那么这四个数中负因数的个数至少有( )A.4个B.3个C.2个D.1个10.已知|a|=2,|b|=5,且ab <0,则a+b 的值为( ).A .5B .-1C .3D .711.计算(-4)×(-7)×(-41)的结果是( ) A .-7 B .-1 C .1 D .712.某公司去年1~3月平均每月盈利2万元,4~6月平均每月亏损1.5万元,7~10月平均每月亏损1.3万,11~12月平均每月盈利3.4万,这个公司总盈亏情况为( )A. 盈利3.1万元B. 盈利3.5万元C. 亏损3.1万元D. 亏损0.8万元二 填空题1.计算:(-2)×(-3)=______ 。

人教版七年级数学上1.4有理数的乘除法测试题含答案及解析

人教版七年级数学上1.4有理数的乘除法测试题含答案及解析

有理数的乘除法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.若,则下列各式正确的是A. B. C. D. 无法确定2.正整数x、y满足,则等于A. 18或10B. 18C. 10D. 263.若,,且,则等于A. 1或B. 5或C. 1或5D. 或4.算式之值为何?A. B. C. D.5.计算的值是A. 6B. 27C.D.6.若,,且,则的值为A. B. C. 5 D.7.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.的倒数与4的相反数的商是A. B. 5 C. D.9.计算等于A. 1B.C.D.10.计算:的结果是A. 1B.C.D.二、填空题(本大题共10小题,共30.0分)11.若,,则ab______ 0;若,,则ab______12.已知,,且,则的值等于______ .13.比大的数是______ ;比小______ ;数______ 与的积为14.14.若“”是一种数学运算符号,并且,,,,则的值为______ .15.计算的结果是______ .16.四个互不相等的整数a、b、c、d,使,则______ .17.______ .18.计算:______.19.化简:______ .20.已知,,且,则的值为______ .三、计算题(本大题共4小题,共24.0分)21.22.运算:23..24..四、解答题(本大题共2小题,共16.0分)25.数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为,所以.请你判断小明的解答是否正确,并说明理由.请你运用小明的解法解答下面的问题.计算:.26.利用适当的方法计算:.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C9. B10. C11. ;12. 8或13. ;;14. 10015. 316. 1217.18.19. 320. 或21. 解:原式,.22. 解:原式.23. 解:原式.24. 解:原式,.25. 解:正确,理由为:一个数的倒数的倒数等于原数;原式的倒数为,则.26. 解:原式.【解析】1. 解:,同号两数相乘得正,不等式两边乘以同一个正数,不等号的方向不变.故选C.根据有理数乘法法则:两数相乘,同号得正可得再根据不等式是性质:不等式两边乘或除以同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变不等式两边乘或除以同一个正数,不等号的方向不变不等式两边乘或除以同一个负数,不等号的方向改变.2. 解:,y是正整数,、均为整数,,或,存在两种情况:,,解得:,,;,解得:;或10,故选A.易得、均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据或分类讨论是解题的关键.3. 解:因为,,所以,,因为,所以,,所以;所以,,所以;故选B先由绝对值和平方根的定义求得x、y的值,然后根据分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当时,,当时,是解题的关键.4. 解:原式.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:,,,,,当,,即当,,;当,,即,,.故选B.首先用直接开平方法分别求出a、b的值,再由可确定a、b同号,然后即可确定a、b的值,然后就可以求出的值.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得,由比例的性质得:...或.故选:D.设这两个数分别为a、b,根据题意得到,从而可得到,从而可判断出a、b之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到是解题的关键.8. 解:的倒数是,4的相反数是,.故选C.依据相反数、倒数的概念先求得的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则.9. 解:,故选:B.根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.10. 解:,故选:C.根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若,,则;若,,则.故答案为:;.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:,,且,,或,,则或.故答案为:8或根据题意利用有理数的乘法法则判断x与y异号,再利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键.13. 解:比大的数是:;比小;;故答案为:,,.比大的数是,根据有理数的加法法则即可求解;根据题意列式,列出算式,再进行计算即可;根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:.故答案为:100.根据“”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:四个互不相等的整数,,,的积为25,这四个数只能是1,,5,,,,,,则.故答案为:12.找出25的四个互不相等的因数,即1,,5,.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,,5,.17. 解:原式,故答案为:原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式,故答案为:.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:,,,,,当时,,,当时,,,故答案为:或.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. 正确,利用倒数的定义判断即可;求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。

人教版七年级上册数学课堂小测 1.4.1 有理数的乘法

人教版七年级上册数学课堂小测 1.4.1 有理数的乘法

人教版七年级上册数学课堂小测 1.4.1有理数的乘法一、选择题1. 下列算式中,积为正数的是( )A .(-2)×(+)B .(-6)×(-2)C .0×(-1)D .(+5)×(-2) 2.下列说法正确的是( )A .异号两数相乘,取绝对值较大的因数的符号B .同号两数相乘,符号不变C .两数相乘,如果积为负数,那么这两个因数异号D .两数相乘,如果积为正数,那么这两个因数都是正数3.计算(-2)×(-3)×(-1)的结果是( ) A .-6 B .-5 C .-8 D .5 4.如果ab =0,那么一定有( )A .a =b =0B .a =0C .a ,b 至少有一个为0D .a ,b 最多有一个为05.下面计算正确的是( )A .-5×(-4)×(-2)×(-2)=5×4×2×2=80B .12×(-5)=-50C .(-9)×5×(-4)×0=9×5×4=180D .(-36)×(-1)=-366.-2016的倒数是( )A.2016B.-2016C.12016D.12016212131615131657.计算2934⎛⎫⨯-⎪⎝⎭的结果等于( )A.32B.32- C.23- D.238.若2018个有理数的积是0,则( )A.每个因数都不为0B.每个因数都为0C.最多有一个因数为0D.至少有一个因数为09.下列运算过程中,有错误的个数是( )(1)11 (34)234222-⨯=-⨯;(2)4(7)(125)(41257) -⨯-⨯-=-⨯⨯;(3)18115 915(10)15150 191919⨯=-⨯=-;(4)[3(2)](5)325⨯-⨯-=⨯⨯.A.1B.2C.3D.4二、填空题10.计算填空,并说明计算依据:(1)(-3)×5=______();(2)(-2)×(-6)=_______();(3)0×(-4)=________();11.确定下列各个积的符号,填在空格内:(1)(-7.4)×(-3.2)_______;(2)(-2)×(-2)×2(-2)________;(3)(-)×(-)×(-)×(-)_______; 12.(1)(-3)×(-0.3)=_______;(2)(-5)×(3)=_______; (3)-0.4×0.2=_______;(4)(+32)×(-60.6)×0×(-9)=______ 13.绝对值大于1,小于4的所有整数的积是______。

人教版七年级数学上册(遵义)习题课件 1.4有理数的乘除法1.4.1有理数的乘法第1课时

人教版七年级数学上册(遵义)习题课件 1.4有理数的乘除法1.4.1有理数的乘法第1课时

D.-5
6.下列各对数是互为倒数的是( C )
A.4 和-4
B.-3 和13
C.-2 和-12
D.0 和 0
7.下列说法正确的是( D ) A.负数没有倒数 B.正数的倒数比自身小 C.任何有理数都有倒数 D.-1的倒数是-1
8.写出下列各数的倒数: 3,-1,0.3,-23,14,-312.
解:它们的倒数分别为:31,-1,130,-32,4,-27
知识点3:有理数乘法的应用 9.用正数或负数填空: (1)若利民商店平均每天可盈利120元,则一个月(按30天计算)的 利润是_________元; (2)若利民商36店00每天亏损20元,则一周(7天)的利润是_______元.
-140
10.甲水库的水位每天升高3 cm,乙水库的水位每天下降5 cm, 4天后,甲、乙水库水位总的变化量各是多少?
为( ) C
1A3..-如6图是一个B.数6值转换机C,.若-输1 入
1 D.6
的x为-3,则输出的结果为________.
30
14.计算: (1)(-35)×0.2; 解:-235
(2)(-132)×(-151);
解:2
(3)(+1.25)×(-252);
解: -3
(4)(-4)×(-6)-|-8|×|3|.

第一章 有理数
1.4 有理数的乘除法 1.4.1 有理数的乘法 第1课时 有理数的乘法
A组 基础题
知识点1:有理数的乘法法则
1.(-2)×3的结果是(
)
C
A.-5
B.1
C.-6
D.6
2.计算-4×(-2)的结果是(
)
A.8
B.-8
C.A 6

新人教版七年级上1.4.1有理数乘法分节辅导练习及解答

新人教版七年级上1.4.1有理数乘法分节辅导练习及解答

1.4.1有理数乘法随堂检测1、 填空:(1)5×(-4)= ___;(2)(-6)×4= ___;(3)(—7)×(-1)= ___;(4)(—5)×0 =___; (5)=-⨯)23(94___;(6)=-⨯-)32()61( ___; (7)(-3)×=-)31(2、填空:(1)-7的倒数是___,它的相反数是___,它的绝对值是___;(2)522-的倒数是___,—2。

5的倒数是___; (3)倒数等于它本身的有理数是___。

3、计算:(1))32()109(45)2(-⨯-⨯⨯-; (2)(—6)×5×72)67(⨯-; (3)(—4)×7×(—1)×(-0。

25);(4)41)23(158)245(⨯-⨯⨯- 4、一个有理数与其相反数的积( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零5、下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数典例分析 计算)542()413(-⨯- 分析:在运算过程中常出现以下两种错误:①确定积得符号时,常常与加法法则中的和的符号规律相互混淆,错误地写成1091)514()413()542()413(-=-⨯-=-⨯-;②把乘法法则和加法法则混淆,错误地写成516)5441()2()3()542()413(-=⨯⨯-⨯-=-⨯-。

为了避免类似的错误,需先把假分数化成带分数,然后再按照乘法法则进行运算。

解:1091514413)514()413()542()413(=⨯=-⨯-=-⨯- 课下作业拓展提高1、32-的倒数的相反数是___。

2、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )A 、a >0,b >0B 、a <0,b >0C 、a ,b 异号D 、a ,b 异号,且负数的绝对值较大3、计算:(1))5(252449-⨯; (2)125)5.2()2.7()8(⨯-⨯-⨯-; (3)6.190)1.8(8.7-⨯⨯-⨯-; (4))251(4)5(25.0-⨯⨯-⨯--. 4、计算:(1))8141121()8(+-⨯-; (2))48()6143361121(-⨯-+--。

人教版七年级数学上册(遵义)习题课件 1.4有理数的乘除

人教版七年级数学上册(遵义)习题课件 1.4有理数的乘除
(2)999×11845+999×(-15)-999×1835.
解:(1)999×(-15)=(1000-1)×(-15) =1000×(-15)+15=-15000+15=-14985 (2)999×11845+999×(-15)-999×1853
=999×(11845-15-1853)=999×100=99900
×34×…×n+n 1=n+1 1. 试根据上面的规律,解答下面两题: (1)计算:(12-1)(31-1)(14-1)…(1100-1); (2)将 1024 减去它的21,再减去余下的31,再减去余下的41,再减去
余下的15……依次类推,直到最后减去余下的10124,最后的结果 是多少?
解:(1)原式=(-12)×(-23)×(-43)×…×(-19090)=-1100 (2)1024×(1-12)×(1-13)×…×(1-10124)=1024×12×23×34 ×…×11002234=1024×10124=1
7.计算: (1)(-4)×(-18)×(-25);
解:-1800
(2)(14-16+12)×(-12);
解:-7
(3)(-5)×(+713)+7×(-713)-(+12)×(-713).
解:0
B组 提升题
8.(2017·绥阳期中)用简便方法计算(-23)×25-6×25+18×25 +25,逆用分配律正确的是( B ) A.25×(-23-6+18) B.25×(-23-6+18+1) C.-25×(23+6+18) D.-25×(23+6-18+1)
2.用分配律计算(-3)×(4-31)的过程正确的是( A ) A.(-3)×4+(-3)×(-13) B.(-3)×4-(-3)×(-31) C.(-3)×(-4)-(-3)×(-13) D.(-3)×4+3×(-13)

七年级数学上学期1.4.1有理数乘法随堂检测及典例分析试题(共11页)

七年级数学上学期1.4.1有理数乘法随堂检测及典例分析试题(共11页)

路镇一中七年级上册数学(shùxué)有理数乘法随堂检测及典例分析随堂检测1、填空:〔1〕5×〔-4〕= ___;〔2〕〔-6〕×4= ___;〔3〕〔-7〕×〔-1〕= ___;〔4〕〔-5〕×0 =___;〔5〕___;〔6〕___;〔7〕〔-3〕×2、填空:〔1〕-7的倒数是___,它的相反数是___,它的绝对值是___;〔2〕的倒数是___,-2.5的倒数是___;〔3〕倒数等于它本身的有理数是___。

3、计算:〔1〕;〔2〕(-6)×5×;〔3〕〔-4〕×7×〔-1〕×〔-0.25〕;〔4〕4、一个有理数与其相反数的积〔〕A、符号必定为正B、符号必定为负C、一定不大于零D、一定不小于零5、以下说法错误的选项是〔〕A、任何有理数都有倒数B、互为倒数的两个数的积为1C、互为倒数的两个数同号D、1和-1互为负倒数典例分析计算分析(fēnxī):在运算过程中常出现以下两种错误:①确定积得符号时,常常与加法法那么中的和的符号规律互相混淆,错误地写成;②把乘法法那么和加法法那么混淆,错误地写成。

为了防止类似的错误,需先把假分数化成带分数,然后再按照乘法法那么进展运算。

解:课下作业拓展进步1、的倒数的相反数是___。

2、两个有理数a,b,假如ab<0,且a+b<0,那么〔〕A、a>0,b>0B、a<0,b>0C、a,b异号D、a,b异号,且负数的绝对值较大3、计算:〔1〕;〔2〕;〔3〕;〔4〕。

4、计算:〔1〕;〔2〕。

5、计算:(1)〔2〕6、求的值。

7、假设a,b 互为相反数,c,d 互为倒数,m 的绝对值是1,求的值。

体验中招1、〔2021年,〕假设(ji ǎsh è)>0,那么___。

2、〔2021年,〕计算的结果是〔 〕 A 、B 、1C 、D 、2参考答案 随堂检测 1、。

遵义市人教版数学七年级上名师导学练习1.2.1有理数

遵义市人教版数学七年级上名师导学练习1.2.1有理数

有理数练习题
基础练习
1.“一个数,假如不是正数,那么必定是负数”这句话对不对?为何?
2.引入负数此后,我们学过的数有哪些?它们能够分红哪些种类??你是依据什么区分的?
3.把以下各数填入表示它所在的数集的圈里.
-17,22
,3.1415 , 0.107, -
3
,-23
1
, 63%,-0.2.
753
,,
正数会合负数会合整数会合分数会合拓展提升
1.填空:
( 1)有理数中,是整数而不是正数的是____;是负数而不是分数的是______.(2)零是 _____,仍是 ______,但不是 _____,也不是 _____.
(3)正整数、 ______和 _____统称整数; _______ 和 _____统称分数;整数和分数统称_______ .
( 4)既不是正数也不是负数的数是______,是正数而不是整数的数是______.2.把以下各数放在相应的会合中.
10. -0.72, -2, 0, -98, 25,8
, 6.3%, 3.14.
3
整数会合正数会合.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档