全国中学生物理竞赛考试卷题库28 (9)
第28届全国中学生物理竞赛复赛试卷(含答案)
第28届全国中学生物理竞赛复赛试题一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°。
已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB 、CD 如图放置,A 点与水平地面接触,与地面间的静摩擦系数为μA ,B 、D 两点与光滑竖直墙面接触,杆AB 和CD 接触处的静摩擦系数为μC ,两杆的质量均为m ,长度均为l 。
1、已知系统平衡时AB 杆与墙面夹角为θ,求CD 杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。
2、若μA =1.00,μC =0.866,θ=60.0°。
求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。
一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。
第28届全国中学生物理竞赛复赛试题(清晰扫描版)及参考解答
第28届全国中学生物理竞赛复赛试题参考解答及评分标准一、参考解答:解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b += (1) a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4) 由图1可知,P 点的坐标cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-= (7)根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+ (8) 由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9) 可以证明,彗星绕太阳作椭圆运动的机械能为 s2Gmm E =a-(10) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (11) 得图1P=v(12)代入有关数据得414.3910m sP-⨯⋅v=(13)设P点速度方向与SP的夹角为ϕ(见图2),根据开普勒第二定律[]sin2P P Prϕθσ-=v(14)其中σ为面积速度,并有πabTσ=(15)由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ= (16)解法二取极坐标,极点位于太阳S所在的焦点处,由S引向近日点的射线为极轴,极角为θ,取逆时针为正向,用r、θ表示彗星的椭圆轨道方程为1cospreθ=+(1)其中,e为椭圆偏心率,p是过焦点的半正焦弦,若椭圆的半长轴为a,根据解析几何可知()21p a e=-(2)将(2)式代入(1)式可得()θcos112eear+-=(3)以eT表示地球绕太阳运动的周期,则e1.00T=年;以ea表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e1.00AUa=,根据开普勒第三定律,有3232a Ta T=e e(4)在近日点0=θ,由(3)式可得1rea=-0(5)将Pθ、a、e的数据代入(3)式即得0.895AUPr=(6)可以证明,彗星绕太阳作椭圆运动的机械能s2GmmE=a-(7)式中m为彗星的质量.以Pv表示彗星在P点时速度的大小,根据机械能守恒定律有2s s122PPGmm Gmmmr a⎛⎫+-=-⎪⎝⎭v(8)可得P=v(9)代入有关数据得414.3910m sP-⨯⋅v=(10)设P点速度方向与极轴的夹角为ϕ,彗星在近日点的速度为0v,再根据角动量守恒定律,有()sinP P Pr rϕθ-=v v00(11)根据(8)式,同理可得=v(12)由(6)、(10)、(11)、(12)式并代入其它有关数据127ϕ= (13)评分标准:本题20分解法一(2)式3分,(8)式4分,(9)式2分,(11)式3分,(13) 式2分,(14)式3分,(15)式1分,(16)式2分.解法二(3)式2分,(4)式3分,(5)式2分,(6)式2分,(8)式3分,(10) 式2分,(11)式3分,(12)式1分,(13)式2分.二、参考解答:1.建立如图所示坐标系Oxy.两杆的受力情况如图:1f为地面作用于杆AB的摩擦力,1N为地面对杆AB的支持力,2f、2N为杆AB作用于杆CD的摩擦力和支持力,3N、4N分别为墙对杆AB和CD的作用力,mg为重力.取杆AB和CD构成的系统为研究对象,系统平衡时, 由平衡条件有431N N f+-=(1)120N mg-=(2)以及对A点的力矩()3411sin sin sin cos cos cos022mgl mg l l N l N l l CFθθαθθα⎛⎫+---+-=⎪⎝⎭即()3431sin sin cos cos cos022mgl mgl N l N l l CFθαθθα---+-=(3)式中CF待求.F是过C的竖直线与过B的水平线的交点,E为BF与CD的交点.由几何关系有sin cot CF l αθ= (4) 取杆CD 为研究对象,由平衡条件有422cos sin 0N N f θθ+-= (5) 22sin cos 0N f mg θθ+-= (6) 以及对C 点的力矩41cos sin 02N l mgl αα-= (7) 解以上各式可得41tan 2N mg α=(8) 331sin 1tan sin tan tan 22cos 2sin N mg αααθαθθ⎛⎫=--+ ⎪⎝⎭ (9)13tan sin 1tan sin 2cos 2sin f mg θαααθθ⎛⎫=-+ ⎪⎝⎭ (10)12N mg = (11)21sin tan cos 2N mg θαθ⎛⎫=-⎪⎝⎭ (12) 21cos tan sin 2f mg θαθ⎛⎫=+ ⎪⎝⎭(13) CD 杆平衡的必要条件为22c f N μ≤ (14)由(12)、(13)、(14)式得()2sin cos tan cos sin C C μθθαμθθ-≤+ (15)AB 杆平衡的必要条件为11A f N μ≤ (16)由(10)、(11)、(16)式得tan sin 2sin 43tan sin cos A αααμθθθ-≤- (17)因此,使系统平衡,α应满足的条件为(15)式和(17)式.2.将题给的数据代入(15)式可得 arctan 0.38521.1α︒≤= (18) 将题给的数据代入(17)式,经数值计算可得19.5α≥︒ (19) 因此,α的取值范围为 19.521.1α≤≤(20)评分标准:本题20分第1问15分(1)、(2)、(3)式共3分,(4)式1分,(5)、(6)、(7)式共3分,(9) 、(10) 式各1分,(12)到(17)式各1分.第2问5分(18)式1分,(19)式3分,(20)式1分. 三、参考解答:'解法一1. 设在时刻t ,小球和圆筒的运动状态如图1所示,小球位于P 点,绳与圆筒的切点为T ,P 到T 的距离即绳的拉直部分的长度为l圆筒的角速度为ω,小球的速度为v .小球的速度可以分解成沿着绳子方向的速度1v 和垂直于绳子方向的速度2v 两个分量.根据机械能守恒定律和角动量守恒定律有()()()()22222001211112222M R m R M R m ωωω+=++v v (1) 2220012+=++MR mR MR mR ml ωωωv v (2)因为绳子不可伸长,1v 与切点T 的速度相等,即ωR =1v (3) 解(1)、(2)、(3)式得()()02222ωωml R m M ml R m M ++-+= (4) ()()022222ωmlR m M l R m M +++=v (5) 由(4)式可得l = (6)这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(6)式,当0=ω得=L (7) 这便是绳的总长度L .3.如图2所示,从时刻t 到t t +∆,切点T 跟随圆筒转过一角度1t ωθ∆=∆,由于绳子的拉直部分的长度增加了l ∆,切点相对圆筒又转过一角度2lRθ∆=∆,到达T '处,所以在t ∆时间内,切点转过的角度12lt Rθθωθ∆∆=∆=+∆+∆ (8)切点从T 变到T '也使切线方向改变了一个同样的角度θ∆,而切线方向的改变是小球具有垂直于绳子方向的速度2v 引起的,故有2tlθ∆∆=v (9) 由(1)、(2)、(3)式可得 ()20l ωω=+v (10)2()2t由(8)、(9)、(10)三式得0l R t ω∆=∆ (11) (11)式表示l 随t 均匀增加,故l 由0增加到L所需的时间为0s L t R ω== (12)解法二1.撤去插销后两个小球的运动情况相同,故可取一个小球作为对象进行研究,先研究任何时刻小球的速度.在t 时刻,相对卫星系统质心参考系小球运动状态如图1所示,绳子的拉直部分与圆筒面的切点为T ,小球到切点T 的距离即绳的拉直部分的长度为l ,小球到转轴O 的距离为r ,圆筒的角速度为ω.由于圆筒的转动和小球相对圆筒的运动,绳将展开,切点位置和绳的拉直部分的长度都要改变.首先考察小球相对于圆筒的运动.在t 时刻,OT 与固定在圆筒上的半径0OP 的夹角为φ,如图2所示.由于小球相对圆筒的运动,经过时间t ∆,切点从圆筒上的T 点移到T '点,OT '与0OP 的夹角变为φφ+∆,绳的拉直部分的长度由l 变为l ',小球由P 运动到P ',PP '便是小球相对圆筒的位移.当t ∆很小时l l '≈,故PP l l φφ''=∆≈∆于是小球相对圆筒的速度大小为ll tφφφω∆==∆v (1) 方向垂直于TP .φω是切点相对圆筒转动的角速度. 再考察圆筒相对质心参考系的转动,即与圆筒固连在一起的转动参考系相对质心参考系的运动.当圆筒的角速度为ω时,位于转动参考系中的P 点(小球所在处)相对质心系的速度r ωω=v (2)方向垂直于OP .可以把ωv 分解成沿着TP 方向的分量1ωv 和垂直TP 方向的分量2ωv ,如图3所示,即1R ωω=v(3)2l ωω=v (4)小球相对质心系的速度 v 是小球相对圆筒的速度和圆筒参考系中的P 点相对质心系速度的合成,由图3可得v 的2m12φω+ v大小=v (5)因 l R φ= (6) 故有=v (7)因为系统不受外力作用,故系统的动能和角动量守恒,故有()()222220011112222M R mR M R m ωωω+=+v (8) ()2220012MR mR MR mR ml ωωφωωω+=+++v v v (9)由(7)、(8)两式有()22220mM mφωωωωφ=+++ (10)由(1)、(3)、(4)、(6)、(9)各式得()20mM mφωωφωω=+++ (11) 由(10)、(11)两式得φωωωω+=+0 故有0ωωφ= (12)上式说明绳子与圆筒的切点相对圆筒转动的角速度等于卫星的初始角速度,是一个恒量,将(12)式代入(11)式得φ=(13) 由(6)、(13)两式得l = (14)这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(14)式,当0=ω得绳总长度, 即L = (15) 3.因φω是一个恒量,φ随时间的t 的变化规律为t 0ωφ= (16) 当0=ω时,由(13)式可得卫星停旋时的φs φ=(17) 设卫星停转所用的时间为s t ,由(16)、(17)式得0s s t φω==(18) 评分标准:本题25分.解法一第1问12分.(1)、(2)式各3分,(3)式2分,(6)式4分.第2问3分.(7)式3分.第3问10分.(8)、(9)式各3分,(10)式2分,(11)、(12)式各1分.解法二第1问18分.(1)式3分,(2)式2分,(7)式2分,(8)式3分,(9)式3分,(12)式2分,(14)式3分,第2问3分.(15)式3分.第3问4分.(16)式2分,(17)式1分,(18)式1分.四、参考解答:1.根据题意,粒子的初速度只有y 方向和z 方向的分量,设它们为0y v 和0z v .因为粒子在z 方向不受电场力和磁场力作用,故粒子在z 方向以初速度0z v 作匀速运动.粒子在Oxy 面内的运动可以看作由以下两部分运动的合成:可把粒子在y 方向的初速度表示为 001001y y y y =-++v v v v (1) 其中0010y E B =-v (2) 沿y 负方向.与01y v 相关的磁场力 010Bx y f q B =-v (3) 沿x 负方向.粒子受到的电场力0E Ex f f qE == (4)沿x 正方向.由(2)、(3)、(4)式可知,粒子在x 方向受到的电场力和磁场力正好抵消,故粒子以大小为E B 的速度沿y 负方向运动.除此之外,由(1)式可知,粒子还具有初速度00200y y E B =+v v (5) 沿y 正方向,与02y v 相关的磁场力使粒子以速率02y v 在Oxy 面内作匀速圆周运动,以r 表示圆周运动的半径,有202020y y q B mr=v v (6) 可得020y m r qB =v (7)由周期的定义和(7)式可得圆周运动的周期02mT =qB π (8) (8)式表明,粒子运动的周期与粒子在y 方向的初速度无关.经过时间T 或T 的整数倍所考察的粒子就能同时回到Oyz 平面.2.增加的电场2E对粒子在Oxy 平面内的运动无影响,但粒子在z 方向要受到此电场力作用.以z a 表示在此电场力作用下的加速度,有 0c o s z m a q E t ω= (9) 或0cos z qE a =t mω (10) 这是简谐运动的加速度,因而有 2z a =z ω- (11) 由(10)、(11)可得t mqE z ωωcos 102-= (12) 因未增加电场时,粒子在z 方向作初速度为0z v 的匀速运动,增加电场后,粒子在z 方向的运动是匀速运动与简谐运动的叠加,即有0021cos z qE z t t mωω=-v (13)粒子在Oxy 平面内的运动不受电场2E的影响.设0ω为粒子在Oxy 平面内作圆周运动的角速度,则有202πqB T mω== (14) 由图示可得与圆周运动相联系的粒子坐标随时间t 的变化关系()01cos x r t ω'=- (15) 0sin y r t ω'= (16)考虑到粒子在y 方向还具有速度为01y v 的匀速运动,并利用(2)、(5)、(7)、(14)以及己知条件,可得带电粒子的运动规律:000001cos y E qB m x t qB B m ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭v (17) 0000000siny E E qB m y t t B qB B m⎛⎫=-++ ⎪⎝⎭v (18) 00020cos z mE qB z t t qB m=-v (19)评分标准:本题20分.第1问12分.(2)、(3)、(4)式共5分,(5)、(6)、(7)式共4分,(8)式及相关说明共3分.第2问8分.(12)式2分,(14)式到(19)式各1分. 五、答案与评分标准本题15分.1.01TV V L I I e ⎛⎫-- ⎪ ⎪⎝⎭ (2分),L I (2分),0ln 1L T I V I ⎛⎫+ ⎪⎝⎭ (2分),01TVV L VI VI e ⎛⎫-- ⎪ ⎪⎝⎭(1分).2.0.62V (2分);0.54V (2分);49mW (2分);6.0Ω (2分).六、参考解答:在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.1. 设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积02B V V = (1) 根据题意,活塞M 向右移动过程中,B 中气体压强不变,用B T 表示B 室中气体末态的温度,有00BBV V T T =(2)由(1)、(2)式得02B T T = (3)由于隔板N 是导热的,故A 室中气体末态的温度02A T T = (4) 下面计算此过程中的热量m Q .在加热过程中,A 室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即 05()2A A Q R T T =- (5) 由(4)、(5)两式得052A Q RT = (6)B 室中气体经历的是等压过程,在过程中B 室气体对外做功为00()B B W p V V =- (7) 由(1)、(7)式及理想气体状态方程得 0B W R T = (8)内能改变为05()2B B U R T T ∆=- (9) 由(4)、(9)两式得052∆=B U RT (10)根据热力学第一定律和(8)、(10)两式,B 室气体吸收的热量为 072=∆+=B B B Q U W RT (11) 由(6)、(11) 两式可知电加热器提供的热量为06m A B Q Q Q RT =+= (12) 若0m Q Q =,B 室中气体末态体积为02V ,A 室中气体的末态温度02T .2.若0m Q Q >,则当加热器供应的热量达到m Q 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量0m Q Q -是A 、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为AT ',有 00055(2)(2)22m AA Q Q R T T R T T ''-=-+- (13) 由(12)、(13)两式可求得00455AQ T T R '=+ (14) B 中气体的末态的体积02BV =V ' (15) 3. 若0m Q Q <,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积BV ''小于02V ,即02BV V ''<.设A 、B 两室中气体末态的温度为A T '',根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量05()2A AQ R T T ''=- (16) B 室中气体经历的是等压过程,吸收热量0005()()2B AB Q R T T p V V ''''=-+- (17)利用理想气体状态方程,上式变为()072B AQ R T T ''=- (18) 由上可知006()A B AQ Q Q R T T ''=+=- (19) 所以A 室中气体的末态温度 006AQ T T R''=+ (20) B 室中气体的末态体积 00000(1)6BA V QV T V T RT ''''==+ (21) 评分标准:本题20分.得到0m Q Q =的条件下(1)、(4)式各1分;(12)式6分,得到0m Q Q >的条件下的(14)式4分,(15)式2分;得到0m Q Q <的条件下的(20)式4分,(21)式2分.七、答案与评分标准:本题20分.1. 3R (3分) 2. 6R (3分)第1第3空格各2分;其余3个空格全对3分,有一个错则不给这3分. 八、参考解答:1. 反应能()()332p n H He Q m m m m c ⎡⎤=+-+⎣⎦(1)式中c 为光速.代入数据得0.764MeV Q =- (2) 上式表明这是一吸能核反应.2.为了求入射质子阈能,反应前后各粒子都应沿同一直线运动.设质子的入射速度大小为p v ,反应后32He 的速度大小为3He v ,中子的速度大小为n v ,根据动量守恒和能量守恒有33p p n n He He m m m =+v v v (3)33222p p n n He He 111222m m m Q =++v v v (4)由(3)、(4)式可得3333322n n p p p n22He He n p n p He He He220m m m m m m m m Q m m m ⎛⎫⎛⎫+--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭v v v v (5) 令333332n nHe He p n pHe 2p p 2Hep He22m m m a m m m b m m m m c Qm ⎫+⎪=⎪⎪⎪=-⎬⎪⎪-⎪=+⎪⎭v v (6) 把(6)式代入(5)式得2n n 0a b c ++=v v (7)(7)式有解的条件是240b ac -≥ (8)由(6)式可知,c 可能大于零,亦可能小于零.若0c <,则(8)总成立,中子速度一定有解,反应一定能发生;若0c >,则由 (6)、(8)两式得33n 2He p p n pHe 12m m m Q m m m +≥+-v (9) 即只有当入射质子的动能满足(9)式时,中子速度才有解,反应才能发生,所以入射质子的阈能为3pn p He 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭ (10) 利用(1)式,在忽略2Q 项的情况下,(10)式可简化为 3p H1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(11) 代入有关数据得 1.02MeV th T = (12)3.由动量守恒和能量守恒有33p p n n He He =+m m m v v v (12)33222p p n n He He 111222m m m Q =++v v v (13) 以θ表示反应中产生的中子速度方向与入射质子速度方向的夹角,如图所示,根据余弦定律有 ()()()33222n n p p n p n p He He 2cos m m m m m θ=+-v v v v v (14)令2p p p 12T m =v (15) 2n n n 12T m =v (16) 3332He He He 12=T m v (17) 把(15)、(16)、(17)式代入(13)、(14)两式得3He Q T T T =--p n (18)p p m v33n n p p He He 222m T m T m T θ=+- (19)由(18)、(19)式,消去3He T 后,得()3333p p HeHe n nnHe He 0m m T Q m T m m θ---=+ (20)令3nHe S θ=,()333p p HeHe nHe m m T Q m R m m --=+ (21)得n 20T R -= (22)根据题给的入射质子的动能和第1问求得的反应能Q 的值,由(21)式可知0R >,故(22)式的符合物理意义的S = (23)将具体数据代入(21)、(23)式中,有n 0.132MeV T = (24) (如果得到 131.0=n T MeV ,也是对的.)第2问的其他解法解法一为了研究阈能,只考虑碰撞前后各粒子都沿同一直线运动的情况.若碰撞后32He 和中子的速度相同,即粘在一起运动(完全非弹性碰撞),则在碰撞过程中损失的机械能最多,若所损失的机械能正好等于反应能,则入射质子的动能最小,这最小动能便是阈能. 设质子的入射速度大小为p v ,反应后32He 和中子的速度大小为v ,根据动量守恒和能量守恒有3p p n He ()m m m =+v v (1)322p p n He 11()22m m m Q =++v v (2) 由(1)、(2)式可得 33n 2He p p n pHe 12m m m Q m m m +=+-v (3) 所以阈能为3p n p He 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭(4) 利用第1问中的(1)式,并注意到32H 1<<Q m c有333332n pHe H H 2H H 11111⎛⎫==- ⎪ ⎪+-⎛⎫⎝⎭+⎪ ⎪⎝⎭Q m m m m m c Q m m c 在忽略2Q 项的情况下,(4)式可简化为 3p H 1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(5) 代入有关数据得 1.02M e Vth T = (6)第2问8分(1)、(2)式各3分,(4)式或(5)式1分,(6)式1分. 解法二在牛顿力学中可以证明,质点系的总动能可以表示为质点系的总质量以质心速度运动的动能即所谓质心动能与各质点相对质心运动的动能之和.若质点系不受外力作用,则质点系的动量守恒,质心速度不变,故质心动能亦恒定不变;如果质点系内部的相互作用导致质点系机械能的变化,则可变化的机械能只能是各质点相对质心运动的动能. 在本题中,如果质子p 与氚31H 发生反应后,生成的中子n 和氦32He 相对质心都静止,则质子p 与氚31H相对质心运动的动能之和全部转化成反应能,反应后系统的动能只有质心的动能,在这请况下,转化成其他形式能量的机械能最多,入射质子的动能最小,这最小动能便是阈能.所以入射质子的阈能等于系统质心的动能与反应能之和.以p 'v 和3H 'v 分别表示质子p 和氚31H 相对质心的速度,有3322p p H H 1122Q =m m ''+v v (1) 因系统质心的速度 3p p c p H=+m m m v v (2)而33p H p p c p Hm m '=-=+v v v v m (3) 33p p c Hp H0m m '=-=-+v v v m (4)由(1)、(3)、(4)式得 332H p pp H12m Q m m m =+v (5) 在牛顿力学中,系统的总质量是恒定不变的,这就导致系统质心的动能在反应前后恒定不变的结论,但在本题中,损失掉的机械能导致系统总质量的变化,使反应前系统的总质量与反应后系统的总质量不相等,即33p n H He +≠+m m m m .如果仍沿用牛顿力学的结论,对一个孤立系统,其质心速度是不会改变的,故反应后质心的动能应为 ()()33222c n c p c c 2He H 111222=+=++Q E m m m m cv v v 而 ()33322p p p 2c 2222p H Hp HQ 1122m m Q QQ c c c m m m m m =⋅=⋅⋅++v v 由此可见,在忽略2Q 的条件下 ()()3322n p He H 1122c c m m m m +=+v v 而入射质子的阀能 ()32p H 12th c T m m Q =++v (6) 由(2)、(5)、(6)式得 3p H 1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(7) 代入有关数据得 1.02MeV th T = (8)第2问8分(1)、(5) 、(6)式各2分, (7)式1分,、(8)式1分. 解法三考虑反应前后各粒子都沿同一直线运动的情况,若入射质子与与静止的31H 发生完全非弹性碰撞,即反应后产生的中子和32He 以相同的速度运动,则入射质子的动能就是阈能.以10m 表示质子的静止质量,20m 表示31H 的静止质量,30m 表示中子的静止质量,40m 表示31He 的静止质量,设质子的入射速度大小为p v ,反应后32He 和中子的速度大小都为v ,根据动量守恒和能量守恒有1pm m m +=v(1)222120m m c m c m c++=(2)式中1m 是质子的动质量.由(1)、(2)两式得 1p 120+m m m v v =(3)把(3)式代入(1)式,经整理得 ()()2222221201p 3040+-=+m m c m m m c v (4)由 1m =(5)可得221p221102-=m m m cv (6)若入射质子的阈能为th E ,有22110th m c m c E =+ (7) 由(4)、(6)、(7)式可得 ()()2230401020202thm m m m E m +-+= (8)利用题给条件并引入反应能,得 333p n H HeH2th m m m m E Q m +++=(9)或有 ()3333p 2H p H H H22th Q+m m m m c E Q Q m m ++=≈ (10)代入有关数据得 1.02M e Vth T = (11) 第2问8分(1)、(2) 、(8)式各2分, (9)或(10)式1分, (11)式1分。
第28届全国中学生物理竞赛复赛试卷及标准答案
第28届全国中学生物理竞赛复赛试卷及标准答案说明:填空题的答案填在题中的横线上或题给的表格中。
计算题的解答应写出必要的说明、方程式和重要的演算步骤,只写出最后结果的不能给分。
有数值计算的,答案中必须明确写出数值和单位。
本卷共8题,满分160分。
一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,运动周期T=76.1年。
1986年它过近日点P0时,与太阳S 的距离为r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离。
经过一段时间,彗星到达轨道上的P 点,SP 和SP 0的夹角72.0P θ=︒,已知1AU=111.510m ⨯,引力常量G =113126.6710m kg s ---⨯⋅⋅,太阳质量301.9910s m kg =⨯。
试求P 到太阳S 的距离r P 及彗星过P 时的速度大小和方向(用速度方向和SP 0的夹角表示)。
一、参考解答:解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b += (1)a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4) 由图1可知,P 点的坐标cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-= (7)根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+ (8) 由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9) 可以证明,彗星绕太阳作椭圆运动的机械能为 s2Gmm E =a-(10) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (11) 得P =v (12) 代入有关数据得414.3910m s P -⨯⋅v = (13) 设P 点速度方向与0SP 的夹角为ϕ(见图2),根据开普勒第二定律[]sin 2P P P r ϕθσ-=v (14)图1其中σ为面积速度,并有πabTσ=(15) 由(9)、(13)、(14)、(15)式并代入有关数据可得 127ϕ= (16)解法二取极坐标,极点位于太阳S 所在的焦点处,由S 引向近日点的射线为极轴,极角为θ,取逆时针为正向,用r 、θ表示彗星的椭圆轨道方程为1cos pr e θ=+ (1)其中,e 为椭圆偏心率,p 是过焦点的半正焦弦,若椭圆的半长轴为a ,根据解析几何可知()21p a e =- (2)将(2)式代入(1)式可得()θcos 112e e a r +-= (3)以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(4) 在近日点0=θ,由(3)式可得1r e a=-(5)将P θ、a 、e 的数据代入(3)式即得0.895AU P r = (6)可以证明,彗星绕太阳作椭圆运动的机械能 s2Gmm E =a-(7) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (8)可得P=v(9)代入有关数据得414.3910m sP-⨯⋅v=(10) 设P点速度方向与极轴的夹角为ϕ,彗星在近日点的速度为0v,再根据角动量守恒定律,有()sinP P Pr rϕθ-=v v00(11)根据(8)式,同理可得=v(12)由(6)、(10)、(11)、(12)式并代入其它有关数据127ϕ=(13) 评分标准:本题20分解法一(2)式3分,(8)式4分,(9)式2分,(11)式3分,(13) 式2分,(14)式3分,(15)式1分,(16)式2分.解法二(3)式2分,(4)式3分,(5)式2分,(6)式2分,(8)式3分,(10) 式2分,(11)式3分,(12)式1分,(13)式2分.二、(20分)质量分布均匀的刚性杆AB、CD如图放置,A点与水平地面接触,与地面的静摩擦系数为μA,B、D两点与光滑竖直墙接触,杆AB和CD接触处的静摩擦系数为μC,两杆质量均为m,长度均为l。
【精品】第28届全国中学生物理竞赛决赛实验试题
【精品】第28届全国中学生物理竞赛决赛 实验试题一试卷及答卷直流电源特性的研究一、 题目:一直流待测电源x E ,开路电压小于2V 。
(1) 利用所给仪器,自组电压表、并测量待测电源x E 的开路电压; (2) 利用所给仪器,测量待测电源x E 的短路电流。
二、 仪器:直流待测电源x E ,六位电阻箱二台,标称值350欧姆的滑线变阻器一台,标称值3V 直流电压源E 一台,准确度等级0.5级指针式100微安直流电流表1A 一台,准确度等级0.5级指针式多量程直流电流表2A 一台,准确度等级1.5级指针式检流计G 一台,开关、导线若干。
三、 说明:1、 待测电源x E 具有非线性内阻,不适合用U I -曲线外推法测量;2、 测量中需要的电压表用100微安指针式直流电流表1A 和电阻箱自组;3、 标称值3V 直流电压源E 由两节1号干电池、15欧姆保护电阻串联构成;4、 所画测量电路中的待测电源x E 、3V 直流电压源E 、电流表1A 、电流表2A 需用“+”和“-”标明其正负极性;5、 检流计G 两接线端子上并联两个保护二级管,作为平衡指示器使用时,可以不使用串联保护电阻。
如果测试中需要用检流计G 判断电流是否为0时,应说明检流计G 指示为0的判断方法或者判断过程。
四、 要求:1、 (7分)利用所给器材,测量100微安电流表内阻,并将100微安电流表改装成2.00V 量程的电压表。
要求画出测量内阻的电路图,简述测量原理,给出测量结果;画出自组电压表的示意图,并标明元件的数值。
2.1(5分)画出测量待测电源x E 的开路电压的电路图,简述测量待测电源x E 开路电压的原理和步骤。
2.2(6分)连接电路、测量并记录必要的数据,标明待测电源x E 开路电压的测量值。
3.1(5分)画出测量待测电源x E 短路电流的电路图,并简述测量待测电源x E 短路电流的原理和步聚。
3.2(7分)连接电路、测量并记录必要的数据,写出待测电源x E 短路电流的测量值。
第28届全国中学生物理竞赛复赛精彩试题(含问题详解)
第28届全国中学生物理竞赛复赛试题(2011)一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年,1986年它过近日点P0时与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°。
已知:1AU=1.50×1011m,引力常量G=6.67×10-11Nm2/kg2,太阳质量mS=1.99×1030kg,试求P到太阳S的距离rP及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦系数为μA,B、D两点与光滑竖直墙面接触,杆AB和CD接触处的静摩擦系数为μC,两杆的质量均为m,长度均为l。
1、已知系统平衡时AB杆与墙面夹角为θ,求CD杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。
2、若μA=1.00,μC=0.866,θ=60.0°。
求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。
一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。
若要使卫星减慢或者停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。
第28届全国中学生物理竞赛复赛试题及参考答案(WORD精校版)
第28届全国中学生物理竞赛复赛试题一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°。
已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB 、CD 如图放置,A 点与水平地面接触,与地面间的静摩擦系数为μA ,B 、D 两点与光滑竖直墙面接触,杆AB 和CD 接触处的静摩擦系数为μC ,两杆的质量均为m ,长度均为l 。
1、已知系统平衡时AB 杆与墙面夹角为θ,求CD 杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。
2、若μA =1.00,μC =0.866,θ=60.0°。
求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。
一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。
第28届全国中学生物理竞赛复赛模拟试卷及参考答案与评分标准
第28届全国中学生物理竞赛复赛模拟试卷题号-一--二二三四五六七八总分得分复核本卷共八题,满分160分。
计算题的解答应写出必要的文字说明、方程式和重要的演算步 骤。
只写出最后结果的不能得分。
有数字计算的题,答案中必须明确写出数值和单位。
填 空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程。
一、填空题.(本题共4小题,共25分)1•图1所示的电阻丝网络,每一小段电阻同为 r ,两个端点 A 、B 间等效电阻R i = 。
若在图1网络中再引入3段斜电阻丝, 每一段电阻也为r ,如图2所示,此时A 、B 间等效电阻R 2= ____________________________得分 阅卷复核 — —图1图22 •右图为开尔文滴水起电机示意图。
从三通管左右两管口 形成的水滴分别穿过铝筒 厲、A ?后滴进铝杯B 1、B 2,当滴了一段 时间后,原均不带电的两铝杯间会有几千伏的电势差。
试分析其 原理。
图中铝筒 厲用导线与铝杯B 2相连;铝筒A 2用导线与B 1相连。
3.受迫振动的稳定状态由下式给出x =Acos (・t •「),A- _________ h , 二 arcta n「2。
其中 h =H ,而 H cos (,t )为胁迫力,v '(Oo 一⑷2)2 +4目2国2国-国m2一:=—,其中-dX是阻尼力。
有一偏车轮的汽车上有两个弹簧测力计,其中一条的固 mdt有振动角频率为 「0 =39.2727s ,,另外一条的固有振动角频率为 「0二78.5454s 」,在汽车运行的过程中,司机看到两条弹簧的振动幅度之比为7。
设1为小量,计算中可以略去,已知汽车轮子的直径为1m ,则汽车的运行速度为 ___________________ 。
4 •核潜艇中U 238核的半衰期为4.5 109年,衰变中有0.7%的概率成为U 234核,同时 放出一个高能光子,这些光子中的93%被潜艇钢板吸收。
第28届全国中学生物理竞赛复赛试题
第28届全国中学生物理竞赛复赛试题2011 一、(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年。
1986年它过近日点P0时,与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离。
经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°.已知:1AU=1.50×1011m,引力常量G=6.67×10-11m3•kg-1•s-2,太阳质量m S=1.99×1030kg.试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦因数为μA,B、D两点与光滑竖直墙面接触,杆A B和CD接触处的静摩擦因数为μC,两杆的质量均为m,长度均为l. (1)已知系统平衡时AB杆与墙面夹角θ,求CD杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。
(2)若μA=1.00,μC=0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)人造卫星绕星球运行的过程中,为了保持其对称轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴旋转。
但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转。
减慢或者消除卫星旋转的一种方法是所谓的“YO—YO”消旋法,其原理如图。
设卫星是一半径为R、质量为M的薄壁圆筒,其横截面如图所示。
图中O是圆筒的对称轴。
两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q、Q'(位于圆筒直径两端)处,另一端各拴有一质量为m/2的小球。
正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P0、P0'处,与卫星形成一体,绕卫星的对称轴旋转。
卫星自转的角速度为ω0.若要使卫星减慢或停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。
第24-28届全国中学生物理竞赛决赛试题及详细解答
宁波
二、
为了近距离探测太阳并让探测器能回到地球附近, 可发射一艘以椭圆轨道绕太阳运行的 携带探测器的宇宙飞船, 要求其轨道与地球绕太阳的运动轨道在同一平面内, 轨道的近日点 到太阳的距离为 0.01AU(AU 为距离的天文单位,表示太阳和地球之间的平均距离:1AU = 1.495 × 1011 m) ,并与地球具有相同的绕日运行周期(为简单计,设地球以圆轨道绕太阳运 动) .试问从地球表面应以多大的相对于地球的发射速度 u0(发射速度是指在关闭火箭发动 机,停止对飞船加速时飞船的速度)发射此飞船,才能使飞船在克服地球引力作用后仍在地 球绕太阳运行轨道附近 (也就是说克服了地球引力作用的飞船仍可看做在地球轨道上) 进入 符合要求的椭圆轨道绕日运行?已知地球半径 Re = 6.37 × 106 m ,地面处的重力加速度 g = 9.80 m / s2 ,不考虑空气的阻力.
第 24 届全国中学生物理竞赛决赛试题
2007 年 11 月
★ 理论部分 一、
A ,B ,C 三个刚性小球静止在光滑的水平面 上.它们的质量皆为 m ,用不可伸长的长度皆为 l 的柔软轻线相连, AB 的延长线与 BC 的夹角 α = π / 3 ,如图所示.在此平面内取正交坐标系 Oxy , 原点 O 与 B 球所在处重合,x 轴正方向和 y 轴正方 向如图.另一质量也是 m 的刚性小球 D 位于 y 轴 上,沿 y 轴负方向以速度 v0(如图)与 B 球发生弹性正碰,碰撞时间极短.设刚碰完后, 连接 A ,B ,C 的连线都立即断了.求碰后经多少时间,D 球距 A ,B ,C 三球组成的系 统的质心最近. A l D v0 B O α x l y C
因为碰撞过程中线不可伸长,B ,C 两球沿 BC 方向的速度分量相等,A ,B 两球沿 AB 方向的速度分量相等,有 v2 cosθ = v1 , v2 cos [ π - ( α + θ ) ] = v3 . 将 α = π / 3 代入,由以上各式可解得 v1 = v2 = v3 = 3 v , 12 0 21 v , 6 0 3 v , 3 0 (6) (7) (8) (4) (5)
第28届全国中学生物理竞赛预赛试题
第28届全国中学生物理竞赛预赛试题(本卷答题时间150分钟,总分150分)一.选择题(本题有12道小题,每题都有一个或多个符合题意的选项,请将它们的序号填在下面答题栏内内;每小题3分,共36分;有错选或不选者得零分,选不全者得1分。
)1.火车以1m/s 2 的加速度在平直轨道上加速行驶,今从距车厢底板2.5m 高处自由释放 一物体,不计空气阻力,则物体落至底板时,相对车厢水平偏移的距离是:(g=10m/s 2)A .向前0.5mB .向前0.25mC .向后0.5mD .向后0.25m2.如图1所示,将带电小球A 用绝缘棒固定,在它的正上方L 处有一悬点O ,通过长也为L 的绝缘细线悬挂一个与A 带同种电荷的小球B ,悬线与竖直方向夹角θ。
现逐渐增大A 球的电量,则悬线对B 球的拉力大小将:A .逐渐增大B .逐渐减小C .先减小后增大D .保持不变3.在离坡底5 m的山坡上竖直固定一长为5 m 的直杆AO (即BO=AO=5 m ),直杆A 端与坡底B 间连有一绷直的钢绳,一穿于钢绳上的小球(视为质点)从A 点由静止开始沿钢绳无摩擦地滑下,如图2所示,则小球在钢绳上滑行的时间为:(取 g=10 m/s 2)A.2s B .4sC .2sD .3s4.如图3所示,两个轮子的半径R=0. 20 m ,由电动机驱动以角速度ω=8.0 rad/s 匀速同向转动,两轮的转动轴在同一水平面上,相互平行且距离d =1.6 m 。
一块均匀木板条轻轻平放在两轮上,开始时木板条的重心恰好在右轮的正上方,已知木板条的长度L>2d ,木板条与轮子间的动摩擦因数μ=0.16,则木板条运动到重心恰好到达左轮正上方所需要的时间是:A .1sB .1.5sC .0.79sD .2s 图2 图1图35.一列简谐波沿x 轴方向传播,频率为5Hz ,某时刻的波形如图4所示,介质中的质点A 在距原点8cm 处,质点B 在距原点16cm 处。
第28届全国中学生物理竞赛预赛试卷与答案
第28届全国中学生物理竞赛预赛试卷1-5 6 7 8 总分9 10 11 1213 14 15 16本卷共16题,满分200 分.一、选择题.本题共5小题,每小题6分.在每小题给出的得分阅卷复核4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.常用示波器中的扫描电压u随时间t变化的图线是[ ] 2.下面列出的一些说法中正确的是A.在温度为200C 和压强为1个大气压时,一定量的水蒸发为同温度的水蒸气,在此过程中,它所吸收的热量等于其内能的增量.B.有人用水银和酒精制成两种温度计,他都把水的冰点定为0度,水的沸点定为100度,并都把0刻度与100刻度之间均匀等分成同数量的刻度,若用这两种温度计去测量同一环境的温度(大于0度小于100度)时,两者测得的温度数值必定相同.C .一定量的理想气体分别经过不同的过程后,压强都减小了,体积都增大了,则从每个过程中气体与外界交换的总热量看,在有的过程中气体可能是吸收了热量,在有的过程中气体可能是放出了热量,在有的过程中气体与外界交换的热量为0 .D .地球表面一平方米所受的大气的压力,其大小等于这一平方米表面单位时间内受上方作热运动的空气分子对它碰撞的冲量,加上这一平方米以上的大气的重量.[ ] 3.把以空气为介质的两个平行板电容器a和b串联,再与电阻R和电动势为E的直流电源如图连接.平衡后,若把一块玻璃板插人电容器a中,则再达到平衡时,A.与玻璃板插人前比,电容器a两极间的电压增大了B.与玻璃板插人前比,电容器a两极间的电压减小了C.与玻璃板插入前比,电容器b贮存的电能增大了D.玻璃板插人过程中电源所做的功等于两电容器贮存总电能的增加量[ ] 4.多电子原子核外电子的分布形成若干壳层,K壳层离核最近,L壳层次之,M壳层更次之,……,每一壳层中可容纳的电子数是一定的,当一个壳层中的电子填满后,余下的电子将分布到次外的壳层.当原子的内壳层中出现空穴时,较外壳层中的电子将跃迁至空穴,并以发射光子(X 光)的形式释放出多余的能量,但亦有一定的概率将跃迁中放出的能量传给另一个电子,使此电子电离,这称为俄歇(Auger )效应,这样电离出来的电子叫俄歇电子.现用一能量为40.00keV 的光子照射Cd (镐)原子,击出Cd 原子中K 层一个电子,使该壳层出现空穴,己知该K 层电子的电离能为26.8keV .随后,Cd 原子的L 层中一个电子跃迁到K 层,而由于俄歇效应,L 层中的另一个的电子从Cd 原子射出,已知这两个电子的电离能皆为4.02keV ,则射出的俄歇电子的动能等于 A .( 26.8-4.02-4.02 ) keV B .(40.00-26.8- 4.02 ) keVC .( 26.8-4.02 ) keVD .( 40.00- 26.8 + 4.02 ) keV[ ]5.一圆弧形的槽,槽底放在水平地面上,槽的两侧与光滑斜坡aa’、bb’相切,相切处a 、b 位于同一水平面内,槽与斜坡在竖直平面内的截面如图所示.一小物块从斜坡aa’上距水平面ab 的高度为Zh 处沿斜坡自由滑下,并自a 处进人槽内,到达b 后沿斜坡bb’向上滑行,已知到达的最高处距水平面ab 的高度为h ;接着小物块沿斜坡bb’滑下并从b 处进人槽内反向运动,若不考虑空气阻力,则A .小物块再运动到a 处时速度变为零B .小物块尚未运动到a 处时,速度已变为零C .小物块不仅能再运动到a 处,并能沿斜坡aa’向上滑行,上升的最大高度为2hD .小物块不仅能再运动到a 处,并能沿斜坡aa’向上滑行,上升的最大高度小于h[ ]二、填空题和作图题.把答案填在题中的横线上或把图画在题中指定的地方.只要给出结果不需写出求得结果的过程.6.( 6分)在大气中,将一容积为 0.50m 3的一端封闭一端开口的圆筒筒底朝上筒口朝下竖直插人水池中,然后放手.平衡时,筒内空气的体积为0.40m 3.设大气的压强与10.0m 高的水柱产生的压强相同,则筒内外水面的高度差为 .7.(10分)近年来,由于“微结构材料”的发展,研制具有负折射率的人工材料的光学性质及其应用,已受人们关注.对正常介质,光线从真空射人折射率为n 的介质时,人射角和折射角满足折射定律公式,人射光线和折射光线分布在界面法线的两侧;若介质的折射率为负,即n<0,这时人射角和折射角仍满足折射定律公式,但人射光线与折射光线分布在界面法线的同一侧.现考虑由共轴的两个薄凸透镜L 1和L 2构成的光学系统,两透镜的光心分别为O 1和O 2,它们之间的距离为s .若要求以与主光轴成很小夹角的光线人射到O 1能从O 2出射,并且出射光线与人射光线平行,则可以在得分 阅卷 复核 得分 阅卷 复核O 1和O 2之间放一块具有负折射率的介质平板,介质板的中心位于OO’的中点,板的两个平行的侧面与主光轴垂直,如图所示.若介质的折射率n= -1.5,则介质板的厚度即垂直于主光轴的两个平行侧面之间的距离 d = .8.( 10分)已知:规定一个K (钾)原子与Cl (氯)原子相距很远时,他们的相互作用势能为0;从一个K 原子中移走最外层电子形成K +离子所需的能量(称为电离能)为E K ,一个Cl 原子吸收一个电子形成Cl -离子释放的能量(称为电子亲和能)为E Cl ;K +离子(视为质点)与Cl -离子(视为质点)之间的吸引力为库仑力,电子电荷量的大小为e ,静电力常量为k .利用以上知识,可知当KCI 分子中K +离子与Cl -离子之间的库仑相互作用势能为0时,K +离子与Cl -离子之间的距离r s ,可表示为 .若已知E K = 4.34ev , E Cl =3.62eV , k =9.0 ×109N·m 2·C -2 , e =1.60×10-19C ,则r s = m .9.(10分)光帆是装置在太空船上的一个面积很大但很轻的帆,利用太阳光对帆的光压,可使太空船在太空中飞行.设想一光帆某时刻位于距离太阳为1天文单位(即日地间的平均距离)处,已知该处单位时间内通过垂直于太阳光辐射方向的单位面积的辐射能量E =1.37×103J·m -2· s -1,设平面光帆的面积为1.0×106m 2,且其平面垂直于太阳光辐射方向,又设光帆对太阳光能全部反射(不吸收),则光帆所受光的压力约等于 N .10.(20分)有两个电阻1和2,它们的阻值随所加电压的变化而改变,从而它们的伏安特性即电压和电流不再成正比关系(这种电阻称为非线性电阻).假设电阻1和电阻2的伏安特性图线分别如图所示.现先将这两个电阻并联,然后接在电动势E=9.0V 、内电阻r 0 = 2.0Ω的电源上.试利用题给的数据和图线在题图中用作图法读得所需的数据,进而分别求出电阻1和电阻2上消耗的功率P 1和P 2.要求:i .在题图上画出所作的图线.(只按所画图线评分,不要求写出画图的步骤及理由)ii .从图上读下所需物理量的数据(取二位有效数字),分别是:iii .求出电阻R 1消耗的功率P 1= ,电阻R 2消耗的功率P 2= .三、计算题.计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位.11.(17分)宇航员从空间站(绕地球运行)上释放了一颗质量m=500kg 的探测卫星.该卫星通过一条柔软的细轻绳与空间站连接,稳定时卫星始终在空间站的正下方,到空间站得分 阅卷 复核 得分 阅卷 复核 得分 阅卷 复核 得分 阅卷 复核的距离l=20km.已知空间站的轨道为圆形,周期T = 92 min(分).i.忽略卫星拉力对空间站轨道的影响,求卫星所受轻绳拉力的大小.ii.假设某一时刻卫星突然脱离轻绳.试计算此后卫星轨道的近地点到地面的高度、远地点到地面的高度和卫星运行周期.取地球半径R = 6.400×103km,地球同步卫星到地面的高度为H0 =3.6000×104km,地球自转周期T0 = 24 小时.12.(17分)某同学选了一个倾角为θ的斜坡,他骑在自行得分阅卷复核车上刚好能在不踩踏板的情况下让自行车沿斜坡匀速向下行驶,现在他想估测沿此斜坡向上匀速行驶时的功率,为此他数出在上坡过程中某一只脚蹬踩踏板的圈数N(设不间断的匀速蹬),并测得所用的时间t,再测得下列相关数据:自行车和人的总质量m,轮盘半径R l,飞轮半径R2,车后轮半径R3.试导出估测功率的表达式.己知上、下坡过程中斜坡及空气作用于自行车的阻力大小相等,不论是在上坡还是下坡过程中,车轮与坡面接触处都无滑动.不计自行车内部各部件之间因相对运动而消耗的能量.13.(20分)电荷量为q 的正电荷,均匀分布在由绝缘材料制成的质量为m 半径为R 的均匀细圆环上,现设法加外力使圆环从静止开始,绕通过环心垂直于环面的轴线匀加速转动.试求从开始转动到环的角速度达到某一值ω0的整个过程中外力所做的功.已知转动带电圆环的等效电流为I 时,等效电流产生的磁场对整个以圆环为周界的圆面的磁通量Ф=kI , k 为一已知常量.不计电荷作加速运动所产生的辐射效应.14.(20分)如图所示,一木块位于光滑的水平桌面上,木块上固连一支架,木块与支架的总质量为M .一摆球挂于支架上,摆球的质量为m ,12m M摆线的质量不计.初始时,整个装置处于静止状态.一质量为m 的子弹以大小为v 0、方向垂直于图面向里的速度射人摆球并立即停留在球内,摆球和子弹便一起开始运动.已知摆线最大的偏转角小于900,在小球往返运动过程中摆线始终是拉直的,木块未发生转动.i .求摆球上升的最大高度. ii .求木块的最大速率.iii .求摆球在最低处时速度的大小和方向.15.(20分)图中坐标原点O (0, 0)处有一带电粒子源,向y≥0一侧沿Oxy 平面内的各个不得分 阅卷 复核 得分 阅卷 复核同方向发射带正电的粒子,粒子的速率都是v ,质量均为m ,电荷量均为q .有人设计了一方向垂直于Oxy 平面,磁感应强度的大小为 B 的均匀磁场区域,使上述所有带电粒子从该磁场区域的边界射出时,均能沿x 轴正方向运动.试求出此边界线的方程,并画出此边界线的示意图.16.(20分)在海面上有三艘轮船,船A 以速度u 向正东方向航行,船B 以速度2u 向正北方向航行,船C 以速度2u向东偏北450方向航行.在某一时刻,船B 和C 恰好同时经过船A 的航线并位于船A 的前方,船B 到船A 的距离为a ,船C 到船A 的距离为2a .若以此时刻作为计算时间的零点,求在t 时刻B 、C 两船间距离的中点M 到船A 的连线MA 绕M 点转动的角速度.第28届全国中学生物理竞赛预赛试卷参考解答与评分标准得分 阅卷 复核 得分 阅卷 复核一、选择题.答案:1.C 2.C 3.BC 4.A 5.D 评分标准:本题共5小题,每小题6分.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分. 二、填空题答案与评分标准: 6.2.5m ( 6分) 7.35s (10 分)8.2lk C ke E E - ( 6分) 2.0×10-9 (2分)9.9 ( 10 分) 10.i .如图所示.( 8分)(图错不给分,图不准确酌情评分.)ii .并联电阻两端的电压U 0=2.3V (2分),通过电阻1的电流I 10=1.2A (3分),通过电阻2的电流I 20= 2.2A ( 3分)(读数第一位必须正确,第二位与答案不同,可酌情评分.)iii .2.5 W ( 2 分), 4 .9W ( 2 分)11.参考解答:i .设空间站离地面的高度为H, 因为同步卫星的周期和地球自转周期相同,根据开普勒第三定律以及题意有323200)()R H T R H T +=+( (1)即 2/300()()T H R H R T =+- (2) 代人数据得 H= 376km (3) 卫星的高度 h =H 一l =356km (4)卫星在细绳的拉力 F 和地球引力作用下跟随空间站一起绕地球作周期为 T 的圆周运动,有222()()()Mm GF m R h R h Tπ-=++ (5)式中G 为万有引力常量, M 为地球质量.空间站在地球引力作用下绕地球作周期为 T 的圆周运动 故有 222()()()Mm Gm R h R h Tπ''=++ (6)式中m’为空间站的质量.由(5)、(6)两式得2222()()()[1]()R H F m R h T R h π+=+-+ (7)将(3)、(4)式及其他有关数据代人(7)式得 F=38.2N (8)ii .细绳脱落后,卫星在地球引力作用下绕地球运动的轨道为一椭圆.在脱落的瞬间,卫星的速度垂直于卫星与地心的连线,所以脱落点必是远地点(或近地点),由( 4)式可知,此点到地面的高度h =356km (9) 设卫星在近地点(或远地点)的高度为h ',速度为v ',根据开普勒第二定律,有 22()()R h v R h Tπ''+=+ (10) 根据机械能守恒,有222112()()22Mm Mm mv G m R h G R h T R hπ'-=+-'++ (11) 联立(10)、(11)两式并利用(6)式得433()2()()R h h R H R h +'=+-+ (12)代人有关数据有 h ' = 238km (13 ) 由(9)、(13)两式可知,远地点到地面的高度为356km ,近地点到地面的高度为238km .设卫星的周期为T ',根据开普勒第三定律,卫星的周期 3/22()22R h h T T R H'++'=+ (14)代人数据得T '= 90 . 4min (15) 评分标准:本题 17 分.第i 小题9分. ( l )式2分, ( 5)式3分, ( 6)式2分, (8)式2分.第ii 小题8分. (9)、(10)式各l 分, (11)式 2 分, (12)、(13)、(14)、(15)式各1分.12.参考解答: 解法一因为下坡时自行车匀速行驶,可知阻力大小f=mgsinθ (1)由题意,自行车沿斜坡匀速向上行驶时,轮盘的角速度2Ntπω=(2) 设轮盘边缘的线速度为v 1,由线速度的定义有v 1=ωR 1 (3)设飞轮边缘的线速度为v 2,后车轮边缘的线速度为v 3,因为轮盘与飞轮之间用链条连结,它们边缘上的线速度相同,即 v 1=v 2 (4) 因飞轮与后车轮的转动角速度相同,故有2233v R v R = (5) 因车轮与坡面接触处无滑动,在车后轮绕其中心轴转动一周的时间T 内,车后轮中心轴前进的路程32s R π∆= (6 )而 332R T v π=(7) 车后轮的中心轴前进的速度即自行车行驶速度的大小sV T∆=(8)由以上有关各式得 1322NR R V R tπ=(9) 人骑自行车上坡的功率为克服阻力f 的功率加上克服重力沿斜面分力的功率,即 P=fV+mgVsinθ (10) 由(l )、(9)、(10)式1324sin mg NR R P R tπθ=(11)评分标准:本题 17 分.( l )式 3 分,求得(9 式共 8 分, (10)式5分, (11)式1分. 解法二因下坡时自行车匀速行驶,若自行车出发点的高度为h ,则克服阻力所做的功W f 等于势能的减少,有W f =mgh (1) 用s 表示自行车行驶的路程,有h =s sin θ (2 )自行车沿斜坡匀速向上行驶时,骑车者所做的功W ,等于克服阻力的功W f 与势能增量mgh 之和,即W=W f +mgh (3) 设骑车者蹬踩踏板N 圈到达下坡时的出发点,因踏板转N 圈可使后轮转NR 1/R 2圈,所以自行车行驶的距离s 为 122NR s R R π=⋅ (4) 由(1)到(4)式,得1324sin NR R W mg R tπθ=⋅ (5) 上式除以所用时间t ,即得骑车者功率 1324sin mg NR R W P t R tπθ== (6) 评分标准:本题17分.( I )式3分, ( 2)式l 分, (3)式4分, (4)式6分, (5)式 l 分, (6)式 2 分.13.参考解答:当环的角速度到达ω0时,环的动能201()2k E m R ω= ( l ) 若在时刻t ,环转动的角速度为ω,则环上电荷所形成的等效电流22q q I R Rωωππ== (2) 感应电动势 I k t tφε∆∆==∆∆ (3) 由(2)、(3)式得 2q k tωεπ∆=∆ (4) 环加速转动时,要克服感应电动势做功,功率为P 1=εI(5)因为是匀加速转动,所以ω和I 都随时间t 线性增加.若角速度从零开始增加到ω0经历的时间为t 0,则有00t tωω∆=∆ (6) 若与ω0对应的等效电流为I 0,则在整个过程中克服感到电动势做的总功10012W I t ε= (7) 由以上有关各式得220128q W k ωπ= (8) 外力所做的总功22201021()82k q W W E k m R ωωπ=+=+ (9) 评分标准:本题20分.(1)式3分,(2)式4分,(3)式2分,(5)式3分, (6)式2分, (7)式3分,(8) 式l 分,(9)式2 分14.参考解答:i .由于子弹射人摆球至停留在球内经历的时间极短,可以认为在这过程中摆球仅获得速度但无位移.设摆球(包括停留在球内的子弹)向前(指垂直于图面向里)的速度为u ,由动量守恒定律有mv 0=2mu(l)摆球以速度u 开始向前摆动,木块亦发生运动.当摆球上升至最高时,摆球相对木块静止,设此时木块的速度为V ,摆球上升的高度为h ,因水平方向动量守恒以及机械能守恒有2mu =(2m +M)V(2)221(2)22mu m M V mgh =++ (3) 解(l )、(2)、(3)三式得208(2)Mv h g m m =+ (4) ii .摆球升到最高后相对木块要反向摆动.因为在摆球从开始运动到摆线返回到竖直位置前的整个过程中,摆线作用于支架的拉力始终向斜前方,它使木块向前运动的速度不断增大;摆线经过竖直位置后,直到摆线再次回到竖直位置前,摆线作用于支架的拉力将向斜后方,它使木块速度减小,所以在摆线(第一次)返回到竖直位置的那一时刻,木块的速度最大,方向向前以V’表示摆线位于竖直位置时木块的速率,u’表示此时摆球的速度(相对桌面),当u' >0,表示其方向水平向前,反之,则水平向后.因水平方向动量守恒以及机械能守恒,故有22mu mu MV ''=+ (5)22212mu mu MV ''=+ (6) 解(1)、(5)、(6)三式可得摆线位于竖直位置时木块速度的大小0V '= (7)022mv V m M'=+ (8) (7)式对应于子弹刚射人摆球但木块尚未运动时木块的速度,它也是摆球在以后相对木块往复运动过程中摆线每次由后向前经过竖直位置时木块的速度;而题中要求的木块的最大速率为(8)式,它也是摆球在以后相对木块的往复运动过程中摆线每次由前向后经过竖直位置时木块的速度.iii .在整个运动过程中,每当摆线处于竖直位置时,小球便位于最低处.当子弹刚射人摆球时,摆球位于最低处,设这时摆球的速度为u ,由(l )式得 012u v = (9) 方向水平向前.当摆球第一次回到最低处时,木块速度最大,设这时摆球的速度为u',由 (l )、(5)、(6)三式和(8)式可得0122m M u v M m-'=+ (10) 其方向向后.当摆球第二次回到最低处时,由(7)式木块速度减至0,设这时摆球的速度为u'', 由(l )、(5)、(6)式可得u''=012u v = (11) 方向向前,开始重复初始的运动.评分标准:本题20分.第i 小题 8 分.(1) 式 1 分,(2)、(3)式各3分, (4)式l 分第ii 小题 7 分.(5)、(6)式各3分,(8)式 l 分第iii 小题 5 分. ( 9 )式l 分, (10)式3.分, (11)式l 分.15.参考解答:先设磁感应强度为B 的匀强磁场方向垂直xy 平面向里,且无边界.考察从粒子源发出的速率为v 、方向与x 轴夹角为θ的粒子,在磁场的洛仑兹力作用下粒子做圆周运动,圆轨道经过坐标原点O ,且与速度方向相切,若圆轨道的半径为R ,有2v qvB m R= (1) 得 mv R qB= (2) 圆轨道的圆心O’在过坐标原点O 与速度方向垂直的直线上,至原点的距离为R ,如图1所示.通过圆心 O’作平行于y 轴的直线与圆轨道交于P 点,粒子运动到P 点时其速度方向恰好是沿x 轴正方向,故P 点就在磁场区域的边界上.对于不同人射方向的粒子,对应的P 点的位置不同,所有这些P 点的连线就是所求磁场区域的边界线.P 点的坐标为x =—Rsinθ (3 )y =一R + Rcosθ (4)这就是磁场区域边界的参数方程,消去参数θ,得x 2 +(y+R)2=R 2 (5)由(2)、(5)式得222222()mv m v x y qB q B ++= (6) 这是半径为R 圆心 O’’的坐标为(0,一R ) 的圆,作为题所要求的磁场区域的边界线,应是如图 2 所示的半个圆周,故磁场区域的边界线的方程为222222()mv m v x y qB q B ++= 0x ≤0y ≤ (7)若磁场方向垂直于xy 面向外,则磁场的边界线为如图3示的半圆,磁场区域的边界线的方程为x 2 +(y —R)2=R 2 0x ≥ 0y ≥ (8 )或 222222()mv m v x y qB q B +-= 0x ≥ 0y ≥ (9) 证明同前评分标准:本题20分.( l )或(2)式 2 分, (3)、(4)式各 4 分, (7)式 3 分,图(图 2 ) 2分(只要半圆的位置正确就给2分), (9)式3分,图(图 3 ) 2 分(只要半圆的位置正确就给2分)16.参考解答:以t =0时刻船A 所在的位置为坐标原点O ,作如图1所示平面直角坐标系O xy ,x 轴指向正东,y 轴指向正北.可以把船C 的速度分解成沿正东方向的分速度v x 和沿正北方向的分速度v y 两个分量.根据题意有v x =v y =2u (1)在t 时刻,三船的位置如图1所示.B 、C 二船在y 方向位移相等,两船的连线BC 与x 轴平行,两船间的距离2BC a ut =+ (2)BC 的中点到B 点的距离为12a ut +.中点M 的坐标分别为 1322M x a a ut a ut =++=+ (3) 2M y ut = (4)可见M 点沿x 方向的速度为u ,沿y 方向的速度为2u ,在t = 0时刻BC 的中点在x 轴上,其x 坐标为3a /2.在与M 点固连的参考系中考察,并建立以M 为原点的直角坐标系M x 'y' , x '轴与x 轴平行,y'轴与y 轴平行,则相对M ,船A 的速度只有沿负y'方向的分量,有u AM =u AM y'=—2u (5)在时刻t ,船A 在坐标系M x 'y'的坐标为32A x a '=- (6) A AM y u t '= (7)可以把A 船的速度分解为沿连线MA 方向的分量u AM1 和垂直于连线 MA 方向的分量u AM2两个分量,u AM1使连线MA的长度增大,u AM2使连线 MA 的方向改变,如图2所示.若用R 表示t 时刻连线MA 的长度,则连线MA 绕M 点转动的角速度2AM u Rω= (8) 若MA 与x '轴的夹角为θ,则有2cos AM AM u u θ= (9)而 cos A x Rθ'= (10)R = (11) 由(5)到(10)各式得22212916au a u tω=+ (12) 评分标准:本题20分.求得(5)式共6分, ( 6)、(7)式各l 分, (8)式6分, (9)式2分, (10)、 (11)式各l 分,( 12 ) 式2分。
中学生物理奥林匹克竞赛第28届试卷及答案
第28届全国中学生物理竞赛复赛试卷一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°。
已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB 、CD 如图放置,A 点与水平地面接触,与地面间的静摩擦系数为μA ,B 、D 两点与光滑竖直墙面接触,杆AB 和CD 接触处的静摩擦系数为μC ,两杆的质量均为m ,长度均为l 。
1、已知系统平衡时AB 杆与墙面夹角为θ,求CD 杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。
2、若μA =1.00,μC =0.866,θ=60.0°。
求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。
一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。
2011年第28届全国中学生物理竞赛预赛、复赛、决赛试题及参考答案介绍
第 28 届全国中学生物理竞赛复赛试卷
一、(20 分)如图所示,哈雷彗星绕太阳 S 沿椭圆轨道逆时针方向运动,其周期 T 为 76.1 年,1986 年它过近日点 P0 时与太阳 S 的距离 r0=0.590AU,AU 是天文单位,它等于地 球与太阳的平均距离, 经过一段时间, 彗星到达轨道上的 P 点, SP 与 SP0 的夹角θP=72.0 -11 11 2 °。已知:1AU=1.50×10 m,引力常量 G=6.67×10 Nm /kg2,太阳质量 mS=1.99× 1030kg,试求 P 到太阳 S 的距离 rP 及彗星过 P 点时速度的大小及方向(用速度方向与 SP0 的夹角表示) 。
h
7、 (10 分)近年来,由于“微结构材料”的发展,研制具有负折射率的人工材料的光学性质及其应用,已 受人们关注。对正常介质,光线从真空射人折射率为 n 的介质时,人射角和折射角满足折射定律公式,人 射光线和折射光线分布在界面法线的两侧;若介质的折射率为负,即 n<0,这时人射角和折射角仍满足折 射定律公式, 但人射光线与折射光线分布在界面法线的同一侧。 现考虑由共轴的两个薄凸透镜 L1 和 L2 构成 的光学系统, 两透镜的光心分别为 O1 和 O2, 它们之间的距离为 s.若要求以与主光轴成很小夹角的光线人射 到 O1 能从 O2 出射,并且出射光线与人射光线平行,则可以在 O1 和 O2 之 间放一块具有负折射率的介质平板,介质板的中心位于 OO'的中点,板的 两个平行的侧面与主光轴垂直,如图 28 预— 4 所示。若介质的折射率 n=-1.5 ,则介质板的厚度即垂直于主光轴的两个平行侧面之间的距离 d = 。 8、 (10 分)已知:规定一个 K(钾)原子与 Cl(氯)原子相距很远时,他们的相互作用势能为零;从一个 K 原子中移走最外层电子形成 K+离子所需的能量(称为电离能)为 EK,一个 Cl 原子吸收一个电子形成 Cl
第28届全国中学生物理竞赛复赛试卷(高清晰)
1.像 I与 透镜 L的 距离等于 2.形 成像 I的 光线经 A反 射 ,直 接通过小孔后经 L所 成的像 I1与 透镜 L的 距离等于
3.形 成像 I的 光线经 A反 射 ,再 经 B反 射 ,再 经 A反 射 ,最 后通过 L成 像为 I2,将
I2的 有关信息填在下表中 I2与
:
L的 距离 I2在 L左 方还是右方 I2的 大小
G° 1。
物理竞赛复赛卷 第 2页 (共 8页 )
三、(25分 )在 人造卫星绕星球运行的过程中 ,为 了保持其对称转 得 分 阅卷 复 核 轴稳定在规定指向 ,一 种最简单的办法就是让卫星在其运行过程中 同时绕 自身的对称轴旋转。但有时为了改变卫星的指向 ,又 要求减 慢或者消除卫星的旋转 .减 慢或者消除卫星旋转的一种方法是所谓 “ 的 Yo—Yo” 消旋法 ,其 原理如 图所示。 设卫星是一半径为 R、 质量为 ″ 的薄壁 圆筒 其横截面如图所 示 。 图中 0是 圆筒的对称轴。两条
地 面接触 ,与 地面 间的静摩擦系数 为 u^,B、 D两 点与光滑 竖直墙 面 接触 ,杆 AB和 CD接 触处的静摩擦系数为uc,两 杆的质量 均为 屁,长 度均为 L 1.已 知系统平衡时 AB杆 与墙面夹角为 J,求 D杆 与 墙面的夹角 α应该满是的条件 (用 α及已知量满足的方程 式表示 )。 2.若 h〓 ∞ ,仳 〓 “6,e〓 ω。 ,求 系统平 衡 0。 o° 时 α的取值范 围 (用 数值计算求出)。
物理竞赛复赛卷 第 4页 (共 8页 )
得分
阅卷
复核
五、(15分 )半 导体 pn结 太阳能电池是 根据光生伏打效应:工 作 的。 当有光照射
时 ,光 照使 p尼 结内部产生由负极指向正极的电流即光电流 ,照 射光的强度恒定时 :光 电流是恒定 的 ,己 知该光电流为 几;同 时 ,p乃 结又是一个 管 ,当 有 电流通过负载时 ,负 载两端的
28届全国高中物理竞赛预赛试题与答案
28届全国中学生物理竞赛预赛试题2011一、选择题(本题共5小题,每小题6分)1、如图28预—1所示,常用示波器中的扫描电压u 随时间t 变化的图线是( )2、下面列出的一些说法中正确的是( )A .在温度为20ºC 和压强为1个大气压时,一定量的水蒸发为同温度的水蒸气,在此过程中,它所吸收的热量等于其内能的增量。
B .有人用水银和酒精制成两种温度计,他都把水的冰点定为0度,水的沸点定为100度,并都把0刻度与100刻度之间均匀等分成同数量的刻度,若用这两种温度计去测量同一环境的温度(大于0度小于 100度)时,两者测得的温度数值必定相同。
C .一定量的理想气体分别经过不同的过程后,压强都减小了,体积都增大了,则从每个过程中气体与外界交换的总热量看,在有的过程中气体可能是吸收了热量,在有的过程中气体可能是放出了热量,在有的过程中气体与外界交换的热量为零.D .地球表面一平方米所受的大气的压力,其大小等于这一平方米表面单位时间内受上方作热运动的空气分子对它碰撞的冲量,加上这一平方米以上的大气的重量。
3、如图28预—2所示,把以空气为介质的两个平行板电容器a 和b 串联,再与电阻R 和电动势为E 的直流电源如图连接。
平衡后,若把一块玻璃板插人电容器a 中,则再达到平衡时,有( ) A .与玻璃板插人前比,电容器a 两极间的电压增大了 B .与玻璃板插人前比,电容器a 两极间的电压减小了C .与玻璃板插入前比,电容器b 贮存的电能增大了D .玻璃板插人过程中电源所做的功等于两电容器贮存总电能的增加量4、多电子原子核外电子的分布形成若干壳层,K 壳层离核最近,L 壳层次之,M 壳层更次之,……,每一壳层中可容纳的电子数是一定的,当一个壳层中的电子填满后,余下的电子将分布到次外的壳层。
当原子的内壳层中出现空穴时,较外壳层中的电子将跃迁至空穴,并以发射光子(X 光)的形式释放出多余的能量,但亦有一定的概率将跃迁中放出的能量传给另一个电子,使此电子电离,这称为俄歇(Auger )效应,这样电离出来的电子叫俄歇电子。