七年级上期中考试数学试题及答案111111

合集下载

七年级数学上册期中考试卷(附答案解析)

七年级数学上册期中考试卷(附答案解析)

七年级数学上册期中考试卷(附答案解析)一.选择题(共8小题,满分24分,每小题3分)1.下列各对数中,互为相反数的()A.﹣(﹣2)和2B.﹣(﹣5)和+(﹣5)C.和﹣2D.+(﹣3)和﹣(+3)2.圆锥的截面不可能是()A.三角形B.圆C.长方形D.椭圆3.下列是同类项的是()A.3x2y与2xy2B.4abc与4acC.mn与﹣nm D.﹣125x与﹣1254.7的倒数是()A.B.C.D.5.“无风才到地,有风还满空.缘渠偏似雪,莫近鬓毛生”是唐朝诗人雍裕之描写每年四月许多地方杨絮、柳絮如雪花般漫天飞舞的诗句,柳絮带给人们春天的讯息外也让人们不堪其扰,据测定,杨絮纤维的直径约为0.00000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣5C.1.05×10﹣6D.105×10﹣76.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的左视图是()A.B.C.D.7.下列去括号中,正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.c+2(a﹣b)=c+2a﹣bC.a﹣(b﹣c)=a+b﹣c D.a﹣(b﹣c)=a﹣b+c8.下列各数中,其中最小的是()A.B.﹣C.0D.﹣5二.填空题(共6小题,满分18分,每小题3分)9.长方形绕其一边旋转一周形成的几何体是,直角三角板绕其一直角边旋转一周形成的几何体是.10.比较大小:;﹣(﹣7)﹣|﹣7|(用“>,<,=”填空).11.单项式﹣4πa3b的系数是.12.规定:类比有理数的乘方,我们把若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2等.我们把2÷2÷2记作2③,读作“2的圈3次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.下列说法准确的选项有.(只需填入正确的序号)①任何非零数的圈2次方都等于1;②对于任何正整数n,1ⓝ=1;③3④=4③;④负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.13.若要使如图中的平面展开图折叠成正方体后,相对面上的两个数为相反数,则2xy=.14.小明的存款是a元,小华的存款比小明存款的一半多2元,则小华的存款为元.三.解答题(共10小题,满分78分)15.(6分)计算:(1)6﹣(﹣2)+(﹣3)﹣5(2)﹣(﹣2)2﹣[2+0.4×(﹣)]÷()216.(6分)已知A=2a2﹣a+3b﹣ab,B=a2+2a﹣b+ab.(1)化简A﹣2B;(2)当a﹣b=2,ab=﹣1,求A﹣2B的值;(3)若A﹣2B的值与b的取值无关,求A﹣2B的值.17.(8分)一个几何体由几个大小相同的小立方块搭成,从上面和正面观察这个几何体,看到的形状都一样(如图所示).(1)这个几何体最少有个小立方块,最多有个小立方块;(2)当摆放的小立方块最多时,请画出从左面观察到的视图.18.(8分)某中学的小卖部最近进了一批计算器,每个16元,今天共卖出20个,实际卖出时以每个18元为标准,超过的记为正,不足的记为负,记录如下:+3﹣1+2+15个4个6个5个(1)这个小卖部的计算器今天卖出的平均价格是多少?(2)这个小卖部今天的计算器赚了多少元?19.(8分)2x2y﹣5xy2+6y2与哪个多项式的和为3xy2﹣4x2y+5y2,求出这个多项式.20.(8分)阅读下面的材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图①,|OB|=|b|=|a﹣b|.当A、B两点都不在原点时:(i)如图②,点A、B都在原点的右边:|AB|=|OB|﹣|OA|=|b|﹣|a|;(ⅱ)如图③,点A、B都在原点的左边:|AB|=|OB|﹣|OA|=|b|﹣|a|:(ⅲ)如图④,点A、B在原点的两边:|AB|=|OA|+|OB|=|a|+|b|.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离|AB|=2,那么x为.21.(8分)如图所示,有长为l的篱笆,利用它和一面墙围成长方形园子,在园子的长边上开了1米的门,园子的宽为t.(1)用关于l,t的代数式表示园子的面积.(2)当l=100m,t=30m时,求园子的面积.22.(8分)用简便方法计算:(1)(﹣2)×(﹣)××(﹣28);(2)(﹣24)×(﹣1+﹣)﹣1.4×6+3.9×6;(3)0.7××(﹣15)+0.7××(﹣15).23.(9分)用火柴棒按照如图示的方式摆图形.按照这样的规律继续摆下去.(1)请根据图填写下表:图形编号12345…火柴棒根数7…(2)计算第2013个图形需要多少根火柴棒?(3)第n个图形需要多少根火柴棒(用含n的代数式表示)24.(9分)观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;第4个等式:a4=…请解答下列问题:(1)按以上规律写出:第n个等式a n=(n为正整数);(2)求a1+a2+a3+a4+…+a100的值;(3)探究计算:.参考答案与解析一.选择题(共8小题,满分24分,每小题3分)1.解:∵﹣(﹣5)=5,+(﹣5)=﹣5,5和﹣5互为相反数,故选:B.2.解:如果用平面取截圆锥,圆锥的截面可能是三角形,圆,椭圆,不可能是长方形.故选:C.3.解:A、3x2y与2xy2中所含有相同字母的次数不同,不是同类项,故本选项不符合题意.B、4abc与4ac中所含有的字母不相同,不是同类项,故本选项不符合题意.C、mn与﹣nm符合同类项的定义,是同类项,故本选项符合题意.D、﹣125x与﹣125中所含有的字母不相同,不是同类项,故本选项不符合题意.故选:C.4.解:∵7×=1,∴7的倒数是.故选:D.5.解:0.00000105=1.05×10﹣6.故选:C.6.解:从左面看去,一共两列,左边有2个小正方形,右边有1个小正方形,左视图是.故选:C.7.解:A、a﹣(b﹣c)=a﹣b+c,故不对;B、c+2(a﹣b)=c+2a﹣2b,故不对;C、a﹣(b﹣c)=a﹣b+c,故不对;D、正确.故选:D.8.解:在、﹣、0、﹣5中,最小的数为:﹣5.故选:D.二.填空题(共6小题,满分18分,每小题3分)9.解:长方形绕它的一边旋转一周可形成圆柱,直角三角形绕它的直角边旋转一周可形成圆锥.故答案为圆柱,圆锥.10.解:∵|﹣|==,|﹣|==,>,∴<;∵﹣(﹣7)=7,﹣|﹣7|=﹣7,7>﹣7,∴﹣(﹣7)>﹣|﹣7|,故答案为:<;>.11.解:单项式﹣4πa3b的系数是:﹣4π.故答案为:﹣4π.12.解:①任意非零数x的圈2次方为x÷x=1,那么①正确.②1ⓝ==1,那么②正确.③3④=3÷3÷3÷3=,4③=4÷4÷4=,故3④≠4③,那么③不正确.④把(a≠0)记作aⓝ,读作“a的圈n次方”.当a为负数,n为奇数,根据有理数的除法,结果是负数;当a是负数,n是偶数,根据有理数的除法,结果是正数,那么④正确.综上:正确的有①②④.故答案为:①②④.13.解:根据正方体表面展开图“相间、Z端是对面”可知,“1”与“x”相对,“3”与“y”相对,所以x=﹣1,y=﹣3,故2xy=2×(﹣1)(﹣3)=6,故答案为:6.14.解:依题意得,小华存款:a+2.故答案为:a+2.三.解答题(共10小题,满分78分)15.解:(1)原式=6+2﹣3﹣5=0;(2)原式=﹣4﹣(2﹣1)×4=﹣4﹣4=﹣8.16.解:(1)A﹣2B=(2a2﹣a+3b﹣ab)﹣2(a2+2a﹣b+ab)=2a2﹣a+3b﹣ab﹣2a2﹣4a+2b﹣2ab=﹣5a+5b﹣3ab;(2)由(1)得,因为a﹣b=2,ab=﹣1,所以A﹣2B=﹣5a+5b﹣3ab=﹣5(a﹣b)﹣3ab=﹣5×2﹣3×(﹣1)=﹣10+3=﹣7;(3)由(1)得,﹣5a+5b﹣3ab=(5﹣3a)b﹣5a,由于A﹣2B的值与b的取值无关,因此5﹣3a=0,即a=,所以A﹣2B=﹣5a=﹣5×=﹣.答:A﹣2B的值为﹣.17.解:(1)如图,这个几何体最少有5个小正方体,最多有6个小正方体.故答案为:5,6;(2)当摆放的小立方块最多时,从左面观察到的视图如图所示:18.解:(1)根据题意得:(21×5+17×4+20×6+19×5)=19.4元;(2)根据题意得:3×5﹣1×4+2×6+1×5=15﹣4+12+5=28(元),则(18﹣16)×20+28=68(元),即净赚68元.19.解:(3xy2﹣4x2y+5y2)﹣(2x2y﹣5xy2+6y2)=3xy2﹣4x2y+5y2﹣2x2y+5xy2﹣6y2=8xy2﹣6x2y﹣y2.20.解:(1)数轴上表示2和5的两点之间的距离为5﹣2=3,数轴上表示﹣2和﹣5的两点之间的距离为﹣2﹣(﹣5)=3,数轴上表示1和﹣3的两点之间的距离为1﹣(﹣3)=4;(2)根据题意得|x﹣(﹣1)|=2,即x+1=±2,所以x=1或﹣3.故答案为3,3,4;1或﹣3.21.解:(1)由题意和图知,园子的长为:(l+1﹣2t)m,所以园子的面积为:S=(l+1﹣2t)t(m2).(2)当l=100m,t=30m时,S=(100+1﹣2×30)×30=42×30=1230(m2).答:园子的面积为1230m2.22.解:(1)原式=﹣×××28=﹣35;(2)原式=(﹣24)×(﹣)+×(﹣24)﹣×(﹣24)+6×(3.9﹣1.4)=32﹣20+21+6×2.5=32﹣20+21+15=48;(3)原式=0.7×(+)+(﹣15)×(2+)=0.7×2+(﹣15)×3=1.4﹣45=﹣43.6.23.解:(1)如表格所示:图形编号(1)(2)(3)…n 火柴根数71217…5n+2(2)当n=2013时,5n+2=10067;(3)5n+2.24.解:(1)∵第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;第4个等式:a4=;…,∴第n个等式:a n=,故答案为:;(2)a1+a2+a3+a4+…+a100=+…+=1﹣+++…+=1﹣=;(3)=×(1﹣++…+)===.第11页共11页。

人教版七年级上学期期中考试数学试卷及答案(共7套)

人教版七年级上学期期中考试数学试卷及答案(共7套)

人教版七年级上学期期中考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-43.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .1 C .7 D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.请你写出一个只含有字母m 、n ,且它的系数为-2、次数为3的单项式________. 9.秋收起义广场是为纪念秋收起义而建设的纪念性广场,位于萍乡城北新区,占地面积约为109000平方米,将数据109000用科学记数法表示为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13;(2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.有理数a,b,c在数轴上的位置如图所示,化简:|b-a|-|c-b|+|a+b|.四、(本大题共3小题,每小题8分,共24分)18.如果两个关于x、y的单项式2mx a y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2017的值.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a >0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; …(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=________; (3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.-2m 2n (答案不唯一) 9.1.09×105 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由数轴可知:c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(2分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(6分)18.解:(1)依题意,得a =3a -6,解得a =3.(4分)(2)∵2mx 3y 3+(-4nx 3y 3)=0,故m -2n =0,∴(m -2n -1)2017=(-1)2017=-1.(8分) 19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分) 20.解:(1)如图所示:(3分)(2)C 、A 两村的距离为3-(-2)=5(km). 答:C 村距离A 村5km.(5分) (3)|-2|+|-3|+|+8|+|-3|=16(km). 答:邮递员共骑行了16km.(8分) 21.解:(1)3(3分) (2)①-3(6分)②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a +2.4)万人.(2分) (2)10月3日游客人数最多,人数为(a +2.8)万人.(4分)(3)(a +1.6)+(a +2.4)+(a +2.8)+(a +2.4)+(a +1.6)+(a +1.8)+(a +0.6)=7a +13.2.(6分)当a =2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分) 23.解:(1)102(3分) (2)(n +2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)人教版七年级上学期期中考试数学试卷(二)时量:120分钟 满分:120分一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分) 1.-2的相反数是( ) A .21-B .2-C .21D .2 2. 在数轴上距离原点2个单位长度的点所表示的数是 ( ) A .2 B .2- C .2或2- D .1或1- 3.下列计算正确的是 ( ) A .xy y x 532=+ B .532222a a a =+ C .13422=-a a D .b a b a ba 2222-=+- 4.下列式子中,成立的是( )A .33)2(2-=-B .222)2(-=-C .223232=⎪⎭⎫ ⎝⎛- D .2332⨯= 5.用四舍五入按要求对06019.0分别取近似值,其中错误的是 ( ) A .0.1 (精确到0.1) B. 0.06 (精确到千分位) C .0.06 (精确到百分位) D .0.0602 (精确到0.0001)6.下列各组中,不是同类项的是 ( ) A .与 B .ab 2与ba 21C .与D .32 和23 7.小华作业本中有四道计算题:①5)5(0-=--; ②12)9()3(-=-+-; ③234932-=⎪⎭⎫ ⎝⎛-⨯; ④4)9()36(-=-÷-. y x 2-22yx n m 2-221mn其中他做对的题的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.一件衣服的进价为a 元,在进价的基础上增加20%定为标价,则标价可表示为 ( ) A .()a %201- B.20%a C.()a %201+ D.a +20%9.下面四个整式中,不能..表示图中阴影部分面积的是A .x x x 2)2)(3(-++B .6)3(++x xC .2)2(3x x ++ D .x x 52+10.若12++x x 的值是8,则9442++x x 的值是 ( ) A .37 B .25 C .32 D .011.下列说法正确的是 ( ) A .单项式22R π-的次数是3,系数是2-B .单项式5322y x -的系数是3,次数是4C .3ba +不是多项式 D .多项式26534222---y y x x 是四次四项式 12. 已知b a ,在数轴上的位置如图所示, 则化简a b a ++-是( )A .a 2B .a 2-C . 0D .b 2二.填空题(本题共6个小题,每小题3分,共18分) 13.用式子表示“a 的平方与1的差”: .14. 比较大小:30- 40-(用“>”“=”或“<”表示).15.长沙地铁一号线于2016年6月28号正式开通试运营,这是长沙轨道交通南北向的核心线路,该线一期工程全长23550米,请用科学记数法表示全长为 米.第9题16.若一个数的倒数等于311-,则这个数是 .17.若单项式y mx 2与单项式y x n5的和是y x 23-,则=+n m ___________. 18. 按下列程序输入一个数x ,若输入的数0=x ,则输出结果为 .三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26每小题10分,共66分,解答应写出必要的文字说明或演算步骤.) 19.计算:3.7)7.13()3.7(7.25+-+-+20.计算:2201611(2)5(1)122-⨯--+÷21.先化简,再求值:23(2)(61)a a a ---,其中1a =-22.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知b a ,互为相反数,d c ,互为倒数,2=m ,则cd m mba -+++1的值为多少?23.如果一个多项式与222n m -的和是13522+-n m ,求这个多项式。

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是整数?A. 1.5B. 2/3C. 3/4D. 53. 下列哪个数是无理数?A. 2/3B. 3.25C. √3D. 1/24. 下列哪个式子是正确的?A. √9 = 3B. √9 = 3C. √9 = 2D. √9 = 45. 下列哪个式子是错误的?A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 20二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。

()2. 任何两个整数的积都是整数。

()3. 任何两个无理数的积都是无理数。

()4. 任何两个实数的和都是实数。

()5. 任何两个实数的积都是实数。

()三、填空题5道(每题1分,共5分)1. 两个有理数的和是______数。

2. 两个整数的积是______数。

3. 两个无理数的积是______数。

4. 两个实数的和是______数。

5. 两个实数的积是______数。

四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。

2. 请简要说明整数的定义。

3. 请简要说明无理数的定义。

4. 请简要说明实数的定义。

5. 请简要说明有理数和无理数的区别。

五、应用题:5道(每题2分,共10分)1. 计算下列式子的值:2^3 + 3^2 4^22. 计算下列式子的值:√9 + √16 √253. 计算下列式子的值:3/4 + 2/3 1/24. 计算下列式子的值:2/3 3/4 4/55. 计算下列式子的值:√2 √3 √6六、分析题:2道(每题5分,共10分)1. 请分析并解释为什么√1是无理数。

2. 请分析并解释为什么π是无理数。

七、实践操作题:2道(每题5分,共10分)1. 请用计算器计算下列式子的值:2^10 + 3^5 4^32. 请用计算器计算下列式子的值:√9.6 + √36.9 √81.25八、专业设计题:5道(每题2分,共10分)1. 设计一个函数,使其输入一个正整数n,输出n的所有正因数。

七年级上学期数学期中考试试卷含答案(word版)

七年级上学期数学期中考试试卷含答案(word版)

七年级上学期数学期中考试试卷含答案(word版)七年级数学第一学期期中考试试卷考试时间:100分钟满分:120分一、选择题(共12小题,满分36分)1.若在记账本上把支出6元记为-6,则收入3元应记为()A.+3B.-3C.+6D.-62.多项式-x+2/x+1的各项分别是()A.-x,2B.-x,-2C.x^2,x,1/2D.x,-2/x,-1/23.2019的相反数的绝对值是()A.-2019B.2019C.-2019D.4.下列去括号正确的是()A.-(2x+5)=-2x+5B.-(6x-4)=-3x+42C.(5x-3y)=1/3x+yD.-(2x-2y/3)=-x+2y/35.若m+n>0,则m与n的值()A、一定都是正数B、一定都是负数C、一定是一个正数,一个负数D、至少有一个是正数6.单项式-5πxy^m的系数和次数分别是()A.-π,7B.-5,6C.-5π,6D.-5,77.已知a>0,b<0,且a<b,则下列关系正确的是()A、b<-a<a<-bB、-a<b<a<-bC、-a<b<-b<aD、b<-a<-b<a8.一个多项式与x-2x+1的和是3x-2,则这个多项式为()A.x-5x+3B.-x+x-1C.-x+5x-3D.x-5x-39.若a=3,|b|=6,则a-b的值()A.3B.-3C.3或-9D.-3或910.已知2xy和-2xyn^2是同类项,则式子3m-2n的值是()A.-3B.3C.-6D.611.下列各数(-2),-(-2),(-3),-(-3)中,负数的个数有()A.1B.2C.3D.412.有一组单项式如下:-2x,3x,-4x,5x……,则第100个单项式是()A.100x^100B.-100x^100C.101x^100D.-101x^100二、填空题(共4小题,满分16分)13.将数轴上表示-8的点向右移动5个单位长度到点M,则点M所对应的数为__________.14.已知2m-6与4互为相反数,则m的值为__________.15.用科学记数法表示38万米是__________米.16.在一个正三角形场地中,如果在每边上放2盆花,则共需要6盆花;如果在每边上放3盆花,则共需要9盆花;以此类推,如果在每边上放25盆花,则共需要75盆花。

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级第一学期期中数学试卷及答案一、单选题(共10题,每小题4分,合计40分)1.(4分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(4分)如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣1【解答】解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.3.(4分)如果m=n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.【解答】解:A.∵m=n,∴m﹣3=n﹣3,故本选项不符合题意;B.∵m=n,∴2m=2n,∴2m+3=2n+3,不能推出2m+3=3n+2,故本选项符合题意;C.∵m=n,∴5+m=5+n,故本选项不符合题意;D.∵m=n,∴=,故本选项不符合题意;故选:B.4.(4分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.5.(4分)已知x=2是方程3x﹣5=2x+m的解,则m的值是()A.1B.﹣1C.3D.﹣3【解答】解:∵x=2是方程3x﹣5=2x+m的解,∴把x=2代入方程可得6﹣5=4+m,解得m=﹣3,故选:D.6.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.7.(4分)多项式a2+a与多项式﹣a+1的差为()A.a2+1B.a2+2a+1C.a2﹣1D.a2+2a﹣1【解答】解:(a2+a)﹣(﹣a+1)=a2+a+a﹣1=a2+2a﹣1,故选:D.8.(4分)多项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,则k的值是()A.0B.1C.2D.﹣2【解答】解:∵项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,∴﹣k+1=0,∴k=2.故选:C.9.(4分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.二.填空题(共6题,每小题4分,合计24分)11.(4分)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.12.(4分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(4分)当x=1时,代数式x+2与代数式的值相等.【解答】解:∵代数式x+2与代数式的值相等,∴x+2=,2x+4=7﹣x,2x+x=7﹣4,3x=3,x=1,故答案为:1.14.(4分)若|x|=3,|y|=4,且xy>0,则x+y的值为7或﹣7.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy>0,∴x=3时,y=4,x+y=7,x=﹣3时,y=﹣4,x+y=﹣3+(﹣4)=﹣7,综上所述,x+y的值是7或﹣7.故答案为:7或﹣7.15.(4分)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是7x+1.【解答】解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.16.(4分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.三.解答题(共9题,合计86分)17.(8分)计算:(1);(2).【解答】解:(1)=()×(﹣60)=﹣×60+×60﹣×60+×60=﹣20+15﹣12+10=﹣7;(2)=﹣1﹣×(﹣20)+4=﹣1+8+4=11.18.(8分)先化简再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab,其中a=﹣3,b=﹣2.【解答】解:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab=3a2b﹣2a2b+(2ab﹣a2b)+4a2﹣ab=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab=ab+4a2当a=﹣3,b=﹣2时,原式=(﹣3)×(﹣2)+4×(﹣3)2=6+36=42.19.(8分)解方程:(1)y﹣3(20﹣2y)=10(2)(x﹣2)=1﹣(4﹣3x)【解答】解:(1)去括号得:y﹣60+6y=10,移项得:y+6y=10+60,合并同类项得:7y=70,系数化为1得:y=10,(2)方程两边同时乘以12得:3(x﹣2)=12﹣2(4﹣3x),去括号得:3x﹣6=12﹣8+6x,移项得:3x﹣6x=12﹣8+6,合并同类项得:﹣3x=10,系数化为1得:x=﹣.20.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).21.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.22.(10分)已知:M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2.(1)求M;(2)若|x﹣2|+(y+1)2=0,计算M的值.(2)直接利用非负数的性质得出x,y的值,进而代入计算得出答案.【解答】解:(1)∵M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2,∴M=4x3+16xy2+8y3﹣(3x3﹣4y3+16xy2)=4x3+16xy2+8y3﹣3x3+4y3﹣16xy2=x3+12y3;(2)∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,∴M=23+12×(﹣1)=8﹣12=﹣4.23.(10分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233;请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15);(2)999×118+999×(﹣)﹣999×18.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.(12分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?【解答】解:(1)第一次操作后增加的新数是6,﹣1,则6+(﹣1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.25.(14分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.。

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A .15℃B .18°C C .-3℃D .-18°C2.下列各个运算中,结果为负数的是()A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是()A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有()A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是()A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为()A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.若|2|2a a -=,则下列结论正确的是()A .0a >B .0a <C .0a ≥D .0a ≤9.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为()A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____.12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-.14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭;(4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;①0,6,6-,18,30-,66,…;②1-,2,4-,8,16-,32,…;③(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是.(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:∵0的绝对值是0,∴A选项不合题意,∵由正整数的定义知最小的正整数是1,∴B选项符合题意,∵0的绝对值是0,但0不是正数,∴C选项不合题意,∵负数的相反数是正数,而正数大于负数,∴D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n-1=2,m+2=4,从而求出m 、n ,继而求出m-n 的值.【详解】解:由题意可知:n-1=2,m+2=4,解得:n=3,m=2,∴m-n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】∵|-2a|=2a,∴-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,∴b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:∵a+(a+2)=20,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:1 3.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,∵56 1515<,∴1235->-.故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键.15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:∵233m m --的值为2,∴2332m m --=,∴235m m -=.∴()222021262021232021252021102011m m m m -+=--=-⨯=-=.故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯-⨯()()161512=-++-13=-;(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=;(5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-【点睛】本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157-【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算.【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =,原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:∵2512A x my =+-,21B nx y =++,∴()()2223251231A B x my nx y +=+-+++2210224333x my nx y =+-+++()()21032321n x m y =+++-,∵23A B +中不含x 和y ,∴1030 230nm+=⎧⎨+=⎩,∴32103 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n-÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,∴第1行数的第n 个数为:()2n-;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,∴第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,∴第3行数的第n 个数为:()22n -÷.∴第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n-÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=,∴()()()11222192n n n -+-+-+-=,∴()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-=∴()()12124192n --⨯-+=,∴()162642n --==,∴16n -=,∴7n =,∴()712232--÷=,()72264-÷=-,()7122128+-÷=,∴这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可;(3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-,故答案为:2或4-;(3)∵42a -<<,∴42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,∴使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,∵()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤,当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<,当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1) 2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y , PA PB PC +=,由图可知P 在A 的右侧时不存在,①当P 在B 点的左侧时,122y y y ---=-,解得3y =-,②当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。

七年级数学上册期中测试题附参考答案

七年级数学上册期中测试题附参考答案

七年级数学上册期中测试题附参考答案一.选择题(每小题3分,共24分)1.如果水库的水位高于正常水位1m时,记作+1m,那么低于正常水位2m时,应记作()A. +2mB. ﹣2mC. + mD. ﹣ m2.﹣3的绝对值是()A. 3B. ﹣3C. ﹣D.3.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.710n(n是正整数),则n的值为()A. 5B. 6C. 7D. 84.下列各式中不是单项式的是()A. B. ﹣ C. 0 D.5.在﹣(﹣4),|﹣1|,﹣|0|,(﹣2)3这四个数中非负数共有()个.A. 1B. 4C. 2D. 36.下列说法正确的是()A. x+y是一次单项式B. 多项式3a3+4a2﹣8的次数是4C. x的系数和次数都是1D. 单项式4104x2的系数是47.下列各组中的两项是同类项的是()A. 6zy2和﹣2y2zB. ﹣m2n和mn2C. ﹣x2和3xD. 0.5a和0.5b8.两个有理数相除,其商是负数,则这两个有理数()A. 都是负数B. 都是正数C. 一个正数一个负数D. 有一个是零二、填空题(每小题3分,共21分)9.在﹣3,﹣1,0,2这四个数中,最小的数是.10.列式表示:p与2的差的是.11.在数轴上表示点A的数是3,则与点A相距4个单位长度的点表示的数是.12.在近似数6.48中,精确到位,有个有效数字.13.多项式4x2y﹣5x3y2+7xy3﹣是次项式.14. 的相反数是,倒数是,绝对值是.15.若4x4yn+1与﹣5xmy2是同类项,则m+n=.三、计算题(16题6分,17题24分,共30分)16.画出数轴,在数轴上表示下列各数,并用连接:+5,﹣3.5,,,4,0,2.5.17.计算(1)﹣6+14﹣5+22(2)( ﹣ + )(﹣12)(3)23(﹣5)﹣(﹣3)(4)(﹣2)2+3(﹣2)﹣1(﹣ )2(5)8a﹣a3+a2+4a3﹣a2﹣7a﹣6(6)(﹣3)(﹣4)﹣60(﹣12)四、解答题(18、19、20题各6分,21题7分共25分)18.(1)用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=5,h=4时,S的值.19.若m、n互为相反数,p、q互为倒数,且|a|=3,求值.20.若|m﹣2|+|n﹣5|=0,求(m﹣n)2的值.21.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)收工时在A地的哪边距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?参考答案与试题解析一.选择题(每小题3分,共24分)1.如果水库的水位高于正常水位1m时,记作+1m,那么低于正常水位2m时,应记作()A. +2mB. ﹣2mC. + mD. ﹣ m考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:如果水库的水位高于正常水位1m时,记作+1m,那么低于正常水位2m时,应记作﹣2m.2.﹣3的绝对值是()A. 3B. ﹣3C. ﹣D.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.3.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.710n(n是正整数),则n的值为()A. 5B. 6C. 7D. 8考点:科学记数法表示较大的数.分析:科学记数法的表示形式为a10n的形式,其中110,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.解答:解:将6700000用科学记数法表示为6.7106,4.下列各式中不是单项式的是()A. B. ﹣ C. 0 D.考点:单项式.分析:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.解答:解:A、是数与字母的积的形式,是单项式;B、C都是数字,是单项式;5.在﹣(﹣4),|﹣1|,﹣|0|,(﹣2)3这四个数中非负数共有()个.A. 1B. 4C. 2D. 3考点:有理数.分析:利用绝对值、相反数及有理数的乘方,先对所给数进行化简,即可得出结论.解答:解:﹣(﹣4)=4,|﹣1|=1,﹣|0|=0,(﹣2)3=﹣8,6.下列说法正确的是()A. x+y是一次单项式B. 多项式3a3+4a2﹣8的次数是4C. x的系数和次数都是1D. 单项式4104x2的系数是4考点:单项式;多项式.分析:分别根据单项式与多项式的定义对各选项进行逐一分析即可.解答:解:A、x+y是一次多项式,故本选项错误;B、多项式3a3+4a2﹣8的次数是3,故本选项错误;C、x的系数和次数都是1,故本选项正确;7.下列各组中的两项是同类项的是()A. 6zy2和﹣2y2zB. ﹣m2n和mn2C. ﹣x2和3xD. 0.5a和0.5b考点:同类项.分析:根据同类项的定义,结合选项求解.解答:解:A、6zy2和﹣2y2z中,相同字母的指数相同,是同类项,故本选项正确;B、﹣m2n和mn2中,字母相同,指数不同,故本选项错误;C、﹣x2和3x,字母相同,指数不同,故本选项错误;8.两个有理数相除,其商是负数,则这两个有理数()A. 都是负数B. 都是正数C. 一个正数一个负数D. 有一个是零考点:有理数的除法.分析:根据两数相除,同号得正,异号得负,进行分析.解答:解:根据除法法则,知两个有理数相除,其商是负数,则这两个有理数必定异号.二、填空题(每小题3分,共21分)9.在﹣3,﹣1,0,2这四个数中,最小的数是﹣3 .考点:有理数大小比较.分析:根据负数小于0和正数,得到最小的数在﹣3和﹣1中,然后比较它们的绝对值即可得到答案.解答:解:∵|﹣1|=2,|﹣3|=3,﹣3﹣1,且负数小于0和正数,10.列式表示:p与2的差的是 (p﹣2) .考点:列代数式.分析:用p与2的差乘以即可.解答:解:根据题意得:11.在数轴上表示点A的数是3,则与点A相距4个单位长度的点表示的数是﹣1或7 .考点:数轴.分析:根据题意得出两种情况:当点在表示3的点的左边时,当点在表示3的点的右边时,列出算式求出即可.解答:解:分为两种情况:①当点在表示3的点的左边时,数为3﹣4=﹣1;②当点在表示3的点的右边时,数为3+4=7;12.在近似数6.48中,精确到百分位,有 3 个有效数字.考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位,最后一位是什么位就是精确到哪一位;一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.解答:解:近似数6.48中,最后一位是百分位,因而是精确到百分位,有6,4,8共3个有效数字.13.多项式4x2y﹣5x3y2+7xy3﹣是五次四项式.考点:多项式.分析:多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.解答:解:多项式4x2y﹣5x3y2+7xy3﹣是五次四项式,14. 的相反数是,倒数是﹣2 ,绝对值是 .考点:倒数;相反数;绝对值.专题:计算题.分析:根据相反数的性质,互为相反数的'两个数和为0,倒数的性质,互为倒数的两个数积为1,绝对值的定义,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,求解即可.解答:解:根据倒数、相反数和绝对值的定义得:﹣的相反数为:﹣的倒数为:1(﹣ )=﹣2,15.若4x4yn+1与﹣5xmy2是同类项,则m+n= 5 .考点:同类项.分析:这类题目的解题关键是从同类项的定义出发,列出方程并求解.(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了的常考点.三、计算题(16题6分,17题24分,共30分)16.画出数轴,在数轴上表示下列各数,并用连接:+5,﹣3.5,,,4,0,2.5.考点:有理数大小比较;数轴.分析:先把各点在数轴上表示出来,再从左到右用把各点连接起来即可.17.计算(1)﹣6+14﹣5+22(2)( ﹣ + )(﹣12)(3)23(﹣5)﹣(﹣3)(4)(﹣2)2+3(﹣2)﹣1(﹣ )2(5)8a﹣a3+a2+4a3﹣a2﹣7a﹣6(6)(﹣3)(﹣4)﹣60(﹣12)考点:有理数的混合运算;合并同类项.专题:计算题.分析: (1)原式结合后,相加即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式合并同类项即可得到结果;(6)原式先计算乘除运算,再计算加减运算即可得到结果.解答:解:(1)原式=﹣11+36=25;(2)原式=﹣5+4﹣9=﹣10;(3)原式=﹣115+128=13;(4)原式=4﹣6﹣16=﹣18;四、解答题(18、19、20题各6分,21题7分共25分)18.(1)用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=5,h=4时,S的值.考点:列代数式;代数式求值.专题:几何图形问题.分析: (1)阴影部分的面积=上下底为a,b,高为h的梯形的面积﹣边长为a,h的长方形的面积,把相关字母代入即可;(2)把数值代入(1)中的代数式求值即可.解答:解:(1)S= (a+b)h﹣ah,19.若m、n互为相反数,p、q互为倒数,且|a|=3,求值.考点:代数式求值;相反数;绝对值;倒数.专题:计算题.分析:利用相反数,倒数,以及绝对值的定义求出m+n,pq以及a的值,代入原式计算即可得到结果.解答:解:根据题意得:m+n=0,pq=1,a=3或a=﹣3,当a=3时,原式=0+2010+1=2011;20.若|m﹣2|+|n﹣5|=0,求(m﹣n)2的值.考点:非负数的性质:绝对值;代数式求值.专题:计算题.分析:根据两个非负数的和为0,必须都为0,得出关于m n的方程,求出m n的值,代入进行计算即可.解答:解:由题意知,m﹣2=0,n﹣5=0,21.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)收工时在A地的哪边距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?考点:有理数的加法.专题:应用题.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题求耗油量时,注意要用汽车实际行驶的路程乘以每千米耗油量.解答:解:(1)约定向东为正,向西为负,8﹣9+4+7﹣2﹣10+18﹣3+7+5=8+4+7+18+7+5﹣9﹣10﹣2﹣3=25千米,故收工时在A地的东边距A地25千米.(2)油耗=行走的路程每千米耗油0.3升,即|8|+|﹣9|+|4|+|7|+|﹣2|+|﹣10|+|18|+|﹣3|+|7|+|5|=73千米,730.3=21.9升,【七年级数学上册期中测试题附参考答案】。

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 下列哪个是等边三角形的特点?A. 有两个角相等B. 有三条边相等C. 有一个角是直角D. 所有角都小于90度3. 下列哪个是负数?A. 5B. 0C. 3D. 84. 下列哪个是最小的合数?A. 4B. 6C. 8D. 95. 下列哪个是平行四边形的性质?A. 对角线互相垂直B. 对角线互相平分C. 对边平行且相等D. 所有角都是直角二、判断题(每题1分,共5分)1. 0是最小的自然数。

()2. 等腰三角形的两个底角相等。

()3. 1是质数。

()4. 平行四边形的对角线互相平分。

()5. 两个负数相乘的结果是正数。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 3的平方是______。

3. 1千米等于______米。

4. 等边三角形的每个角都是______度。

5. 5的立方是______。

四、简答题(每题2分,共10分)1. 解释什么是质数。

2. 简述平行四边形的性质。

3. 解释负数和正数的区别。

4. 什么是等腰三角形?5. 解释乘法的分配律。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个数加上它的5倍等于30,求这个数。

3. 一个等边三角形的周长是18厘米,求它的边长。

4. 一个数减去7等于10,求这个数。

5. 一个数的平方是64,求这个数。

六、分析题(每题5分,共10分)1. 小明有5个苹果,他吃掉了2个,然后又得到了3个,现在小明有多少个苹果?2. 一个长方形的长是15厘米,宽是10厘米,如果长方形的长增加5厘米,宽减少2厘米,求新长方形的面积。

七、实践操作题(每题5分,共10分)1. 画出一个等边三角形,并标出它的三个角。

2. 画出一个长方形,并标出它的长和宽。

八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在水平面上受到的摩擦力与物体重量之间的关系。

七年级上册数学期中考试卷及答案

七年级上册数学期中考试卷及答案

七年级上册数学期中考试卷及答案第一部分:选择题(共20题,每题2分,共40分)1. 在下列各组数中,有三个互质数的是()A. 3,6,9B. 6,9,12C. 5,7,9D. 8,12,152. 一条铁盒长36cm,宽10cm,高12cm,它的表面积是()A. 1352cm²B. 1356cm²C. 1358cm²D. 1360cm²3. 化简:$\frac{4x^4y^3}{8x^3y^2}$ 的结果是()A. $\frac{x}{2}$B. $2x$C. $8x$D. $16x$4. 小明从家到学校要行走800米,他每分钟行走80米,他需要多少时间才能到学校?()A. 10分钟B. 15分钟C. 20分钟D. 25分钟5. 图1中的正方形ABCD的面积是16平方厘米,图2是图1的放大图,正方形A'B'C'D'的面积是()![图1](image1.png) ![图2](image2.png)A. 2平方厘米B. 4平方厘米C. 8平方厘米D. 16平方厘米...第二部分:填空题(共10题,每题3分,共30分)1. 化简:$3x + (2x - 5) = ?$ 答案:$5x - 5$2. 判断下列各式表示的是否正确:-$\frac{3}{4}$ < 2 答案:正确3. 将48分解为两个连续整数之和的式子是:$23 + 25$4. 设$y = \frac{5}{2}x + 3$,求当$x=6$时,$y$的值:$y=18$5. if (3 * x) === 12 { x = ? } 答案:4...第三部分:解答题(共4题,共30分)1. 一个社区的人口每年增长5%,现有人口人,经过多少年后,人口将增长到人?解答需要说明计算步骤。

解答:每年增长5%相当于每年增长0.05倍。

设经过x年,人口将增长到人。

根据题目条件,可以列出方程:(1 + 0.05)^x = 。

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。

七年级(上)数学期中考试题及答案

七年级(上)数学期中考试题及答案

七年级(上)数学期中考试题及答案一、选择题(每小题3分,共30分)1.的绝对值是()A.2B.﹣2C.D.【分析】根据绝对值的定义直接进行计算.解:根据绝对值的概念可知:||=,故选:C.【点评】本题考查了绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为()A.1.68×104m B.16.8×103m C.0.168×104m D.1.68×103m 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将16 800用科学记数法表示为1.68×104.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.n是一个正整数,则10n表示的是()A.10个n相乘所得的结果B.n个10相乘所得的结果C.10后面有n个0的数D.是一个n位整数【分析】根据乘方的含义,求n个相同因数的积的运算,叫做乘方.在a n中,a 叫做底数,n叫做指数.解:n是一个正整数,则10n表示的是n个10相乘所得的结果.故选:B.【点评】本题考查了有理数乘方的定义,同学们一定要完全理解a n中表示的含义,才能做到灵活应用.如本题所示的10n的意义.4.如图,在数轴上表示互为相反数的两数的点是()A.点A和点C B.点B和点C C.点A和点B D.点B和点D 【分析】分别表示出数轴上A、B、C、D所表示的数,再根据相反数的定义确定表示互为相反数的两数的点.解:A、B、C、D所表示的数分别是2,1,﹣2,﹣3,因为2和﹣2互为相反数,故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.下列说法中正确的是()A.的系数是B.的系数是2C.﹣5x2的系数是5D.3x2的系数是3【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.解:A、因为=,所以根据单项式系数的定义知,的系数是π,故本选项错误;B、因为=,所以根据单项式系数的定义知,的系数是,故本选项错误;C、因为﹣5x2=﹣5•x2,所以根据单项式系数的定义知,﹣5x2的系数是﹣5,故本选项错误;D、因为3x2=3•x2,所以根据单项式系数的定义知,3x2的系数是3,故本选项正确;故选:D.【点评】确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.6.下列各式中,与x2y是同类项的是()A.xy2B.2xy C.﹣x2y D.3x2y2【分析】本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.解:x2y中x的指数为2,y的指数为1.A、x的指数为1,y的指数为2;B、x的指数为1,y的指数为1;C、x的指数为2,y的指数为1;D、x的指数为2,y的指数为2.故选:C.【点评】考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.7.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需()A.28mn元B.11mn元C.(7m+4n)元D.(4m+7n)元【分析】买一个足球需要m元,则买4个足球需要4m元,买一个篮球需要n元,则买7个篮球需要7n元,然后它们的和为所求.解:买4个足球、7个篮球共需(4m+7n)元.故选:D.【点评】本题考查了列代数式:利用代数式表示实际问题中的数量关系.8.下列运算有错误的是()A.﹣5+(+3)=8B.5﹣(﹣2)=7C.﹣9×(﹣3)=27D.﹣4×(﹣5)=20【分析】根据有理数的加减和乘法的运算法则计算可得.解:A.﹣5+(+3)=﹣2,此选项计算错误;B.5﹣(﹣2)=5+2=7,此选项计算正确;C.(﹣9)×(﹣3)=27,此选项计算正确;D.﹣4×(﹣5)=20,此选项计算正确;故选:A.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及其运算律.9.下列各题中计算结果正确的是()A.2x+3y=5xy B.3.5ba﹣=0C.4a2b﹣5ab2=﹣ab D.x2+x=x3【分析】根据合并同类项的法则求解.解:2x和3y不是同类项,不能合并,故本选项错误;B、3.5ba﹣=0.计算正确,故本选项正确;C、4a2b和5ab2不是同类项,不能合并,故本选项错误;D、x2和x不是同类项,不能合并,故本选项错误.故选:B.【点评】本题考查了合并同类项,解答本题的关键是掌握合并同类项法则.10.下列说法正确的是()A.绝对值是它本身的数一定是正数B.任何数都不等于它的相反数C.如果a>b,那么<D.若a≠0,则总有|a|>0【分析】根据绝对值的性质、有理数的分类、相反数的定义、不等式的性质判断即可.解:A、绝对值是它本身的数一定是非负数;故本选项错误.B、0等于它的相反数;故本选项错误.C、如果a>0>b,那么<;故本选项错误.D、若a≠0,则总有|a|>0;故本选项正确.故选:D.【点评】本题主要考查的是绝对值、有理数、相反数、不等式,掌握相关知识是解题的关键.二、填空题(本大题每空2分,共24分)11.(2分)把1.8075精确到0.01的近似数是 1.81 .【分析】把千分位上的数字7进行四舍五入即可.解:1.8075精确到0.01的近似数是1.81.故答案为1.81.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12.(6分)﹣的相反数是;﹣6的倒数是【分析】直接利用互为相反数以及互为倒数的定义分析得出答案.解:﹣的相反数是:;﹣6的倒数是:﹣.故答案为:,﹣.【点评】此题主要考查了互为倒数以及互为相反数,正确把握相关定义是解题关键.13.(2分)某日傍晚,南京的气温由上午的零上5℃下降了10℃,这天傍晚南京的气温是﹣5 ℃.【分析】根据题意列出算式,计算即可求出值.解:根据题意得:5﹣10=﹣5,则这天傍晚南京的气温是﹣5℃.故答案为:﹣5【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.14.(4分)计算:①﹣(﹣2)2=﹣4 ;②|﹣32|=9【分析】根据有理数的乘方的运算法则和绝对值的性质求解可得.解:①﹣(﹣2)2=﹣4;②|﹣32|=|﹣9|=9;故答案为:﹣4,9.【点评】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的运算法则和绝对值的性质.15.(4分)多项式的次数是 3 ,常数项是﹣.【分析】根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式,进而得出答案.解:多项式的次数是3,常数项是﹣.故答案为:3,﹣.【点评】此题主要考查了多项式的次数与常数项,根据定义直接判断得出是解题关键.16.(2分)3x m+4y与x3y是同类项,则m=﹣1 .【分析】根据同类项的概念求解.解:∵3x m+4y与x3y是同类项,∴m+4=3,∴m=﹣1.故答案为:﹣1.【点评】本题考查了同类项的概念:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.17.元旦期间,明视眼镜店开展优惠学生配镜的活动,某款式眼镜的广告如图,请你为广告牌补上原价.【分析】设广告牌上的原价是x元,根据原价的8折=现价160元,列出方程,再求解即可.解:设广告牌上的原价是x元,根据题意得:0.8x=160,解得:x=200.答:广告牌上的原价是200元.【点评】此题考查了一元一次方程的应用,关键是读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.(2分)数轴上,到原点的距离小于2的所有点表示的正整数是 1【分析】根据正整数的概念和有理数的大小比较解答即可.解:数轴上,到原点的距离小于2的所有点表示的正整数是1,故答案为:1【点评】此题考查有理数的大小比较,关键是根据正整数的概念和有理数的大小比较解答.19.(2分)若(a﹣1)2+|b+5|=0,那么5a+b=0 .【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.解:∵(a﹣1)2+|b+5|=0,∴a﹣1=0,b+5=0,解得:a=1,b=﹣5,故5a+b=0.故答案为:0.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.三、计算题(要求写出必要的解题过程和步骤)20.(30分)计算下面各题①﹣40﹣28﹣(﹣19)+(﹣24)②(﹣1)×(﹣10)÷|﹣0.7|③﹣32﹣4×(﹣3)+15÷(﹣3)④3x2﹣[7x﹣(4x﹣3)﹣2x2]⑤5(a2b﹣3ab2)﹣2(a2b﹣7ab2)【分析】①将减法转化为加法,再根据法则计算可得;②将除法转化为乘法,再计算乘法即可得;③根据有理数的混合运算顺序和运算法则计算可得;④先去括号,再合并同类项即可得;⑤先去括号,再合并同类项即可得.解:①原式=﹣40﹣28+19﹣24=﹣40﹣28﹣24+19=﹣92+19=﹣73;②原式=﹣×(﹣10)×=20;③原式=﹣9+12+(﹣5)=3+(﹣5)=﹣2;④原式=3x2﹣7x+(4x﹣3)+2x2=3x2﹣7x+4x﹣3+2x2=5x2﹣3x﹣3;⑤原式=5a2b﹣15ab2﹣2a2b+14ab2=3a2b﹣ab2.【点评】本题主要考查整式和有理数的混合运算,解题的关键是掌握有理数的混合运算与整式的加减运算顺序和运算法则.四、解答题(本大题共3题,每小题6分,共18分)21.(6分)先化简再求值:(b+3a)+2(3﹣5a)﹣(6﹣2b),其中:a=﹣1,b =2.【分析】先算乘法,再合并同类项,最后代入求出即可.解:(b+3a)+2(3﹣5a)﹣(6﹣2b)=b+3a+6﹣10a﹣6+2b=3a﹣10a+b+2b+6﹣6=﹣7a+3b,当a=﹣1,b=2时,原式=﹣7×(﹣1)+3×2=7+6=13.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.22.(6分)已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【分析】由相反数及倒数的性质可求得a+b及cd,由绝对值的定义可求得x的值,代入计算即可.解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.【点评】本题主要考查有理数的混合运算以及代数式求值,掌握互为相反数的两数的和为0、互为倒数的两数积为1是解题的关键.23.(6分)有理数a,b,c在数轴上的位置如图所示,化简:|b﹣a|﹣|c﹣b|+|a+b|.【分析】根据数轴可以判断a、b、c的正负情况,从而可以将绝对值去掉,然后合并同类项即可解答本题.解:由数轴可知:c<b<0<a,|a|>|b|,∴b﹣a<0,c﹣b<0,a+b>0,∴原式=﹣(b﹣a)+(c﹣b)+(a+b)=﹣b+a+c﹣b+a+b=2a﹣b+c.【点评】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,利用数轴和绝对值的知识解答.五、应用题(本大题每小题9分,共18分)24.(9分)小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,﹣3,+7,﹣3,+11,﹣4,﹣3,+11,+6,﹣7,+9①李师傅这天最后到达目的地时,在下午出车点的什么位置?②若李师傅的车平均行驶每千米耗油a升,则这天下午李师傅用了多少升油?【分析】①把题中的11个数相加,然后利用和的正负可判断李师傅的车在下午出车点的东边或西边,利用和的绝对值判断他离下午出车点的距离;②把题中的11个数的绝对值相加得到李师傅的车行驶的距离,从而得到用油的多少.解:①14﹣3+7﹣3+11﹣4﹣3+11+6﹣7+9=14+11+11+6+9﹣3﹣3﹣4﹣3+7﹣7=38(千米),答:李师傅这天最后到达目的地时,在下午出车点的东边38千米;(2)14+3+7+3+11+4+3+11+6+7+9=78(千米),78×a=78a(升).答:这天下午李师傅用了78a升油.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了正、负数的意义.25.(9分)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):(1)产量最多的一天是星期六,产量最少一天的是星期五;(2)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?【分析】根据正负数的意义即可求出答案.解:(1)由表格可知:产量最多是星期六产量最少是星期五(2)由题意可知:5+(﹣2)+(﹣4)+13+(﹣10)+(+16)+(﹣9)=9这个一周的生产量为:200×7+9=1409所以本周工资为:1409×60+9×15=84675答:该厂工人这一周的工资总额是84675元故答案为:(1)六;五【点评】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.人教版七年级(上)期中模拟数学试卷【答案】一、选择题(共10题;共10分)1.下列各数中最小的是()A.-2018B.C.D.20182.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数。

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 下列数中,最小的数是()。

A. 1B. 0C. 1D. 22. 如果 a > b,那么 a b 的结果一定()。

A. 大于0B. 小于0C. 等于0D. 无法确定3. 下列式子中,不是同类项的是()。

A. 3xB. 4x^2C. 5xD. 6x^24. 已知 a = 3,b = 2,那么 a + b 的结果是()。

A. 1B. 1C. 5D. 55. 下列数中,是有理数的是()。

A. √2B. √3C. πD. 1/2二、判断题:每题1分,共5分1. 任何两个有理数的和一定是有理数。

()2. 任何两个整数的积一定是整数。

()3. 0 是最小的自然数。

()4. 任何数乘以0都等于0。

()5. 1 是最小的正整数。

()三、填空题:每题1分,共5分1. 如果 a = 5,那么 3a 7 的值是______。

2. 已知 |x 3| = 4,那么 x 的值是______或______。

3. 两个数的和是 15,它们的差是 5,那么这两个数分别是______和______。

4. 如果 a = 2,b = 3,那么 a 2b 的值是______。

5. 下列式子中,同类项是______和______。

四、简答题:每题2分,共10分1. 解释有理数的概念。

2. 举例说明同类项的概念。

3. 解释绝对值的概念。

4. 解释相反数的概念。

5. 解释整除的概念。

五、应用题:每题2分,共10分1. 如果一个数加上8后等于15,那么这个数是多少?2. 如果一个数乘以3后等于18,那么这个数是多少?3. 如果 |x 5| = 7,那么 x 的值是多少?4. 如果 a = 4,b = 2,那么 a + 3b 的值是多少?5. 如果 a = 3,b = 4,那么 a^2 + b^2 的值是多少?六、分析题:每题5分,共10分1. 已知 |x 2| = 3,求 x 的值,并解释解题过程。

七年级上册《数学》期中测试卷(含答案)

七年级上册《数学》期中测试卷(含答案)

七年级上册《数学》期中测试卷(时间:120分钟,满分:120分)一、选择题(本大题共12小题,每小题3分,共36分.下列各题给出的四个选项中,只有一项符合题意)1.下列各题计算正确的个数是( )①(-24)÷(-8)=-3;②(+32)÷(-8)=-4;③(-45)÷(-45)=1; ④(-334)÷(-1.25)=-3. A.1B.2C.3D.4 2.(2020·江苏南通中考)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( )A.6.8×104B.6.8×105C.0.68×105D.0.68×106 3.下列各对单项式是同类项的是( ) A.-12x 3y 2与3x 3y 2B.-x 与yC.3与3aD.3ab 2与a 2b4.如图,四个有理数m,n,p,q 在数轴上对应的点分别为M,N,P,Q.若n+q=0,则m,n,p,q 四个有理数中,绝对值最大的一个是( )A.pB.qC.mD.n5.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m-n等于()A.2B.3C.4D.无法确定6.下列各式计算正确的是()A.6a+a=6a2B.-2a+5b=3abC.4m2n-2mn2=2mnD.3ab2-5b2a=-2ab27.某市出租车收费标准(燃油费计入起步价中)调整为:起步价7元(不超过3km收费7元),3km后每千米1.4元(不足1km按1km算).小明坐车x(x>3)km,应付车费()A.6元B.6x元C.(1.4x+2.8)元D.1.4x元,0,-(-3),-|-2|,-(-42),其中属于非负整数的个数为8.下列各数:0.01,10,-6.67,-13()A.1B.2C.3D.49.若一个多项式加上3x2y-3xy2得x3+3x2y,则这个多项式是()A.x3+3xy2B.x3-3xy2C.x3-6x2y+3xy2D.x3-6x2y-3x2y10.设a=-2×32,b=(-2×3)2,c=-(2×3)2,则a,b,c的大小关系是()A.a<c<bB.a<b<cC.c<a<bD.c<b<a11.已知a+b=12,则代数式2a+2b-3的值是( )A.2B.-2C.-4D.-31212.如果一段钢材增加12后是6m,那么这段钢材减少30%后是( )m.A.4B.3.5C.3D.2.8二、填空题(本大题共5小题,每小题4分,共20分)13.若a,b 互为倒数,c,d 互为相反数,且e 是绝对值最小的有理数,则整式-(ab)2+2(c+d)-e 3的值为 .14.在式子xy 2,3x ,a+32,3,m,xy 2+1中,单项式有 个.15.多项式x 3y+2xy 2-y 5-12x 3是 次多项式,它的最高次项是 .16.若有理数a,b 满足|a+3|+(b-2)2=0,则a b 的值为 .17.对于有理数a,b,定义运算“*”:a*b={a 2-ab,a ≥b,a-b,a <b.例如:因为4>2,所以4*2=42-4×2=8,则(-3)*(-2)= .三、解答题(本大题共6小题,共64分)18.(每小题4分,共24分)计算:(1)-4÷23−(-23)×(-30);(2)-20+(-14)-(-18)-13;(3)-22+|5-8|+24÷(-3)×13;(4)(114-56+12)×(-12);(5)-5m2n+4mn2-2mn+6m2n+3mn;(6)2(2a-3b)-3(2b-3a).19.(8分)先化简,再求值:(1)2x+7+3x-2,其中x=2;(2)3x2y-[2xy-2(xy-32x2y+2xy)],其中x=-1,y=2.20.(8分)下表记录的是今年长江某水文站检测的某一周内的水位变化情况,这一周的上周周末的水位已达到警戒水位33m.注:正数表示水位比前一天上升,负数表示水位比前一天下降.(1)本周该水文站哪一天的水位最高?位于警戒水位之上还是之下?(2)与上周周末相比,本周周末该水文站的水位是上升了还是下降了?上升了或下降了多少米?21.(8分)某移动通信公司开设了两种通信业务:①全球通用户先交50元月租费,然后每通话1分钟付费0.4元(市内通话);②快捷通用户不交月租费,每通话1分钟,付话费0.6元(市内通话).按一个月通话x分钟计算,两种方式的话费分别为P,Q元.(1)请你分别写出P,Q与x之间的关系;(2)若某用户一个月内通话时间为120分钟,你认为选择哪种移动通信业务较合适?(3)当用户一个月内通话时间为多少分钟时采用两种通信业务所需话费相同?22.(8分)某汽车行驶时油箱中剩余油量Q(单位:kg)与行驶时间t(单位:h)的关系如下表:(1)写出用时间t时,求剩余油量Q的值.(2)当t=212(3)根据所列式子回答,汽车行驶之前油箱中有多少千克汽油?(4)油箱中原有汽油可供汽车行驶多少小时?23.(8分)我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≠0时,n!=n·(n-1)·(n-2)·…·2·1;当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!;(2)0!;2!(3)(3+2)!-4!;(4)用具体数试验一下,看看等式(m+n)!=m!+n!是否恒成立.七年级上册《数学》期中测试卷答案一、选择题1.B;2.A;3.A;根据所含字母相同且相同字母的指数也相同的项是同类项进行判断.4.A;因为n+q=0,所以n,q两数互为相反数,所以N,Q两点的中点位置即为原点.又M,N,P,Q四个点中,点P到原点的距离最远,所以有理数p的绝对值最大.5.B;设空白处图形的面积为x,则m=9-x,n=6-x,故m-n=9-6=3.6.D;7.C;小明坐车x(x>3)km,应付车费=起步价7元+超过3km的收费=7+1.4(x-3)=(1.4x+2.8)元.8.D因为非负整数即为正整数和0,所以10,0,-(-3)=3,-(-42)=16属于非负整数.9.A;这个多项式为(x3+3x2y)-(3x2y-3xy2)=x3+3x2y-3x2y+3xy2=x3+3xy2.10.C;a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36.因为-36<-18<36,所以c<a<b.11.B;12.D。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

初一上册数学期中试题及答案【四篇】

初一上册数学期中试题及答案【四篇】

【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。

【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。

七年级上期中数学试卷(含答案)

七年级上期中数学试卷(含答案)

七年级上期中数学试卷(含答案)数学学校:__________姓名:__________班级:__________考号:__________题号一二三总分得分一、选择题(共12题,总计0分)1.如图,从A 到B 有①、②、③三条路可以走,每条路长分别为l 、m 、n ,则l 、m 、n 的大小关系是()A .l n m>>B .l m n=>C .m n l>>D .l m n>>2.如图,直线AB 、CD 相交于点0,EO ⊥AB 于点0,则图中∠1与∠2的关系是()A .相等B .互余C .互补D .没有关系3.如图,由A 测B 的方向是()A .南偏东25°B .北偏西25°C .南偏东65°D .北偏西65°4.如果一个角等于它的余角的2倍,那么这个角是它补角的()A .2倍B .12C .5倍D .155.如图,在斜板上放一个长方体木块,那么这个木块的棱CD ()A .与地面水平线OB 平行B .与地面水平线OB 垂直C .与斜板的一边OA 平行D .与斜板的一边OA 垂直6.下列等式中,正确的是()A .2325a a a +=B .321a a -=C .325a a a --=D .32a a a-+=-7.下列各选项中,两个单项式不是同类项的是()A .23x y 和213yx -B .1与-2C .2m n 和22310nm ⨯D .213a b 与213b a8.一个五次多项式,它的任何一项的次数()A .都小于5B .都等于5C .都不大于5D .都不小于59.甲数为2x -1,乙数为2-3x ,则乙数的2倍比甲数大()A .5-8xB .8x -5C .5-4xD .3-8x10.把12-与6作和、差、积、商、幂的运算,结果中为正数的有()A .4个B .3个C .2个D .1个11.下列近似数中,含有3个有效数字的是()A .5.430B .65.43010⨯C .0.5430D .5.43万12.如果一个数的平方与这个数的差等于0,那么这个数只能是()A .0B .-1C .1D .0或1二、填空题(共6题,总计0分)13.网①是一个三角形.分别连结这个三角形三边的中点得到图乙;再分别连结图②中间的小三角形三边的中点,得到图③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题:(1)将下表填写完整:图形编号12345…三角形个数159(2)在第n 个图形中有个三角形(用含n 的式子表示).14.早上8:15分.钟面上的时针与分针所夹的角的度数是.15.如图.点P 是直线l 外一点.过点P 画直线PA 、PB 、PC 、……交l 于点A 、B 、C 、……,请你用量角器量∠1、∠2、∠3的度数,并量PA 、PB 、Pc 的长度.你发现的规律是.16.下表记录的是中国、美国、印度、澳大利亚四个国家l996年的人口自然增长率.国别中国美国印度澳大利亚人口自然增长率(‰)10.4 6.018.6 6.7从统计图中获得人口自然增长率最高的国家是,最低的是.17.某班全体同学在“献爱心”活动中都捐了图书,捐书的情况如下表:每人捐的册数5101520相应的捐书的人数172242根据表格回答下列问题:(1)该班共有人;(2)全班共捐了册图书.18.若x ,y 互为倒数,则20083()xy -=.三、解答题(共3题,总计0分)19.请根据下列数据制作统计表:我国l980年人口总数为98705万人,1985年为l05851万人,1990年为ll4333万人,1995年为121121万人,1999年为l25909万人.20.在-2.2,-2.02,-2.002,-2.0202,-2.00202五个数中,若最大的数除以最小的数的商为x ,求59[1()|10x ÷-的值,并用科学记数法表示出它的结果.21.计算:(1)231221110.75(1)(1)()223-÷-+-⨯-;(2)[(-3)2-(-5)2]÷(-2).【参考答案】七年级上期中数学试卷(含答案)数学学校:__________姓名:__________班级:__________考号:__________题号一二三总分得分一、选择题(共12题,总计0分)1.B2.B3.C4.B5.D6.D7.D8.C9.A10.C11.D12.D二、填空题(共6题,总计0分)13.(1)13,17(2)4n-314.157.5°15.角度越大,线段长度越小16.印度;美国17.(1)45(2)40518.-3三、解答题(共3题,总计0分)19.略20.这一列数中最大的数是-2.002,最小的数是-2.2,它们的商是 2.002912.2100x -==-,∴555510991901[1([1((1)10011010100100100x ÷-=÷-=÷==⨯21.(1)736(2)8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

—1—
第一学期期中考试七年级数学试卷
第Ⅰ卷(选择题,共
30分)
一、选择题(每题3分,共30分)
1.气温由-1 C ︒上升2 C ︒后是( )
A. -1 C ︒
B. 1 C ︒
C. 2C ︒
D. 3C ︒ 2.下列各组数中,互为相反数的是( ) A .2与
12
B .(-1)2与1
C .-1与(-1)2
D .2与│-2│ 3.下列各组式子中,是同类项的是( )
A.2
2
ab a b 与 B.2
2a a 与 C. 22a b 与 D.2
2
3a b a b 与
4.据科学家推测,地球的年龄大约是4600 000 000年,这个数用科学计数法表示为( )
A 、4.6×108
B 、46×108
C 、4.6×109
D 、0.46×1010
5. 小明身上带着a元去商店里买学习用品,付给服务员b元,找回c元,小明身上还有( ) A. (a-b+c)元 B.(a+c)元 C.c元 D.(a-b)元.
6.下面计算正确的是( )
A.()2
222--=; B.()2
2
363⎛⎫--= ⎪⎝⎭
; C.()44
33-=-; D.()()22
0.1=-0.1 7.若a a =-,则a 的取值范围是( )
A. 0a ≤
B.0a ≥
C.0a
D.0a 8.观察右图给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为( ).
A .3n -2
B .3n -1
C .4n +1
D .4n -3
9.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若将一根长度为24厘米的木棍放在这个数轴上,则木棍能盖住的整点的个数是( )
A. 22或23
B. 23或24
C.24或25
D.25或26 10.令1220141
2
2014
x x x m x x x =
+
++
,则m 共有a 个不同的值,在这些不同的值中,最大的值为b,最小的值为
c ,则a+b-c=( )
A. 6044
B. 6043
C. 6042
D. 6041
第Ⅱ卷(非选择题 共90分)
—2—
二、填空题(共6小题,每小题3分,共18分)
11.—9、6、—3三个数的和为 .
12. 若24n m -=,则2014+2m n -= .
13.若关于x 的多项式2
2x x x -+-3
(a-4)是二次三项式,则a = . 14. 如果规定符号“﹡”的意义是[],234=ab
a b a b
*=
**+则(-)(-) . 15.某同学做一道题,已知两个多项式A 、B ,求A-2B 的值。

他误将A-2B 看成2A-B ,经过正确计算求得结果为2335,x x -+已知2
1,B x x =--则正确答案是 . 16.若326x x -=-,则x= .
三、解答题:(共9小题,共72分)
17.计算(本题满分6分) (1)23(58)(5)-++-- (2) 2
3
18(3)(1)2
9
--⨯
18.化简(本题满分6分) (1) (22)(3+5)m m m ---+ (2)22
643)(241)x y x y ----+(
19.(本题满分6分) 先化简,再求值:22
1
43(1)32011,2014,2xy x x xy x y ⎡⎤--+-+==⎣⎦其中
20.(本题满分7分) 某昆虫从点M 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的
—3—
路程记为负,爬过的路程依次为(单位:厘米):
+4 ,-2,+9 ,-8, -5,+12,-10 问:(1)小虫是否回到点M ?说明理由。

(2)小虫离开出发点M 最远是 厘米?(直接写答案)
(3)在爬行过程中,如果每爬行1厘米奖励2粒芝麻,则小虫共可得到多少粒芝麻?
21.(本题满分7分)一个正整数数表如下(表中下一行中数的个数比上一行中数的个数多一个,符号正负相间):(参考公式:1+2+3+(n n(n+1)
…n=
为自然数)
2
) (1)第6行中的最后一个数为
(2)第20行的所有数的和为
(3)第4m(m 为自然数)行中的最后一个数为
22.(本题满分10分) 一种商品售价1.2元/件,如果买100件以上,超过100件部分的售价为1元/件. (1) 若买100件花_________元,买140件花___________元;
(2)若小明买了这种商品花了n 元,请用分类讨论的思想解决下列问题: ① 小明买了这种商品m 件,试用含有n 的式子表示m
② 如果小明买这种商品的件数恰好是0.9n 件,求n 的值.
23.(本题满分8分)
第1行 1 第2行 -2 3 第3行 -4 5 -6 …
—4—
已知实数b a 、与c 的大小关系如图所示:化简33(2)2a b c a b c -+---.
24.(本题满分10分) 如图,是一个长方形娱乐场所,其宽是4a 米,长是6a 米,现要求这个娱乐场拥有一半以上的绿地.
小明提供了如图所示的设计方案,其中半圆形休息区和长方形游泳区以外的地方都是绿地,并且半圆形休息区的直径和长方形游泳区的宽都是2a 米,游泳区的长3a 米.
(1)长方形娱乐场所的面积为 平方米 ,休息区的面积为 平方米.(用含有a 的式子表示。

提示:2
2
2
,236,4624.a a a a a a a a a ⨯=⨯=⨯=)
(2)请你判断他的设计方案是否符合要求?并说明理由. (3)若长方形娱乐场所的宽为 80米,绿化草地每平方米
需要费用20元,求小明设计方案中绿化草地的费用(π取3).
25.(本题满分12分)
已知:数轴上A 、B 两点表示的有理数为a 、b ,且21)20a b -++=(. (1)求a 、b 的值;
(2)点C 在数轴上表示的数是c ,且与A 、B 两点的距离和为9,求值:221(3)3()3
a bc a
b b +--- (3)蚂蚁甲以2个单位长度/秒的速度从点B 出发向其左边30个单位长度处的食物M 爬去,10秒后位于点A 的蚂蚁乙收到它的信号,以3个单位长度/秒的速度也迅速爬向食物,蚂蚁甲到达M 后用了2秒时间背上食物,立即返回,速度降为1个单位长度/秒,与蚂蚁乙在数轴上D 点相遇,则点D 表示的有理数是 .从出发到此时,蚂蚁甲共用去时间为 .
2a
4a
—5—
2014-2015学年上学期七年级期中考试参考答案
题号 1 2 3 4 5 6 7 8 9 10 答案
B
C
D
C
A
D
A
D
C
B
11. -6 12. 2010 13. 4 14. 127
- 15. 4. 16. 5.或9
17、(1)40 (一二项求和1分,-(-5)变号1分,结果1分) (2)6 两个化简各1分,结果1分。

18、(1)7 (两个去括号各1分,结果1分) (2)2
44x -(去括号1分,结果2分)
19、化简得:242014xy x -+,代值计算得2014.(去小括号1分,去中括号1分,化简正确2分,代值计算2分)。

20、(1)回到点M,因为7个数的和为0(各1分);(2)12 (2分);(3)100(列出绝对值的和1分,求出和1分,得到芝麻数1分)
21、(1)21( 2分) (2)-10(3分) (3)-4m(4m+1)( 2分) 22、-9a+3b+c (说明c >b >a 2分,去掉每个绝对值2分,化简2分) 23. (1)120 (1分) 160(2分)
(2)①;120,20n m n ≤=- 5n 若n 120,则m=若则6
(各2分)
②n=200(说明120n ≤不可能1分,其他2分)
24、(1)224a (1分) 212
a π(2分)
(2)符合(1分),休息区和游泳区总面积为221+6a 2
a π,小于总面积的一半(1分),所以绿地面积
超过总面积的一半。

(1分)
(3)132000元。

绿地面积为222124a (+6a )2
a π-,(1分)π取3时绿地面积为2332
a (1分)a=20(1分),
代值计算(1分)
25、(1)a=1,b=-2;(2分)
(2)c=-5或4(1个1分),当c=-5时,值为8;当c=4时,值为-10(每个2分,也可以先化简) (3)-29,20(每空2分)。

相关文档
最新文档