超声波流量计

合集下载

超声波流量计的原理及应用

超声波流量计的原理及应用

超声波流量计的原理及应用超声波流量计是一种利用超声波技术来测量流体流量的仪器。

它通过发送超声波脉冲,测量超声波在流体中的传播时间来确定流速,并根据流速和管道截面积计算出流量。

超声波流量计的原理是基于多普勒效应和声速传播原理,广泛应用于工业自动化、环保监测、水利水电、石油化工等领域。

超声波流量计的工作原理主要包括声速传播原理和多普勒效应两部分。

首先是声速传播原理,超声波在流体中传播的速度与流体的流速有关,当超声波沿着流体流动方向传播时,其传播速度会受到流体流速的影响。

根据声速传播原理,测量超声波在流体中传播的时间可以得到流速的信息。

其次是多普勒效应,当超声波遇到流体流动时,因为流体流速的影响导致超声波的频率发生变化,这种变化即为多普勒效应。

通过测量多普勒频移,可以得到流体的流速信息。

超声波流量计的应用范围非常广泛,包括但不限于以下几个方面:一、工业自动化领域在工业生产中,流量是一种重要的工艺参数,对流体的流量进行准确测量是保证工业生产质量的关键。

超声波流量计可以应用于水泥、化工、冶金、造纸等行业,用于测量水、蒸汽、液体或气体等的流量。

其非侵入式的测量方式保证了测量的准确性和稳定性,广泛应用于工业自动化生产中。

二、环保监测领域超声波流量计在环保监测领域也有着重要的应用。

在污水处理厂、水处理设备等环境中,需要对流体的流量进行监测和控制,以保证环境保护的需要。

超声波流量计可以应用于这些领域,通过对流体流速和流量的准确测量,实现对环保设备的高效运行和环境保护的实现。

三、水利水电领域水力发电厂、水库、水泵站等水利水电设施对水流量的监测和管理非常重要。

超声波流量计可以应用于这些领域,用于准确测量水流速和水流量,帮助实现对水资源的合理利用和水利工程的安全运行。

四、石油化工领域在石油化工领域,对流体流量的准确测量是保障生产质量和安全的重要环节。

超声波流量计可以应用于原油、天然气、炼油、化肥等领域,用于测量液体和气体的流量,并实现对生产过程的准确控制。

超声波流量计参数

超声波流量计参数

超声波流量计参数
超声波流量计是一种非侵入式测量流量的仪器,其优点包括不需要动态计量件、不会影响管道流动,而且精度高、可靠性好。

超声波流量计广泛应用于水利工程、化工、环保、食品、制药等领域。

超声波流量计的参数有哪些?
1. 测量范围与精度
超声波流量计的测量范围一般在0.1m/s-10m/s之间。

一般来说,测量范围越大,对管道的要求也就越高,精度会相应下降。

而测量精度一般为±1%-±2%。

2. 测量介质
超声波流量计适用于各种液体介质的流量测量,包括清水、脏水、酸碱溶液、石油、天然气等。

3. 测量管径
超声波流量计适用于大多数管道的流量测量,一般管径范围在10mm-
6000mm之间。

而且可以适用于椭圆形、矩形、异型管等。

4. 工作温度和压力
超声波流量计在工作时要注意其工作温度和工作压力,以免影响测量精度。

一般来说,温度范围通常在-30℃-90℃之间,压力范围通常在正压力0MPa-
4.0MPa之间,多采用大口径管道的应用场合压力要求低。

5. 材料
超声波流量计的测量传感器和管道部分都是由不同材质制成,根据不同介
质对材料的需求不同,但通常为高强度不锈钢、碳钢、PVC等材料,比较耐腐蚀。

6. 通信接口
超声波流量计采用数字化信号输出,可以与计算机或PLC通讯,进行数据
传输和监控。

总的来说,超声波流量计的参数主要包括测量范围、测量精度、测量介质、测量管径、工作温度和压力、材料和通信接口。

不同场合和不同介质要求的参
数是不同的。

超声波流量计使用说明

超声波流量计使用说明

超声波流量计使用说明1. 简介超声波流量计是一种非接触式流量测量仪表,利用超声波原理测量流体的流速和流量。

它广泛应用于各个行业,如化工、石油、水处理等领域。

本文档将介绍超声波流量计的基本原理和使用方法。

2. 原理超声波流量计是根据多普勒效应原理工作的。

当超声波信号穿过流体时,会发生频率偏移。

通过测量频率偏移的大小,可以得到流体的流速。

超声波流量计通常由传感器和显示控制器两部分组成。

3. 使用方法3.1 安装传感器在使用超声波流量计之前,需要先安装传感器。

传感器通常安装在流体管道上,需要确保传感器与管道之间没有任何障碍物。

安装传感器时,应注意以下几点:•传感器应与管道垂直安装,以确保测量的准确性。

•传感器与管道之间应有适当的距离,以避免信号衰减。

•传感器的位置应选择在流体流速稳定的区域,避免影响测量结果。

3.2 连接显示控制器将传感器与显示控制器连接。

通常情况下,显示控制器提供了相应的接口和线缆。

按照说明书连接传感器与显示控制器,并确保连接牢固稳定。

3.3 设置参数在连接好传感器和显示控制器之后,需要进行参数设置。

根据实际测量需求,设置超声波流量计的采样频率、工作范围等参数。

不同的流体和管道可能需要不同的参数设置,因此需要根据实际情况进行调整。

3.4 启动测量完成参数设置后,可以启动测量。

显示控制器会实时显示流体的流速和流量。

同时,可以将测量结果通过接口输出,方便进行数据记录和分析。

3.5 定期维护为了保证测量的准确性,需要定期对超声波流量计进行维护。

主要包括清洁传感器表面、检查连接线路是否松动等。

同时,应及时更换损坏的部件,避免影响测量结果。

4. 注意事项4.1 温度影响超声波流量计的测量结果可能会受温度变化的影响。

因此,在使用过程中应注意流体的温度变化。

需根据实际情况对测量结果进行修正,以保证准确性。

4.2 介质要求超声波流量计通常适用于液体介质,如水、油等。

一些特殊介质(如气体、固体颗粒等)可能会影响测量结果。

超声波流量计量程范围

超声波流量计量程范围

超声波流量计量程范围
超声波流量计是一种流量测量设备,用于测量液体和气体的流速、流量以及瞬时流量。

它采用了超声波技术,无需插入式流量计,可以测量管道内的任何流体,比如水、汽油、柴油、液化气等。

超声波流量计的量程一般有两种:标准量程和扩展量程。

标准量程的流速范围从0.2m/s至25m/s,流量范围从0.1m3/h至5000m3/h,可以满足大部分常见的应用场合。

扩展量程的流速范围从0.1m/s至100m/s,流量范围从0.1m3/h至10000m3/h,可以满足更高要求的应用场合。

超声波流量计的量程范围可以根据客户的需要而定,也可以根据具体应用场合选择合适的量程范围。

例如,在工业应用中,需要测量的流量范围可以比较大,这时候可以使用扩展量程的超声波流量计;如果是家庭用户消费的流量范围,则可以采用标准量程的超声波流量计。

超声波流量计的量程范围还可以根据环境温度来确定。

当环境温度较低时,可以采用低量程范围;当环境温度较高时,可以采用高量程范围。

超声波流量计的量程范围是非常丰富的,可以根据客户的需求和应用场合,以及环境温度来确定合适的量程范围。

它可以满足不同的
应用需求,是一种非常有效的流量测量设备。

超声波流量计-百度百科

超声波流量计-百度百科

超声波流量计-百度百科
JK系列超声波流量计/超声波热量表/超声波工业水表通过高精度时间数字转换芯片对超声波传输时间进行测量,有效克服零点漂移、小流量测量误差大等问题;综合利用频差法和时差法,使用实时声速、温度补偿等技术对流量进行补偿;人机接口画面丰富,支持多种通信方式;产品具有稳定性好、零点漂移小、测量精度高、量程比宽,抗干扰性强等特点。

超声波流量计产品特点
1、全系列产品流量测量精度优于1.0级;
2、支持多声道测量,默认为双声道,有效提高了仪表在复杂流体状态中的测量准确性和可靠性;
3、综合采用频差法和时差法测量技术,声速自动补偿,时间分辨率达到45皮秒,有效避免零点漂移,提高了小流量测量精度;
4、支持RS485通信,具有4~20mA变送功能,与企业能源管理系统集成更加方便;
5、支持AC 220V、DC 24V两种电源输入方式;
6、主机与探头类型多样化,可根据现场需求搭配使用,能够满足特殊环境的安装与测量;
7、人机界面丰富,使用操作便捷。

嘉可自动化仪表的超声波流量计产品种类齐全,主要有手持式超声波流量计、便携式超声波流量计、外夹式超声波流量计、插入式超声波流量计、管道式超声波流量计、固定式超声波流量计、一体式超声波
流量计、分体式超声波流量计、模块式超声波流量计、超声波工业水表、电池供电型超声波水表、超声波冷/热量表等。

超声波流量计注意事项

超声波流量计注意事项

超声波流量计注意事项超声波流量计是一种用于测量流体流速的仪器,在使用过程中需要注意一些事项。

以下是关于超声波流量计的50条注意事项,并附有详细描述:1. 定期对超声波流量计进行校准,保证测量的准确性。

详细描述:定期对超声波流量计进行校准可以确保其测量精度,避免因时间和使用磨损而导致的误差。

2. 确保超声波传感器位置正确安装在管道上,以便获得准确的流速数据。

详细描述:超声波传感器的正确安装位置对流量计的准确性至关重要,应根据厂家指导手册正确安装在管道上。

3. 定期清洁超声波传感器,确保其表面没有污垢或沉积物影响测量。

详细描述:定期清洁传感器可防止污垢或沉积物影响超声波信号的传输,确保测量的可靠性。

4. 避免超声波传感器受到外部振动或冲击,以免影响其测量精度。

详细描述:外部振动或冲击可能会导致传感器的位置发生变化或损坏,从而影响测量结果的准确性。

5. 注意环境温度对超声波流量计的影响,确保设备在适宜的温度范围内工作。

详细描述:超声波流量计在不同的温度环境下可能会产生误差,因此需要注意并控制好环境温度。

6. 确保超声波流量计的供电稳定,以保证其正常工作。

详细描述:供电不稳定可能导致超声波流量计无法准确测量,因此需要确保其供电稳定。

7. 防止超声波传感器长时间暴露在阳光下,以免影响其性能。

详细描述:长时间暴露在阳光下可能会导致传感器性能衰减或损坏,需要采取遮阳措施。

8. 在使用超声波流量计时,注意避免管道内有气泡或气体影响测量的准确性。

详细描述:气泡或气体可能会影响超声波信号的传播,导致测量结果不准确,因此需注意排气或排气。

9. 定期检查超声波传感器的连接线路是否牢固,避免因连接故障影响测量。

详细描述:松动或损坏的连接线路可能导致传感器无法正常工作,因此需要定期检查和维护。

10. 避免超声波流量计受到强烈的电磁干扰,以免影响其信号传输和测量准确性。

详细描述:强烈的电磁干扰可能会干扰超声波信号的传输,导致测量结果不准确,需要在安装过程中注意隔离和屏蔽设备。

超声波流量计标准

超声波流量计标准

超声波流量计标准超声波流量计是一种利用超声波测量流体流速的仪器,广泛应用于工业生产、环境监测、水利水电等领域。

超声波流量计的标准化对于保障其测量准确性、稳定性和可靠性具有重要意义。

本文将介绍超声波流量计的标准要求和相关内容。

首先,超声波流量计的标准化涉及到测量原理、技术要求、性能指标、安装要求、维护和校准等方面。

在测量原理方面,超声波流量计应符合声学测量原理,能够准确地测量流体流速。

在技术要求方面,超声波流量计应具备良好的抗干扰能力,能够适应复杂的工况环境。

在性能指标方面,超声波流量计应具有高精度、高稳定性和高可靠性。

在安装要求方面,超声波流量计应能够方便快捷地安装在流体管道上,并且能够保证测量的准确性。

在维护和校准方面,超声波流量计应具备良好的维护性能,能够方便地进行维护和校准工作。

其次,超声波流量计的标准化还涉及到相关的测试方法和标准规范。

在测试方法方面,超声波流量计的标准化应包括静态测试和动态测试两种方法,能够全面地评估超声波流量计的性能。

在标准规范方面,超声波流量计的标准化应参照国际标准和行业标准,确保超声波流量计在设计、制造、安装和使用过程中能够符合相关的标准要求。

最后,超声波流量计的标准化工作需要相关部门、企业和科研单位的共同努力。

相关部门应制定相关的标准和规范,指导超声波流量计的设计、制造和使用;企业应严格按照标准要求进行生产制造,并加强质量管理和技术改进;科研单位应加强相关技术研究和创新,推动超声波流量计技术的发展和进步。

总之,超声波流量计的标准化是保障其测量准确性、稳定性和可靠性的重要手段,需要各方共同努力,确保超声波流量计能够更好地为工业生产、环境监测、水利水电等领域提供精准的流量测量数据。

超声波流量计适用范围

超声波流量计适用范围

超声波流量计适用范围超声波流量计是一种非接触式流量测量仪器,广泛应用于工业、农业以及住宅等各个领域。

其原理是利用超声波在流体中的传播速度差异来测量流速和流量。

超声波流量计具有测量精度高、无压力损失、不受流体特性限制等优点,适用范围广泛。

本文将从工业、农业和住宅三个方面介绍超声波流量计的适用范围。

一、工业应用超声波流量计在工业领域的应用非常广泛。

首先,在化工行业中,超声波流量计可以用于测量各种化工液体的流速和流量,如酸、碱、溶液等。

其快速、准确的测量结果使得工厂能够实时监测和控制流体的流动,提高生产效率,降低资源浪费。

其次,在石油化工领域,超声波流量计能够测量各种油品(原油、汽油等)和气体的流速和流量,用于油罐、管道和储罐的监测和计量,确保流体输送过程的准确和安全。

此外,超声波流量计还被广泛应用于供水、供气等公用设施领域,以及钢铁、电力、纺织等各个工业行业,实现对各种液体和气体的精确测量和控制。

二、农业应用超声波流量计在农业领域的应用也非常重要。

在灌溉系统中,超声波流量计可以用于测量和控制水流的流速和流量,确保农田得到适当的灌溉,提高作物的生长效果。

超声波流量计对于各种液态肥料的流速和流量的测量也非常有帮助,确保农田得到适当的营养供给。

此外,超声波流量计还可以用于饮水系统、农田水利工程等方面的监测与测量,提高农业生产的效率和可持续性。

三、住宅应用在住宅领域,超声波流量计也发挥着重要的作用。

在暖通空调系统中,超声波流量计可以用于测量和控制冷热水的流速和流量,确保供暖和制冷系统的稳定运行。

超声波流量计对于供水系统和燃气的流速和流量测量也非常有帮助,保障住宅的正常供水和燃气使用。

另外,在家庭用电监测中,超声波流量计可以用于测量家庭用电设备的电量消耗,提供节能和负荷管理的参考数据,实现家庭用电的科学管理。

总结超声波流量计以其高精度、非接触等优点,在工业、农业和住宅等领域的应用范围非常广泛。

它能够测量各种流体的流速和流量,包括液体和气体。

超声波流量计方案

超声波流量计方案

超声波流量计方案一、引言超声波流量计是一种常见的流量测量设备,通过利用超声波的传播特性实现对流体流量的测量。

它具有测量准确、无压力损失、无移动部件等优点,在工业生产中得到广泛应用。

本文将介绍超声波流量计的基本原理、常见类型以及应用案例,为读者提供一个全面了解和选用超声波流量计的方案。

二、基本原理超声波流量计通过发射超声波脉冲到流体中,利用声波在流体中传播的速度差异来测量流速。

其工作原理基于多普勒效应,即当声波遇到流体运动时,波长会发生变化,从而实现对流速的测量。

常见的超声波流量计包括传输时间差法和多普勒效应法,下面将分别进行介绍。

2.1 传输时间差法传输时间差法是一种基于声速差异原理的测量方法。

超声波流量计通常由两个传感器组成,一个作为发射器向下游发射超声波信号,另一个作为接收器接收信号。

超声波在流体中传播的速度取决于流体的物理性质以及流速。

当超声波流经流体时,由于流体的速度不同,传输时间会发生变化。

通过测量声波传播的时间差,可以计算出流体的平均流速。

2.2 多普勒效应法多普勒效应法是一种基于声波频率变化原理的测量方法。

超声波流量计的传感器通常同时具备发射和接收功能。

当超声波与流体运动相互作用时,声波的频率会发生变化。

对于与流体相对运动的声波而言,当流速较大时,声波频率会增加;当流速较小时,声波频率会减小。

通过测量超声波频率变化,可以计算出流体的实际流速。

三、常见类型根据实际应用需求和流体特性,超声波流量计可以分为不同类型,下面将介绍其中三种常见的类型。

3.1 声速差法超声波流量计声速差法超声波流量计采用传输时间差法进行测量,其原理是通过测量超声波在流体中传播的时间差来计算流体的流速。

该类型的流量计适用于流体中无颗粒或颗粒较小的情况,如液体或气体的流量测量。

3.2 直接时间差法超声波流量计直接时间差法超声波流量计是一种改进的传输时间差法测量方法。

与传统声速差法不同的是,该类型的流量计不再使用两个传感器,而是采用单个传感器进行测量。

超声波流量计

超声波流量计

• 金属构件、混凝土制品、塑料制品、陶瓷制品的探 伤及厚度检测; • 浓度、硬度、温度检测等; • 作为开关、用于测量距离等。 • 流量、液位、料位检测。
超声波流量计
• 超声波流量计是通过检测流体流动对超声束 (或超声脉冲) 的作用以测量流量的仪表。 • 根据对信号检测的原理超声流量计可分为传播速度差法 (时差法、相位差法和频差法)、波束偏移法、多普勒法、 互相关法、空间滤法及噪声法等。

速度差的测量方法
• 速度 C u 为两个分速度向量和, 为了使问题简化,认为顺流 时Cu=C+ucos θ ,逆流时
C
u
=C-ucos
θ

二者之速度差为2 ucos θ , 由 于 cos θ 值是已知的, 因此可得流体的速 度u 。
时间差法测量方法
• 由于速度非 • 常大,根据 速度、时间、• 距离三者之 • 间的关系, 若距离已知,• 测出时间, 就可以知道 • 速度。因此 速度差的测 量可以改为 • 测量时间。 即时间差法。
压式流量计(变压降式流量计)
• 差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件, 它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供 二次装置进行流量显示。二次装置称显示仪表。它接收测量元件产生 的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次 装置常为节流装置或动压测定装置(皮托管、均速管等)。二次装置为 各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差 压敏感元件多为弹性元件。由于差压和流量呈平方根关系,故流量显 示仪表都配有开平方装置,以使流量刻度线性化。多数仪表还设有流 量积算装置,以显示累积流量,以便经济核算。这种利用差压测量流 量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合, 约占各种流量测量方式的70%。发电厂主蒸汽、给水、凝结水等的流 量测量都采用这种表计。

超声波流量计

超声波流量计

v=
单反射和双反射声道
Q.Sonic-5® (CheckSonic)Transducer Position Axial, path 1 Axial, path 3 Axial, path 5 Swirl, path 2 Swirl, path 4
单反射声道
A/B A B
声道配置比较分析结论
1、平行声道是数字式传输时间法的早期应用模型,探头 技术容易实现,但对轴向速度的分布不对称、二次分 析涡流的能力、权重因子固定等问题缺乏解决手段。 2、反射式声道技术的应用,大大提高了测量的声程长度, 而且在轴向速度分布不对称、消除涡流影响、权重因 子自动调整等方面进行了改进,提高了仪表的现场使 用精度。 3、多声道反射式声道结构的设计,可以更加全面捕捉通 过流量计截面的流态信息,确保计量精度的提高。 4、独特的多声道反射声道均匀、平衡分布的结构,在现 场各种复杂情况下安装,均可保证流量计正常工作, 计量精度不受影响。对现场复杂流态及时检测,消除 各种不对称流体对计量精度带来的各种影响。
五.超声波流量计的安装注意事项
1、超声波流量计在现场安装前,必须将其 送到法定计量检定。 2、应注意调整超声流量计的测量声道的安 装方位,使超声波在管内壁的反射点都不在管道 的底部。这种安装要求可以防止在管道底部可能 聚集的液体或脏污所引起的超声信号的衰减和潜 在的失去测量结果的危险。
超 声 波 流 量 计
目录
一.超声波流量计分类 二.超声波流量计系统组成部分 三.超声波流量计的特点 四.超声流量计的基本工作原理 五.超声波流量计的安装注意事项 六.外夹式超声波特点
一.超声波流量计分类




流量计按换能器安装方式可分为插入式和外夹式 两种形式。 插入式流量计根据换能器的数量不同,分为单声 道流量计,双声道流量计和多声道流量计。 流量计按计量方式分为:贸易用流量计和核查流 量计。 贸易用流量计只有二声道以上插入式超声波流量 计。

超声波流量计

超声波流量计
声脉冲)的作用以测量 流量的仪表。。
原理: 根据对信号检测的原理超声波流量计可分为传播速度 差法(直接时差法、时差法、相位差法和频差法)、波束偏 移法、多普勒法、互相关法、空间滤法及噪声法等。 超声流量计和超声波流量计一样,因仪表流通通道未 设置任何阻碍件,均属无阻碍流量计,是适于解决流量测 1 量困难问题的一类流量计,特别在大口径流量测量方面有 较突出的优点,它是发展迅速的一类流量计之一。 超声波流量计采用时差式测量原理:一个探头发射信 号穿过管壁、介质、另一侧管壁后,被另一个探头接收到 ,同时,第二个探头同样发射信号被第一个探头接收到, 由于受到介质流速的影响,二者存在时间差Δt,根据推算 可以得出流速V和时间差Δt之间的换算关系V=(C2/2L)×Δt ,进而可以得到流量值Q。
2
注意事项
超声波流量计正确选型才能保证超声波流量计更好的使用。选用什么种类的超声波 流量计应根据被测流体介质的物理性质和化学性质来决定?使超声波流量计的通径、 流量范围、衬里材料、电极材料和输出电流等?都能适应被测流体的性质和流量测量 的要求。 1、精密功能检查 精度等级和功能根据测量要求和使用场合选择仪表精 度等级,做到经济合算。比如用 于贸易结算、产品交接和能源计量的场合,应该选择精度等级高些,如1.0级、0.5级 ,或者更高等级; 用于过程控制的场合,根据控制要求选择不 同精度等级;有些仅仅是 检测一下过程流量,无需做精确控制和计量的场合,可以选择精度等级稍低的,如1.5 级、2.5级,甚至 4.0级,这时可以选用价格低廉的插入式超声波流量计。 2、可测量的介质 1 测量介质流速、仪表量程与口径 测量一般的介质时,超声波流量计的满度 流量可以 在测量介质流速0.5—12m/s范围内 选用,范围比较宽。选择仪表规格(口径)不一 定与 工艺管道相同,应视测量流量范围是否 在流速范围内确定,即当管道流速偏低,不能 满足流量仪表要求时或者在此流速下测量准 确度不能保证时,需要缩小仪表口径,从 而提 高管内流速,得到满意测量结果。 超声波液位计测量水位的原理以及安装要求: 超声波液位计工作时,高频脉冲声波由换能器(探头)发出,遇被测物体(水面)表 面被反射,折回的反射回波被同一换能器(探头)接收,转换成电信号。脉冲发送和 接收之间的时间(声波的运动时间)与换能器到物体表面的距离成正比,声波传输的 距离S与声速C和传输时间T之间的关系可以用公式表示:S= CⅩT/2 例如:声速C=344m/s,传输时间为50ms,即可算出传输的距离为17.2m,测定距离 为8.6m。

超声波流量计

超声波流量计

一、超声波流量计工作原理: 超声波在流动的流体中传播时就载上流体流速的信息。

因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。

超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。

当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。

如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。

这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。

这里所说的长些或短些都是与气体不流动时的传输时间相比而言;根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。

起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种。

根据对信号检测的原理,目前超声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法)波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型。

其中以噪声法原理及结构最简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。

由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。

其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。

按照换能器的配置方法不同,传播速度差拨又分为:Z法(透过法)、V法(反射法)、X法(交叉法)等。

波束偏移法是利用超声波束在流体中的传播方向随流体流速变化而产生偏移来反映流体流速的,低流速时,灵敏度很低适用性不大.多普勒法是利用声学多普勒原理,通过测量不均匀流体中散射体散射的超声波多普勒频移来确定流体流量的,适用于含悬浮颗粒、气泡等流体流量测量。

相关法是利用相关技术测量流量,原理上,此法的测量准确度与流体中的声速无关,因而与流体温度,浓度等无关,因而测量准确度高,适用范围广。

超声波流量计的技术参数

超声波流量计的技术参数

超声波流量计的技术参数超声波流量计(Ultrasonic flowmeter)是一种利用超声波进行流量测量的仪器。

它具有非接触、不堵塞、不漏水、无压力损失、可实现大口径测量等优点,因此在液体和气体流量测量方面广泛应用于工业领域。

以下是超声波流量计的技术参数的详细介绍:1.测量范围:超声波流量计可适用于不同范围的流量测量,通常以标准立方米/小时(Nm³/h)或立方米/小时(m³/h)为单位。

可以根据实际需要选择不同的测量范围。

2.精度:超声波流量计的精度是指它所能实现的测量结果的准确程度。

通常以百分比表示,如±1%、±0.5%等。

精度越高,测量结果越准确。

3.工作温度:超声波流量计能够适应的工作温度范围会影响它的应用领域。

一般情况下,它能够适应从低温到高温的条件。

4. 工作压力:超声波流量计的工作压力范围是指它能够承受的液体或气体压力的上限和下限。

通常以千帕(Kpa)或兆帕(MPa)为单位。

5.流体速度范围:超声波流量计的测量准确性与流体速度有关。

该仪器通常适用于不同范围的流速,常以米/秒(m/s)为单位。

6.仪器耗电量:超声波流量计的耗电量会影响其在使用中的稳定性和耐用性。

较低的耗电量可延长设备的寿命,并降低使用成本。

7.测量信号输出:超声波流量计通常会提供不同类型的测量信号输出接口,如模拟输出(4-20mA或0-10V)、数字输出(RS485、MODBUS等)等。

这样用户可以根据实际需要进行数据采集和监控。

8.安装方式:超声波流量计可以有不同的安装方式,如插入式、固定式、螺纹式等。

不同的安装方式适用于不同的场合和管道尺寸。

9.电源需求:超声波流量计通常会有不同的电源需求,包括电压和电流。

需要根据实际情况提供相应的电源设施。

10.仪器重量和尺寸:超声波流量计的重量和尺寸直接影响其安装和使用的方便性。

较轻便和小巧的仪器易于安装和携带。

以上就是超声波流量计的技术参数的详细介绍,超声波流量计作为一种精度高、稳定性强、适用范围广的流量测量仪器,在工业生产和自动化控制方面具有重要的应用价值。

超声波流量计技术讲解-

超声波流量计技术讲解-
单声道Z法夹装式USF。(见后页)
8
第三节 分类和结构(续2)
■ 3.2 分类 可以从不同角度对超声流量测量方法和换能器(或传感器)进行分类。
■ (1) 按测量原理分类 封闭管道用USF按测量原理有5种,如2节所述,现在用得最多的是传 播时间法和多普勒法两大类。
■ (2) 按被测介质分类
9
超声波的分类和结构(续3)
17
超声波的选用考虑要点(续6)
■ 4.5 换能器类型的选择 ■ (1) 传播时间法
本类仪表可采用换能器的类型较多,各厂家换能器结构 不同,适用的流体条件(温度、压力等)、管道条件(材 质、形状、管径、直管长度等)和安装条件等也不相同。 此外还与声道的设置方法有关,而声道的设置方法又与测 量精度和重复性等密切相关。气体用USF因固体和气体界 面间超声波传播效率非常低,只能用直射式换能器。因此 气体流量测量一般不采用外夹装式USF。 ■ (2) 多普勒法 本类仪表用的折射式换能器。目前国内产品大部分采用夹 装式,但与传播时间法所用的夹装式换能的发射频率等技 术性能不同,不能混用。然而两者适用管道条件是基本相 同的。
■ 4.2 适用悬浮颗粒含量的范围 ■ 多普勒法USF要比传播时间法适用悬浮颗粒含量上限
高得多,而且可以测量连续混入气泡的液体。但是根 据测量原理,被测介质中必须含有一定数量的散射体, 否则仪表就不能正常工作。 ■ 传播时间法USF可以测量悬浮颗粒很少的液体,但不 能测量含有影响超声波传播的连续混入气泡或体积较 大固体物的液体。在这种情况下应用,应在换能器的 上游进行消气、沉淀或过滤。在悬浮颗粒含量过多或 因管道条件致使超声信号严重衰减而不能测量时,有 时可以试降低换能器频率,予以解决。
19
超声波的选用考虑要点(续7)

超声波流量计 说明书

超声波流量计 说明书

超声波流量计说明书一、概述超声波流量计是一种高科技的流量测量仪表,它利用超声波在流体中的传播速度与流体流速之间的函数关系来测量流体的流量。

这款流量计具有高精度、高可靠性、易于安装和维护等优点,特别适合用于各种工业生产过程中的流量测量。

二、产品特点1. 高精度:超声波流量计采用先进的信号处理技术和算法,能够实现高精度的流量测量,有效避免了传统流量计在测量过程中可能出现的误差。

2. 宽测量范围:超声波流量计适用于各种流速和流量范围,能够满足不同用户的需求。

无论是小流量还是大流量,它都能准确地测量出流体的流量。

3. 无压力损失:超声波流量计在测量过程中对流体没有任何阻碍,因此不会对流体产生压力损失,从而保证了流体的流动性能。

4. 稳定性好:超声波流量计的测量部件采用高品质的材料和工艺制作,保证了长期使用的稳定性和可靠性,大大减少了维护和维修的频率。

5. 易于安装和维护:超声波流量计的安装非常简便,只需要按照说明书的要求进行安装即可。

同时,它的维护也非常方便,只需要定期清洗测量管路和检查各部件是否正常工作即可。

三、使用方法1. 安装前准备:在安装超声波流量计之前,需要先确认测量管路已经清洗干净,没有任何杂质和污垢。

同时,需要检查流量计的型号和规格是否符合要求,并检查电源和信号线是否连接正常。

2. 安装方式:根据现场的实际情况,选择合适的安装方式。

一般来说,超声波流量计的安装方式有插入式、管段式等。

按照安装说明书的步骤进行安装,确保安装牢固可靠。

3. 参数设置:根据流体类型、管道材质和尺寸等参数设置流量计的测量参数。

这些参数的设置将直接影响到测量结果的准确性和可靠性,因此需要按照说明书的要求正确设置各项参数。

4. 校准和调试:在安装完成后,需要对超声波流量计进行校准和调试,以确保其测量准确度和稳定性符合要求。

一般来说,校准和调试需要在专业人员的指导下进行。

5. 日常维护:为了保持超声波流量计的测量精度和使用寿命,需要定期对其进行检查和维护。

超声波流量计技术参数

超声波流量计技术参数

超声波流量计技术参数
1. 测量原理: 超声波时差法
2. 测量介质: 液体(包括清水、污水、油等)
3. 测量范围: 0-9999 m³/h
4. 精度等级: ±0.5%、±0.2%、±0.1%(可选)
5. 频率范围: 1-1000 kHz
6. 工作温度: -40℃ 到+160℃
7. 工作压力: 0.6 MPa 到 4.0 MPa
8. 输液管道尺寸范围: DN10-2000(可定制)
9. 接口类型: 法兰、螺纹(可定制)
10. 电源电压: 24V DC、220V AC(可选)
11. 通信接口: RS485、HART、Modbus等
12. 显示屏类型: LCD、LED(可选)
13. 抗干扰能力: 能有效抵抗电磁干扰、震动干扰等
14. 自检功能: 自动检测传感器和电路状态,确保准确度和可靠性
15. 报警功能: 可设置上下限报警值,超过范围时自动报警
16. 数据记录功能: 可记录最近一段时间的流量数据,并提供数据导出功能
17. 防护等级: IP65以上,具有防尘、防水能力
18. 安装方式: 直连安装、插入安装、侧装安装等
19. 使用寿命: 长达10年以上
请注意,以上参数仅为示例,实际产品参数可能根据设备型号和厂家不同而有所变化。

超声波流量计 标准(一)

超声波流量计 标准(一)

超声波流量计标准(一)
超声波流量计标准
1. 介绍
•超声波流量计是一种常用的流量测量仪器,广泛应用于工业自动化领域。

•标准的建立和遵守对于保证流量计的准确性和可靠性具有重要意义。

2. 测量原理
•超声波流量计利用超声波在流体中的传播速度差异来测量流量。

•发送器发射超声波信号,经过流体后被接收器接收,并计算流速。

•测量精度受到多种因素的影响,包括温度、压力和介质性质等。

3. 相关标准
•国际电工委员会(IEC)发布了一系列有关超声波流量计的标准。

•IEC 60517标准规定了超声波流量计的术语和定义,为行业提供了统一的概念和理解。

•IEC 60576标准规定了超声波流量计的性能要求和测试方法,确保测量结果的准确性和可靠性。

•IEC 60664标准规定了超声波流量计的电气绝缘要求,以保证设备在各种环境条件下的安全运行。

4. 标准的重要性
•标准的制定和遵守可以提高超声波流量计的质量和可靠性。

•标准化的设计和生产能够降低成本,提高生产效率。

•标准化还有利于不同厂家的流量计互通性和比较性,方便用户的选择和维护。

5. 遵守标准的意义
•遵守标准可以确保超声波流量计在各种工况下的准确测量。

•标准化的生产和维护流程能够提高设备的稳定性和可靠性。

•遵守标准还能增强用户对流量计产品的信任感和满意度。

6. 结论
•超声波流量计标准的制定和遵守对于保证流量计的准确性和可靠性具有重要意义。

•IEC等国际组织发布的标准为行业提供了统一的概念和要求。

•遵守标准能够提高流量计的质量和可靠性,降低成本,方便用户选择和维护。

超声波流量计 标准

超声波流量计 标准

超声波流量计标准超声波流量计是一种常用于测量液体流量的仪器,通过利用超声波在流体中的传播特性来实现流量的测量。

它广泛应用于工业、农业和生活中的流量监测和控制。

超声波流量计的工作原理是利用超声波在流体中的传播速度与流速之间的关系进行测量。

当超声波沿着流体流动方向传播时,其传播速度会受到流体速度的影响。

通过测量超声波在流体中传播的时间差,可以计算出流体的流速和流量。

超声波流量计的主要组成部分包括传感器、信号处理器和显示器。

传感器通常由发射器和接收器组成,发射器发出超声波信号,接收器接收返回的信号。

信号处理器负责对接收到的信号进行处理和计算,最终将结果显示在显示器上。

超声波流量计具有许多优点。

首先,它具有非侵入性的特点,不需要直接接触流体,避免了对流体的污染和阻力。

其次,超声波流量计适用于各种液体,无论是清洁液体还是含有颗粒的液体都可以进行准确测量。

此外,超声波流量计还具有较高的测量精度和稳定性,能够满足各种精密测量的需求。

超声波流量计在许多领域中得到了广泛应用。

在工业领域,它常用于监测和控制液体的流量,如化工、石油、食品和制药等行业。

在农业领域,超声波流量计可以用于农田灌溉和农业生产中的水资源管理。

在生活中,它可以应用于家庭用水、供暖和空调系统等领域。

然而,超声波流量计也存在一些局限性。

首先,测量结果可能会受到温度和压力等因素的影响,需要进行相应的校正和修正。

其次,超声波流量计对于气体的测量不太适用,因为气体的传播特性与液体有所不同。

此外,超声波流量计的成本相对较高,对于一些预算有限的应用来说可能不太经济。

总的来说,超声波流量计是一种可靠、准确和广泛应用的流量测量仪器。

它通过利用超声波在流体中的传播特性来实现流量的测量,具有非侵入性、适用于各种液体、高测量精度和稳定性等优点。

然而,在使用超声波流量计时需要注意校正和修正测量结果,同时也要考虑到其适用范围和成本等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一组转换方式
超声波收发器P1装在管道的外壁
上,使超声波射束斜着经过液体
中传播,在被测液体是水的场合,
振荡器用0.4兆赫或1兆赫的锆钛
酸铅陶瓷(PZT),并使用超声
波入射角为40的胶木材料作为塑
料楔。在这个楔子和管道的交界
面上超声波射束发生者射,同时
产生影响波形变换,在管材为钢、
铸铁等铁系材料时,产生从纵波
0 T 35C 0 S 45% 0 D 1000 (米)
声循环法的原理
首先从发生器T1沿顺流方向发射 超声波脉冲,在接收器R1处接收 这个信号。再在放大器-1处把此 接受信号进行放大,把输出信号 加到发生器T1,从T1再次发射超 声波脉冲,以后重复进行。
正向循环频率
f1
1 t1
C
V L
反向循环频率
f2
1 t2
C V L
两个声循环频率之差,取此差为, f
f1
f2
2V L
与声速C无关。由于频率差非常小,检测困难
6-7-2-2相位差法
相位差法本质上和时间差法是相同的
4ft D cos
C2
V
Ft超声波频率,D管道直径
由于相位差和频率成正比,频率愈高则测量的灵敏度也高。
可是应该看到,频率提高时,可能测量的最大速度值也就降
流速测量方法
图6-24,小口径管道用超声波流量计的测量管示例
流量计的安装
方形水渠内充满着水, 因此即使用一条测量线 进行测量也可得到较好 的精度。这种水渠一般 以混凝土制的居多,但 是,由于混凝土使超声 波超声波传播的损耗大, 因此在相应于超声波传 播途径部分使用不锈钢 钢板。并在探测器的对 面的壁上安装上反射板, 采用所谓V法一避免流 动偏离管道对称轴所产
到横波的变换。这里特意使用横
波的利用在于,超声波在水中的
透过率,横波比纵波高,而且横
波在水中的折射角也能取得大些。
向此水中的折射角大约为23,可 图6-15,用声循环法的超声波流量计方框图
以把超声波收发器P2设置在对面
管壁的一个位置上,在该位置可 以有效地接收从该角度发射的超 声波。
两个超声波收发器希望制造得完全相同,因而具有相同的特 性,它们既起超声波发生器又起超声波接收器的作用。交替 转换开关用来转换超声波的发射方向,一定时间使超声波沿
6-7 超声波流量计
测量原理
包括传播速度差法 声循环法 时间差法 多普勒法
种 能动或被动 类
流量计种类
超 声能 波动 流型 量 计
被动型
测量原理 (利用的现 象)
传播速度的变化 (顺流、逆流)
射束位移
多普勒效应
流动产生的声音
检测量
相位差 时间差 频率差
接收波的感度 差 漂移频率
声音的大小
测量方法 简称
6-7-2-4 时间差法
用时间差法测量流速、流量,在初期是用模拟技术进 行的。
近年来,由于数字式技术的进步可以精密测量微小时 间,因此,在顺、逆两方向同时发射脉冲,把这些接 收波前沿的时间差用数字方式进行测量(LE Flowmeter,LE流量计)等的文献发表了[39],并以实 用化为目标进行了种种试验。
传播速度差法 相位差法 时间差法 声循环法 射束位移法
多普勒法
听音法
备注
应用最广泛 上水道用 上水道用
下水、排水 用 与频率有关
传 P-B水槽 感 涡街流量计 器 相关式流量计
节流水位上升 卡门涡 紊流
水位 透过波的振幅 振幅、相位
下水、排水 用,也可检 测透过时间
6-7-2,传播速度差法
将流体流动时与 静止时超声波在 流体中传播的情 形进行比较,由 C2 V 2 于流速不同会使 超声波的传播速 度发生变化。
低了,因此必须适当选取频率值。
按图6-11所示的方式使用连续波时,有可能产生两个测量系统 间的相互干扰,为了避免这点,提出了把一组超声波发射接 收器进行周期性转换的方案[19],也提出更简单的,不进行转 换的,同时进行发射接收的方案
6-7-2-3 声循环法应用
可与被测液体中的声速无关地测量流速, 现在作为大口径管道用的流量计已经得 到最广泛的应用。
6-7-2-5 流量测量
管内流速分布的影响
传播速度差法从原理上看是测量超声 波传播途径上的平均流速,因此,该测 量值是线平均。所以,它和一般的面平 均(真平均流速)不同,其差异取决于 流速的分布。
k V 1 0.01 6025 431Re0.237 V
图6-22,流量修正系数和雷诺数的关系
二组方式
声循环回路(Sing Around Loop)
构成顺、逆两个方向的
声循环回路来进行的。
这种场合,脉冲经回路
一圈的时间叫做声循环
周期,其倒数叫做声循 环频率。
fd
C
V cos
L
图6-14,麦克逊流量计方框图(附有 质量流量计测量回路)
fu
C
V cos
L
两者的差频为
f
fd
fu
2V cosLtt2t12LV C2
C=constant?
影响流体中声速C的因素
温度
图6-13,水中声音速度是水温的函数, 其温度系数随温度不同而异
影响流体中声速C的因素(续)
水温T(C) 含盐量S (o) 水深D(米) C 1449.2 4.6T 0.055T 2 0.00029T 3
(1.34 0.01T )(S 35) 0.016D
t1
C
L V
t2
C
L V
t
t2
t1
2LV C2
图6-12 超声波传播速度差法的原理图,液体中超 声波的传播速度是静止液体中声波传播速度C和 流体速度V的矢量和
相位差法
相位差法,就是测量顺、逆两个方向接 受波的相位差 ,而时间差 t和 的关 系为:
2 ft t
超声波的 频率
相位差法和时间差法的原理可以看成是一样的。
顺流方向发射,再经过同一时间间隔沿逆流方向发射,时间
图如图6-16所示。
图6-16,时间图 (u)与加减运算指令一致,对每个 (v)信号得到流速测量值,作为输出信号传送出去
f
fd
fu
V sin 2
D
(1 C sin )2
D
流动与声波夹角
顺逆
管道直径
为固定延迟时间,即:超声波经过塑料楔、管壁和衬 材传播所需要的时间以及电信号滞后时间之和。
典型例子是在进行医学实验时,用脉冲时间法测量经 血管内的血液流速[10]。在这种实验中,把两个传感 器和血管相连接,使用3兆赫的小型钛酸钡陶瓷振荡器 用高速交替变换的一组转换方式进行超声波的收发, 在测量1厘米/秒以下到1米/秒以上的流速时线性很好。 测量范围的界限取决于飘移和噪声,据报道四小时以 内在0.5厘米以下。
相关文档
最新文档