第2章 逻辑门2010修改
数电讲义--2章
1.0
VOL(max)0.5
输入标 准低电
平
0.4V
VNL
D VNH
E
V V 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
SL VOFF VON
SH
Vi (V)
输入标准
高电平
2. 输入特性
+VCC
1) 输入伏安特性
iI
R1 3kΩ
1
-1.6 mA
<50 uA vI A
31
B
T1
1.4 V
和边沿,T4放大。 VO随iOH变化不大。 当由i于Oi以OHH受↑:线时功性,R耗变4上的化压限。降制增,大i0,H过T大3 、会T4烧饱毁和T,4管V,O随所
功耗 1mW IOH 400 A
输出高电平时的扇出系数 3.6V
R2 750Ω 2T3 Vc2 1 3 R4
VO
+VCC
R 4 +5V 100Ω
抗干扰能力越强。 高电平噪声容限
VNH= VSH ¯ VON 。
VNH越大,输入为1态下
抗干扰能力越强。
Vo (V)
4.0 A B
3.5
3.0
VOH(min)2.5 2.4V
C
2.0
1.5
A(0V, 3. 6V) B(0.6V, 3.6V) C(1.3V, 2.48V) D(1.4V, 0.3V) E(3.6V, 0.3V)
• 导通(VD>VTH) • 2、二极管的开关时间
截止5V(VDR<VT+H)
0V
D VD
uo
_
VF Vi
二极管开关状态的转换需要时间:
t1 t2
第02章 逻辑门电路
OC门的几种主要应用
实现线与逻辑
电路如右图所示,逻辑关系为
L L1 L2 AB CD
实现电平转换
如下图所示,可使输出高电平变为+12V
+12V
R
A& 3.4V 0.3V
12V F
0.3V
用作驱动电路
右图是用来驱动发光二极管的电路。
2.3.5 三态门
R1 4K
R2 1.6K
A
T1
T2 B
输出低电平时:NOL = IOLmax / IiLmax 输出高电平时:NOH = IOHmax / IiHmax
考虑最坏的情况,扇出系数:N = min(NL , NH)
TTL与非门的灌电流与拉电流负载
2.3.2 TTL与非门的特性及参数
平均传输延迟时间
tpd = 0.5(tpdL + tpdH ) 输出信号略滞后于输入信号. 典型值:纳秒级
Vo(V) VOH A 2.7
电压传输特性及相关参数 (1) 输出高电平 VOH
R1 4K
R2 1.6K
R4
VCC
130
A
B
B
T1
T3
T2
ቤተ መጻሕፍቲ ባይዱ
D3
F
D1
D2
R3
T4
1K
典型值VOH ≥ 3.4V
VOHmin是满足输出电流指标时, 输出高电平允许的最低值,一 般要求 VOHmin ≥ 2.7V
C
(2) 输出低电平 VOL
(5) 关门电平 VOFF
保证T4截止 输出高电平 时, 输入低电平的最大值.
VOFF ≥ 0.8V
2.3.2 TTL与非门的特性及参数
第二章 逻辑门电路
• (2)放大状态:当VI为正值且大于死区电压时,三极 管导通。有 V V V
IB
I BE
Rb
I
Rb
• 此时,若调节Rb↓,则IB↑,IC↑,VCE↓,工作点沿着负 载线由A点→B点→C点→D点向上移动。在此期间,三极管 工作在放大区, 其特点为: IC=βIB。 • 三极管工作在放大状态的条件为: 发射结正偏,集电结反偏
VIL VOL
VNL
0
4、扇入与扇出数: 1)扇入数: 取决于它的输入端的个数。 2)扇出数: MIN (NOH, NOL)
拉电流工作情况: 输出为高电平时,与 非门带拉电流负载
N OH
I OH (驱动门) I IH (负载门)
0 1
4
IIH II
L
输出为低电平时,与 灌电流工作情况: 非门带灌电流负载
0
T3 通
该与非门输 出低电平, 门 2 T3导通
集电极开路TTL“与非”门(OC门)
OC门的结构
当输入端全为高电 VCC 逻辑符号: 平时,T2、T3导通, A A A R 输出为低电平; L B B B 输入端有一个为 低 电 平 时 , T2 、 输出逻辑电平: T3 截 止 , 输 出 高 低电平0.3V 电 平 接 近 电 源 电 (5-30V) TTL与非门 高电平为VC 压VC。 OC门完成 集电极开路与非门(OC门) “与非”逻辑功 能
§2.3
CC
基本逻辑门电路
真值表
一、二极管“与门”及“或门”电路 A V (5V) 1、与门电路: 0 0 R 3k 0 A 1 L 1 B 1 C 1
A,B,C 任一为0V,其中一个 二极管导通,VL被钳制在0.7V
第2章 逻辑门电路
+VCC Rb b c Rc
uo=0.3V 0.3V
b c
Rc
uo=+VCC ui=UIH
iB≥IBS 0.7V
e
e
+V C C =+5V 例: 1kR c i C Ω uo c Rb b ui β =40 i 10k Ω B e
①ui=1V时,基极电流: 时 基极电流:
第2章 逻辑门电路 章
②ui=0.3V时,因为 BE<0.5V,iB=0, 时 因为u , , 三极管工作在截止状态, 三极管工作在截止状态,ic=0。因 。 为ic=0,所以输出电压: ,所以输出电压:
回首页
第2章 逻辑门电路 章 +VCC=+5V Rc
1kΩ uo c Rb b ui β=40 i 10kΩ B NPN 型三极管截止、放大、饱和 3 种工作状态的特点 e
iC
2、三极管的开关特性
工作状态 条 件
截
止
放
大
饱
和
iB=0 发射结反偏
0<iB<IBS 发射结正偏 集电结反偏 uBE>0,uBC<0 iC=βiB uCE=VCC- iCRc 可变
A
电路图 逻辑符号
Y 1 0
0 1
《数字电子技术》详细目录
《数字电子技术》目录第1章数制与编码1.1 数字电路基础知识1.1.1 模拟信号与数字信号1.1.2 数字电路的特点1.2 数制1.2.1 十进制数1.2.2 二进制数1.2.3 八进制数1.2.4 十六进制数1.3 数制转换1.3.1 二进制数与八进制数的相互转换1.3.2 二进制数与十六进制数的相互转换1.3.3 十进制数与任意进制数的相互转换1.4 二进制编码1.4.1 加权二进制码1.4.2 不加权的二进制码1.4.3 字母数字码1.4.4 补码1.5带符号二进制数的加减运算1.5.1 加法运算1.5.2 减法运算第2章逻辑门2.1 基本逻辑门2.1.1 与门2.1.2 或门2.1.3 非门2.2 复合逻辑门2.2.1 与非门2.2.2 或非门2.2.3 异或门2.2.4 同或门2.3 其它逻辑门2.3.1 集电极开路逻辑门2.3.2 集电极开路逻辑门的应用2.3.3 三态逻辑门2.4 集成电路逻辑门2.4.1 概述2.4.2 TTL集成电路逻辑门2.4.3 CMOS集成电路逻辑门2.4.4 集成逻辑门的性能参数2.4.5 TTL与CMOS集成电路的接口*第3章逻辑代数基础3.1 概述3.1.1 逻辑函数的基本概念3.1.2 逻辑函数的表示方法3.2 逻辑代数的运算规则3.2.1 逻辑代数的基本定律3.2.2 逻辑代数的基本公式3.2.3 摩根定理3.2.4 逻辑代数的规则3.3 逻辑函数的代数化简法3.3.1 并项化简法3.3.2 吸收化简法3.3.3 配项化简法3.3.4 消去冗余项法3.4 逻辑函数的标准形式3.4.1 最小项与最大项3.4.2 标准与或表达式3.4.3 标准或与表达式3.4.4 两种标准形式的相互转换3.4.5 逻辑函数表达式与真值表的相互转换3.5 逻辑函数的卡诺图化简法3.5.1 卡诺图3.5.2 与或表达式的卡诺图表示3.5.3 与或表达式的卡诺图化简3.5.4 或与表达式的卡诺图化简3.5.5 含无关项逻辑函数的卡诺图化简3.5.6 多输出逻辑函数的化简*第4章组合逻辑电路4.1 组合逻辑电路的分析4.1.1 组合逻辑电路的定义4.1.2 组合逻辑电路的分析步骤4.1.3 组合逻辑电路的分析举例4.2 组合逻辑电路的设计4.2.1 组合逻辑电路的一般设计步骤4.2.2 组合逻辑电路的设计举例4.3 编码器4.3.1 编码器的概念4.3.2 二进制编码器4.3.3 二-十进制编码器4.3.4 编码器应用举例4.4 译码器4.4.1 译码器的概念4.4.2 二进制译码器4.4.3 二-十进制译码器4.4.4 用译码器实现逻辑函数4.4.5 显示译码器4.4.6 译码器应用举例4.5 数据选择器与数据分配器4.5.1 数据选择器4.5.2 用数据选择器实现逻辑函数4.5.3 数据分配器4.5.4 数据选择器应用举例4.6 加法器4.6.1 半加器4.6.2 全加器4.6.3 多位加法器4.6.4 加法器应用举例4.6.5 加法器构成减法运算电路*4.7 比较器4.7.1 1位数值比较器4.7.2 集成数值比较器4.7.3 集成数值比较器应用举例4.8 码组转换电路4.8.1 BCD码之间的相互转换4.8.2 BCD码与二进制码之间的相互转换4.8.3 格雷码与二进制码之间的相互转换4.9 组合逻辑电路的竞争与冒险4.9.1 冒险现象的识别4.9.2 消除冒险现象的方法第5章触发器5.1 RS触发器5.1.1 基本RS触发器5.1.2 钟控RS触发器5.1.3 RS触发器应用举例5.2 D触发器5.2.1 电平触发D触发器5.2.2 边沿D触发器5.3 JK触发器5.3.1 主从JK触发器5.3.2 边沿JK触发器5.4 不同类型触发器的相互转换5.4.1 概述5.4.2 D触发器转换为JK、T和T'触发器5.4.3 JK触发器转换为D触发器第6章寄存器与计数器6.1 寄存器与移位寄存器6.1.1 寄存器6.1.2 移位寄存器6.1.3移位寄存器应用举例6.2 异步N进制计数器6.2.1 异步n位二进制计数器6.2.2 异步非二进制计数器6.3 同步N进制计数器6.3.1 同步n位二进制计数器6.3.2 同步非二进制计数器6.4 集成计数器6.4.1 集成同步二进制计数器6.4.2 集成同步非二进制计数器6.4.3 集成异步二进制计数器6.4.4 集成异步非二进制计数器6.4.5 集成计数器的扩展6.4.6 集成计数器应用举例第7章时序逻辑电路的分析与设计7.1 概述7.1.1 时序逻辑电路的定义7.1.2 时序逻辑电路的结构7.1.3 时序逻辑电路的分类7.2 时序逻辑电路的分析7.2.1时序逻辑电路的分析步骤7.2.2 同步时序逻辑电路分析举例7.2.3 异步时序逻辑电路分析举例7.3 同步时序逻辑电路的设计7.3.1 同步时序逻辑电路的基本设计步骤7.3.2 同步时序逻辑电路设计举例第8章存储器与可编程器件8.1 存储器概述8.1.1 存储器的分类8.1.2 存储器的相关概念8.1.3 存储器的性能指标8.2 RAM8.2.1 RAM分类与结构8.2.2 SRAM8.2.3 DRAM8.3 ROM8.3.1 ROM分类与结构8.3.2 掩膜ROM8.3.3 可编程ROM8.3.4 可编程ROM的应用8.4 快闪存储器(Flash Memory)8.4.1 快闪存储器的电路结构8.4.2 闪存与其它存储器的比较8.5 存储器的扩展8.5.1 存储器的位扩展法8.5.2 存储器的字扩展法8.6 可编程阵列逻辑8.6.1 PAL的电路结构8.6.2 PAL器件举例8.6.3 PAL器件的应用8.7 通用阵列逻辑8.7.1 GAL的性能特点8.7.2 GAL的电路结构8.7.3 OLMC8.7.4 GAL器件的编程与开发8.8 CPLD、FPGA和在系统编程技术8.8.1 数字可编程器件的发展概况8.8.2数字可编程器件的编程语言8.8.3数字可编程器件的应用实例第9章D/A转换器和A/D转换器9.1 概述9.2 D/A转换器9.2.1 D/A转换器的电路结构9.2.2 二进制权电阻网络D/A转换器9.2.3 倒T型电阻网络D/A转换器9.2.4 D/A转换器的主要技术参数9.2.5 集成D/A转换器及应用举例9.3 A/D转换器9.3.1 A/D转换的一般步骤9.3.2 A/D转换器的种类9.3.3 A/D转换器的主要技术参数9.3.4 集成A/D转换器及应用举例第10章脉冲波形的产生与整形电路10.1 概述10.2 多谐振荡器10.2.1 门电路构成的多谐振荡器10.2.2 采用石英晶体的多谐振荡器10.3 单稳态触发器10.3.1 门电路构成的单稳态触发器10.3.2 集成单稳态触发器10.3.3 单稳态触发器的应用10.4 施密特触发器10.4.1 概述10.4.2 施密特触发器的应用10.5 555定时器及其应用10.5.1 电路组成及工作原理10.5.2 555定时器构成施密特触发器10.5.3 555定时器构成单稳态触发器10.5.4 555定时器构成多谐振荡器第11章数字集成电路简介11.1 TTL门电路11.1.1 TTL与非门电路11.1.2 TTL或非门电路11.1.3 TTL与或非门电路11.1.4 集电极开路门电路与三态门电路11.1.5 肖特基TTL与非门电路11.2 CMOS门电路11.2.1 概述11.2.2 CMOS非门电路11.2.3 CMOS与非门电路11.2.4 CMOS或非门电路11.2.5 CMOS门电路的构成规则11.3 数字集成电路的使用。
第2章 逻辑门电路
20102010-9-14
2.1.1 非门
定义:输入与输出信号状态满足“ 定义:输入与输出信号状态满足“非”逻辑关系。 逻辑关系。 逻辑符号: 逻辑符号: 非门电路: 非门波形图: 非门电路: 非门波形图:
非门工作特点: 非门工作特点: ● 当输入端A 为高电平1(+5V)时,晶体管 当输入端A 为高电平1 +5V) 导通, 端输出0.2~0.3V的电压 的电压, 导通,L 端输出0.2~0.3V的电压,属于低电平 范围; 范围; ● 当输入端为低电平0(0V)时,晶体管截止,晶体管集电 当输入端为低电平0 0V) 晶体管截止, 发射极间呈高阻状态,输出端L的电压近似等于电源电压; 极—发射极间呈高阻状态,输出端L的电压近似等于电源电压; ● 任何能够实现 L = A “非”逻辑关系的电路均称为“非门”, 逻辑关系的电路均称为“非门” 也称为反相器。式中的符号“ 表示取反, 也称为反相器。式中的符号“-”表示取反,在其逻辑符号的输出 端用一个小圆圈来表示。 端用一个小圆圈来表示。
同或门电路: 同或门电路:
逻辑符号: 逻辑符号:
提
示
双输入端同或门波形图: 双输入端同或门波形图:
当输入端A 当输入端A、B 的电平 状态互为相反时,输出端L 状态互为相反时,输出端L 一定为低电平; 一定为低电平;而当输入端 A、B 的电平状态相同时, 的电平状态相同时, 一定为高电平。 输出端 L 一定为高电平。
20102010-9-14
第二章(1) 第二章(
3
2.1.2 与门
定义:输入与输出信号状态满足“ 定义:输入与输出信号状态满足“与”逻辑关系。 逻辑关系。 与门电路: 逻辑符号: 与门波形图: 与门电路: 逻辑符号: 与门波形图:
第2章-逻辑门电路
高速,可代替74HC
高速,可代替74HCT
2.4.1.MOS反相器
2. MOS反相器
(1)电阻负载MOS电路:
如图2-37(a)所示,在这种反相器 中,输入器件是增强型MOS管,负载是线性 电阻。这种反相器在集成电路中很少采用。
(2)E/E MOS(Enhancement/Enhancement MOS) 反相器:
2.三态输出门电路(TSL门) 图227 三态门
三态输出门电路简称三态门,用 TSL(Three Sate Logic)表示,TSL电路的 主要特点是输出共有3种状态,即逻辑高电 平、逻辑低电平和高阻态。
图2-27所示为三态门电路及逻辑符号。 图中EN为三态使能端,A、B为输入逻辑变 量,Y为电路输出。
74F
速度比标准系列快近5倍, 功耗低于标准系列
2.2.1.TTL与非门的典型电路 及工作原理
1. 电路结构
电路由输入级、中间级和输出级三部 分组成。
2. 基本工作原理
(1)TTL工作在关态(截止态)
当输入信号A、B、C中少一个为低电 位(0.3V)时:
VO = VOH = VCC – VR2 – VBE3 – VD4 =5V-0.7V-0.7V =3.6V
实现了输出高电平,此时TTL工作在关 态,也称截止态。
(2)TTL工作在开态(饱和态)
输出电压Vo为
VO = VOL = VCES4 = 0.3V 实现了输出低电平,此时TTL工作在开 态,也称饱和态。
通过以上分析可知,当输入信号中至 少一个为低电位,即VI=ABC= VIL时,输出 高电平,即VO = VOH ;当输入信号全部为 高电位时,即VI=ABC= VIH时,输出低电平, 即VO = VOL。说明电路实现了与非门的逻辑 关系,即
数字电子技术_第2章_逻辑门
第2章逻辑门内容提要:本章系统地介绍数字电路的基本逻辑单元—门电路,及其对应的逻辑运算与图形描述符号,并针对实际应用介绍了三态逻辑门和集电极开路输出门,最后简要介绍TTL集成门和CMOS集成门的逻辑功能、外特性和性能参数。
2.1 基本逻辑门导读:在这一节中,你将学习:⏹与、或、非三种基本逻辑运算⏹与、或、非三种基本逻辑门的逻辑功能⏹逻辑门真值表的列法⏹画各种逻辑门电路的输出波形在逻辑代数中,最基本的逻辑运算有与、或、非三种。
每种逻辑运算代表一种函数关系,这种函数关系可用逻辑符号写成逻辑表达式来描述,也可用文字来描述,还可用表格或图形的方式来描述。
最基本的逻辑关系有三种:与逻辑关系、或逻辑关系、非逻辑关系。
实现基本逻辑运算和常用复合逻辑运算的单元电路称为逻辑门电路。
例如:实现“与”运算的电路称为与逻辑门,简称与门;实现“与非”运算的电路称为与非门。
逻辑门电路是设计数字系统的最小单元。
2.1.1 与门“与”运算是一种二元运算,它定义了两个变量A和B的一种函数关系。
用语句来描述它,这就是:当且仅当变量A和B都为1时,函数F为1;或者可用另一种方式来描述数字电子技术2它,这就是:只要变量A 或B 中有一个为0,则函数F 为0。
“与”运算又称为逻辑乘运算,也叫逻辑积运算。
“与”运算的逻辑表达式为: F A B =⋅ 式中,乘号“.”表示与运算,在不至于引起混淆的前提下,乘号“.”经常被省略。
该式可读作:F 等于A 乘B ,也可读作:F 等于A 与B 。
逻辑与运算可用开关电路中两个开关相串联的例子来说明,如图2-1所示。
开关A 、B 所有可能的动作方式如表2-1a 所示,此表称为功能表。
如果用1表示开关闭合,0表示开关断开,灯亮时F =1,灯灭时F =0。
则上述功能表可表示为表2-1b 。
这种表格叫做真值表。
它将输入变量所有可能的取值组合与其对应的输出变量的值逐个列举出来。
它是描述逻辑功能的一种重要方法。
表2-1a 功能表由“与”运算关系的真值表可知“与”逻辑的运算规律为:00001100111⋅=⋅=⋅=⋅= 表2-1b “与”运算真值表图2-1 与运算电路第二章 逻辑门 3简单地记为:有0出0,全1出1。
第2章 逻辑门电路
A
1
≥1
B1
VDD R
A&
TP
Y B
Y
TN Y
TN
VOH=VDD'- iLR
2.1.6 CMOS漏极开路门
4.OD门和OC门的应用 应用一:可以线与,简化硬件电路。
+5V
A
&
B
C
&
D
R L
L AB CD
2.1.6 CMOS漏极开路门
线与的实际应用实例——光电报警系统
光电传 1
+5V
R3kCΩ VT5
VT6
A
&
F
B
OC 门
A
&
L
B
2.2.2 LSTTL与非门
集成与非门—74LS00
74LS00是在一个封装内有四个相同的与非门。其外形 如图所示。
绝大多数 左上角Vcc
引线排列从左下角 开始,逆时针计算
14
8
正视图
VCC
&
&
缺口标记
&
&
GND
绝大多数
右下角GND
1
7
2.2.3 LSTTL门电路的电气特性
CMOS门电路几种常见系列: (1)CD4000系列:基本系列,速度较慢 (2)74HC系列:速度比CD4000系列提高近10倍 (3)74HCT系列:与LSTTL门电路兼容 (4)LVC系列:低电压系列
TTL集电极开路门 OC 门Open-Collector
A B
VD5
R1 20kΩ VD1
VD2 VD6
2.2.2 LSTTL与非门
第二章 逻辑门电路1
较大正偏 电压
0.2~0.3V
c、e间相当于一个受iB控制的开关
BJT的开关条件
工作状态
条件
截 止
iB≈0
放 大
0 < iB <
I CS
饱
和
iB > I CS
发射结和集 发射结正偏, 发射结和集 偏置情况 电结均为反偏 集电结反偏 电结均为正偏
V CC ICS iCi= ICS ≈ ≈ CC C= Rc V Rc
Rc2
截 T2 饱和 止
相当于一 R个小电阻 c4
3.6
T4
集电极电流加大, D T3迅速截止
vI
0.2 集电极电流
T1
1.4V
vO
负载 T饱和 3
Re2
基区电荷迅速消散
饱和到截止,需要基区电荷消散时间
2)在T2、T3由截止→饱和(输出1 →0),
输入级提供大的正向基流,B区电子快速积累,
T2、T3快速饱和。 VCC
2.4V
1
VOH(min) VNH VIH(min) VIL(max)
1
2V
定义: 高电平噪声容限 VNH=VOH-VIH 低电平噪声容限 VNL=VIL-VOL 体现一种容错能力 对于TTL 74系列: VNH=2.4V-2V=0.4V VNL=0.8V-0.4V=0.4V
0.4V
VNL
0
0.8V
1
&
V V
“1”: 悬空或接+5V
1
·
2.4V
VOH(min)
2.输出高电平VOH(输入至少一个为0)
典型值:3.6V; 标准高电平 VOH=2.4V 3.输出低电平VOL(输入全为1)
第2章 逻辑门电路
等式两边的真值表如表1.3所示: 等式两边的真值表如表1.3所示: 1.3所示
A
0 0 1 1
B
0 1 0 1
A⋅ B
1 1 1 0
A+ B
1 1 1 0
2. 常用公式
利用上面的公理、定律、规则可以得到一些常用的公式。 利用上面的公理、定律、规则可以得到一些常用的公式。
(1)吸收律
A+A·B = A
工作原理 请自行分析
◆ 多变量的函数表达式
● ● ● ● ●
与 或 与非 或非
F=A·B·C… F=A+B+C…
F = A⋅ B ⋅C
F = A+ B +C
等等 ◆ 运算的优先级别
与或非 F = AB + CD
括号→非运算→与运算→ 括号→非运算→与运算→或运算
2.3 逻辑变量与逻辑函数
F=A+B
当输入端A 当输入端A、B 的电平 状态互为相反时,输出端L 状态互为相反时,输出端L 一定为高电平;当输入端A 一定为高电平;当输入端A、 B的电平状态相同时输出L 的电平状态相同时输出L 一定为低电平。 一定为低电平。
4. 同或门
◆ 能够实现 同或” L = A ⋅ B + A ⋅ B = A⊙B “同或”逻辑关系的 电路均称为“同或门” 由非门、 电路均称为“同或门”。由非门、与门和或门组合而成的同或门 及逻辑符号如下图所示。 及逻辑符号如下图所示。
F = A ⋅ B ⋅C ⋅ D ⋅ E
1. 要保持原式中逻辑运算的优先顺序; 保持原式中逻辑运算的优先顺序; 原式中逻辑运算的优先顺序 2. 不是一个变量上的反号应保持不变,否则就要出错。 不是一个变量上的反号应保持不变,否则就要出错。 上的反号应保持不变
第2章 逻辑门电路
R2 T3
VCC R5 IR5 T4 IL
RL
VO (V )
3
2
1
0
5 10 15 20 IL (mA)
低电平输出电流
V CC
T2
RL
VO (V )
T5
IL
3
2
R3
1
0.2
5 10 15 20 IL (mA )
例2.5.1:门电路的输入特性曲线和输出特性曲线 分别由图2.5.4、图2.5.8、图2.5.9给出。对于 图2.5.10所示的电路,要求G1的输出高电平满 足VOH≥3.2V,输出低电平满足VOL≤0.2V。
C
VEE
VEE
(b)
F2 =A+B+B+C+D=A+B+BC D
F3 =B +C +D F4 = A+B+BC+BC= AB+BC+BC
F5=A+B+BC+BC=A+BC+BC
2.7 MOS管的开关特性 2.7.1 MOS管的开关特性
结构示意图,符号:N沟道MOS管
SG D
N+
N+
P
D G
S
漏极特性和转移特性
&
VIL
nm
m'
... ...
VIL
&
&
I IL
&
2.5.6 三态门
VCC
R1
R2
T3
R5
A
T4
T1
T2
F
B
EN
D
T5
第2章 计算机的逻辑部件_修改过汇总
串行进位加法器
•当有多位数字相加时,须将进位信号依次传向高位。 优点是电路结构比较简单,缺点是运算速度慢。为提 高运算速度,应设法缩短由于进位信号逐级传递所耗 费的时间
超前进位加法器
•所谓超前进位,旨在通过逻辑电路提前得出加到每一位全加器 上的进位输入信号,而无须从最低位开始逐位传递进位信号。
译码器
Si Ai BiCi1 Ai Bi C i1 Ai Bi C i1 Ai BiCi1 ( Ai Bi Ai Bi )Ci1 ( Ai Bi Ai Bi )C i1 ( Ai Bi )Ci1 ( Ai Bi )C i1 Ai Bi Ci1
Ci ( Ai Bi Ai Bi )Ci1 Ai Bi ( Ai Bi )Ci1 Ai Bi
正常态变为Z态的过程应该要快于Z态变正常态 即tpHZ、 tpLZ小于tpZH、 tpZL
异或门及其应用
1. 可控原/反码输出电路
A0 A A1 A
图2.8四位原/反码输出电路
异或门及其应用
2、半加器
异或门及其应用
3. 数码比较器
图2.9四位比较器
异或门及其应用
4. 奇偶检测电路
当输入包含奇数个1时,输出F=1 否则,F=0
三态与非门的最重要的用途就是可向一条导线上轮流传送几组不同的数据和控制信号但必须保证任何时间里最多只有一个门处于工作状态否则就有可能发生几个门同时处于工作状态而使输出状态不正常的现象图21三态反相门1的功能表及逻辑图三态电路在时序图上常用不高不低的中间线来表示z态
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1 集电极开路逻辑门的概念
集电极开路与非门内部结构与输出端特点
T3饱和导通 时输出低电 平; T3截止时输 出端悬空
普通与非门内部电路结构
28
仿真演示:功能演示、普通门与OC门对比演示
OC与非门真值表 A 0 B 0 F Z
0
1
1
0
Z
Z
1
1
0
29
集电极开路门,简称OC门。其特点是门电路内部 输出三极管的集电极开路。 使用时,必须外接“上拉电阻RP” ,才能实现正常 逻辑功能。(仿真演示) 上拉电阻RP的作用:把OC门的输出“悬空状态” 对外变成“高电平”,OC门本身的特性并未改变。 OC与非门的逻辑符号 :
(6) 54LS/ 74LS:低功耗肖特基系列(Low-power Schottky TTL) ;
(7) 54ALS/ 74ALS:高级低功耗肖特基系列 (Advanced Low-power Schottky TTL) ;
43
“74LS32”表示的含义:
74/54后的不同字母表示不同的系列,即性能参数值 不同; 字母后的数字表示该系列中的不同型号,即具有 不同的逻辑功能。 如:7400、74S00、74L00、74LS00表示不同的系 列,但具有相同的逻辑功能即都是集成与非门。 又如: 74LS00和74LS08表示同一系列中的不同型 号,即具有不同的逻辑功能,前者为集成与非门,后 者为集成与门。
4
2.1.1 与门
实现“与”运算的电路称为与逻辑门,简称与门 。 逻辑与运算可用开关电路中两个开关相串联的例 子来说明
开关 A
开关 B 断开 闭合 断开 闭合
灯F 灭 灭 灭 亮
5
功 能 表
断开 断开 闭合 闭合
“与”运算的逻辑表达式为: A B AB F = “与”运算的真值表 :
“非”运算的逻辑表达式为:F “非”运算真值表 : “非”逻辑的运算规律为:
A
一般形式
00 1 0
A A A A 1 A A 0
14
非门的逻辑符号:
74LS04(六非门)
例2-5 : 向非门输入图示的波形,求其输出波形F。 解:
15
2.2 复合逻辑门
主要内容:
39
2.4 集成电路逻辑门
主要内各种TTL系列的特性 CMOS集成逻辑门的概念 集成电路逻辑门的性能参数 计算具体逻辑器件的扇出系数 TTL与CMOS两种集成电路在混合应用时的接口
40
2.4.1 概述
把若干个有源器件和无源器件及其连线,按照一 定的功能要求,制作在一块半导体基片上,这样 的产品叫集成电路。 最简单的数字集成电路是集成逻辑门。 集成电路的优点:如体积小、耗电省、重量轻、 可靠性高 数字集成电路的规模一般是根据门的数目来划分 的 :有SSI ,MSI ,LSI ,VLSI 等。 集成电路逻辑门应用最广的两类: TTL门、 CMOS门。
8
例2-2 : 向2输入与门输入图示的波形,求其 输出波形F。 解:
9
2.1.2 或门
实现“或”运算的电路称为或逻辑门,简称或门 。 逻辑或运算可用开关电路中两个开关相并联的例 子来说明
真 值 表
A 0 0 1 1
B 0 1 0 1
F A B
0 1 1 1
10
“或”运算的逻辑表达式为: F = A+B “或”运算真值表 : “或”逻辑的运算规律为:
第二章
内容提要:
(1)基本逻辑门。
逻辑门
(2)集电极开路门和三态逻辑门。 (3)TTL集成门逻辑功能、外特性和性能参数 。 (4)CMOS集成门的逻辑功能、外特性和性能参数。 (5) TTL 与CMOS集成门的接口方法
1
第3次课
一、教学目的
(1) 理解逻辑门的概念
(2)理解基本逻辑运算及复合逻辑运算 (3)掌握基本逻辑门及复合逻辑门的逻辑符号、逻辑表达 式、真值表。 二、教学重点、难点 重点:(1)真值表的含义及写法; (2)各种逻辑门的功能。 难点:逻辑运算的理解。
47
74系列3.3V CMOS门电路的基本子系列如下: 74LVC:低压CMOS(Lower-voltage CMOS)。 74ALVC:先进低压CMOS(Advanced Lower-voltage CMOS)。 74HC系列和74C系列的功能和管脚布局与TTL系列相 同。它们可在+5V电源电压下工作,这使得工作在同一印刷 电路板上的CMOS和TTL集成电路可以共用一组电源,但两 者不能直接连接。 74HCT系列为74HC系列的改进产品,它有和TTL器件 相同的高低电平、逻辑功能和管脚布局,即完全兼容TTL集 成电路,同时又有比TTL集成电路小得多的功耗这一优点。
上述逻辑门的实际产品型号: 74LS02(四-2输入或非门) 74LS27(三-3输入或非门)
20
“或非”门真值表 :
表2-8 “或非”门真值表
A B
F A B
0
0
0
1
1
0
1
1
0
1
0
0
21
2.2.3 异或门
实现“异或”逻辑运算的逻辑电路称为异或门。 异或门的逻辑关系表达式为:
F A B AB AB
),
7400、74LS00、 74LS04、7404
46
2.4.3 CMOS集成电路逻辑门
CMOS集成门电路由MOS场效应管构成,它的特点是集成 度高、功耗低,但速度较慢、抗静电能力差。 同TTL门电路一样,CMOS门电路也有74和54两大系列。 74系列5V CMOS门电路的基本子系列如下: 74C:CMOS。 74HC和74HCT:高速CMOS(High-speed CMOS),T 表示和TTL直接兼容。 74AC和74ACT:先进CMOS(Advanced CMOS),它 们提供了比TTL系列更高的速度和更低的功耗。 74AHC和AHCT:先进高速CMOS(Advanced Highspeed CMOS)。
表2-2 “与”运算真值表 A 0 0 B 0 1
F A B
0 0
1
1
0
1
0
1
6
“与”逻辑的运算规律为:
一般形式
00 0 0 1 1 0 0 1 1 1
A0 0 A 1 A A A A
7
与门的逻辑符号:
与门的实际产品型号:
74LS08(四-2输入与门)、 74LS11 (三-3输入与 门) 、 74LS21 (二-4输入与门)
与非、或非、异或、同或的复合逻辑运算 与非门、或非门的逻辑功能 异或门、同或门的逻辑功能 各种复合逻辑门的真值表及输出波形
16
基本逻辑运算的复合叫做复合逻辑运算。而实现 复合逻辑运算的电路叫复合逻辑门。 最常用的复合逻辑门有与非门、或非门、与或非 门和异或门等。
17
2.2.1 与非门
一般形式
000 0 1 1 0 1 11 1
A0 A A 1 1 A A A
11
或门的逻辑符号:
74LS32(四-2 输入或门)
例2-4 : 向2输入或门输入图示的波形,求其输出波形F。 解:
12
2.1.2 非门
实现“非”运算的电路称为非逻辑门,简称非门 。
13
26
第4次课
一、教学目的
(1) 理解集电极开路逻辑门的概念
(2)理解三态逻辑门的概念 (3)掌握集电极开路逻辑门及三态逻辑门的功能与应用 (4)了解集成逻辑门的型号、性能参数 二、教学重点、难点
重点:(1)集电极开路逻辑门的内部构成特点及外部功能
(2)三态逻辑门的功能及应用 难点:OC逻辑门线与功能的理解。 三、教学方法:对两种逻辑门进行功能仿真演示。
44
TTL系列速度及功耗的比较:
速度 最快 TTL 系列 功耗 最小 TTL 系列
最慢
74AS 74S 74ALS 74LS 74 74L
最大
74L 74ALS 74LS 74AS 74 74S
54系列与74系列的比较:
系列 54 74 电源电压(V) 4.5 ~ 5.5 4.75 ~ 5.25 环境温度(℃) -55 ~ +125 0 ~ 70
18
“与非”门真值表 :
表2-7 “与非”门真值表 A B F AB 0 0 0 1 1 1
1 1
0 1
1 0
19
2.2.2 或非门
“或”运算后再进行“非”运算的复合运算称为 “或非”运算,实现“或非”运算的逻辑电路称 为或非门。 F A B 或非门的逻辑关系表达式为: 或非门的逻辑符号 :
24
同或门真值表 :
表2-10 A 2变量“同或”门真值表 B
F A B
1 0 0 1
0 0 1 1
0 1 0 1
N个变量的“同或” :
25
2.3 其它逻辑门
主要内容:
集电极开路逻辑门的概念 集电极开路逻辑门的使用方法 集电极开路逻辑门的应用 三态逻辑门的概念及逻辑功能 三态逻辑门电路的应用
异或门的逻辑符号 :
异或逻辑门的实际产品型号: 74LS86
22
“异或”门真值表 :
表2-9 2输入“异或”门真值表
A 0 0 1 B 0 1 0
F A B
0 1 1
1
1
0
N个变量的“异或” :
23
2.2.3 同或门
“异或”运算之后再进行“非”运算,则称为 “同或”运算。实现“同或”逻辑运算的逻辑电 路称为同或门。 同或门的逻辑关系表达式为: F = A⊙B A B AB AB 同或门的逻辑符号 :