最新高中物理曲线运动经典练习题全集(含答案)
高考必备物理曲线运动技巧全解及练习题(含答案)及解析

高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.3.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)【答案】(1) (2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得:v=0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x=0.29m.【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【答案】(1)()2A gv L R h =-22()2B g L R v h+=(2)0((L R v L R -≤≤+(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12gt 2解得t =(1) 当小车位于A 点时,有x A =v A t=L-R (2)解(1)(2)得v A =(L-R当小车位于B 点时,有B B x v t ==3)解(1)(3)得Bv (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)解(1)(5)得 v 0max =(L+R所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+14)2Rv π(n=0,1,2,3…)(6)所以t AB解得v=12(4n+1)n=0,1,2,3…). 【点睛】本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过14圆周,也可以是经过了多个圆周之后再经过14圆周后恰好到达B 点,这是同学在解题时经常忽略而出错的地方.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。
高考物理曲线运动题20套(带答案)及解析

高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:(1)杆静止时细绳受到的拉力大小T ;(2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。
高中物理模块复习匹配完整答案专题-曲线运动1

高中物理模块复习匹配完整答案专题-曲线运动1一、单选题1.在光滑水平桌面上,用细线系一小球,小球在桌面上做匀速圆周运动,当系球的线突然断掉,关于球的运动,下述说法正确的是()A.沿圆的切线方向做匀速运动B.背离圆心沿半径向外运动C.做半径逐渐变大的曲线运动D.向圆心运动2.如图所示,水平圆盘可绕通过圆心的竖直轴转动,盘上放两个小物体P和Q,它们的质量相同,与圆盘的最大静摩擦力都是,两物体中间用一根细线连接,细线过圆心,P离圆心距离为r1,Q离圆心距离为r2,且r1<r2,两物体随盘一起以角速度ω匀速转动,在ω的取值范围内P和Q始终相对圆盘无滑动,则()A.ω无论取何值,P、Q所受摩擦力都指向圆心B.ω取不同值时,Q所受静摩擦力始终指向圆心,而P所受摩擦力可能指向圆心,也可能背离圆心C.ω取不同值时,P所受静摩擦力始终指向圆心,而Q所受静摩擦力都指向圆心,也可能背离圆心D.ω取不同值时,P和Q所受静摩擦力都有可能指向圆心,也都有可能背离圆心3.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r1、r2、r3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为()A. B. C. D.4.如图所示,弹性杆插入桌面的小孔中,杆的另一端连有一个质量为m的小球,今使小球在水平面内作匀速圆周运动,通过传感器测得杆端对小球的作用力的大小为F,小球运动的角速度为ω,重力加速度为g.则小球圆周运动半径为()A. B. C. D.5.如图所示,在光滑水平面上有一小球a以初速度v0向右运动,同时在它的正上方有小球b 以初速度v0.水平向右抛出并落在c点,则()A.两球同时到达c点B.小球a先到达c点C.小球b先到达c点D.以上情况均可能发生6.如图所示,小物体P放在水平圆盘上随圆盘一起转动,下列关于小物体所受摩擦力f的叙述正确的是()A.f的方向总是指向圆心B.圆盘匀速转动时f=0C.在物体与轴O的距离一定的条件下,f跟圆盘转动的角速度成正比D.在转速一定的条件下,f跟物体到轴O的距离成正比7.科学家们推测,太阳系的第十六颗行星就在地球的轨道上,从地球上看,它永远在太阳的背面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟”.由以上信息可以确定()A.这颗行星的公转周期和地球相等B.这颗行星的半径等于地球的半径C.这颗行星的密度等于地球的密度D.这颗行星上同样存在着生命8.如图是物体做平抛运动的x-y图象,物体从O点抛出,x、y分别为其水平和竖直位移,在物体运动的过程中,经某一点P(x,y)时,其速度的反向延长线交于x轴上的A点,则OA的长为:()A.xB.0.5xC.0.3xD.不能确定.9.中央电视台报道了一起离奇交通事故.家住公路弯处的李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图所示.交警以下判断,你认为正确的是()A.由图可知汽车在拐弯时发生侧翻是因为车受到离心力B.由图可知事故的原因可能是车速过快C.为尽量避免此类事故再次发生,公路在设计上应东高西低D.为尽量避免此类事故再次发生,可以减小路面弯道半径二、多选题10.如图,叠放在水平转台上的物体A、B、C能随转台一起以角速度ω匀速转动,A、B、C 的质量分别为3m、2m、m,A与B、B和C与转台间的动摩擦因数都为μ,A和B、C 离转台中心的距离分别为r、1.5r。
高中物理曲线运动的基本方法技巧及练习题及练习题(含答案)

高中物理曲线运动的基本方法技巧及练习题及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =3.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-= 从C 点到落地的时间:020.8ht s g== B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.4.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.5.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤2142p BE Mv MgL μ='+6.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A 点,已知木板的长度l =10m ,A 点到平台边缘的水平距离s =1.6m ,平台距水平地面的高度h =3m ,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字) (3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字) 【答案】(1) (2) v =0.67m/s (3)x =0.29m【解析】 【分析】 【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v 由动量守恒定律有:,木板第一与挡板碰后:解得:v =0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x =0.29m . 【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.7.如图所示,一质量为m的小球C用轻绳悬挂在O点,小球下方有一质量为2m的平板车B静止在光滑水平地面上,小球的位置比车板略高,一质量为m的物块A以大小为v0的初速度向左滑上平板车,此时A、C间的距离为d,一段时间后,物块A与小球C发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ,重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:(1)A、C间的距离d与v0之间满足的关系式;(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?【答案】(1);(2)【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A碰C前与平板车速度达到相等,由动量守恒定律列出等式;A减速的最大距离为d,由动能定理列出等式,联立求解。
高中物理曲线运动的技巧及练习题及练习题(含答案)含解析

高中物理曲线运动的技巧及练习题及练习题( 含答案 ) 含分析一、高中物理精讲专题测试曲线运动1.如下图,一箱子高为H.底边长为L,一小球从一壁上沿口 A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离 C 点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的 B 点,求初速度的可能值。
【答案】( 1)( 2)【分析】【剖析】(1)将整个过程等效为完好的平抛运动,联合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的 B 点,则水平位移应当是2L 的整数倍,经过平抛运动公式列式求解初速度可能值。
【详解】(1)本题能够当作是无反弹的完好平抛运动,则水平位移为: x==v0t竖直位移为: H= gt2解得: v0=;(2)若小球正好落在箱子的 B 点,则小球的水平位移为:x′=2nL( n= 1.2.3 )同理: x′=2nL=v′H=20t,gt ′解得:( n= 1.2.3 )2.圆滑水平面AB 与竖直面内的圆形导轨在 B 点连结,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如下图.松手后小球向右运动离开弹簧,沿圆形轨道向上运动恰能经过最高点 C, g 取 10 m/s 2.求:(1)小球离开弹簧时的速度大小;(2)小球从 B 到 C 战胜阻力做的功;(3)小球走开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J 【分析】【剖析】【详解】(1)依据机械能守恒定律12E p=mv1 ?①12Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能经过最高点,故mg m v22④R由②③④得W f=24 J(3)依据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球离开弹簧的过程中只有弹簧弹力做功,依据弹力做功与弹性势能变化的关系和动能定理能够求出小球的离开弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,依据小球恰巧能经过最高点的条件获得小球在最高点时的速度 ,进而依据动能定理求解从 B 至 C 过程中小球战胜阻力做的功 ;(3)小球走开 C 点后做平抛运动 ,只有重力做功,依据动能定理求小球落地时的动能大小3.如下图,质量为M4kg 的平板车P的上表面离地面高h 0.2m,质量为 m 1kg 的小物块 Q (大小不计,可视为质点)位于平板车的左端,系统本来静止在圆滑水平川面上,一不行伸长的轻质细绳长为R 0.9m ,一端悬于Q正上方高为R处,另一端系一质量也为 m 的小球(大小不计,可视为质点)。
高中物理曲线运动题20套(带答案)含解析

高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
高中物理曲线运动题20套(带答案)含解析

高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0=4gR ,则小球运动到半圆上B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度v=4gR ,初始位置变为x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >(3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+3.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
高中物理高考物理曲线运动解题技巧及经典题型及练习题(含答案)

高中物理高考物理曲线运动解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试曲线运动 1.如图所示,粗糙水平地面与半径为R=0.4m的粗糙半圆轨道BCD相连接,且在同一竖直平面内,O是BCD的圆心,BOD在同一竖直线上.质量为m=1kg的小物块在水平恒力F=15N的作用下,从A点由静止开始做匀加速直线运动,当小物块运动到B点时撤去F,
小物块沿半圆轨道运动恰好能通过D点,已知A、B间的距离为3m,小物块与地面间的动摩擦因数为0.5,重力加速度g取10m/s2.求: (1)小物块运动到B点时对圆轨道B点的压力大小. (2)小物块离开D点后落到地面上的点与D点之间的距离
【答案】(1)160N(2)0.82m 【解析】 【详解】 (1)小物块在水平面上从A运动到B过程中,根据动能定理,有:
(F-μmg)xAB=12mvB2-0 在B点,以物块为研究对象,根据牛顿第二定律得: 2Bv
NmgmR
联立解得小物块运动到B点时轨道对物块的支持力为:N=160N 由牛顿第三定律可得,小物块运动到B点时对圆轨道B点的压力大小为:N′=N=160N (2)因为小物块恰能通过D点,所以在D点小物块所受的重力等于向心力,即: 2Dv
mgmR
可得:vD=2m/s 设小物块落地点距B点之间的距离为x,下落时间为t,根据平抛运动的规律有: x=vDt,
2R=12gt2 解得:x=0.8m 则小物块离开D点后落到地面上的点与D点之间的距离20.82mlx
2.如图所示,在竖直平面内有一绝缘“”型杆放在水平向右的匀强电场中,其中AB、CD水平且足够长,光滑半圆半径为R,质量为m、电量为+q的带电小球穿在杆上,从距B点x=5.75R处以某初速v0开始向左运动.已知小球运动中电量不变,小球与AB、CD间动摩擦
因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g,sin37°=0.6,cos37°=0.8.求:
高中物理曲线运动题20套(带答案)含解析

高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
高中物理曲线运动练习题及答案及解析.docx

高中物理曲线运动练习题及答案及解析一、高中物理精讲专题测试曲线运动1.光滑水平面AB 与竖直面内的圆形导轨在 B 点连接,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C, g 取 10 m/s 2.求:(1)小球脱离弹簧时的速度大小;(2)小球从 B 到 C 克服阻力做的功;(3)小球离开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J【解析】【分析】【详解】(1)根据机械能守恒定律E p=1mv12 ?①212Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能通过最高点,故mg m v22④R由②③④得W f=24 J(3)根据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度 ,从而根据动能定理求解从 B 至 C 过程中小球克服阻力做的功 ;(3)小球离开 C 点后做平抛运动 ,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,带有1 光滑圆弧的小车A 的半径为R,静止在光滑水平面上.滑块 C 置于4木板 B 的右端, A、 B、 C 的质量均为m, A、 B 底面厚度相同.现 B、 C 以相同的速度向右匀速运动, B 与 A 碰后即粘连在一起, C 恰好能沿 A 的圆弧轨道滑到与圆心等高处.则: (已知重力加速度为g)(1)B、C 一起匀速运动的速度为多少?(2)滑块 C 返回到 A 的底端时AB 整体和 C 的速度为多少?【答案】(1)v023gR (2)v1 2 3gR53gR, v233【解析】本题考查动量守恒与机械能相结合的问题.(1)设 B、 C 的初速度为v , AB 相碰过程中动量守恒,设碰后AB 总体速度 u,由mv02mu ,解得 u v0 2C 滑到最高点的过程:mv02mu3mu1mv0212mu213mu 2mgR222解得v0 2 3gR(2)C从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv02mu mv12mv21mv0212mu21mv1212mv222222解得:v123gR ,v253gR333.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离 B 点高度为h 处(3 R2h3R )的 A 点由静止开始下落,从 B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D点?试通过计算说明;(2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从 D 点飞出后能否落在水平面BC 上,若能,求落点与 B 点水平距离 d 的范围.【答案】(1)小球能到达 D 点;(2) 0F3mg ;(3)2 1 R d 2 21 R【解析】【分析】【详解】(1)当小球刚好通过最高点时应有:mg mv D2R由机械能守恒可得:mg h R mv D 22联立解得 h 3R ,因为3R h3R ,小球能到达 D 点;2h 的取值范围为2(2)设小球在D点受到的压力为 F ,则F mg mv D2 Rmg h R mv D2 2联立并结合 h 的取值范围 3 R h3R 解得: 0F3mg2据牛顿第三定律得小球在最高点对轨道的压力范围为:0 F 3mg (3)由( 1)知在最高点D速度至少为v D min gR此时小球飞离 D 后平抛,有:R 1 gt22xmin vD mint联立解得x min2R R ,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:mg3mg m v D2maxR解得v D max 2gR 小球飞离 D 后平抛 R 1gt 2,2x max vD maxt联立解得x max 2 2R故落点与 B 点水平距离 d 的范围为: 2 1 R d 2 2 1 R4.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
高考物理曲线运动常见题型及答题技巧及练习题(含答案)及解析

高考物理曲线运动常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,将一小球从倾角θ=60°斜面顶端,以初速度v0水平抛出,小球落在斜面上的某点P,过P点放置一垂直于斜面的直杆(P点和直杆均未画出)。
已知重力加速度大小为g,斜面、直杆处在小球运动的同一竖直平面内,求:(1)斜面顶端与P点间的距离;(2)若将小球以另一初速度v从斜面顶端水平抛出,小球正好垂直打在直杆上,求v的大小。
【答案】(1);(2);【解析】本题考查平抛与斜面相结合的问题,涉及位移和速度的分解。
(1)小球从抛出到P点,做平抛运动,设抛出点到P点的距离为L小球在水平方向上做匀速直线运动,有:在竖直方向上做自由落体运动,有:联立以上各式,代入数据解得:(2)设小球垂直打在直杆上时竖直方向的分速度为v y,有:在水平方向上,有:在竖直方向上,有:,由几何关系,可得:联系以上各式,得:另解:小球沿斜面方向的分运动为匀加速直线运动,初速度为:,加速度为小球垂直打在直杆上,速度为,有:在斜面方向上,由匀变速运动规律得:联立以上各式,得:点睛:物体平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体;也可分解为沿斜面方向的匀变速直线运动和垂直斜面的匀变速直线运动。
2.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
高中物理曲线运动专项训练100(附答案)含解析

高中物理曲线运动专项训练100(附答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312Fmg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤3.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是( AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。
变速运动可能是速度的方向不变而大小变化,则可能是直线运动。
当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。
做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。
2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点( A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。
由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。
在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。
3、关于运动的合成,下列说法中正确的是( C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。
两个匀速直线运动的合运动一定是匀速直线运动。
两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。
如果在一直线上,合运动是匀变速直线运动;反之是匀变速曲线运动。
根据运动的同时性,合运动的两个分运动是同时的。
4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如图所示,求:(1)物体所受的合力。
(2)物体的初速度。
(3)判断物体运动的性质。
(4)4s末物体的速度和位移。
【解析】根据分速度v x和v y随时间变化的图线可知,物体在x轴上的分运动是匀加速直线运动,在y轴上的分运动是匀速直线运动。
从两图线中求出物体的加速度与速度的分量,然后再合成。
(1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。
则物体所受的合力F=ma=0.2×1N=0.2N,方向沿x轴的正方向。
(2) 由图象知,可得两分运动的初速度大小为v x0=0,v y0=4m/s,故物体的初速度22240+=+=yxvvv m/s=4m/s,方向沿y轴正方向。
(3)根据(1)和(2)可知,物体有y正方向的初速度,有x正方向的合力,则物体做匀变速曲线运动。
(4) 4s末x和y方向的分速度是v x=at=4m/s,v y=4m/s,故物体的速度为v=smvvyx/24442222=+=+,方向与x正向夹角θ,有tanθ= v y / v x=1。
x和y方向的分位移是x=at2/2=8m,y=v y t=16m,则物体的位移为s=5822=+yx m,方向与x正向的夹角φ,有tanφ=y/x=2。
5、已知某船在静水中的速率为v1=4m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d=100m,河水的流动速度为v2=3m/s,方向与河岸平行。
试分析:⑴欲使船以最短时间渡过河去,航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移是多大?⑵欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?【解析】⑴根据运动的独立性和等时性,当船在垂直河岸方向上的分速度v⊥最大时,渡河所用时间最短,设船头指向上游且与上游河岸夹角为α,其合速度v与分运动速度v1、v2的矢量关系如图1所示。
河水流速v2平行于河岸,不影响渡河快慢,船在垂直河岸方向上的分速度v⊥=v1sinα,则船渡河所用时间为t=αsin1vd。
显然,当sin α=1即α=90°时,v⊥最大,t最小,此时船身垂直于河岸,船头始终指向正对岸,但船实际的航向斜向下游,如图2所示。
渡河的最短时间t min=1vd=1004s=25s。
船的位移为s=v t=⋅+2221vv t min=2234+×25m=125m。
图1vv1αv2图2vv1vA船渡过河时已在正对岸的下游A 处,其顺水漂流的位移为x =v 2t min =12v d v =3×1004 m =75m 。
⑵ 由于v 1>v 2,故船的合速度与河岸垂直时,船的渡河距离最短。
设此时船速v 1的方向(船头的指向)斜向上游,且与河岸成θ角,如图6-34所示,则cos θ=12v v =34,θ=41°24′。
船的实际速度为 v 合=2221v v -=42-32m/s =7 m/s 。
故渡河时间 t ′=d v 合 =1007s =10077 s ≈38s 。
6、如图所示为频闪摄影方法拍摄的研究物体做平抛运动规律的照片,图中A 、B 、C 为三个同时由同一点出发的小球。
AA ′为A 球在光滑水平面上以速度v 运动的轨迹; BB ′为B 球以速度v 被水平抛出后的运动轨迹;CC ′为C 球自由下落的运动轨迹。
通过分析上述三条轨迹可得出结论:。
【解析】观察照片,B 、C 两球在任一曝光瞬间的位置总在同一水平线上,说明平抛运动物体B 在竖直方向上的运动特点与自由落体运动相同;而A 、B 两小球在任一曝光瞬间的位置总在同一竖直线上,说明平抛运动物体B 在水平方向上的运动特点与匀速直线运动相同。
所以,得到的结论是:做平抛运动的物体在水平方向做匀速直线运动,在竖直方向做自由落体运动。
7、在研究平抛运动的实验中,用一张印有小方格的纸记录轨迹,小方格的边长L =1.25cm ,若小球在平抛运动途中的几个位置如图中a 、b 、c 、d 所示,则小球平抛的初速度为v 0= (用L 、g 表示),其值是 。
(g 取9.8m/s 2)【解析】由水平方向上ab =bc =cd 可知,相邻两点的时间间隔相等,设为T ,竖直方向相邻两点间距之差相等,Δy =L ,则由 Δx =aT 2,得 T =Lg。
时间T 内,水平方向位移为x =2L ,所以 v 0=tx =2Lg 8.90125.02⨯⨯=m/s =0.70m/s 。
8、飞机在2km 的高空以360km/h 的速度沿水平航线匀速飞行,飞机在地面上观察者的正上方空投一包裹。
(g 取10m/s 2,不计空气阻力)⑴ 试比较飞行员和地面观察者所见的包裹的运动轨迹。
⑵ 包裹落地处离地面观察者多远?离飞机的水平距离多大? ⑶ 求包裹着地时的速度大小和方向。
提示 不同的观察者所用的参照物不同,对同一物体的运动的描述一般是不同的。
【解析】 ⑴ 从飞机上投下去的包裹由于惯性,在水平方向上仍以360km/h 的速度沿原来的方向飞行,与飞机运动情况相同。
在竖直方向上同时进行自由落体运动,所以飞机上的飞行员只是看到包裹在飞机的正下方下落,包裹的轨迹是竖直直线;地面上的观察者是以地面为参照物的,他看见包裹做平抛运动,包裹的轨迹为抛物线。
⑵ 抛体在空中的时间t =s 10200022⨯=g h=20s 。
在水平方向的位移 x =v 0t =m 206.3360⨯=2000m ,即包裹落地位置距观察者的水平距离为2000m 。
包裹在水平方向与飞机的运动情况完全相同,所以,落地时包裹与飞机的水平距离为零。
⑶ 包裹着地时,对地面速度可分解为水平方向和竖直方向的两个分速度, v x =v 0=100m/s ,v y =gt =10×20m/s =200m/s , 故包裹着地速度的大小为 v t =2222200100+=+y x v v m/s =100 5 m/s ≈224m/s 。
而 tan θ=xy v v =100200=2,故着地速度与水平方向的夹角为θ=arctan2。
9、如图,高h 的车厢在平直轨道上匀减速向右行驶,加速度大小为a ,车厢顶部A 点处有油滴滴下落到车厢地板上,车厢地板上的O 点位于A 点的正下方,则油滴的落地点必在O 点的 (填“左”或“右”)方,离O 点的距离为 。
【解析】因为油滴自车厢顶部A 点脱落后,由于惯性在水平方向具有与车厢相同的初速度,因此油滴做平抛运动,水平方向做匀速直线运动 x 1=vt , 竖直方向做自由落体运动h =12gt 2,又因为车厢在水平方向做匀减速直线运动,所以车厢(O 点)的位移为 x 2=vt -12at 2。
图6-34C ′如图所示 x =x 1-x 2h gag h a at =⋅==221212, 所以油滴落地点必在O 点的右方,离O 点的距离为 agh 。
10、如图所示,两个相对斜面的倾角分别为37°和53°,在斜面顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上。
若不计空气阻力,则A 、B 两个小球的运动时间之比为( D )A.1:1B.4:3C.16:9D.9:16 【解析】由平抛运动的位移规律可知:tv x 0=221gt y =∵x y /tan =θ ∴gv t /tan 20θ= ∴16953tan 37tan =︒︒=B A t t11、如图在倾角为θ的斜面顶端A 处以速度V 0水平抛出一小球,落在斜面上的某一点B 处,设空气阻力不计,求(1)小球从A 运动到B 处所需的时间;(2)从抛出开始计时,经过多长时间小球离斜面的距离达到最大? 【解析】(1)小球做平抛运动,同时受到斜面体的限制,设从小球从A 运动到B 处所需的时间为t ,水平位移为x=V 0t竖直位移为y=221gt 由数学关系得:gV t t V gt θθtan 2,tan )(21002== (2)从抛出开始计时,经过t 1时间小球离斜面的距离达到最大,当小球的速度与斜面平行时,小球离斜面的距离达到最大。
因V y1=gt 1=V 0tan θ,所以gV t θtan 01=。
12、如图所示,两个小球固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动。
当小球A 的速度为v A 时,小球B 的速度为v B ,则轴心O 到小球A 的距离是( B )A. l v v v B A A )(+B.B A A v v l v + C. A B A v l v v )(+ D. BB A v lv v )(+【解析】设轴心O 到小球A 的距离为x ,因两小球固定在同一转动杆的两端,故两小球做圆周运动的角速度相同,半径分别为x 、l -x 。