NeuralCellsFromEScells

合集下载

干细胞与再生医学

干细胞与再生医学

需要重点看的概念1 embryonic stem cells, ES 胚胎干细胞2 Stem cells 干细胞3 hematopoietic stem cell 造血干细胞4 Neural stem cells (NSCs) 神经干细胞are initially present in a single layer of pseudostratified epithelium spanning the entire distance from the central canal to the external limiting membrane. NSCs continue to proliferate, and are patterned over several days in vivo to generate mature neurons, oligodendrocytes, and astrocytes. 神经干细胞起先呈现为单层假复层上皮,覆盖于整个中央管到外部的限制性膜。

神经干细胞能增殖,并在数天内产生成熟的神经元、星形胶质细胞和少突胶质细胞。

5 plasticity 可塑性一种成体干细胞具有生成另一个组织的特化细胞的能力,即成体干细胞具有一定跨系、甚至跨胚层分化的特性,称其为干细胞的可塑性,也称为成体干细胞的横向分化。

Transdifferentiation (plasticity of stem cell): means the adult stem cell from one embryonic layer can differentiate into cells derives from other layer.6 Human mesenchymal stem cells 人间充质干细胞7.fate mapping 干细胞命运图:在正常环境下受各种稳态因素调节的分化趋势。

这些趋势包括干细胞对机体正常发育活动的参与,以及干细胞对各种生物学危险诸如组织损伤、器官衰老以及疾病的反应。

人工智能神经元的基本结构

人工智能神经元的基本结构

人工智能神经元的基本结构人工神经元是计算机模拟人脑神经元行为的基本单元,是人工智能的核心之一。

神经元的基本结构是由细胞体、树突(dendrite)、轴突(axon)、突触(synapse)四个部分组成。

人工神经元模拟人脑神经系统的运行,实现机器学习、深度学习、模式识别等人工智能领域的应用。

细胞体(Cell body)是神经元的主体部分,其功能是产生和调节神经元的电信号。

细胞体内有众多的细胞器,其中最重要的是细胞核,其功能是控制和调节细胞体内的生物活动。

树突(Dendrite)是神经元的负极,相当于输入端,接受来自其他神经元或传感器的电信号,并将其传递给细胞体。

不同的树突数量不同,各自具有不同的敏感程度。

当树突受到刺激时,会产生电势变化,并将信号传递到细胞体。

轴突(Axon)是神经元的正极,相当于输出端,是将细胞体产生的电信号传递至其他神经元或肌肉、腺体等体内器官的部分。

轴突的长度也不同,不同的长度将决定其可以传递信号的距离。

轴突上有多个突触,是神经元和其他神经元或肌肉、腺体等体内器官之间进行信息交流的重要结构。

突触(Synapse)是神经元之间的连接点。

突触分为兴奋性突触和抑制性突触两种类型。

兴奋性突触当受到刺激时,神经元释放化学物质神经递质并扩散至受体细胞,使神经元激活并产生信号。

抑制性突触则相反,会使得神经元抑制。

人工神经元的基本结构与生物神经元相似,其实现了输入信号加权之和,通过激活函数的映射,最后传递输出信号。

常用的人工神经元类型有感知机(Perceptron)、多层感知机(MLP)、卷积神经网络(CNN)等。

不同类型的人工神经元在结构和功能上存在区别,例如CNN中的卷积操作和池化操作在视觉任务中更加适用。

替代激活小胶质细胞通过BDNF信号通路促进神经发生的研究

替代激活小胶质细胞通过BDNF信号通路促进神经发生的研究
关键词:小胶质细胞;替代激活;神经发生;BDNF
I
ABSTRACT
ABSTRACT
Neurogenesis in the brain of adult mammals occurs throughout life, and has been clearly demonstrated at two locations under normal conditions: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells may be required for certain forms of brain function involving the olfactory bulb and the hippocampus, which is important for some forms of learning and memory. Microglia are the principal immune effector cells in the CNS, and play an essential role in shaping adult hippocampal neurogenesis. Microglia may exert both detrimental and beneficial effects on adulthood neurogenesis depending on their morphological and molecular phenotype. The classic activated microglia (M1) display pro-inflammatory phenotype, and have negative effects on neurogenesis. In contrast, the alternative activated microglia (M2) show increased expression of anti-inflammatory cytokines and nerve growth factors, and play a supportive role in regenerative processes. Brain-derived neurotrophic growth factor (BDNF) is one of the key factor involved in neurogenesis through the BDNF-TrkB interaction. It is hypothesized that the pro-neurogenic activity of M2 microglia involving with BDNF signaling pathway. The microglia were stimulated in vitro for 24h either by IFN-γ (100ng/ml) or IL-4 (10ng/ml) to induce M1 or M2 phenotype. With the co-culture of neural progenitor cells (NPCs) and ,microglia, the neurogenesis was enhanced by of IL-4-stimulated (M2) microglia and arrested by IFN-γ-stimulated (M1) microglia. It was found that IL-4-stimulated microglia have a higher expression of BDNF than IFN-γ-stimulated microglia. The pro-neurogenic activity of M2 was blocked by anti-BDNF antibody or by K252a, a selective inhibitor of TrkB.These results suggest that the alternative activation of microglia have a pro-neurogenic effect, which is involved with the BDNF signaling pathway. Keywords: Microglia, Alternative activation, Neurogenesis, BDNF

脑科学对儿童学习和教育的启示

脑科学对儿童学习和教育的启示
• 5岁儿童只能2 (±2)个数字 • 7岁时,平均回忆3个数字 • 11岁时,平均回忆5个数字 • 几乎每两年增加一个,直到15岁
外侧前额叶皮层可能为 存储于其它皮层区域中 信息的维持提供了瞬时 的缓冲
数学能力与工作记忆
• 数学计算几乎都与“工作记忆”密切相关 ,工作记忆的容量决定了计算的精度和准 确度。一般而言,工作记忆较弱的儿童其 数学能力一般也不好,通过执行功能的训 练可以取得较好的结果。
• 右半脑更擅长于对空间距离关系进行解码 ,即连续的距离
• 即使在这两个特例中,脑的两“ 右脑”是错误的!
• 任何所谓的“左脑教育”、“右脑 教育”、“左脑开发”、“右脑开 发”也都是错误的!
音乐与学习
脑与音乐
• 听觉信息从耳朵传递到脑 干,然后到丘脑,最后传 递到位于脑两侧的听觉皮 层(在颞叶上)。
脑科学对儿童学习和教育的 启示
主要内容
• 一、人体中最复杂的器官—脑 • 二、与脑有关的一些话题 • 三、执行功能与学习 • 四、具体学科的学习
• 2003年,国际心智、脑和教育学会(IMBES )成立,这是基于实证的神经教育学诞生的 标志
• 神经教育学基于学习科学的研究之上,但是 它本身不属基础研究学科,也就是说,它主 要不是发现学习的规律,而是在运用已经发 现的规律,来解决教育问题,和所有教育学 一样是一门应用科学,更像工程学和医学
– 饥饿 – 饮食条件差 – 维生素和矿物质吸收能力差 – 消化系统受到损害 – 感染 – 酒精中毒
营养建议
• 平衡膳食,多吃粗粮,不挑食
• 营养不良的一些影响可以通过适当的饮食进行 修复,所以不是所有不良饮食的影响都是永久 性的(早期营养不良影响较大)
• 不要盲目给孩子补充大量维生素和矿物质,正 常的饮食已经能够满足营养需求,除非在特定 的营养物质吸收方面存在生理问题

Neural_cells

Neural_cells

Neuromuscular synapse (2)
Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License
Hale Waihona Puke Neurons (1)Soma (cell body) Nucleus Node of Ranvier
Dendrite
Myelin sheath (Schwann cells) Axon Synapses
Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License
A service provided to medicine by
Nervous tissue
Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License
Types of neurons
Synapses (6)
Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License
Neuromuscular synapse (1)
Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License

小鼠单细胞分群出的各个细胞的marker基因

小鼠单细胞分群出的各个细胞的marker基因

小鼠单细胞分群出的各个细胞的marker基因最近几年,单细胞RNA测序技术的快速发展使得对小鼠细胞的深入研究成为可能。

通过单细胞RNA测序,可以获得大量的细胞表达数据,并且能够进行细胞分群,从而揭示出不同细胞类型之间的差异。

在小鼠单细胞分群的研究中,marker基因是非常重要的指标,可以用来鉴定和描述不同细胞类型。

下面我们将介绍一些小鼠单细胞分群中常见的细胞类型及其marker基因。

1.神经元细胞:神经元细胞是大脑的基本功能单位,主要负责信息传导和处理。

在小鼠单细胞分群中,可以通过一些特定的marker基因来鉴定神经元细胞,比如Tubb3、Snap25、Syn1和Nefh等。

这些基因主要参与神经元的结构和功能,通过它们的表达水平可以鉴定出神经元细胞。

2.神经胶质细胞:神经胶质细胞是神经组织中的非神经细胞,主要承担起支持、维持和修复神经元的功能。

在小鼠单细胞分群中,神经胶质细胞可以通过一些特定的marker基因来鉴定,比如Aqp4、Gfap、Optc等。

这些基因主要参与神经胶质细胞的结构和功能,通过它们的表达水平可以鉴定出神经胶质细胞。

3.免疫细胞:小鼠的免疫系统中含有多种不同类型的免疫细胞,包括B细胞、T 细胞、巨噬细胞等。

在小鼠单细胞分群中,可以通过一些特定的marker基因来鉴定免疫细胞的不同亚群,比如Cd19、Cd3d、Cd68等。

这些基因主要涉及免疫细胞的特定表面标记物或功能酶,通过它们的表达水平可以鉴定出不同类型的免疫细胞。

4.干细胞和前体细胞:在小鼠单细胞分群中,还可以鉴定出一些干细胞和前体细胞,这些细胞具有多向分化能力,在组织发育和修复中具有重要的作用。

一些常见的marker基因如Sox2、Olig2、Nestin和Pax6等,它们主要参与细胞的发育和分化过程,通过它们的表达水平可以鉴定出干细胞和前体细胞。

总的来说,小鼠单细胞分群的研究中使用了许多marker基因来鉴定不同细胞类型。

人工神经网络.

人工神经网络.

–定义误差函数
2018/10/5
32
1.3 学习规则
• 利用梯度下降法求权值变化及误差的反向传播
– 输出层的权值变化
• 其中
•ቤተ መጻሕፍቲ ባይዱ同理可得
2018/10/5
33
1.3 学习规则
• 利用梯度下降法求权值变化及误差的反向传播
– 隐含层权值变化
• 其中
• 同理可得
2018/10/5
34
1.3 学习规则
BP神经网络
1.BP网络
1.1 1.2 1.3 1.4 BP网络简介 网络模型 学习规则 图形解释
2018/10/5
22
1.1 BP网络简介
反向传播网络(Back-Propagation Network,简
称BP网络)是将W-H学习规则一般化,对非线性 可微分函数进行权值训练的多层网络 权值的调整采用反向传播(Back-propagation) 的学习算法 它是一种多层前向反馈神经网络,其神经元的 变换函数是S型函数 输出量为0到1之间的连续量,它可实现从输入 到输出的任意的非线性映射
2018/10/5
29
1.3 学习规则
• BP算法是由两部分组成,信息的正向传递与误差 的反向传播
–正向传播过程中,输入信息从输入层经隐含层逐层计 算传向输出层,每一层神经元的状态只影响下一层神 经元的状态 –如果在输出层未得到期望的输出,则计算输出层的误 差变化值,然后转向反向传播,通过网络将误差信号 沿原来的连接通路反传回来修改各层神经元的权值直 至达到期望目标
38
高校校园安全评价
前11组样本数 据作为训练样 本 最后1组作为 验证数据
输入层个数:17个(校园安全指标攻17个) 隐含层个数:11个(根据经验) 输出层个数:4个(评价指标优、良、中、 差) 训练函数:trainlm 训练次数:1000次 训练目标:0.0001 学习率:0.1

ES细胞资料

ES细胞资料

ES细胞
ES细胞,全称为胚胎干细胞(Embryonic Stem Cell),是一种来源于早期胚胎的多能性干细胞。

这些细胞具有无限分裂的潜能,同时能够分化成体内绝大部分类型的细胞。

因此,ES细胞被广泛认为具有重要的生物学和医学研究价值。

ES细胞的发现
ES细胞最早由美国犹太人和比利时裔美国裁判莱昂内尔 Lesliey 博士和在 1981 年首次分离并培养。

他们从小鼠早期胚胎中获取了具有多能性的干细胞,这一发现引起了科学界的巨大轰动,为干细胞研究开辟了全新的篇章。

ES细胞的特性
ES细胞具有多种特性,包括无限的增殖潜能、多向分化的潜能等。

这些特性使得ES细胞被广泛运用于生物学研究、再生医学和药物研发等领域。

通过控制不同的培养条件和生长因子,科研人员可以引导ES细胞向特定的细胞类型分化,为组织工程和疾病治疗提供了可能。

ES细胞在医学上的应用
ES细胞在医学上有着巨大的潜力。

通过将ES细胞分化成需要的细胞类型,可以用于治疗多种疾病,如心脏病、糖尿病、神经退行性疾病等。

然而,由于伦理、法律和安全等方面的考虑,ES细胞在医学上的应用仍面临诸多挑战和限制。

未来展望
随着生物技术的不断发展和创新,ES细胞在医学和生物学研究中的应用前景仍然广阔。

科研人员将会不断深入探索ES细胞的潜力,寻找更多行之有效的应用途径,为人类健康和疾病治疗带来新的希望。

ES细胞作为一种重要的干细胞类型,将继续在科学领域发挥重要作用,为人类社会的进步和发展做出贡献。

ES细胞资料

ES细胞资料

02
ES细胞的分化与调控
ES细胞分化的机制
内在调控机制
外在调控机制
• 基因表达调控
• 培养条件调控
• 信号通路调控
• 细胞因子调控
• 表观遗传调控
• 支架材料调控
ES细胞分化的影响因素
01
培养条件
• 营养成分
• 生长因子
• 细胞外基质
02
基因调控
• 转录因子
• 非编码RNA
• 表观遗传修饰
03
应用前景
• 再生医学
• 药物研发
• 疾病治疗
细胞来源问题
• 胚胎捐献
• 替代细胞来源
技术难题
• 细胞分化调控
• 基因编辑技术
CREATE TOGETHER
谢谢观看
THANK YOU FOR WATCHING
DOCSBiblioteka 信号通路• Wnt通路
• Notch通路
• TGF-β通路
ES细胞分化的应用前景
组织工程
• 制备组织细胞
• 构建组织器官
• 修复组织损伤
药物筛选
• 药物靶点研究
• 药物毒性评价
• 药物筛选模型
疾病模型建立
• 遗传性疾病模型
• 肿瘤疾病模型
• 损伤修复模型
03
ES细胞在再生医学中的应用
ES细胞在组织修复与再生中的应用
• 疾病治疗研究
04
ES细胞研究的伦理与挑战
ES细胞研究的伦理问题
胚胎来源
伦理审查
• 胚胎捐献
• 研究目的
• 胚胎利用
• 研究方法
• 胚胎保护
• 研究结果
ES细胞研究的法律与监管

考研分子生物学-7_真题无答案

考研分子生物学-7_真题无答案

考研分子生物学-7(总分104, 做题时间90分钟)一、名词解释1.分子生物学SSS_TEXT_QUSTI2.干细胞SSS_TEXT_QUSTI3.人类基因组计划SSS_TEXT_QUSTI4.核酸的变性SSS_TEXT_QUSTI5.增色反应SSS_TEXT_QUSTI6.DNA的熔点SSS_TEXT_QUSTI7.核酸的复性分子杂交SSS_TEXT_QUSTI8.原位杂交SSS_TEXT_QUSTI9.Southern法SSS_TEXT_QUSTI10.反义核酸SSS_TEXT_QUSTI11.反义DNA(cDNA)SSS_TEXT_QUSTI12.核酶SSS_TEXT_QUSTI13.染色体SSS_TEXT_QUSTI14.真核SSS_TEXT_QUSTI15.常染色质SSS_TEXT_QUSTI16.异染色质SSS_TEXT_QUSTI17.核小体SSS_TEXT_QUSTI18.基因SSS_TEXT_QUSTI19.副密码子SSS_TEXT_QUSTI20.顺反子SSS_TEXT_QUSTI21.顺式排列SSS_TEXT_QUSTI22.反式排列SSS_TEXT_QUSTI23.基因组SSS_TEXT_QUSTI24.不连续基因SSS_TEXT_QUSTI25.内含子SSS_TEXT_QUSTI26.外显子SSS_TEXT_QUSTI二、问答题27.生物学的研究方向向哪两个方面发展?人类基因组计划最初是由谁提出的?它的首席执行科学家是谁?SSS_TEXT_QUSTI28.分子生物学与现代医药学研究的关系是什么?SSS_TEXT_QUSTI29.核酸的种类有哪两种?DNA的双螺旋结构是怎样的?SSS_TEXT_QUSTI30.决定DNA双螺旋结构的因素有哪些?SSS_TEXT_QUSTI31.化学法(Maxam-Gilbert)和末端终止法(sanger)进行DNA测序的原理分别是什么?SSS_TEXT_QUSTI32.原核生物和真核生物RNA的种类分别是什么?SSS_TEXT_QUSTI33.值的因素是什么?影响DNA复性的因素是什么?核酸分子示交的种影响DNA的Tm类有哪四种?SSS_TEXT_QUSTI34.原核生物和真核生物的细胞周期分别包括哪些时期?SSS_TEXT_QUSTI35.反义核酸的种类有哪五种?SSS_TEXT_QUSTI36.染色质分为哪两种类型?构成染色质的基本结构单位是什么?根据DNA复性动力学将DNA序列分为哪四种类型?SSS_TEXT_QUSTI37.一个DNA分子上必需的三种特异核苷酸序列是什么?SSS_TEXT_QUSTI38.转座子分为哪四种类型?它们的特点分别是什么?SSS_TEXT_QUSTI39.转座子的机制有哪三种类型?复制转位的转座模型(1)是什么?SSS_TEXT_QUSTI1。

神经元的基本结构和前馈型神经网络的工作过程

神经元的基本结构和前馈型神经网络的工作过程

神经元的基本结构和前馈型神经网络的工作过程神经元是构成神经网络的基本单元,是一种特殊的细胞。

神经元通过电化学信号传递信息,具有处理和传递信息的功能。

神经元的基本结构包括细胞体、树突、轴突和突触。

前馈型神经网络是神经网络中最简单和常见的一种类型,也被称为多层感知机(Multilayer Perceptron,MLP)。

一个神经元由细胞体和突触构成。

细胞体是神经元的核心部分,其中包含细胞核和细胞质,负责接收和集成输入信号。

树突是细胞体上延伸出的分支,是接受并传递输入信号的部分。

突触是树突末端与其它神经元或神经肌肉连接的细小间隙,通过化学介质(神经递质)传递信号。

前馈型神经网络由多个神经元按层次排列组成,包含输入层、隐藏层和输出层。

输入层接受外界输入信号,在神经元间传递并处理信息。

隐藏层是介于输入层和输出层之间的中间层,起到特征提取的作用。

输出层是神经网络的最后一层,将隐藏层的特征经过处理后输出。

前馈型神经网络的工作过程分为前向传递和误差反向传播两个阶段。

前向传递是指输入数据通过一系列的神经元传递与处理,最终产生输出。

具体过程如下:1.输入层接受外界输入信号,并将其传递至隐藏层的神经元。

2.隐藏层接收来自输入层的信号,并通过权重和激活函数对其进行处理和转换,产生新的输出信号,然后传递至输出层。

3.输出层接收来自隐藏层的信号,并通过权重和激活函数对其进行处理和转换,最终产生输出结果。

4.输出结果可以与真实结果进行比较,计算出误差。

误差反向传播是指根据误差,将误差从输出层传递回隐藏层和输入层,通过调整权重和偏置来减小误差。

具体过程如下:1.通过计算输出层的误差,确定误差函数对权重和偏置的偏导数。

2.将误差从输出层反向传递至隐藏层,再从隐藏层反向传递至输入层,通过链式法则计算每一层的误差贡献。

3.根据误差贡献,使用梯度下降算法对权重和偏置进行更新,使得误差逐步减小。

4.重复以上步骤,直至网络输出结果接近或达到预期结果。

神经胶质细胞 名词解释

神经胶质细胞 名词解释

神经胶质细胞名词解释神经胶质细胞是一类非神经元的细胞,在神经系统中起着重要的支持和调节作用。

它们是神经组织中最丰富的细胞类型,与神经元一起构成了神经系统的基本组成部分。

神经胶质细胞主要包括星形胶质细胞(astrocytes)、少突胶质细胞(oligodendrocytes)、微胶质细胞(microglia)和室管膜上皮细胞(ependymal cells)等。

1. 星形胶质细胞(astrocytes)是神经胶质细胞中最常见的类型,其形状类似于星星。

星形胶质细胞存在于整个中枢神经系统中,主要在血脑屏障周围形成与神经元之间的联系。

它们具有多种功能,包括提供机械支持、形成血脑屏障、调节外部离子浓度和维持神经元的代谢平衡等。

2. 少突胶质细胞(oligodendrocytes)主要存在于中枢神经系统中,其主要功能是产生和维护髓鞘。

髓鞘是由脂质组成的绝缘层,包裹在神经纤维外,使其能够更有效地传递神经冲动。

少突胶质细胞通过产生髓鞘,保护和加速神经信号传导。

3. 微胶质细胞(microglia)是神经胶质细胞中的免疫细胞,主要存在于中枢神经系统中。

它们具有巨噬细胞的功能,能够清除细胞垃圾、炎症介质和损伤细胞,并参与神经发育和修复。

微胶质细胞在脑损伤和炎症过程中起到重要的调控作用。

4. 室管膜上皮细胞(ependymal cells)主要存在于脑室和脊髓中。

它们覆盖着脑室内部,形成室管膜。

室管膜上皮细胞具有排泄、分泌和运输物质的功能,同时还参与控制脑脊液的产生和循环。

神经胶质细胞在神经系统中起着多种重要的功能。

除了上述介绍的基本功能外,神经胶质细胞还参与神经元发育、调节细胞间的信号传导、调节脑血流、维持神经元的离子平衡、清除神经元代谢产物和参与免疫反应等。

此外,神经胶质细胞还与神经系统疾病的发生和发展密切相关,如神经退行性疾病、神经炎症和脑肿瘤等。

虽然神经胶质细胞的研究相对于神经元还不够深入,但其重要性已经逐渐受到人们的重视。

体细胞重编程星形胶质细胞的研究进展

体细胞重编程星形胶质细胞的研究进展

体细胞重编程星形胶质细胞的研究进展体细胞重编程是指通过引入一组特定的转录因子,将已经分化的体细胞重新转化为多能干细胞,即诱导多能干细胞(iPSCs),这些iPSCs可以分化为各种细胞类型,包括心脏细胞、神经细胞和胰岛细胞等。

近年来,体细胞重编程技术在再生医学和疾病治疗方面取得了显著的进展。

目前大部分的研究仍集中在通过体细胞重编程生成多能干细胞,对于直接将体细胞转化为特定类型细胞的研究还相对较少。

星形胶质细胞是中枢神经系统中的一种特殊细胞类型,具有重要的生理功能,参与了神经元的支持、代谢和修复等过程。

利用体细胞重编程技术将星形胶质细胞转化为其他类型细胞,将有助于深入研究它们的功能以及治疗神经系统疾病。

已有的研究表明,体细胞重编程可以成功地将成纤维细胞等非神经系统细胞转化为星形胶质细胞,从而验证了体细胞重编程技术在星形胶质细胞生成方面的潜力。

一项研究通过引入适当的转录因子,成功地将成纤维细胞转化为表皮胶质细胞,这是一种星形胶质细胞的亚型,其在中枢神经系统中起着重要的功能。

研究人员还通过选择性地激活和抑制某些信号通路,成功地将胚胎成纤维细胞和成纤维树突细胞转化为星形胶质细胞,进一步证实了体细胞重编程技术在星形胶质细胞生成方面的适用性。

体细胞重编程生成的星形胶质细胞不仅具有形态和功能上的相似性,还在分泌因子、细胞外基质的合成和分泌等方面与天然星形胶质细胞具有相似性。

这些研究表明,通过体细胞重编程可以有效地将非神经系统细胞直接转化为星形胶质细胞,并且生成的星形胶质细胞在一定程度上具有功能特性。

目前的研究还仅处于初级阶段,还需要进一步的研究来优化体细胞重编程技术,以提高星形胶质细胞生成的效率和质量。

研究人员还需要进一步探索星形胶质细胞自发性转化的机制,以及与其他类型细胞的转化相比,体细胞重编程生成星形胶质细胞的可行性和效果。

体细胞重编程技术在星形胶质细胞转化方面取得了一定的进展,为深入研究星形胶质细胞功能和开发相关治疗手段提供了新的思路。

从单细胞到bulk的反卷积算法

从单细胞到bulk的反卷积算法

文章标题:从单细胞到bulk的反卷积算法探究在生物学和生物信息学领域,研究人员经常面临着从单细胞到bulk数据的转换和分析问题。

这需要使用一种被称为反卷积算法的工具来对数据进行重构和解读。

本文将深入探讨单细胞数据和bulk数据之间的关系,以及如何利用反卷积算法进行数据重构的方法。

1. 单细胞和bulk数据的关系单细胞数据和bulk数据都是在生物学研究中常见的数据类型,它们分别代表了不同的层次和维度。

单细胞数据是指对单个细胞的基因表达进行测量得到的数据,可以揭示不同细胞类型和状态间的差异。

而bulk数据则是将大量细胞的基因表达值进行求和或平均得到的数据,代表了整个细胞群体的基因表达情况。

在研究过程中,我们往往需要从单细胞数据中推断出bulk数据的信息,或者反过来,从bulk数据中还原出单细胞数据的细节。

这就需要借助反卷积算法来进行数据的转换和解析。

2. 反卷积算法的原理和方法反卷积算法是一种基于数学模型的数据重构方法,它的核心思想是通过对数据的分解和重建,来还原出原始数据的细节和结构。

在从单细胞到bulk数据的转换过程中,我们可以利用反卷积算法来进行数据的解卷积,从而还原出单细胞数据的信息。

在实际应用中,反卷积算法通常通过建立数学模型和运用优化算法来实现。

可以利用矩阵分解、信号处理和机器学习等技术,对单细胞和bulk数据进行分解和重构,以达到数据转换和还原的目的。

3. 如何利用反卷积算法进行数据分析在实际的数据分析中,我们可以根据需要选择合适的反卷积算法来进行数据的处理和分析。

我们需要对待转换的单细胞和bulk数据进行预处理和特征提取,然后根据数据的维度和特点选择合适的反卷积算法,进行数据的重构和解析。

在选择算法时,我们需要考虑数据的稀疏性、噪声情况、维度和模型复杂度等因素,以确保算法的有效性和鲁棒性。

我们也需要对算法进行参数调优和结果评估,以验证数据转换和还原的效果。

4. 个人观点和理解从单细胞到bulk数据的转换和解析是生物学和生物信息学领域中一个重要且复杂的问题。

医学细胞生物学(省级精品资源共享课程)学习通课后章节答案期末考试题库2023年

医学细胞生物学(省级精品资源共享课程)学习通课后章节答案期末考试题库2023年

医学细胞生物学(省级精品资源共享课程)学习通课后章节答案期末考试题库2023年1.组成微丝最主要的化学成分是( )。

参考答案:肌动蛋白2.核骨架不象胞质骨架那样由非常专一的蛋白成分组成,核骨架的成分比较复杂,主要成分是核骨架蛋白及核骨架结合蛋白。

( )参考答案:对3.纺锤体微管包括星体微管,动粒微管和极间微管(或称为重叠微管,极微管)。

( )参考答案:对4.细胞松弛素B是真菌的一种代谢产物,可阻止肌动蛋白的聚合,结合到微丝的正极,阻止新的单体聚合,致使微丝解聚。

( )参考答案:对5.MTOC的中文名称是_________。

参考答案:微管组织中心6.微管由_____分子组成。

参考答案:微管蛋白;α微管蛋白和β微管蛋白;α-微管蛋白和β-微管蛋白;α-tubulin和β-tubulin7.对中间纤维结构叙述错误的是( )。

参考答案:正极组装快,负极组装慢8.能够专一抑制微丝组装的物质是( )。

参考答案:细胞松弛素B9.在非肌细胞中,微丝与哪种功能无关( )。

参考答案:染色体运动10.在电镜下可见中心粒的每个短筒状小体( )。

参考答案:由9组三联微管环状斜向排列11.关于微管的组装,哪种说法是错误的( )。

参考答案:微管两端的组装速度一定是相同的12.在微丝的组成成分中,起调节作用的是( )。

参考答案:原肌球蛋白13.线粒体遗传系统不需细胞核遗传系统的调控。

( )参考答案:错14.呼吸链的酶和电子传递过程主要定位于线粒体内膜上。

( )参考答案:对15.分子伴侣协助多肽链转运、折叠或装配,但不参与终产物的形成。

( )参考答案:对16.经常活动的运动员,其肌细胞中的线粒体要比不经常运动的人多。

( )参考答案:对17.矽肺是一种职业病,与溶酶体有关,其发病机制是( )。

参考答案:矽粉使溶酶体破坏18.下列蛋白质中,合成前期具有信号肽的是( )。

参考答案:唾液腺淀粉酶19.下列哪组蛋白质的合成开始于胞液中,后转移到糙面内质网上合成( )。

中性粒细胞的逻辑读书笔记读书摘录读书感想

中性粒细胞的逻辑读书笔记读书摘录读书感想

中性粒细胞的逻辑现在我们来回顾一下中性粒细胞从游离状态到目标位点的过程。

在这一过程中,涉及SEL-SLIG的结合,INT-ICAM的结合,以及还包括趋化因子与受体的相互作用,它们共同诱导巨噬细胞从血管进入目标位点,这看起来有点复杂。

如果让我们自己来设计这套系统,我们是否会只设计一对黏附分子(例如SEL-SLIG)来实现这一事件,这不是更简单吗?答案是对的,只设计一对黏附分子确实非常简单,但是,我们还要考虑一件事情,我们人体内约有1000亿个内皮细胞,假设有一个内皮细胞突变了,它在其自身表面表达大量的SEL,如果此时仅需要一对黏附分子,例如SEL-SLIG就能诱导中性粒细胞,那么后果不堪设想,中性粒细胞们会一窝蜂地从血液中出来,进入正常组织,造成极为严重的后果。

如果是三种这样的分子来诱导中性粒细胞,那么这个系统的安全性系数就会提高。

前面我们还提到,内皮细胞SEL的表达大约需要6小时,这个时间似乎有点长。

如果巨噬细胞一旦检测到危险就马上从血液里招募中性粒细胞不更好吗?其实不一定。

假设你是巨噬细胞,你要招募战友(中性粒细胞)的前提是,病原体的攻击非常强烈,你应付不过来。

如果遇到的只是个别病原体,你自己就马上搞定了,短时间内根本用到中性粒细胞插手。

另外,招募中性粒细胞还会导致不必要的组织损伤。

在实际情况中,许多巨噬细胞会持续战斗数天,并且在战斗的过程中,巨噬细胞会分泌一些细胞因子,上调SEL的表达,这就确保了在真正需要时才会招募中性粒细胞。

中性粒细胞并非是唯一一个能开血液并进入组织的免疫细胞,此外还有肥大细胞,单核细胞,以及激活的B细胞和T细胞也必须被派往感染的部位。

这些细胞的不断运输就像一个邮政系统,其中有数万亿个包裹(其实就是免疫细胞)必须要精准地投递到正确的位置,其中中性粒细胞的迁移就是这个系统的体现,其余的细胞也是按照中性粒细胞的这种迁移策略进行的。

免疫系统的这个“邮政系统”的重要特征就是,诱导细胞滚动和停止的分子在不同的细胞类型和不同位置各异。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s diseaseJong-Hoon Kim*,Jonathan M.Auerbach*†,Jose´A.Rodrı´guez-Go´mez,Iva´n Velasco,Denise Gavin,Nadya Lumelsky,Sang-Hun Lee†, John Nguyen†,Rosario Sa´nchez-Pernaute†,Krys Bankiewicz†&Ron McKayLaboratory of Molecular Biology,National Institute of Neurological Disorders and Stroke,National Institute of Health,Bethesda,Maryland20892,USA*These authors contributed equally to this work ........................................................................................................................................................................................................................... Parkinson’s disease is a widespread condition caused by the loss of midbrain neurons that synthesize the neurotransmitter dopamine.Cells derived from the fetal midbrain can modify the course of the disease,but they are an inadequate source of dopamine-synthesizing neurons because their ability to generate these neurons is unstable.In contrast,embryonic stem(ES)cells proliferate extensively and can generate dopamine neurons.If ES cells are to become the basis for cell therapies,we must develop methods of enriching for the cell of interest and demonstrate that these cells show functions that will assist in treating the disease. Here we show that a highly enriched population of midbrain neural stem cells can be derived from mouse ES cells.The dopamine neurons generated by these stem cells show electrophysiological and behavioural properties expected of neurons from the midbrain.Our results encourage the use of ES cells in cell-replacement therapy for Parkinson’s disease.Fetal midbrain precursors can proliferate and differentiate into dopamine-synthesizing neurons in vitro,and transplantation of these cells leads to recovery in a rat model of Parkinson’s disease1,2. However,these precursor cells,which are derived from either rodent or human midbrain,generate dopamine neurons for only short periods in culture.ES cells can proliferate extensively in an undif-ferentiated state and may provide an unlimited source of many cell types.A related benefit of using ES cells is their accessibility for genetic engineering,which will permit the isolation and functional analysis of specific cell types.The isolation of human ES cells and the related embryonic germ cells has stimulated interest in their potential clinical value3,4.Although the use of ES cells in cell therapy is widely discussed,there are few cases showing that ES cell technology can be successfully applied to animal models of dis-ease5–7.We have defined signals that improve the efficiency of dopamine-neuronal differentiation from ES cells,but this approach may still provide too few neurons for widespread use8.The purpose of our study here was to develop a method of further increasing the efficiency of midbrain-specific generation of dopamine neurons from ES cells,and to demonstrate that these cells can functionally integrate into host tissue as well as lead to recovery in a rodent model of Parkinson’s disease.Generation of midbrain CNS precursorsPreviously,we developed afive-stage method that leads to the efficient differentiation of ES cells into neurons8,9.Nuclear receptor related-1(Nurr1)is a transcription factor that has a role in the differentiation of midbrain precursors into dopamine neurons10–13. We used a cytomegalovirus plasmid(pCMV)driving expression of a rat Nurr1complementary DNA modified to express an antigenic site derived from the haemagglutinin protein(HA)to establish stable Nurr1ES cell lines.Nurr1ES cells were processed through the five-stage differentiation method8.Immunoblotting was used in stages4and5using anti-Nurr1or anti-HA antibodies.The anti-HA antibody shows that the introduced gene is expressed at high levels at stage4but at much lower levels at stage5.In contrast,the endogenous Nurr1gene was expressed at low levels in stage4cells but at higher levels after differentiation at stage5(Fig.1a).These cells differentiated appropriately to cells positive for tyrosine hydroxylase(TH)(Fig.1a and b).The subcellular localization of Nurr1was monitored by immunocytochemistry using anti-HA antibody.In undifferentiated ES cells,Nurr1was located in a restricted site in the nucleus(Fig.1c).To assess whether Nurr1 induces TH expression in the appropriate neural cell types,we used double labelling for TH and specific molecular markers for neurons and glia.All THþcells were double labelled with the neuronal marker Tuj1but not with the markers for glial lineages(data not shown),indicating that the expression of the Nurr1gene induced TH expression specifically in neurons.We found no evidence of elevated rates of cell death in Nurr1-expressing ES or neural stem cells(data not shown),ruling out that expression of transfected Nurr1alters the distribution of cell fates by causing the death of specific cell types.Also,Nurr1expression alone could not switch the regional identity of central nervous system(CNS)precursors,as evidenced by the lack of Engrailed1(En-1)expression in Nurr1-transfected cortical CNS stem cells positive for Bf1(a forebrain-specific marker)(data not shown).These results suggest that the THþneurons derived from Nurr1ES cells are generated from precursor cells that are readily responsive to the actions of the Nurr1protein.Modification of the above procedure can differentiate ES cells into insulin-secreting structures similar to pancreatic islets14.This directly raises the important problem of enriching for specific cell types when using ES cells as a starting point.Cells at early stages of vertebrate development are thought to adopt mesodermal and ectodermal differentiation paths as alternate fates.Leukaemia inhibitory factor(LIF)inhibits the formation of cardiac meso-derm15and may promote neuronal differentiation at early stages of CNS development16.The pancreatic and duodenal homeobox-1 (Pdx-1)gene is an early regulator of the differentiation of cells in the endocrine pancreas17.LIF treatment of stage2cell aggregates strongly reduces the expression of Pdx-1and promotes the differ-entiation of neurons.†Present addresses:NeuralStem,Inc.,205Perry Parkway,Gaithersburg,Maryland20877,USA(J.M.A.); Department of Biochemistry,College of Medicine,Hanyang University,133-791Seoul,Korea(S.-H.L.); Department of Neurosurgery,University of California,San Francisco,California94103,USA(J.N.,K.B.); Neuroregeneration Laboratory,Harvard Medical School,McLean Hospital,Belmont,Massachusetts 02478,USA(R.S.-P.).In the developing CNS,midbrain dopamine-producing and hindbrain serotonin-producing neurons are generated on either side of the isthmic organizer,a signalling centre known to influence neuronal differentiation 18,19.Both of these neuronal types are dependent on fibroblast growth factor 8(FGF8)and sonic hedgehog (Shh)synthesized by the isthmic organizer 18,19.In addition,pre-cursors for serotonin-positive neurons in the ventral hindbrain are sensitive to FGF4(ref.20).The number of dopamine neurons generated from ES cells can be significantly increased when treating cells with FGF8and Shh 8.Therefore,we assessed the ability of FGF4to generate serotonin neurons from ES cells by substituting FGF2with FGF4during stage 4.Stage 4cells treated with FGF4for 2days and exposed to Shh and FGF8for a further 4days were analysed by immunocytochemistry after differentiation in stage 5(Fig.1d).FGF4promoted a 2.5-fold increase in serotonin neurons and reduced the population of TH þcells (Fig.1e).This result indicates that,as with endogenous mid-and hindbrain CNS precursors,the cell population at stage 4is responsive to developmentally appropriate signals generated by the isthmic organizer.To further define the cells present at stage 4,we evaluated the expression of transcription factors that characterize precursors in different regions of the CNS.Previous studies have shown that Otx2expression occurs in the fore-and midbrain with a posterior limit at the isthmic organizer 21,22.Pax2is expressed in the mid-and hindbrain before becoming restricted to hindbrain cells 21,22.AtFigure 1Properties of neural precursors derived from Nurr1ES cells.a ,Immunoblot analysis for transfected Nurr1(HA),total Nurr1and TH at the end of stage 4and at day 8of stage 5.b ,Differentiation of Nurr1-transfected ES cells into TH þ(red)and serotonin þ(green)neurons at day 10of stage 5.The proportion of TH þcells was greater than that in wild-type ES cells.c ,Nurr1overexpression was evaluated using anti-HA immunostaining (red)at stage 1.DAPI (4,6-diamidino-2-phenylindole),blue;TH,green.Inset,co-localization of Nurr1with DAPI at higher magnification.d ,Stage 4cells were cultured in the presence of Shh (500ng ml 21)and FGF8(100ng ml 21)with 20ng ml 21of FGF2or FGF4(5,10and 50ng ml 21)and immunostained with TH and serotonin at day 10of stage 5.e ,The yield of TH þand serotonin þneurons/low power field (SEM from 40different fields of view).f ,Nurr1-expressing stage 4cells show markers of midbrain precursors.En-1þimmunoreactivity co-localizes with Pax2and Otx2.In contrast,few Bf1þcells were positive for En-1.After differentiation at stage 5,most TH þneurons expressed the midbrain-specific markerEn-1.Figure 2Characterization of TH þneurons derived from Nurr1-transfected ES cells.a ,Wild-type (WT)and Nurr1ES cells were induced to differentiate by the five-stage protocol described in the text.The generation of TH þand serotonin þneurons was measured at day 10of stage 5.The generation of TH þneurons is enhanced in wild-type and Nurr1ES cells by treatment with Shh and FGF8in stage 4.b ,HPLC quantification of dopamine release by stage 5ES cells after depolarization in HBSS (56mM KCl)for 15min.Data are shown as mean ^s.e.m.c ,Expression analysis of genes involved in midbrain neuron development and function by RT–PCR in stage 5.Note that midbrain-specific genes Nurr1,Ptx3,En-1and the dopamine transporter (DAT)are expressed at low levels in the absence of Nurr1overexpression and Shh/FGF8treatment at stage 4.stage4,many cells positive for En-1co-express Pax2(65.5%)and Otx2(80%)(Fig.1f).Less than1%of the En-1þcells label with Bf1(ref.23and Fig.1f).No cells expressing motor neuron transcription factors HB9or Isl1were seen at either stage4or 5(data not shown).Also,similar to En-1expression patterns seen in postmitotic differentiated dopamine neurons10,24,nearly all ES-derived THþneurons expressed En-1in their nucleus (Fig.1f).These results strongly support the view that midbrain precursors and differentiated neurons can be efficiently generated from ES cells.Functional characterization of dopamine neuronsIn ES cells,Nurr1overexpression alone promoted an increase in the proportion of THþneurons from5to50%(Fig.2a).When Shh and FGF8were present at stage4,the proportion of THþneurons generated from Nurr1ES cells could be increased to78%(mean^ s.e.m.,78.2^3.2;Fig.2a).In Nurr1ES cells,serotonin-positive neurons were increased2.3-fold by the treatment of Shh and FGF8, but this value is not significantly different from that in wild-type (WT)ES cells,indicating that the differentiation of serotonin neurons was not affected by Nurr1(Fig.2a).This is consistent with in vivo data showing that deletion of Nurr1has no effect on the serotonin neurons13and emphasizes that Nurr1must act coopera-tively with other signals specifically found in midbrain cells.The capacity of the THþneurons to synthesize and release dopamine was assessed by reverse-phase high-performance liquid chromatography(HPLC).The dopamine released by depolarization was markedly elevated in the cultures of stage5Nurr1ES cells compared with WT ES cells(Fig.2b).The presence of noradrenaline and adrenaline was not observed in these cultures using an assay with a detection limit of70pg ml21and120pg ml21for noradrena-line and adrenaline,respectively.To further characterize the dopamine-producing THþneurons, semi-quantitative polymerase chain reaction with reverse transcrip-tion(RT–PCR)was used to evaluate expression of specific genes involved in dopamine neuron development and function.Nurr1, TH and aromatic L-amino acid decarboxylase(AADC)were all upregulated in differentiated Nurr1ES cells compared with WT ES cells(Fig.2c).Dopamine b-hydroxylase(DBH)and the transcrip-tion factor Phox2a,selective markers for adrenaline-mediated neurons,were not detected(data not shown).Treatment with Shh and FGF8increased the expression of dopamine transporter(DAT),Figure3Nurr1ES cells integrate into the striatum of hemiparkinsonian rats.The diagramshows a drawing of a single section through a graft(G)in the striatum(LV,lateral ventricle;AC,anterior commissure).Single confocal images after immunohistochemistry for TH(red)are shown(a–g)from regions marked by red dots in the diagram.The distribution ofcells and processes through the thickness of the section(35m m)is shown by the z-seriesdisplayed in green on the right.Note the many THþprocesses that extend away from thegraft into the parenchyma of the host striatum(d–f).Scale bar,50m m.h,Immunoreactivity for the mouse-specific antigen M2(green)and for TH(red,or yellowwhere it overlaps green)in the dorsal striatum of grafted animals.i,Survival of THþ,serotoninþand GAD67þcells in grafts at4and8weeks after transplantation.j,Lack ofimmunostaining for Ki-67(green)in a graft(M2,red).Inset shows Ki-67staining of a ratbrain section containing glioma cells as a positive control.which in vertebrates is exclusively found in dopamine neurons (Fig.2c).The homeobox gene Ptx3,uniquely found in midbrain dopamine neurons 25,was highly expressed in cultures of Nurr1ES cells in the presence of Shh and FGF8(Fig.2c).A high level of En-1messenger RNA was also found in Shh/FGF8-treated cells,suggesting that exposure of precursor cells to specific factors regulates gene expression at later stages of neuronal differentiation.These results are strong evidence that TH þcells generated from Nurr1ES cells express many molecular,morphological and func-tional features expected of midbrain dopamine neurons.We next explored the ability of differentiated WT and Nurr1-transfected ES cells to survive,integrate,and function in host animals.In rodents,administration of 6-hydroxy dopamine (6-OH-DA)in the striatum kills dopamine neurons,providing a useful model of Parkinson’s disease.Animals lesioned with 6-OH-DA either received a sham operation or a graft of 5£105Nurr1ES cells (day 3of stage 5).The sham-grafted animals showed no TH þelements in the ipsilateral substantia nigra or the striatum.Animals grafted with Nurr1ES cells were used for morphological analysis by TH immunostaining.All grafts were easily detected in the dorsal striatum by staining for the mouse-specific surface antigen M2and for TH.TH þcells in the grafts show complex morphologies (Fig.3a–c)and are positive for the calcium-binding protein calbindin (relative molecular mass 28,000),which is normally expressed in a subset of midbrain dopamine neurons that project to the striatum 26(data not shown).In serial sections,the grafts were found to extend across 2.5mm of the host striatum.TH þcell bodies were restricted to the region of the graft (Fig.3a–c)but TH þprocesses were found in the parenchyma of the host striatum up to 2mm from the graft (Fig.3d–g).Many of the M2þgrafted cells also expressed TH (Fig.3h).To characterize the phenotype of grafted cells,we measured the number of neurons positive for TH,serotonin and glutamate decarboxylase (GAD67)in grafts at 4and 8weeks after implantation.None of the serotonin þor GAD67þneurons co-Table 1Electrophysiological characterization of TH 1neuronsTH þ[A]TH 2(graft)[B]TH 2(host)[C]...................................................................................................................................................................................................................................................................................................................................................................Resting membrane potential (mV)*264^3.5(15)C 267^2.9(21)277^1.6(19)A Rectifier ratio (early/late)*0.81^0.05(15)B,C 0.97^0.02(20)A 0.99^0.03(17)A Action potential duration (ms)* 2.23^0.17(15)C 1.47^0.24(20) 1.1^0.21(17)A Action potential amplitude (mV)60^2.1(15)57^3.2(20)62^2.2(17)Current–frequency relation (Hz pA 21)*0.18^0.11(13)B,C 0.98^0.14(20)A 1.3^0.21(15)A Maximum firing frequency (Hz)*47^8.4(11)B,C69^6.5(20)A81^6.7(15)A...................................................................................................................................................................................................................................................................................................................................................................Characteristics of TH þversus TH 2neurons in vivo .There are several properties of TH þneurons,characteristic of dopamine neurons,that are significantly different from those of TH 2neurons.These differences are phenotype dependent,regardless of the origin of the cell —that is,host derived rather than ES cell derived.Data are presented as mean ^s.e.m.The number in parentheses is the number of cells for each value.Letters in brackets represent the different groups.*P #0.025by analysis of variance.A superscript letter denotes that the value is significantly different from the indicated group,using Tukey’s post-hocanalysis.Figure 4Electrophysiological properties of TH þneurons.Simultaneous recordings were performed from neurons in the graft located on the graft–host border and neurons in the host striatum.a ,Representative current–voltage relationship for a host striatal TH 2neuron and a TH þneuron in the graft.The TH þneurons display the time-dependent anomalous rectifier characteristic of dopamine-synthesizing cells after a hyperpolarizing pulse.Circles,the full extent of the immediate reduction in the membrane potential;triangles,the sustained membrane potential.b ,Spike train profiles of a host striatal neuron and a graft-derived TH þneuron.TH þneurons fired broader action potentials at alower frequency than TH 2neurons.c ,ES-derived TH þneurons in the graft displayed a unique evoked IPSP mediated by activation of the metabotropic glutamate receptors.d ,Extracellular stimulation in the centre of the graft resulted in an EPSP in both a graft-derived TH þneuron and a host striatal neuron,indicating the presence of graft-to-host and graft-to-graft synapses.e ,Confocal micrograph illustrating a biocytin-filled (green)TH þneuron in the graft in close proximity to other non-filled,graft-derived TH þneurons (red).The neuron was filled during recording.The filled neuron extends processes well into the host striatum.The dotted line shows the host–graft interface.Scale bar,50m m.expressed TH (data not shown).The great majority of neurons were TH þand neuron number did not change significantly between 4and 8weeks (Fig.3i).The stability of cell number in the graft is also an important issue because undifferentiated ES cells cause teratomas.The expression of Ki-67,a characteristic antigen found in dividing cells,was used to search for cell proliferation in the graft.No Ki-67þcells were seen in the grafts (Fig.3j)but they were abundant in sections of human glioma cells grafted into the adult rat brain (Fig.3j,inset).Consistent with this finding,no teratomas were observed in animals that had received grafts of Nurr1ES cells.To test the electrophysiological properties of grafted neurons in vivo ,rats were euthanized at several time points,up to 140days after grafting,and brain slices (300m m thick,and containing the entire graft)were prepared for electrophysiological ing an infrared differential interference contrast (IR-DIC)microscope,neurons at the host–graft interface were preferentially targeted for recording.The properties of the recorded cells (Table 1)demon-strate that grafted TH þcells display electrophysiological character-istics similar to those of mesencephalic neurons 27,28.For example,TH þneurons subjected to hyperpolarizing voltage steps showed anomalous rectification in vivo (Fig.4a).TH þcells also showedaction potential frequency and duration properties distinct from TH 2neurons in the graft and in the parenchyma of the host striatum (Fig.4b and Table 1).These differences are similar to previous reports comparing TH þand TH 2mesencephalic neurons 27,28.Mesencephalic dopamine neurons show a unique inhibitory postsynaptic potential (IPSP)29.In five of six grafted TH þneurons,a train of extracellular stimuli elicited this IPSP ,which is dependent on metabotropic glutamate receptor type 1(mGluR1)(Fig.4c).In contrast,none of the five TH 2neurons showed this IPSP .Simul-taneous recordings were performed from medium spiny neurons in the host striatum and from candidate TH þneurons in the graft (Fig.4d).Of 25pairs of cells recorded,little or no spontaneous activity was observed and no direct synaptic connections were seen.However,when applying extracellular stimulation to a population of cells within the graft,excitatory postsynaptic potentials (EPSPs)were recorded in neurons both in the graft and in surrounding host cells up to 0.8mm from the graft border (Fig.4e).These results indicate that the ES-derived neurons develop functional synapses and show electrophysiological properties expected of mesencephalic neurons.We next tested the behaviour of sham-operated animals and animals grafted with dopamine neurons differentiated to day 3of stage 5.Amphetamine stimulation to animals lesioned unilaterally with 6-OH-DA induces a movement bias ipsilateral to the injection site.The sham group of animals showed a stable rotational bias (Fig.5a).Animals grafted with 5£105cells derived from WT ES cells showed a slight recovery in rotation behaviour.In contrast,the group grafted with Nurr1ES cells showed a marked change in this parameter leading to consistent contralateral turning (Fig.5a).The turning biases were preserved in sham grafted groups and groups grafted with Nurr1ES cells when spontaneous rotations were measured (Fig.5b).In addition,the recovery of these animals was evaluated with a battery of non-pharmacological tests that provide a more direct measure of motor deficits analogous to those found in human Parkinson’s disease.We observed a significant improvement in the Nurr1group in the adjusting step,cylinder and paw-reaching tests (Fig.5c–e).Anatomical analysis showed that dopamine neur-ons were present in all the animals grafted with neurons derived from WT and Nurr1-expressing ES cells.Further studies are required to determine the relationship between the number of dopamine neurons and the behavioural response.However,the recovery observed in the behavioural tests shows that neurons derived from Nurr1ES cells function in response to both pharma-cological stimulation and also in spontaneous integrative tasks.DiscussionThe low efficiency of generation of dopamine neurons from primary cultures of fetal,neonatal cells or adult stem cells limits their therapeutic potential as donor cells.We report here that ES cells can efficiently generate midbrain precursors and dopamine neurons.The functional analysis of the ES-cell-derived neurons was conducted by anatomical,neurochemical,electrophysiological and behavioural tests.ES-cell-derived TH þcells release dopamine,extend axons into the host striatum,form functional synaptic connections and modulate spontaneous and pharmacologically induced behaviours.Grafted fetal midbrain-specific dopamine neurons innervate the striatum and improve motor asymme-try 1,30,31.In contrast,hypothalamic dopamine neurons or nor-adrenaline neurons,which also express TH,did not innervate the striatum in a rat model of Parkinson’s disease 32–34.Our data support the notion that ES-cell-derived neurons survive and function after grafting into the lesioned striatum.Although the results presented here encourage the development of strategies involving neurons derived from ES cells in the treat-ment of neurological disease,further studies are needed both in rodent and primate systems to address the long-term safety and efficacy of these cells.Inappropriate cells may be includedalongFigure 5Behavioural effects of grafted Nurr1ES cells.a ,Analysis of amphetamine-stimulated rotations in animals grafted with neurons derived from wild-type (WT)(n ¼10)or Nurr1ES cells (n ¼15)and sham controls (n ¼18).b –e ,Non-pharmacological evaluation of the animals grafted with either WT or Nurr1ES cells (mean ^s.e.m.).b ,Nine weeks after grafting and one week after the last injection of amphetamine,spontaneous turning behaviour was evaluated for 5min.c ,The results in the adjusting step test are expressed as a percentage of the lesioned side relative to the number of steps with the non-lesioned paw.d ,In the paw-reaching test,the number of pellets eaten with the lesioned paw were normalized by the total number of pellets eaten during the 7-day test period.e ,In the cylinder test,the use of each limb was measured when rearing and landing.The percentage of use of the lesioned-side limb relative to the total number of landings after rearing is expressed,Asterisk,P ,0.05;double asterisk,P ,0.001,compared with sham group.with the midbrain dopamine neurons.For example,tumour for-mation is a problem associated with ES cell grafting in models of Parkinson’s disease35.Under our conditions,differentiated neurons were enriched and dividing cells were not seen in a series of grafts that were analysed up to8weeks after transplantation;however, additional long-term data are needed to show that ES-derived cells do not divide in vivo.The dopamine and serotonin neurons of the mid-and hindbrain are also important in mood disorders and schizophrenia36,37.Our results justify the continued study of the therapeutic benefits that can be derived from the use of ES cells,with the ultimate goal being the successful application of therapies based on ES cells in the treatment of neurological and psychiatric disease.A MethodsGeneration of Nurr1ES cells and differentiationA full-length cDNA fragment for rat Nurr1was cloned into pCMV b vector(Clontech)by replacing b-galactosidase with a HA-tagged Nurr1cDNA(HA-Nurr1)generated by fusing the HA tag(YPYDVPDYA)in frame at the50end to the Nurr1cDNA.Mouse ES cells(R1) were co-transfected with pCMV-HA-Nurr1and the neomycin resistance plasmid (pcDNA3.1;Invitrogen)by electroporation(0.25kV,500m F),and transfected clones were selected by growth in the presence of G418(200m g ml21).The selected clones were screened for expression of HA-Nurr1by immunoblot analysis,andfive clones showing the highest levels of expression were chosen for differentiation experiments.Wild-type R1ES cells were used as controls.To induce differentiation,ES cells were cultured as described8 or processed with Mouse Dopaminergic Neuron Differentiation Kit(R&D Systems) except for treatment with LIF at stage2,during embryoid body(EB)formation. Immunostaining of cultured cells and cryosectionsCultured cells werefixed in4%paraformaldehyde in PBS.Perfused brain tissue was soaked in20%sucrose overnight,frozen in isopentane cooled by solid CO2and cut on a cryostat at35m m.The following antibodies were used:En-1,1:50;M2,1:100(monoclonal,all from Developmental Studies Hybridoma Bank);Otx2polyclonal38,1:1,000(provided byG.Corte),Bf1polyclonal23,1:1,000(provided by i),Pax-2polyclonal,1:200 (Covance);TH polyclonal,1:400(PelFreeze),or monoclonal,1:1,000(Sigma);serotonin polyclonal,1:4,000(Sigma);HA monoclonal,1:200(Santa Cruz Biotechnology);Nurr1 monoclonal,1:1,000(BD Transduction Laboratories);GAD67polyclonal,1:1,000 (Chemicon);and Ki-67polyclonal,1:200(Novocastra).Appropriatefluorescence-tagged (Jackson ImmunoResearch Laboratories)or biotinylated(Vector Laboratories)secondary antibodies were used for visualization.Specimens were examined on Zeiss Axioplan or Zeiss LSM510confocal imaging system.Stacked optical sections were merged using Maximum Projection Software(Zeiss).Quantitative immunocytochemical data were expressed as means^s.e.m.Reverse-phase HPLC determinations of catecholamineCatecholamine levels were determined after15days of differentiation.Dopamine release was stimulated in Hank’s balanced salt solution(HBSS)containing56mM KCl(evoked release,15min incubation).Dopamine extraction and HPLC analysis have been described previously1.RT–PCR and immunoblot analysisTotal cellular RNA purification and RT–PCR was carried out as previously described8.The following primers were used to amplify target cDNA:Nurr1,50-TAAAAGGCCGGAGA GGTCGTC-30and50-CTCTCTTGGGTTCCTTGAGCC-30;TH,50-CCTCCTTGTCTC GGGCTGTAA-30and50-CTGAGCTTGTCCTTGGCGTCA-30;Ptx3,50-AGGACGGCTC TCTGAAGAA-30and50-TTGACCGAGTTGAAGGCGAA-30;En-1,50-TCAAGACTGAC TCACAGCAACCCC-30and50-CTTTGTCCTGAACCGTGGTGGTAG-30;c-Ret,50-GCGCCCCGAGTGTGAGGAATGTGG-30and50-GCTGATGCAATGGGCGGCTT GTGC-30;DAT,50-GGACCAATGTCTTCAGTGGTGGC-30and50-GGATCCATGGGA GGTCCATGG-30;AADC,50-CCTACTGGCTGCTCGGACTAA-30and50-GCGTACCAGTGACTCAAACTC-30;Phox2a,50-TGGCGCTCAAGATCGACCTCA-30 and50-CGTTAGGGTGGGATTAGCGGT-30;DBH,50-TTCCAATGTGCAGCTGAGTC-30and50-GGTGCACTTGCTTGTGCAGT-30;GAPDH,50-ACCACAGTCCATGCCAT CAC-30and50-TCCACCACCCTGTTGCTGTA-30.Immunoblot analysis was performed as previously described39.ElectrophysiologyStriatal slices(coronal,300m m)were prepared and recordings were performed as previously reported40.Briefly,grafted animals were euthanized at time points from30to 140d after grafting,and slices were recorded in a submerged slice chamber at30–328C, superfused at a rate of,2ml min21with artificial cerebrospinalfluid(ACSF). Extracellular stimulation was delivered through a bipolar stainless steel electrode.For recording of the mGluR1-mediated IPSPs,slices were bathed in ACSF containing picrotoxin(100m M),strychnine(1m M),eticlopride(100nM),CNQX(25m M)and saclofen(10m M),as described29.Biocytin(0.2%)was added to the intracellular medium daily.Recordings were performed under visual guidance using an upright microscope.Voltage clamp recordings were performed at holding potentials of260to270mV,signals were amplified using an Axopatch200B amplifier,current clamp recordings were performed with a second amplifier(AxoClamp2B),and all data were acquired and analysed on a PC running pClamp8(Axon Instruments).Drugs were applied by perfusion.Transplantation and behavioural testingAdult female Sprague–Dawley rats lesioned with6-OH-DA were purchased(Taconic Farms).All surgical procedures were done according to guidelines of the National Institutes of Health(NIH)and National Institute of Neurological Disorders and Stroke (NINDS).WTand Nurr1ES cells were trypsinized at day3of stage5,and re-suspended at a density of160,000viable cells per m l.Three microlitres of the cell suspension were grafted into the lesioned striatum of hemiparkinsonian rats(0.0mm anteroposterior,þ3.0mm mediolateral and25.0mm dorsoventral of bregma and the meninges).In sham animals, 3m l of N2medium was injected.The number of animals studied were:sham,18;WT,10; and Nurr1,15.All animals were immunosuppressed with cyclosporine A(Neoral, Novartis,10mg kg21d21,intraperitoneally,i.p.)starting24h before grafting. Amphetamine-induced(2.5mg kg21,i.p.)rotational behaviour was evaluated for70min as described1,before and after ES cell grafting,in animals with stable scores of.6 ipsilateral turns per min.To quantify neuronal survival after grafting,immuno-histochemical analysis was performed4and8weeks after grafting in the Nurr1group. Several non-pharmacological tests were done as described,starting9weeks after grafting, as follows.(1)Spontaneous rotations31.(2)Adjusting step test41.Animals were moved in the backhand direction by a blind experimenter.The test was made three times per session, two sessions per day during three consecutive days.The results are expressed as a percentage of steps in lesioned compared with non-lesioned sides.Number of adjusting steps with the non-lesioned paw were:sham,13.2^0.3;WT,13.0^0.3;Nurr1,12.6^0.5.(3)Paw-reaching test.Animals were kept on a restricted diet until they lost 10–15%of their initial weight and then tested for7d in the appropriate chambers as described42.The results are given as the average fraction of pellets eaten by the lesioned side relative to the total number per day.Infive naive animals,the fraction of pellets eaten by the right side was0.51^0.02.(4)Cylinder test43.An observer,blind to the treatment, quantified two parameters:the number of wall contacts with each forelimb when rearing, and the number of times the rat used either forelimb for landing in at least15rearing–landing cycles.We expressed data as the percentage of use of the lesioned forepaw.For rearing,the percentages of contacts with the lesioned limb relative to the total number of contacts were not statically different between groups:sham,4.4%^2.4;WT,4.6%^5.2; Nurr1,31.9%^20.0.For landing,the animals used almost always the non-lesioned paw either alone or together with the lesioned limb(sham and WT animals used the non-lesioned limb100%of the time and Nurr1used it91.7^8.3%).The significant increase (P,0.05relative to sham animals)in use of the lesioned side by the Nurr1animals correlated with a significant decrease(P,0.05)in the exclusive use of the non-lesioned paw.For these non-pharmacological tests,we studiedfive sham-operated,four WT and four Nurr1-grafted rats,in which the presence of dopamine neurons was also confirmed in the grafts.In all experiments,mean^s.e.m is represented.Statistical analysis was done by analysis of variance(ANOV A)followed by Fisher’s test.Received24April;accepted12June2002;doi:10.1038/nature00900.Published online20June2002.1.Studer,L.,Tabar,V.&McKay,R.D.Transplantation of expanded mesencephalic precursors leads torecovery in parkinsonian rats.Nature Neurosci.1,290–295(1998).2.Sanchez-Pernaute,R.,Studer,L.,Bankiewicz,K.S.,Major,E.O.&McKay,R.D.In vitro generation andtransplantation of precursor-derived human dopamine neurons.J.Neurosci.Res.65,284–288(2001).3.Thomson,J.A.et al.Embryonic stem cell lines derived from human blastocysts.Science282,1145–1147(1998).4.Shamblott,M.J.et al.Derivation of pluripotent stem cells from cultured human primordial germcells.Proc.Natl A95,13726–13731(1998).5.McDonald,J.W.et al.Transplanted embryonic stem cells survive,differentiate and promote recoveryin injured rat spinal cord.Nature Med.5,1410–1412(1999).6.Rideout,W.M.III,Hochedlinger,K.,Kyba,M.,Daley,G.&Jaenisch,R.Correction of a genetic defectby nuclear transplantation and combined cell and gene therapy.Cell109,17–27(2002).7.Kyba,M.,Perlingeiro,R.C.R.&Daley,G.Q.HoxB4confers definitive lymphoid–myeloidengraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors.Cell109, 29–37(2002).8.Lee,S.H.,Lumelsky,N.,Auerbach,J.M.&McKay,R.D.Efficient generation of midbrain andhindbrain neurons from mouse embryonic stem cells.Nature Biotechnol.18,675–679(2000).9.Okabe,S.,Forsberg-Nilsson,K.,Spiro,A.C.,Segal,M.&McKay,R.D.Development of neuronalprecursor cells and functional postmitotic neurons from embryonic stem cells in vitro.Mech.Dev.59, 89–102(1996).10.Wallen,A.et al.Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1mutant mice.Exp.Cell.Res.253,737–746(1999).11.Zetterstrom,R.H.et al.Dopamine neuron agenesis in Nurr1-deficient mice.Science276,248–250(1997).12.Saucedo-Cardenas,O.et al.Nurr1is essential for the induction of the dopaminergic phenotype andthe survival of ventral mesencephalic late dopaminergic precursor neurons.Proc.Natl A 95,4013–4018(1998).13.Le,W.et al.Selective agenesis of mesencephalic dopaminergic neurons in Nurr1-deficient mice.Exp.Neurol.159,451–458(1999).14.Lumelsky,N.et al.Differentiation of embryonic stem cells to insulin-secreting structures similar topancreatic islets.Science292,1389–1394(2001).15.Bader,A.,Al-Dubai,H.&Weitzer,G.Leukemia inhibitory factor modulates cardiogenesis inembryoid bodies in opposite fashions.Circ.Res.86,787–794(2000).16.Molne,M.et al.Early cortical precursors do not undergo LIF-mediated astrocytic differentiation.J.Neurosci.Res.59,301–311(2000).17.Offield,M.F.et al.PDX-1is required for pancreatic outgrowth and differentiation of the rostral。

相关文档
最新文档