高中数学第三章指数函数和对数函数3.5对数函数问题导学案北师大版必修14
高中数学北师大版一学案:第三章 6 指数函数、幂函数、对数函数增长的比较
学习目标 1.了解三种函数的增长特征。
2.初步认识“直线上升”“指数爆炸”和“对数增长”.3.尝试函数模型的简单应用.知识点一同类函数增长特点思考同样是增函数,当x从2变到3,y=2x到y=10x的纵坐标增加了多少?梳理当a〉1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.当x〉0,n>1时,幂函数y=x n是增函数,并且当x〉1时,n越大其函数值的增长就越快.知识点二指数函数、幂函数、对数函数的增长差异思考当x从1变到10,函数y=2x,y=x2和y=lg x的纵坐标增长了多少?梳理一般地,在区间(0,+∞)上,尽管指数函数y=a x(a>1)、幂函数y=x n(n〉0)与对数函数y=log a x(a〉1)都是增函数,但它们的增长速度不同,而且不在同一个档次上.随着x的增大,y=a x(a>1)的增长速度越来越快,会远远超过幂函数y=x n(n〉0)的增长速度,而对数函数y=log a x(a>1)的增长速度越来越慢,因此总会存在一个x0,当x>x0时,就有________________________(a>1,n>0).类型一根据图像判断函数的增长速度例1函数f(x)=2x和g(x)=x3的图像如图所示.设两函数的图像交于点A(x1,y1),B(x2,y2),且x1〈x2。
(1)请指出图中曲线C1,C2分别对应的函数;(2)结合函数图像,判断f(6),g(6),f(2 013),g(2 013)的大小.反思与感悟判断函数的增长速度,一个是从x增加相同量时,函数值的增长量的变化;另一方面,也可从函数图像的变化,图像越陡,增长越快.跟踪训练1函数f(x)=lg x,g(x)=0。
3x-1的图像如图所示.(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)以两图像交点为分界点,对f(x),g(x)的大小进行比较.类型二函数增长模型的应用例2假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0。
高一数学北师大版必修1教学教案第三章5-1对数函数的概念(4)
对数的概念教学设计《对数的概念》本节内容是高中数学中相当重要的一个基础知识点,在此之前,学生已经学习了指数、指数函数的内容,了解了指数运算是已知底数和指数求幂值,而对数是已知底数和幂值求指数的运算,两者是互逆的关系,对数的概念是学习对数函数的入门课,对数函数对于学生来说又是一个全新的函数模型,它是在指数函数的基础上,对函数类型的扩展,是本章的重点内容。
一、设计思路1、指导思想本节内容是高中数学中相当重要的一个基础知识点,为学习对数函数作好准备,起到了承上启下的作用.同时,也对培养学生对立统一,相互联系、相互转化的思想有着很重要的意义。
2、教学目标根据教学大纲的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:(1)知识与技能①理解对数的概念;②掌握对数式与指数式的互化;③理解对数的性质.(2)过程与方法在概念理解的过程中,培养学生分析转化的意识和逆向思维能力.(3)情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、勇于发现的求知精神,激发学生的学习兴趣,让学生感受成果的喜悦.在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的好习惯.(4)现代教学手段:应用多媒体、几何画板等工具来展示对数与指数的关系,使学生对对数的概念有进一步的认识。
3、重难及难点重点:对数的概念;对数式与指数式的相互转化。
难点:对数概念的理解;对数性质的理解。
4、教法和学法:教法:游戏教学法;引导发现法;讲练结合法;借助多媒体课件。
学法:自主学习;合作交流;思考探究。
在新课改的理念下,教师和学生的主体地位已经发生了改变,为了更好地体现以学生为主体的课堂教学。
二、教学准备教学资源上,制作课件,导学案,准备几何画板,三角板,彩色粉笔。
课堂教学中,注重师生之间、生生之间相互作用的过程,强调多边互动,共同掌握知识,充分调动学生的参与的积极性。
三、教学过程(一)游戏引入比一比,看谁算的又对又快:那么 ()25=的值为多少?设计意图:以游戏的形式教学,低起点,让学生在生动活泼的气氛中,不知不觉地体会对数运算与幂运算是互逆的,同时在()25=中遇到了困难,会激发学生的求知欲望。
高中数学第三章指数函数和对数函数5.1对数函数的概念5.2对数函数y=log2x的图像和性质学案北师大版必修1
5.1 对数函数的概念5.2 对数函数y=log2x的图像和性质学习目标 1.理解对数函数的概念以及对数函数与指数函数间的关系(重点);2.了解指数函数与对数函数互为反函数,并会求指数函数或对数函数的反函数(重、难点);3.会画具体函数的图像(重点).预习教材P89-93完成下列问题:知识点一对数函数一般地,我们把函数y=log a x(a>0,a≠1)叫作对数函数,a叫作对数函数的底数,x 是真数,定义域是(0,+∞),值域是R.两类特殊的对数函数常用对数函数:y=lg x,其底数为10.自然对数函数:y=ln x,其底数为无理数e.【预习评价】1.下列函数是对数函数的是( )A.y=ln x B.y=ln(x+1)C.y=log x e D.y=log x x解析由对数函数的定义知y=ln x是对数函数,其余三个均不符合对数函数的特征.答案 A2.函数f(x)=log2(x-1)的定义域是________.解析由题意知x-1>0,即x>1,故定义域为(1,+∞).答案(1,+∞)知识点二反函数指数函数y=a x(a>0,a≠1)是对数函数y=log a x(a>0,a≠1)的反函数;同时对数函数y=log a x(a>0,a≠1)也是指数函数y=a x(a>0,a≠1)的反函数,即同底的指数函数与对数函数互为反函数.【预习评价】1.你能把指数式y=a x(a>0,a≠1)化成对数式吗?在这个对数式中,x是y的函数吗?提示根据对数的定义,得x=log a y(a>0,a≠1).因为y=a x是单调函数,每一个y 都有唯一确定的x与之对应,所以x是y的函数.2.函数y=a x的定义域和值域与y=log a x的定义域和值域有什么关系?提示对数函数y=log a x的定义域是指数函数y=a x的值域,对数函数y=log a x的值域是指数函数y=a x的定义域.知识点三函数y=log2x的图像和性质观察函数y=log2x的图像可得:1.如何理解对数函数的概念?提示反函数应注意以下几点:(1)只有一一映射确定的函数才有反函数.(2)反函数也是函数,是相对而言的.(3)求反函数的步骤可概括为一解、二换、三写.(4)互为反函数的两个函数,它们的图像关于直线y=x对称.2.如何理解指数函数y=2x与对数函数y=log2x的关系?提示(1)如图(2)在(0,+∞)内,指数函数y=2x与对数函数y=log2x均单调递增.题型一对数函数的定义【例1】判断下列函数是否是对数函数?并说明理由.①y=log a x2(a>0,且a≠1);②y=log2x-1;③y=2log8x;④y=log x a(x>0,且x≠1);⑤y=log5x.解因为①中真数是x2,而不是x,所以不是对数函数;因为②中y =log 2x -1常数项为-1,而非0,故不是对数函数;因为③中log 8x 前的系数是2,而不是1,所以不是对数函数;因为④中底数是自变量x ,而非常数a ,所以不是对数函数.⑤为对数函数.规律方法 判断一个函数是否是对数函数的方法(1)看形式:判断一个函数是否是对数函数,关键是看解析式是否符合y =log a x (a >0且a ≠1)这一结构形式.(2)明特征:对数函数的解析式具有三个特征: ①系数为1;②底数为大于0且不等于1的常数; ③对数的真数仅有自变量x .只要有一个特征不具备,则不是对数函数.【训练1】 (1)对数函数y =log (a -3)(7-a )中,实数a 的取值范围是( ) A .(-∞,7) B .(3,7) C .(3,4)∪(4,7)D .(3,+∞)(2)若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,其图像经过点⎝⎛⎭⎪⎫32,23,求f (2).(1)解析 由题意得⎩⎪⎨⎪⎧a -3>0,a -3≠1,7-a >0,解得3<a <7,且a ≠4.答案 C(2)解 设f (x )=log a x ,由题意知f (32)=23,故log a 32=23,所以a 23 =213 ,因此a=2,所以f (2)=log 22=log 2(2)2=2. 题型二 与对数函数有关的函数定义域问题 【例2】 求下列函数定义域. (1)f (x )=lg(x -2)+1x -3; (2)f (x )=log x +1(16-4x ).解 (1)由⎩⎪⎨⎪⎧x -2>0,x -3≠0,得x >2且x ≠3,所以定义域为(2,3)∪(3,+∞).(2)由⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,即⎩⎪⎨⎪⎧4x <16,x >-1,x ≠0,解得-1<x <0或0<x <4. 所以定义域为(-1,0)∪(0,4). 规律方法 求函数定义域的三个步骤(1)列不等式(组):根据函数f (x )有意义列出x 满足的不等式(组). (2)解不等式(组):根据不等式(组)的解法步骤求出x 满足的范围. (3)结论:写出函数的定义域.提醒 (1)通过建立不等关系求定义域时,要注意解集为各不等关系解集的交集. (2)当对数型函数的底数含字母时,在求定义域时要注意分类讨论. 【训练2】 函数y =lg 2x -3的定义域为( )A.⎝ ⎛⎭⎪⎫32,+∞B .⎣⎢⎡⎭⎪⎫32,+∞C .(2,+∞)D .⎝ ⎛⎭⎪⎫23,+∞ 解析 要使函数y =lg 2x -3有意义需2x -3>0,即x >32.答案 A题型三 求反函数【例3】 求下列函数的反函数.(1)y =10x;(2)y =⎝ ⎛⎭⎪⎫45x ;(3)y =log 13x ;(4)y =log 7x .解 (1)指数函数y =10x,它的底数是10,它的反函数是对数函数y =lg x . (2)指数函数y =⎝ ⎛⎭⎪⎫45x,它的底数是45,它的反函数是对数函数y =log 45 x .(3)对数函数y =log 13 x ,它的底数是13,它的反函数是指数函数y =⎝ ⎛⎭⎪⎫13x.(4)对数函数y =log 7x ,它的底数是7,它的反函数是指数函数y =7x. 规律方法 (1)指数函数y =a x与对数函数y =log a x 互为反函数.(2)互为反函数的两个函数的定义域、值域相反,并且反函数是相对而言的. (3)互为反函数的两个函数的图像关于直线y =x 对称.【训练3】 写出下列函数的反函数(用x 表示自变量,y 表示函数).(1)y =2.5x;(2)y =log 16x .解 (1)函数y =2.5x的反函数是y =log 2.5x (x >0).(2)由y =log 16 x 得x =⎝ ⎛⎭⎪⎫16y ,所以函数y =log 16x 的反函数为y =⎝ ⎛⎭⎪⎫16x.【探究1】 根据函数f (x )=log 2x 的图像和性质求解以下问题: (1)若f (a )>f (2),求a 的取值范围; (2)求y =log 2(2x -1)在x ∈[2,14]上的最值. 解 函数y =log 2x 的图像如图.(1)∵y =log 2x 是增函数,若f (a )>f (2),即log 2a >log 22,则a >2. ∴a 的取值范围为(2,+∞). (2)∵2≤x ≤14,∴3≤2x -1≤27, ∴log 23≤log 2(2x -1)≤log 227.∴函数y =log 2(2x -1)在x ∈[2,14]上的最小值为log 23,最大值为log 227. 【探究2】 (1)比较log 245与log 234的大小;(2)若log 2(2-x )>0,求x 的取值范围.解 (1)函数f (x )=log 2x 在(0,+∞)上为增函数, 又∵45>34,∴log 245>log 234.(2)log 2(2-x )>0,即log 2(2-x )>log 21, ∵函数y =log 2x 为增函数, ∴2-x >1,即x <1.∴x 的取值范围为(-∞,1).【探究3】 作出函数y =|log 2(x +1)|+2的图像,并说明其单调性. 解 第一步:作出y =log 2x 的图像[如图(1)所示].第二步:将y =log 2x 的图像沿x 轴向左平移1个单位长度,得y =log 2(x +1)的图像[如图(2)所示].第三步:将y =log 2(x +1)的图像在x 轴下方的部分以x 轴为对称轴翻折到x 轴的上方,得y =|log 2(x +1)|的图像[如图(3)所示].第四步:将y =|log 2(x +1)|的图像沿y 轴方向向上平移2个单位长度,得y =|log 2(x +1)|+2的图像[如图(4)所示].规律方法 1.函数f (x )=log 2x 是最基本的对数函数.它在(0,+∞)上是单调递增的.利用单调性可以解不等式,求函数值域,比较对数值的大小.2.(1)一般地,函数y =f (x ±a )±b (a ,b 均为正数)的图像可由函数y =f (x )的图像变换得到.将y =f (x )的图像向左或向右平移a 个单位长度得到函数y =f (x ±a )的图像,再向上或向下平移b 个单位长度得到函数y =f (x ±a )±b 的图像(记忆口诀:左加右减,上加下减).(2)含有绝对值的函数的图像变换是一种对称变换.一般地,y =f (|x -a |)的图像是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图像与y =f (x )的图像在x 轴上方相同,在x 轴下方关于x 轴对称.(3)y =f (x )的图像与y =f (-x )的图像关于y 轴对称,y =f (x )的图像与y =-f (x )的图像关于x 轴对称.课堂达标1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4]D .[1,4)解析 ⎩⎪⎨⎪⎧x -1>0,4-x ≥0,解得1<x ≤4.答案 A2.函数y =log 2x 在[1,2]上的值域是( ) A .R B .(-∞,1] C .[0,1]D .[0,+∞)解析 ∵1≤x ≤2,∴log 21≤log 2x ≤log 22.即0≤y ≤1.答案 C3.函数y =ln x 的反函数是________. 解析 同底的对数函数与指数函数互为反函数. 答案 y =e x4.方程⎝ ⎛⎭⎪⎫12x-log 2x =0的解的个数是________.解析 在同一坐标系中画出函数y =⎝ ⎛⎭⎪⎫12x与y =log 2x 的图像,如图所示.由图知它们的图像只有一个交点,即方程⎝ ⎛⎭⎪⎫12x =log 2x 仅有一个解,也就是方程⎝ ⎛⎭⎪⎫12x-log 2x =0有一个解.答案 15.求函数y =log 2x +1log 3x -的定义域.解 由题意知,⎩⎪⎨⎪⎧x >0,3x -2>0,log 3x -,∴⎩⎪⎨⎪⎧x >0,x >23,3x -2≠1,故有23<x <1或x >1,∴原函数的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <1,或x >1.课堂小结1.解与对数有关的问题,首先要保证在定义域范围内解题,即真数大于零,底数大于零且不等于1,函数定义域的结果一定要写成集合或区间的形式.2.指数函数y =a x与对数函数y =log a x 互为反函数,它们定义域与值域互反,图像关于直线y =x 对称.3.应注意数形结合思想在解题中的应用.。
高中数学难点解析教案指数函数、对数函数问题
高中数学难点解析教案——指数函数、对数函数问题一、教学目标:1. 理解指数函数、对数函数的定义及其性质。
2. 掌握指数函数、对数函数的图像和应用。
3. 能够解决实际问题中涉及指数函数、对数函数的问题。
二、教学内容:1. 指数函数的定义与性质2. 对数函数的定义与性质3. 指数函数、对数函数的图像4. 指数函数、对数函数在实际问题中的应用5. 常见指数函数、对数函数问题的解法及技巧三、教学重点与难点:1. 教学重点:指数函数、对数函数的定义、性质、图像及其应用。
2. 教学难点:指数函数、对数函数问题的解法及技巧。
四、教学方法:1. 采用讲授法,讲解指数函数、对数函数的定义、性质、图像及其应用。
2. 利用例题,讲解指数函数、对数函数问题的解法及技巧。
3. 开展小组讨论,引导学生主动探究、发现规律。
4. 利用信息技术辅助教学,展示指数函数、对数函数的图像。
五、教学过程:1. 导入:通过复习初中阶段学习的指数函数、对数函数知识,为新课的学习做好铺垫。
2. 讲解:详细讲解指数函数、对数函数的定义、性质、图像及其应用。
3. 例题解析:分析、解答典型例题,讲解解题思路与技巧。
4. 练习与讨论:学生自主完成练习题,小组内讨论解题过程,交流心得。
5. 总结与拓展:对本节课内容进行总结,提出拓展性问题,激发学生课后思考。
6. 课后作业:布置适量作业,巩固所学知识。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评估:1. 课后收集学生的作业,评估学生对指数函数、对数函数知识的掌握程度。
2. 在下一节课开始时,进行课堂测试,测试学生对指数函数、对数函数知识的掌握情况。
3. 观察学生在课堂讨论中的表现,了解学生对指数函数、对数函数问题的理解和应用能力。
七、作业布置:1. 请学生完成课后练习题,包括选择题、填空题和解答题。
2. 请学生准备一篇关于指数函数、对数函数应用的案例分析,下节课分享。
八、课后反思:1. 总结本节课的教学效果,包括学生的参与度、理解程度和作业完成情况。
高中数学第三章指数函数对数函数和幂函数3.2对数函数3.2.3对数函数的概念及基本性质课堂导学案苏教
3.2.3 对数函数的概念及基本性质课堂导学三点剖析一、对数函数的图象和性质【例 1】 利用对数的单调性,比较下列各组数的大小: (1)log π,log e;22(2)log 0.3,log 0.04.1 1 24解析:(1)函数 y=log x 在(0,+∞)上是增函数,而π>e>0,∴ log π>log e.222(2)log 0.04=1log 0.04 1 421 2log1=12log 0.04=log 0.2.1 1 422又因为函数 y=log x 在(0,+∞)上为减函数,12∴log 0.3<log 0.2,即 log 0.3<1 1 1log 0.04.1 2224温馨提示先把不同底数化为相同底数,再利用函数单调性比较大小是比较对数值大小的基本方法. 二、a>1或 0<a<1时,对数函数的不同性质 【例 2】 求函数 y= 1 log (x a )a(a>0且 a ≠1)的定义域.思路分析:先由被开方数是非负数建立不等式,由于不等式中含有字母参数,再根据对数的性 质对字母参数进行分类讨论.解析:由 1-log a (x+a)≥0,得 log a (x+a)≤1.当 a>1时,0<x+a ≤a, ∴-a<x ≤0.当 0<a<1时,x+a ≥a, ∴x ≥0.综上,当 a>1时,函数的定义域为(-a,0). 当 0<a<1时,函数的定义域为[0,+∞).温馨提示对于对数函数问题,底数中含字母参数都必须进行分类讨论.三、对数函数的单调性和单调区间的求法【例3】求函数y=log2(x2-x-6)的单调区间.解析:令u=x2-x-6,则y=log2u.∵y=log2u为u的增函数,∴当u为x的增函数时,y为x的增函数;当u为x的减函数时,y为x的减函数.由x2-x-6>0,得x<-2或x>3.借助于二次函数图象可知:当x∈(-∞,-2)时,u是x的减函数;1当x∈(3,+∞)时,u是x的增函数.所以,原函数的单调减区间是(-∞,-2),单调增区间是(3,+∞).温馨提示(1)研究函数的单调性,首先必须考虑它的定义域;(2)对数函数的单调性,当底数是字母时,必须分底数大于1和底数大于0且小于1这两种情况进行讨论;(3)对于复合函数的单调性,必须考虑u=g(x)与y=f(u)的单调性,从而得出y=f[g(x)]的单调性;(4)判断函数的增减性,或者求函数的单调区间,一般都可借助函数图象求解.各个击破类题演练 1比较下列各组数中两个值的大小.(1)log23.4,log28.5;(2)log a5.1,log a5.9(a>0,a≠1).解析:(1)对数函数y=log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4<log28.5;(2)当a>1时,函数y=log a x在(0,+∞)上是增函数,于是log a5.1<log a5.9;当0<a<1时,函数y=log a x在(0,+∞)上是减函数,于是log a5.1>log a5.9.变式提升 1比较下列两个值的大小:(lgm)1.9,(lgm)2.1(m>1).解析:若1>lgm>0,即1<m<10时,y=(lgm)x在R上是减函数,∴(lgm)1.9>(lgm)2.1.若lgm=1,即m=10时,(lgm)1.9=(lgm)2.1.若lgm>1,即m>10时,y=(lgm)x在R上是增函数,∴(lgm)1.9<(lgm)2.1.类题演练 21x1x已知f(x)=log a求f(x)的定义域;(a>0,且a≠1).11解析:由对数函数定义知xx>0,∴-1<x<1,∴f(x)的定义域为(-1,1).变式提升 212e x, (2006山东高考文,2)设f(x)=log(x231)xx22.则f(f(2))的值为()A.0B.1C.2D.3 解析:∵f(2)=log3(22-1)=log33=1,∴f(f(2))=f(1)=2e1-1=2.故选C.答案:C类题演练 3求函数y=log0.1(2x2-5x-3)的递减区间.解析:先求函数的定义域,由2x2-5x-3=(2x+1)(x-3)>0,得x<- 12,或x>3.令u=2x2-5x-3,y=log0.1u.2由于u=2(x- 54)2-618,可得u=2x2-5x-3(x<-12或x>3)的递增区间为(3,+∞),从而可得y=log0.1(2x2-5x-3)的递减区间为(3,+∞).变式提升 3求函数y=log(3+2x-x2)的单调区间和值域.12解析:由3+2x-x2>0解得函数y=log(3+2x-x2)的定义域是-1<x<3.12设u=3+2x-x2(-1<x<3),当-1<x1<x2≤1时,u1<u2,从而log u1>log u2,即y1>y2,故函数y=1122log(3+2x-x2)在区间(-1,1)上单调递减;同理可得,函数在区间(1,3)上是单调递增.12函数u=3+2x-x2(-1<x<3)的值域是(0,4),故函数y=log(3+2x-x2)的值域是y≥log1122 4,即y≥-2.3。
高中数学:3.5.3对数函数的图像与性质(第一课时) 学案 (北师大1)
普通高中课程标准实验教科书 [北师版] –必修1第三章 指数函数与对数函数 §3。
5对数函数§3.5.3。
对数函数的图像与性质(第一课时)(学案)[学习目标] 1、知识与技能(1)由前面学习指数函数的图像和对数函数2y log x 的图像的基础上,画出一般的对数函数的图像.(2)会利用指数函数对数函数的图像研究对数函数的性质. (3)能够理解指数函数的图像和性质与对数函数的图像与性质之间的关系. 2、 过程与方法(1)掌握指数函数的图像与对数函数的图像之间的关系,会利用它们的对称关系,熟练地进行画图.(2)学会类比研究问题,利用数性结合的思想研究函数的性质.3、情感.态度与价值观通过学习对数函数,了解指数函数与对数函数图像和性质之间的关系.在学习的过程中体会类比、转化、数形结合的方法研究问题.直观明了,增强学习对数函数的积极性和自信心.[学习重点]: 对数函数的图像和性质以及与指数函数图像与性质之间的关系.[学习难点]:对数函数图像与性质与指数函数的图像与性质之间的关系.[课时安排]: 2课时[学习方法]:思考、探究.[学习过程]【新课导入】[互动过程1]复习:1.对数函数2y log x =的图像与性质,以及与指数函数xy 2=的图像与性质之间的关系2.练习:画出下列函数的图像x x 121(1)y 2;(2)y log x;(3)y ();(4)y lg x 3====填表:对数函数a y logx(a 0,a 1)=>≠分别就其底数a 1>和0a 1<<这两种情况的图像和性质:例4.求下列函数的定义域:2a a (1)y log x ;(2)y log (4x)==-练习1:求下列函数的定义域1(1)y lg(x 5);(2)y ln 3x=-=-例5.比较下列各题中两个数的大小:22(1)log 5.3,log 4.7;0.20.2(2)log 7,log 9 3(3)log ,log 3;ππa a (4)log 3.1,log 5.2(a 0,a 1)>≠练习2:比较下列各组数中两个值的大小:(1)4.32log ,5.82log (2)8.13.0log ,7.23.0log(3)1.5log a ,9.5log a(a >0,且a ≠1) 课堂补充练习:1.求下列函数的定义域:(1))1(log 3x y -= (2)x y 3log = (3)x y 311log 7-= (4)xy 2log 1=2.比较大小.4log 5log )3(01.0log 31log )2(log 3log )1(5321.05.05.0和和和π课堂小结:对数函数的图像与性质作业:习题3-5A组3,4,5,6。
高中数学 第三章 指数函数、对数函数和幂函数 3.2 对
第2课时 对数的运算性质1.理解对数的运算性质,能灵活准确地进行对数式的化简与计算;2.了解对数的换底公式,并能将一般对数式转化为自然对数或常用对数,从而进行简单的化简与证明.1.对数的运算法则如果a >0,且a ≠1,M >0,N >0,n ∈R ,那么: 指数的运算法则⇒对数的运算法则 ①a m ·a n =a m +n⇒log a (MN )=log a M +log a N ;②a m a n =a m ·a -n =a m -n ⇒log a MN =log a M -log a N ; ③(a m )n =a mn ⇒log a (N n)=n ·log a N.积的对数变为加,商的对数变为减,幂的乘方取对数,要把指数提到前. 【做一做1-1】计算:(1)log 26-log 23=________;(2)log 53+log 513=__________.答案:(1)1 (2)0【做一做1-2】若2lg(x -2y )=lg x +lg y ,则x y的值是__________. 解析:由等式得(x -2y )2=xy , 从而(x -y )(x -4y )=0, 因为x >2y ,所以x =4y . 答案:4 2.换底公式 (1)log a b =log log c c ba,即有log c a ·log a b =log c b (a >0,a ≠1,c >0,c ≠1,b >0); (2)log b a =1log a b,即有log a b ·log b a =1(a >0,a ≠1,b >0,b ≠1); (3)log m na b =log a nb m(a >0,a ≠1,b >0).换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子. 【做一做2】已知lg N =a ,用a 的代数式表示: (1)log 100N =__________;(2)=__________. 答案:(1)12a (2)2a运用对数的运算性质应注意哪些问题? 剖析:对数的运算性质有三方面,它是我们对一个对数式进行运算、变形的主要依据.要掌握它们需注意如下几点:第一,要会推导,要求对每一条性质都会证明,通过推导加深对对数概念的理解和对对数运算性质的理解,掌握对数运算性质中三个公式的特征,以免乱造公式.例如:log n (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N 等都是错误的.第二,要注意对数运算性质成立的条件,也就是要把握各个字母取值的范围:a >0且a ≠1,M >0,N >0.例如,lg(-2)(-3)是存在的,但lg(-2)、lg(-3)都不存在,因而得不到lg(-2)(-3)=lg(-2)+lg(-3).第三,由于对数的运算性质是三个公式,因此在应用时不仅要掌握公式的“正用”,同时还应掌握公式的“逆用”.题型一 有关对数式的混合运算 【例1】求下列各式的值:(1)log 535+122log 2-log 5150-log 514;(2)lg 52+23lg 8+lg 5·lg 20+lg 22;(3)lg 2+lg 3-lg 10lg 1.8.分析:利用对数运算性质和“lg 2+lg 5=1”解答. 解:(1)log 535+122log 2-log 5150-log 514=log 535×5014+12122log 2=log 553-1=2. (2)lg 52+23lg 8+lg 5·lg 20+lg 22=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+lg 22=2lg 10+(lg 2+lg 5)2=2+1=3.(3)lg 2+lg 3-lg 10lg 1.8=12lg 2+lg 9-lg 10lg 1.8=lg 18102lg 1.8=12. 反思:对数的运算一般有两种方法:一种是将式中真数的积、幂、商、方根运用对数运算法则将它们化为对数的和、差、积、商,然后计算;另一种是将式中的和、差、积、商运用对数运算法则将它们化为真数的积、幂、商、方根,然后化简求值.另外注意利用“lg 2+lg 5=1”来解题.题型二 有关对数式的恒等证明【例2】已知4a 2+9b 2=4ab (a >0),证明lg 2a +3b 4=lg a +lg b 2.分析:运用对数运算性质对所证等式转化为lg 2a +3b4=lg ab ,因此只要利用条件证出真数相等即可.证明:由4a 2+9b 2=4ab ,得⎝ ⎛⎭⎪⎫2a +3b 42=ab , 因为a >0,所以b >0,两边取以10为底的对数,得lg ⎝ ⎛⎭⎪⎫2a +3b 42=lg(ab ), 即2lg 2a +3b 4=lg(ab ),lg 2a +3b 4=12lg(ab ),所以lg 2a +3b 4=12(lg a +lg b ).因此lg 2a +3b 4=lg a +lg b2,所以原等式成立.反思:在由一般等式证明对数式时,要注意使对数有意义,这里在取对数前要说明b >0.题型三 对数换底公式的应用【例3】已知log 23=a,3b=7,则log 1256=__________(用a ,b 表示).解析:方法一:∵log 23=a ,∴2a=3.又3b =7,∴7=(2a )b =2ab.故56=8×7=23+ab.又12=3×4=2a ×4=2a +2, 从而33+22256=(2)=12ab ab a aa ++++.故log 1256=32123log 12=2ab a aba ++++. 方法二:∵log 23=a ,∴log 32=1a. 又3b=7,∴log 37=b .从而log 1256=log 356log 312=log 37+log 38log 33+log 34=log 37+3log 321+2log 32=b +3·1a 1+2·1a=ab +3a +2.方法三:∵log 23=lg 3lg 2=a ,∴lg 3=a lg 2.又3b=7,∴lg 7=b lg 3.∴lg 7=ab lg 2.从而log 1256=lg 56lg 12=3lg 2+lg 72lg 2+lg 3=3lg 2+ab lg 22lg 2+a lg 2=3+ab2+a.答案:3+ab 2+a反思:方法一是借助指数变形来解;方法二与方法三是利用换底公式来解,显得较简明.应用对数换底公式解这类题的关键是适当选取新的底数,从而把已知对数和所求对数都换成新的对数,再代入求值即可.题型四 有关对数的应用题【例4】科学研究表明,宇宙射线在大气中能够产生放射性14C.14C 的衰变极有规律,其精确性可以称为自然界的“标准时钟”,动植物在生长过程中衰变的14C ,可以通过与大气的相互作用而得到补充,所以活着的动植物每克组织中的14C 含量保持不变,死亡后的动植物,停止了与外界环境的相互作用,机体中原有的14C 按确定的规律衰减,我们已经知道其“半衰期”为5 730年.(1)设生物体死亡时,体内每克组织的14C 含量为1,试推算生物死亡t 年后体内每克组织中的14C 含量p ;(2)湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始含量的76.7%,试推算马王堆汉墓的年代.解:(1)设生物体死亡1年后,体内每克组织中14C 的残留量为x .由于死亡机体中原有的14C 按确定的规律衰减,所以生物体的死亡年数t 与其体内每克组织的14C 含量p 有如下关系:由于大约经过5 730年,死亡生物体的14C 含量衰减为原来的一半,所以12=x 5 730.于是x =5 73012=1573012⎛⎫ ⎪⎝⎭. 所以生物死亡t 年后体内每克组织中的14C 含量573012t p ⎛⎫=⎪⎝⎭.(2)由573012t p ⎛⎫=⎪⎝⎭可得125730log t p =.湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始含量的76.7%,即p =0.767. 所以125730log 0.767 2 193t =≈.故马王堆汉墓约是2 193年前的遗址.反思:生物体死亡后,机体中原有的14C 每年按相同的比率衰减,因此,可以根据“半衰期”得到这一比率.已知衰减比率,求若干年后机体内14C 的含量属于指数函数模型;反之,已知衰减比率和若干年后机体内14C 的含量,求衰减的年数应属于对数知识.1设lg a =1.02,则0.010.01的值为__________(用a 表示).解析:设0.010.01=x ,则lg x =lg 0.010.01=0.01lg 0.01=-0.02, ∴lg a +lg x =lg ax =-0.02+1.02=1.∴ax =10,x =10a.答案:10a2若lg 2=a ,lg 3=b ,则lg 0.18等于__________. 解析:lg 0.18=lg 18-2=2lg 3+lg 2-2=a +2b -2. 答案:a +2b -23已知=1-aa,则log 23=__________.解析:由条件得log 23=a 1-a ,所以log 23=2a 1-a.答案:2a1-a4计算:log 2748+log 212-12log 242. 解:原式=log 2⎝⎛⎭⎪⎫743×12×17×6=-12.5设x ,y ,z 为正数,且3x =4y =6z,求证:1z -1x =12y.证明:设3x =4y =6z=k ,且x ,y ,z 为正数, 所以k >1.那么x =log 3k ,y =log 4k ,z =log 6k ,所以1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12log 4k =12y .所以1z -1x =12y.。
高中数学3章指数函数和对数函数3.5.1对数函数的概念3.5.2对数函数y=log2x的图像和性质含解析北师大版必修1
5.1对数函数的概念 5.2对数函数y=log2x的图像和性质课后篇巩固提升1.下列各组函数中,表示同一函数的是()A.y=和y=()2B.|y|=|x|和y3=x3C.y=log a x2和y=2log a xD.y=x和y=log a a x解析:对于A,定义域不同;对于B,对应法则不同;对于C,定义域不同;对于D,y=log a a x⇔y=x.答案:D2.若函数f(x)=a x(a>0,且a≠1)的反函数是g(x),且g=-1,则f-=()A.B.2 C.D.解析:由已知得g(x)=log a x.又g=log a=-1,于是a=4,因此f(x)=4x,故f--.答案:C3.已知函数f(x)=log2x,且f(m)>0,则m的取值范围是()A.(0,+∞)B.(0,1)C.(1,+∞)D.R解析:结合f(x)=log2x的图像(图略)可知,当f(m)>0时,m>1.答案:C4.设f(x)是奇函数,当x>0时,f(x)=log2x,则当x<0时,f(x)=()A.-log2xB.log2(-x)C.log x2D.-log2(-x)解析:设x<0,则-x>0,则f(-x)=log2(-x).∵f(x)是奇函数,∴f(-x)=-f(x).∴当x<0时,f(x)=-log2(-x).答案:D5.已知函数y=log2x,其反函数y=g(x),则g(x-1)的图像是()解析:由题意知g(x)=2x,所以g(x-1)=2x-1,故选C.答案:C6.设a,b,c均为正数,且2a=lo a,=lo b,=log2c,则()A.a<b<cB.c<b<aC.c<a<bD.b<a<c解析:由函数y=2x,y=,y=log2x,y=lo x的图像可得出a<b<c.答案:A7.导学号85104071已知函数f(x)=若f(a)=,则实数a的值为()A.-1B.C.-1或D.1或-解析:当a>0时,log2a=,则a=;当a≤ 时,2a=,即2a=2-1,则a=-1.综上,a=-1或a=.答案:C8.设f(x)是对数函数,且f()=-,那么f()= .解析:设对数函数f(x)=log a x(a>0,a≠1).由条件得log a=-,即log a=-,则a=.因此f(x)=lo x.所以f()=lo=lo -=-.答案:-9.函数f(x)=log2x在区间[a,2a](a>0)上的最大值与最小值之差为. 解析:∵f(x)=log2x在区间[a,2a]上是增加的,∴f(x)max-f(x)min=f(2a)-f(a)=log22a-log2a=1.答案:110.已知函数f(x)=直线y=a与函数f(x)的图像恒有两个不同的交点,则a的取值范围是.解析:如图所示,需使函数f(x)的图像与直线y=a恒有两个不同的交点,则a∈(0,1].答案:(0,1]11.导学号85104072已知函数f(x)=|log2x|.(1)若f(m)=3,求m的值;(2)若a≠b,且f(a)=f(b),求ab的值.解:(1)由f(m)=3,得|log2m|=3,即log2m=3或log2m=-3,解得m=8或m=.(2)∵a≠b,且f(a)=f(b),不妨设a<b,∴|log2a|=|log2b|,则-log2a=log2b,∴log2a+log2b=0,∴log2ab=0,故ab=1.。
高中数学第三章基本初等函数Ⅰ3.2对数与对数函数3.2.2对数函数3.2.3指数函数与对数函数的关系学习导航学案
3.2.2 对数函数-3.2.3 指数函数与对数函数的关系自主整理1.对数函数的定义:函数y=log a x(a>0,且a≠1,x>0)称为对数函数,它的定义域为(0,+∞),值域为R.2.对数函数的图象与性质:4.反函数当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x),反函数也是函数,它具有函数的一切特性.反函数是相对于原函数而言的,函数与它的反函数互为反函数.指数函数y=a x(a>0,且a≠1)和对数函数y=log a x(a>0,且a≠1)互为反函数,它们的定义域与值域相互对换,单调性相同,图象关于直线y=x对称.高手笔记1.解对数不等式的关键是善于把真数视为一个整体,用对数函数的单调性构造不等式,但一定要注意真数大于零这一隐含条件.2.求函数定义域时,常见的限制条件有:分母不为零,开偶次方时被开方数非负,对数的真数大于零,底数大于零且不等于1等.3.考查对数函数与其他函数组成的复合函数时,要注意利用复合函数的单调性法则和函数单调性的定义.考查对数函数的值域问题时,要注意只有当对数的真数取到所有的正数时,对数值才可能取到所有的实数.4.利用对数函数的图象的平移和对称可以认识与对数函数有关的一些函数的图象和性质,这些图象的变换规律与指数函数的有关图象变换规律是类似的.5.作出函数y=log a x 的图象,再将所得图象沿y 轴对称到y 轴左侧,所得两部分组合在一起就是函数y=log a |x|的图象.作出函数y=log a x 的图象,再将所得图象在x 轴下方的部分沿x 轴翻折到x 轴上方,与原x 轴上方的部分一起,就是y=|log a x|的图象. 名师解惑1.比较两个对数的大小,一般可采用哪些方法? 剖析:两数(式)大小的比较主要是找出适当的函数,把要比较的两数作为此函数的函数值,然后利用函数的单调性等来比较两数的大小.一般采用的方法有: (1)直接法:由函数的单调性直接作答;(2)作差法:把两数作差变形,然后判断其大于、等于、小于零来确定;(3)作商法:若两数同号,把两数作商变形,判断其大于、等于、小于1来确定; (4)转化法:把要比较的两数适当地转化成两个新数大小的比较;(5)媒介法:选取适当的“媒介”数,分别与要比较的两数比较大小,从而间接地求得两数的大小.2.对数函数的图象特征和对数函数的性质之间有哪些对应关系? 剖析:对数函数的图象特征和对数函数的性质之间有以下对应关系:(1)图象都位于y 轴右侧,且以y 轴为渐近线→函数定义域为(0,+∞). (2)图象向上、向下无限延展→函数值域为R .(3)图象恒过定点(1,0)→1的对数是零,即log a 1=0.(4)当a >1时,图象由左向右逐渐上升→当a >1时,y=log a x 在(0,+∞)上是增函数; 当0<a <1时,图象由左向右逐渐下降→当0<a <1时,y=log a x 在(0,+∞)上是减函数. (5)当a >1时,在直线x=1的右侧,图象位于x 轴上方;在直线x=1与y 轴之间,图象位于x 轴下方→当a >1时,x >1,则y=log a x >0;0<x <1,则y=log a x <0.当0<a <1时,在直线x =1的右侧,图象位于x 轴下方;在直线x =1与y 轴之间,图象位于x 轴上方→当0<a <1时,x >1,则y=log a x <0;0<x <1,则y=log a x >0. 3.怎样把对数函数与指数函数联系起来研究? 剖析:(1)对数函数的反函数是指数函数,所以要利用指数函数的性质来研究对数函数.应该注意到:这两种函数都要求底数a >0,且a≠1;对数函数的定义域为(0,+∞),结合图象看,对数函数在y 轴左侧没有图象,即负数与0没有对数,也就是真数必须大于0.这些知识可以用来求含有对数函数的定义域.(2)通过将对数函数与指数函数的图象进行对比,可以发现:当a >1,或0<a <1时,对数函数与指数函数的单调性是一致的〔即在区间(0,+∞)上同时为增函数,或者同时为减函数〕.对数函数的图象都经过点(1,0),这与性质log a 0=1是分不开的.(3)既然对数函数y=log a x 与指数函数y=a x互为反函数,那么它们的图象关于直线y =x 对称.于是通过对a 分情况(约定不同的取值范围),再结合函数y=log 2x,y=log 21x 的图象来揭示对数函数的性质,应该是一件水到渠成的事.讲练互动图3-2-2【例题1】图3-2-2是对数函数y=log a x 当底数a 的值分别取3,34,53,101时所对应图象,则相应于C 1,C 2,C 3,C 4的a 的值依次是( ) A.3,34,53,101 B.3,34,101,53 C.34,3,53,101 D.34,3,101,53 解析:因为底数a 大于1时,对数函数的图象自左向右呈上升趋势,且a 越大,图象就越靠近x 轴;底数a 大于0且小于1时,对数函数的图象自左向右呈下降趋势,且a 越小,图象就越靠近x 轴. 答案:A 绿色通道由对数函数的图象间的相对位置关系判断底数a 的相互关系,应根据对数函数图象与底数间的变化规律来处理.在指数函数y=a x中,底数a 越接近1,相应的图象就越接近直线y=1,对数函数与指数函数是一对反函数,其图象是关于直线y=x 对称的,直线y=1关于直线y=x 的对称直线是x=1,所以我们有结论:对数函数y=log a x ,底数a 越接近1,其图象就越接近直线x=1. 变式训练1.若log a 2<log b 2<0,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1 解析:注意到此题两对数值底数不同真数相同,用图象法或用换底公式均可.方法一:由底数与对数函数的图象关系(如图)可知y=log a x,y=log b x 图象的大致走向.再由对数函数的图象规律:从第一象限看,自左向右底数依次增大. 方法二:利用换底公式转化成同底的对数再进行比较. 由已知,得ba 22log 1log 1 <0,则0>log 2a>log 2b,即log 21>log 2a>log 2b.∵y=log 2x 为增函数, ∴0<b<a<1.方法三:取特殊值法.∵log 212=-1,log 412=21, ∴log 212<log 412<0.∴可取a=21,b=41,则0<b<a<1. 答案:B【例题2】比较大小: (1)log 0.27与log 0.29; (2)log 35与log 65;(3)(lgm )1.9与(lgm )2.1(m >1); (4)log 85与lg4.分析:(1)log 0.27和log 0.29可看作是函数y=log 0.2x ,当x=7和x=9时对应的两函数值,由y=log 0.2x 在(0,+∞)上单调递减,得log 0.27>log 0.29. (2)考查函数y=log a x 底数a >1的底数变化规律,函数y=log 3x (x >1)的图象在函数y=log 6x (x >1)的上方,故log 35>log 65.(3)把lgm 看作指数函数的底数,要比较两数的大小,关键是比较底数lgm 与1的关系.若lgm >1即m >10,则(lgm )x 在R 上单调递增,故(lgm )1.9<(lgm )2.1;若0<lgm <1即1<m <10,则(lgm )x 在R 上单调递减,故(lgm )1.9>(lgm )2.1;若lgm=1即m=10,则(lgm )1.9=(lgm )2.1.(4)因为底数8、10均大于1,且10>8, 所以log 85>lg5>lg4,即log 85>lg4. 解:(1)log 0.27>log 0.29. (2)log 35>log 65.(3)当m >10时,(lgm )1.9<(lgm )2.1;当m=10时,(lgm )1.9=(lgm )2.1;当1<m <10时,(lgm )1.9>(lgm )2.1. (4)log 85>lg4.绿色通道本题比较大小代表了几个典型的题型.其中题(1)是直接利用对数函数的单调性;题(2)是对数函数底数变化规律的应用;题(3)是指数函数单调性及对数函数性质的综合运用;题(4)是中间量的运用.当两个对数的底数和真数都不相同时,需要找出中间量来“搭桥”,再利用对数函数的增减性.常用的中间量有0、1、2等可通过估算加以选择. 变式训练2.比较下列各组数中两个值的大小: (1)log 23.4,log 28.5; (2)log 0.31.8;log 0.32.7;(3)log a 5.1,log a 5.9(a>0且a≠1); (4)log 67,log 76.分析:对于底数相同的两个对数值比较大小,可由对数的单调性确定,利用对数函数的增减性比较两个对数的大小.当不能直接进行比较时,可在两个对数中间插入一个已知数(如1或0等),间接比较两个数的大小. 解:(1)考查对数函数y=log 2x ,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log 23.4<log 28.5.(2)考查对数函数y=log 0.3x ,因为它的底数满足0<0.3<1,所以它在(0,+∞)上是减函数,于是log 0.31.8>log 0.32.7.(3)对数函数的增减性决定于对数的底数是大于1还是小于1,而已知条件中并未明确指出底数a 与1哪个大,因此需要对底数a 进行讨论:当a>1时,函数y=log a x 在(0,+∞)上是增函数,于是log a 5.1<log a 5.9; 当0<a<1时,函数y=log a x 在(0,+∞)上是减函数,于是log a 5.1>log a 5.9. (4)∵log 67>log 66=1,log 76<log 77=1, ∴log 67>log 76.【例题3】已知函数y=lg (12+x -x ),求其定义域,并判断其奇偶性、单调性. 分析:注意到12+x +x=xx -+112,即有lg (12+x -x )=-lg (12+x +x ),从而f(-x )=lg (12+x +x )=-lg (12+x -x )=-f (x ),可知其为奇函数.又因为奇函数在关于原点对称的区间上的单调性相同,所以我们只需研究(0,+∞)上的单调性. 解:由题意12+x -x >0,解得x∈R ,即定义域为R .又f (-x )=lg [1)(2+-x -(-x )]=lg (12+x +x )=lg1112-+x=lg (12+x -x )-1=-lg (12+x -x )=-f (x ),∴y=lg(12+x -x )是奇函数. 任取x 1、x 2∈(0,+∞),且x 1<x 2, 则xx x x ++⇒++11121221>22211x x -+,即有121+x -x 1>122+x -x 2>0, ∴lg(121+x -x 1)>lg (122+x -x 2),即f (x 1)>f (x 2)成立.∴f(x )在(0,+∞)上为减函数. 又f (x )是定义在R 上的奇函数, 故f (x )在(-∞,0)上也为减函数.绿色通道研究函数的性质一定得先考虑定义域.在研究函数单调性时,注意奇偶性对函数单调性的影响,即偶函数在关于原点对称的区间上具有相反的单调性,奇函数在关于原点对称的区间上具有相同的单调性. 变式训练3.(2006广东高考,1)函数f(x)=xx -132+lg(3x+1)的定义域是( )A.(31-,+∞) B.(31-,1) C.(31-,31) D.(-∞,31-) 解析:由.131013,01<<-⇒⎩⎨⎧>+>-x x x答案:B【例题4】(1)解不等式:log 3(4-x)>2+log 3x; (2)解方程:2lg 3-x -3lgx+4=0.分析:对于(1),将对数不等式转化为解代数不等式组,对于(2)用换元法将其转化为一元二次方程.解:(1)原不等式可化为log 3(4-x)>log 3(9x),其等价于⎪⎩⎪⎨⎧>>>0,x 0,x -49x,x -4解得0<x<52. ∴原不等式的解集为{x|0<x<52}. (2)设2-3lgx =t,则t≥0. 原方程化为-t 2+t+2=0. 解得t=2,或t=-1(舍去).由2-3lgx =2,得lgx=2.故x=100.经检验x=100是原方程的解.黑色陷阱(1)形如f(log a x)=0,f(log a x)>0的对数方程或不等式,往往令t=log a x 进行换元转化.(2)解对数方程和不等式时要注意防止定义域的扩大,处理办法为:第一,若不是同解变形,最后一定要验根;第二,解的过程中要加以限制条件,使定义域保持不变,即进行同解变形,最后通过解混合不等式组得到原不等式的解. 变式训练4.(2006陕西高考,理4)设函数f(x)=log a (x+b)(a>0,a≠1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b 等于( )A.3B.4C.5D.6 解析:因为函数f(x)的图象经过点(2,1),所以f(2)=1,即log a (2+b )=1,即a=2+b. 又其反函数的图象经过点(2,8),故函数f(x)的图象经过点(8,2),有log a (8+b)=2,即a 2=8+b,解得a=-2,b=-4(舍去),或a=3,b=1,所以a+b=4. 答案:B5.设函数f (x )=x 2-x+b ,且f (log 2a )=b ,log 2[f (a )]=2(a≠1),则f (log 2x )的最小值为_____________.解析:由已知,得⎪⎩⎪⎨⎧=+-=+-,2)(log ,log log 22222b a a b b a a即)2()1(,4,0)1(log log 222⎩⎨⎧=+-=-b a a a a由①得log 2a=1,∴a=2. 代入②得b=2.∴f(x )=x 2-x+2.∴f(log 2x )=log 22x-log 2x+2=(log 2x 21-)2+47.∴当log 2x=21时,f (log 2x )取得最小值47,此时x=2.答案:47。
高中数学 第三章 指数函数和对数函数 3.4 对数学案(含解析)北师大版必修1-北师大版高一必修1数
§4对数知识点一对数的有关概念[填一填](1)一般地,如果a b=N(a>0,且a≠1),那么数b叫作以a为底N的对数,记作log a N=b,其中a叫作对数的底数,N叫作真数.(2)以10为底的对数叫作常用对数,N的常用对数记作lg N.(3)以e为底的对数叫作自然对数,N的自然对数记作ln N.[答一答]1.对数概念的理解?提示:(1)对数是一种数,对数式log a N可看作一记号,表示关于x的方程a x=N(a>0,且a≠1)的解;也可以看作一种运算,即已知底为a(a>0,且a≠1)幂为N,求幂指数的运算,因此,对数式log a N又可看作幂运算的逆运算.(2)对数符号log a N只有在a>0,a≠1,且N>0时才有意义,而对数值b=log a N,可以为任意的实数.知识点二对数的运算性质[填一填]如果a>0,a≠1,M>0,N>0,则(1)log a(MN)=log a M+log a N;(2)log a MN=log a M-log a N;(3)log a M n=n·log a M(n∈R).[答一答]2.如何正确运用对数的运算法则? 提示:(1)运算中常见的错误有: log a (MN )=log a M ·log a N . log a M N =log a M log a N .log a N n =(log a N )n .log a M ±log a N =log a (M ±N ).(2)注意前提条件:a >0,a ≠1,M >0,N >0,尤其是M ,N 都是正数这一条件,否则M ,N 中有一个小于或等于0,就导致log a M 或log a N 无意义,另外还要注意,M >0,N >0与M ·N >0并不等价.(3)要注意运算法则的逆用. 知识点三 换底公式[填一填]log b N =log a N log a b(a 、b >0,a 、b ≠1,N >0).[答一答]3.如何准确的应用换底公式?提示:(1)在使用换底公式时,底数的取值不唯一,应根据实际情况选择. (2)换底公式的意义就在于把对数式的底数改变,把不同底问题转化为同底问题. 如:在化简求值过程中,出现不同底数的对数不能运用运算法则时,可统一化成以同一个实数为底的对数,再根据运算法则进行化简与求值.(3)要注意换底公式的两个重要推论的应用. ①log a b =1log b a ,②log am b n =nmlog a b .1.对数log a N 中规定a >0,a ≠1的原因2.对对数的三点说明(1)对数式是指数式的另一种表现形式,是求指数式中幂指数的一种运算方式,因此指数式和对数式之间可以互相转化,即a b =N ⇔b =log a N .(2)对数通过符号log a N 表达,log a N 是一个整体,不是表示log a 和N 的乘积,字母a 和N 都有相应的意义和范围要求.(3)对数表示的是一个可正、可负也可为零的实数.类型一 对数式与指数式的互化【例1】 将下列指数式化为对数式,对数式化为指数式: (1)3-2=19; (2)⎝⎛⎭⎫14-2=16;【解】 (1)log 319=-2.规律方法 指数运算与对数运算是一对互逆运算,在对数式log a N =x 与指数式a x =N (a >0,且a ≠1)的互化过程中,要特别注意a ,x ,N 的对应位置.将下列对数式化成指数式或将指数式化成对数式. (1)54=625; (2);(3)3a =27; (4)log 101 000=3. 解:(1)∵54=625,∴log 5625=4.(2)∵,∴⎝⎛⎭⎫12-3=8.(3)∵3a =27,∴log 327=a . (4)∵log 101 000=3,∴103=1 000. 类型二 利用对数的运算法则进行计算【例2】 计算:(1)log 535-2log 573+log 57-log 51.8;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)(lg5)2+lg2·lg50.【思路探究】 (1)对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算;(2)对于含有对数式的多项式运算问题:①可以将式中真数的积、商、幂、方根运用运算性质化为对数的和、差、积,然后化简求值;②可以将式中的对数的和、差、积化为真数的积、商、幂、方根,然后化简求值.【解】 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2=lg2(lg2+lg5)+1-lg 2=lg2+1-lg2=1.(3)原式=(lg5)2+lg2·(lg2+2lg5)=(lg5)2+2lg5·lg2+(lg2)2=1.规律方法(1)在应用对数运算性质时应注意保证每个对数式都有意义,应避免出现lg(-5)2=2lg(-5)等形式的错误,同时应注意对数性质的逆用在解题中的应用.譬如在常用对数中,lg2=1-lg5,lg5=1-lg2的运用.(2)对于底数相同的对数式的化简,常用的方法是:①“收”,将同底的两对数的和(差)收成积(商)的对数;②“拆”,将积(商)的对数拆成对数的和(差).(3)对数的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.解:类型三换底公式的应用【例3】已知log189=a,18b=5,求log3645的值.(用含a,b的式子表示)【思路探究】(1)利用换底公式可以把题目中不同底数的对数化成同底数的对数,应用对数性质进行计算;(2)题目中有指数式和对数式时,要注意指数式与对数式的互化.【解】 解法1:因为18b =5,所以log 185=b , 所以log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a .解法2:因为log 189=a ,所以18a =9.又因为18b =5, 所以45=5×9=18b ·18a =18a +b .令log 3645=x , 则36x =45=18a +b ,即36x =(183×183)x =18a +b ,所以(1829)x =18a +b,所以x log 181829=a +b ,所以x =a +b log 18182-log 189=a +b 2-a. 规律方法 用已知对数表示未知对数,就是把表示的对数的真数分解成已知对数的真数的积、商、幂的形式,然后用对数的运算性质,但应注意运用性质只有在同底的情况下才能运算.(1)log 916·log 881的值为( C ) A .18 B.118 C.83D.38解析:原式=log 3224·log 2334=2log 32·43log 23=83.解析:=lg2lg3+lg5lg3=1lg3=log 310. (3)计算:(log 32+log 92)·(log 43+log 83). 解:(log 32+log 92)·(log 43+log 83) =⎝⎛⎭⎫log 32+log 32log 39·⎝⎛⎭⎫log 23log 24+log 23log 28=⎝⎛⎭⎫log 32+12log 32·⎝⎛⎭⎫12log 23+13log 23 =32log 32×56log 23=54. 类型四 对数方程的解法 【例4】 解下列方程: (1)log 2(x +1)-log 4(x +4)=1; (2)3lg x -2-3lg x +4=0;【思路探究】 根据对数方程的特点,将对数方程化为一般代数方程并求解. 【解】 (1)由原方程得log 2(x +1)=log 4(x +4)+1, ∴log 2(x +1)2=log 2[4(x +4)],∴(x +1)2=4(x +4),解得x =5或x =-3, 经检验x =-3为增根,应舍去. 故原方程的解为x =5. (2)设3lg x -2=y ,则原方程可化为y -y 2+2=0,解得y =-1或y =2. ∵3lg x -2≥0,因此,y =-1为增根,应舍去. 由3lg x -2=2,得lg x =2,∴x =100.经检验,x =100为原方程的解.(3)等式两边取常用对数得[(lg x )3-2lg x ]lg x =lg0.1,(lg x )4-2(lg x )2+1=0,∴[(lg x )2-1]2=0,(lg x )2=1,lg x =±1, ∴x =10或x =110.规律方法 解对数方程就是将其转化成同底的对数式,或利用换元法将其转化成一元二次方程求解,在转化或化归的过程中,不是同解变形的,必须把所求的解代入原方程进行检验.对数方程的题型与解法: 名称 题型解法基本型 log a f (x )=b 将对数式转化为指数式f (x )=a b 同底数型 log a f (x )=log a φ(x ) 转化为f (x )=φ(x )(必须验根)需代换型F (log a x )=0换元,令t =log a x 转化为关于t 的代数方程解下列关于x 的方程: (1)log 2(2x +1)=log 2(3x ); (2)12(lg x -lg3)=lg5-12lg(x -10); 解:(1)由log 2(2x +1)=log 2(3x )得2x +1=3x , 解得x =1.检验:当x =1时,2x +1>0,3x >0.故x =1. (2)原方程可化为lgx3=lg 5x -10, ∴x 3=5x -10,即x 2-10x -75=0, 解得x =15或x =-5,检验:当x =-5时,x3<0,x -10<0,此时根式无意义,舍去;当x =15时,满足题意,故x =15.——易错误区—— 因忽略真数的范围致误【错解】 0或4或2【正解】 4 由已知得lg(xy )=lg(x -2y )2, 从而有xy =(x -2y )2整理得x 2-5xy +4y 2=0, 即(x -y )(x -4y )=0,所以x =y 或x =4y . 但由x >0,y >0,x -2y >0① 得x >2y >0.所以x =y 应舍去,故xy =4.【错因分析】 1.在①处忽略对数式本身的限制条件导致得到增解0. 2.在②处,计算时因对数的运算法则不熟导致运算错误. 【防范措施】 1.注意对数运算法则的适用条件对数运算法则的适用条件是同底且真数均大于零,如本例中真数“x -2y >0”,隐含着x >2y .2.熟练掌握对数的运算法则已知2log 3x -y 2=log 3(xy )(x >y >0),则xy=3+2 2. 解析:由题意有x >y ,xy >0且(x -y2)2=xy .所以x 2-6xy +y 2=0,所以(x y )2-6(x y )+1=0.所以xy =3±2 2.因为x >y >0,所以x y >1,所以xy=3+2 2.一、选择题1.当a >0,a ≠1时,下列结论正确的是( C ) ①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2. A .①② B .②④ C .②D .①②③④解析:①M ≤0时不对;②正确;③应为M =±N ;④M =0时不对. 2.已知x ,y 为正实数,则( D )解析:10ln x -ln y =10ln x 10ln y 故A 错,B 、C 公式不对,D 项10ln x y =10ln x -ln y =10ln x 10ln y .选D.3.已知a =log 32,那么log 38-2log 36用a 表示是( A ) A .a -2 B .5a -2 C .3a -(1+a )2D .3a -a 2-1解析:log 38-2log 36=log 323-2(log 32+log 33)=3log 32-2(log 32+1)=3a -2(a +1)=a -2.故选A.二、填空题4.2log 525+3log 264-8ln1=22.解析:原式=2×2+3log 226-8·ln1=4+3×6-0=22. 5.log 6[log 4(log 381)]=0.解析:log 6[log 4(log 381)]=log 6[log 4(log 334)]=log 6(log 44)=log 61=0.三、解答题6.求下列各式的值.(1)log 1627·log 8132; (2)log 52·log 79log 513·log 734+log 2(3+5-3-5). 解:(1)原式=lg27lg16·lg32lg81=lg33lg24·lg25lg34=3lg34lg2·5lg24lg3=1516.。
高中数学 第三章 指数函数和对数函数 3.5 对数函数 3.
3.5.2.对数函数的图像与性质(1)[教学目标]1、知识与技能(1)由前面学习对数函数的图像与性质的基础上,进一步应用对数函数的图像和性质解答问题.(2)会利用指数函数对数函数的图像研究对数函数的性质.(3)能够理解指数函数的图像和性质与对数函数的图像与性质之间的关系. 2、 过程与方法 (1)让学生掌握指数函数的图像与对数函数的图像之间的关系,会利用它们的对称关系, 熟练地进行画图.(2)学会类比研究问题,利用数性结合的思想研究函数的性质. 3、情感.态度与价值观使学生通过学习对数函数,了解指数函数与对数函数图像和性质之间的关系.在学习的过程中体会类比、转化、数形结合的方法研究问题.直观明了,增强学习对数函数的积极性和自信心.[教学重点]: 对数函数的图像和性质以及与指数函数图像与性质之间的关系. [教学难点]:对数函数图像与性质与指数函数的图像与性质之间的关系. [课时安排]: 2课时[学法指导]:学生思考、探究. [讲授过程] 【新课导入】 [互动过程1]复习:1.对数函数a y log x(a 0,a 1)=>≠分别就其底数a 1>和0a 1<<这两种情况的图像和性质:(0,+∞)(0,+∞)y<0 :1.在同一直角坐标系中画出下列函数的图像211323(1)y log x;(2)y log x;(3)y log x;(4)y lo g x;(5)y lg x=====2.求下列函数的定义域:31(1)y log (2)y ln4x==-解:(10>,即x 2>,所以函数3y log ={x |x 2}>;(2)因为104x >-,即x 4<,所以函数1y ln4x=-的定义域为{x |x 4}< 3.比较下列各题中两个数的大小:(1)lg 0.3,lg 0.4; 0.50.5(2)log 3,log 0.23(3)log e,ln 3; a a (4)log 0.9,log 1.2(a 0,a 1)>≠解: (1)因为10>1,函数y lg x =是增函数,0.3<0.4,所以lg0.3lg0.4;> (2)因为0.5<1,函数0.5y log x =是减函数,3>0.2,所以0.50.5log 3log 0.2<; (3)因为函数3y log x =是增函数,e 3<,所以33log e log 31<=,同理1lne ln3=<,所以3log e ln 3;<(4)当a 1>时,函数a y log x =在(0,)+∞上是增函数,此时, a a log 0.9log 1.2<, 当0a 1<<时,函数a y log x =在(0,)+∞上是减函数,此时, a a log 0.9log 1.2> [互动过程2]观察在同一坐标系内函数2y log x =与函数xy 2=的图像,分析它们之间的关系. 解:从图上可以看出点P (a,b )与点Q (b,a )关于直线y=x 对称,函数2y log x =与函数xy 2=互为反函数,对应于函数2y log x =图像上任意一点P (a,b ),P 关于直线y=x的对称点Q (b,a )总在函数x y 2=的图像上,所以,函数2y log x =的图像与函数xy 2=的图像关于直线y=x 对称.[结论]:一般地,函数y f (x)=的图像和它的反函数的图像关于直线y=x 对称. [互动过程3]1.根据表中的数据(精确到0.01),画出函数2y log x =,3y log x =5y log x =的图像,并观察图像,说明三个函数图像的相同与不同之处.2.对数函数a y log x =,当底数a>1时,a 的变化对函数图像有何影响?3.仿照前面的方法,请你猜想,对数函数a y log x =当0<a<1时, a 的变化对函数图像有何影响? 4.练习:1[实际应用]人们早就发现放射性物质的衰减现象,在考古工作中,常用14C 的含量来确定有机物的年代.已知放射性物质的衰减服从指数规律:rt0C(t)C e-=,其中t 表示衰减的时间,0C 表示放射性物质的原始质量,C(t)表示经衰减了t 年后剩余的质量. 为计算衰减的年代,通常给出该物质质量衰减一半的时间,称其为该物质的半衰期,14C 的半衰期大约是5730年,由此可确定系数r,人们又知道,放射性物质的衰减速度与其质量成正比的.1950年在巴比伦发现一根刻有Hammmurbi 王朝字样的木炭,当时测定,其14C 分子的衰减速度为4.09个/(g ·min ),而新砍伐烧成的木炭中14C 的衰减速度为6.68个/(g ·min ),,请估算出Hammmurbi 王朝所在的年代.解:因为14C 的半衰期大约是5730年,所以建立方程5730r 1e 2-=,解得r 0.000121=,由此可知14C 的衰减规律服从指数型函数0.000121t0C(t)C e-=设发现Hammmurbi 王朝字样的木炭的时间(1950年)为0t 年,因为放射性物质的衰减速度与其质量成正比的,所以00C(t ) 4.09C 6.68=,所以0.000121t4.09e 6.68-=,两边取自然对数,得00.000121t ln 4.09ln 6.68-=-,解得0t 4054≈(年).即Hammmurbi 王朝所在的年代大约在公元前2100年.课堂小结:1.互为反函数的图像之间的关系.2.对数函数a y log x =,当底数a>1时和当0<a<1时, a 的变化对函数图像有何影响? 3.指数函数、对数函数在考古中的应用. 作业:习题3-5 B 组1,2,3,4。
北师大版高中数学必修一学第三章指数函数、幂函数、对数函数增长的比较讲解与例题
6 指数函数、幂函数、对数函数增长的比较1.指数函数、幂函数、对数函数增长的比较(1)指数函数、对数函数、幂函数为增函数的前提条件当a>1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.当x>0,n>0时,幂函数y=x n显然也是增函数,并且当x>1时,n越大其函数值的增长就越快.(2)具体的指数函数、幂函数、对数函数增长的比较(只考虑x>0的情况)在同一直角坐标系内利用几何画板软件作出函数y=2x,y=x2,y=log2x的图像(如图).从图中可以观察出,y=2x与y=x2有两个交点:(2,4)和(4,16),当0<x<2时,2x>x2;当2<x<4时,2x<x2;当x>4时,2x>x2恒成立,即y=2x比y=x2增长得快;而在(0,+∞)上,总有x2>log2x,即y=x2比y=log2x增长得快.由此可见,在(0,2)和(4,+∞)上,总有2x>x2>log2x,即y=2x增长得最快;在(2,4)上,总有x2>2x>log2x,即y=x2增长得最快.(3)一般的指数函数、幂函数、对数函数增长的比较改变指数函数、对数函数的底数和幂函数的指数,重新作图,观察图像会发现这三种函数的增长情况具有一定的规律性.一般地,对于指数函数y=a x(a>1)和幂函数y=x n(n>0),通过探索可以发现,在区间(0,+∞)上,无论a比n小多少,尽管在x的一定范围内,a x会小于x n,但由于a x的增长快于x n的增长,因此总存在一个x0,当x>x0时,就会有a x>x n;同样的,对于对数函数y=log a x(a>1)和幂函数y=x n(n>0),随着x的增大,log a x增长得越来越慢,图像就像是渐渐地与x轴平行一样,尽管在x的一定区间内,log a x可能会大于x n,但由于log a x的增长慢于x n的增长,因此总存在一个x0,当x>x0时,就会有log a x<x n.综上所述,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(x>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢,因此,总会存在一个x0,当x>x0时,就会有log a x<x n<a x.由于指数函数值增长非常快,人们常称这种现象为“指数爆炸”.析规律三种函数模型的性质x 0510********y15130505 1 130 2 005 3 130 4 505y2594.478 1 785.233 733 6.37×105 1.2×107 2.28×108y35305580105130155y45 2.310 7 1.429 5 1.140 7 1.046 1 1.015 1 1.005.解析:根据表格中数据可以看出,四个变量y1,y2,y3,y4均是从5开始变化,其中变量y4的值随变量x的增长越来越小,故变量y4不关于x呈指数函数增长,变量y1,y2,y3的值都随变量x的增长越来越大,其中变量y2的值增长速度最快,所以变量y2关于x呈指数型函数增长.答案:y2析规律函数值的增加量在指数函数、幂函数、对数函数三种增加的函数中,当自变量增加相同的量时,指数函数的函数值增加量最大.【例1-2】在给出的四个函数y=3x,y=x3,y=3x,y=log3x中,当x∈(3,+∞)时,其中增长速度最快的函数是( ).A.y=3x B.y=3xC.y=x3 D.y=log3x解析:随着x的增大,函数y=a x(a>1)的增速会远远超过y=x n(n>0)的增速,而函数y =log a x(a>1)的增长速度最慢.故选B.答案:B2.增长型函数模型在实际问题中的应用根据题意,选用合适的增长型函数模型,进行一些简单的应用是本节重点,其选择的标准是:指数函数增长模型适合于描述增长速度快的变化规律;对数函数增长模型适合于描述增长速度平缓的变化规律;而幂函数增长模型介于两者之间,适合于描述增长速度一般的变化规律.我们要熟悉指数函数、对数函数和幂函数的图像及性质,对题目的具体要求进行抽象概括,灵活地选取和建立数学模型.例如,根据统计资料,我国能源生产自1986年以来发展很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨.有关专家预测,到2011年我国能源生产总量将达到25.6亿吨,则专家是选择下列哪一种类型函数作为模型进行预测的( ).A.一次函数B.二次函数C.指数函数 D.对数函数解答:本题不需要写出函数解析式,只需根据函数值的变化规律作出判断即可.从1986年起第一个五年增长了1.8亿吨,第二个五年增长了2.5亿吨,每五年的增长速度不同,故不是一次函数;假设是指数函数,由“指数爆炸”以及前五年的增长速度可知,从1986年到2011年25年的时间,2011年的产值将很大,故不是指数函数;对数函数的增长速度较慢,不符合题意.由以上分析,此函数模型可能是幂函数类型,结合本题的数字特点,可判断是二次函数.故选B.【例2】某公司为了实现1 000万元的利润目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不能超过5万元,同时奖金不能超过利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?分析:某个奖励模型符合公司要求,即当x∈[10,1 000]时,能够满足y≤5,且yx≤25%,可以先从函数图像得到初步的结论,再通过具体计算,确认结果.解:借助计算器或计算机作出函数y=5,y=0. 25x,y=log7x+1,y=1.002x的图像如下图所示:观察图像发现,在区间[10,1 000]上模型y=0.25x,y=1.002x的图像都有一部分在y=5的上方,这说明只有按模型y=log7x+1进行奖励才能符合公司要求,下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万元.对于模型y=0.25x,它在区间[10,1 000]上是单调递增的,当x∈(20,1 000)时,y>5,因此该模型不符合要求.对于模型y=1.002x,利用计算器,可知1.002806≈5.005,由于y=1.002x是增函数,故当x∈(806,1 000]时,y>5,因此,也不符合题意.对于模型y=log7x+1,它在区间[10,1 000]上单调递增且当x=1 000时,y=log71 000+1≈4.55<5,所以它符合资金总数不超过5万元的要求.再计算按模型y=log7x+1奖励时,资金是否超过利润x的25%,即当x∈[10,1 000]时,利用计算器或计算机作f(x)=log7x+1-0.25x的图像,由图像可知f(x)是减函数,因此f(x)<f(10)≈-0.316 7<0,即log7x+1<0.25x.所以当x∈[10,1 000]时,y<0.25x.这说明,按模型y=log7x+1奖励不超过利润的25%.综上所述,模型y=log7x+1确实符合公司要求.析规律不同函数类型增长的含义从这个例题我们看到,底数大于1的指数函数模型比一次项系数为正数的一次函数模型增长速度要快得多,而后者又比真数大于1的对数函数模型增长速度要快,从这个实例我们可以体会到对数增长,直线上升,指数爆炸等不同函数类型增长的含义.3.利用三种函数的图像解决与方程和不等式有关的问题利用指数函数、对数函数和幂函数图像的直观性,可解决与方程和不等式有关的问题,如判断方程是否有解、解的个数,方程根的分布情况等.把解方程和不等式问题转化为函数问题,这是函数思想和转化与化归思想的运用.例如,方程log2(x+4)=3x解的个数是( ).A.0 B.1C.2 D. 3我们可以在同一坐标系中画出对数型函数y =log 2(x +4)和指数函数y =3x的图像(其中,y =log 2(x +4)的图像由y =log 2x 的图像向左平移4个单位长度得到),如图所示.由图像可以看出,它们有两个交点A (x 1,y 1),B (x 2,y 2),即方程log 2(x +4)=3x 的解为x=x 1或x =x 2,因此,方程的解有两个.又如,若x 满足-3+log 2x =-x ,则x 属于区间( ).A .(0,1)B .(1,2)C .[2,3)D .(3,4)由-3+log 2x =-x ,得log 2x =3-x ,在同一坐标系中作出对数函数y =log 2x 和一次函数y =3-x 的图像,如图所示.观察图像可知,若log 2x =3-x ,则x 的取值在1与3之间,又知log 22=1,3-2=1,故选C.【例3-1】已知x 1是方程x +lg x =3的解,x 2是方程x +10x =3的解,则x 1+x 2=( ).A .6B .3C .2D .1解析:方程x +lg x =3可化为lg x =3-x ,方程x +10x =3可化为10x =3-x .在同一直角坐标系中画出函数y =lg x ,y =10x 和y =3-x 的图像,由于y =lg x 与y =10x 互为反函数,所以它们的图像关于直线y =x 对称.又因为直线y =3-x 与y =x 垂直,由3,y x y x=-⎧⎨=⎩得,两直线的交点P 的坐标为33,22⎛⎫ ⎪⎝⎭.由题意知,y =lg x 与y =3-x 交点A 的横坐标为x 1,y =10x 与y =3-x 交点B 的横坐标为x 2.因为点A ,B 关于P 对称,所以,由线段的中点坐标公式得12322x x +=,即x +x 2=3. 答案:B谈重点 线段AB 的中点坐标公式在平面直角坐标系中,若点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),则线段AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22. 【例3-2】若x 2<log m x 在x ∈10,2⎛⎫ ⎪⎝⎭内恒成立,求实数m 的取值范围. 解:设y 1=x 2,y 2=log m x .若x 2<log m x 在x ∈10,2⎛⎫ ⎪⎝⎭内恒成立,则0<m <1.两个函数的图像如图所示.当12x =时,211124y ⎛⎫== ⎪⎝⎭.若两函数图像在12x =处相交,则214y =, 由11log 24m =得1412m =,即411216m ⎛⎫== ⎪⎝⎭. 又x 2<log m x 在x ∈10,2⎛⎫ ⎪⎝⎭内恒成立,根据底数m 对函数y =log m x 图像的影响可知,实数m 的取值范围为1,116⎡⎫⎪⎢⎣⎭. 【例3-3】方程2x =x 2有多少个实数根?解:在同一直角坐标系中画出函数y =2x 和y =x 2的图像.可以看出,在y 轴左侧,两个函数的图像有一个交点,而在y 轴右侧有两个交点(2,4)和(4,16).当x >4时,指数函数y =2x 的增长快于幂函数y =x 2的增长,这就是说在x >4时,指数函数y=2x与幂函数y=x2的图像没有交点,因此方程2x=x2有3个实数根.。
高中数学 第三章 指数函数和对数函数 3.5 对数函数问题导学案 北师大版必修1-北师大版高一必修1
§3.5 对数函数问题导学一、对数函数的概念及对数函数与指数函数的关系活动与探究1(1)下列函数是对数函数的是( ). A .y =log 2(3x ) B .y =log 2x 3C .14log y x =D .121log y x= (2)写出下列函数的反函数:①y =⎝ ⎛⎭⎪⎫12x;②y =ln x.迁移与应用1.若对数函数f (x )的图像经过点(16,-2),那么f (x )的解析式为__________.2.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,其图像经过点(a ,a ),则f (x )等于( ).A .log 2xB .12log x C .12x D .x 2(1)判断一个函数是否是对数函数,主要根据解析式的特征来判定,求对数函数解析式时,主要利用待定系数法求出底数a 的值.(2)函数y =log a x 的反函数是y =a x (a >0,且a ≠1);函数y =a x的反函数是y =log a x (a >0,且a ≠1).二、求与对数函数有关的函数的定义域活动与探究2求下列函数的定义域:(1)f (x )=lg(4-x )x -3;(2)y =log 0.1(4x -3).迁移与应用求下列函数的定义域:(1)y =1lg(x +1)-3;(2)y =log 3x -1.求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要注意对数函数自身的要求:真数大于零.三、对数函数的图像活动与探究3作出函数f (x )=|log 3x |的图像,并求出其值域和单调区间.迁移与应用函数f (x )=log 41x的大致图像为( ).1.作函数的图像通常采用描点法和图像变换法,可灵活选用; 2.一般地,函数y =-f (x )与y =f (x )的图像关于x 轴对称,函数y =f (-x )与y =f (x )的图像关于y 轴对称,函数y =-f (-x )与y =f (x )的图像关于原点对称.四、对数函数单调性的应用活动与探究4(1)比较下列各组数的大小:①124log 5与log 1267;②12log 3与15log 3;③log a 2与log a 3.(2)若log a (1-2x )>log a (1+2x ),求实数x 的取值范围.迁移与应用1.设a =log 2π,b =log 23,c =log 32,则( ). A .a >b >c B .a >c >b C .b >a >c D .b >c >a2.若log a 3<1,求a 的取值范围.(1)比较两个对数值的大小,常用方法有:①底数相同,真数不同时,用对数函数的单调性来比较;②底数不同,而真数相同时,常借助图像比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.④分类讨论:当底数与1的大小关系不确定时,要对底数与1比较,分类讨论.(2)解与对数有关的取值范围问题通常转化为不等式(组)求解,其依据是对数函数的单调性.(3)解决与对数函数相关的问题时,要遵循“定义域优先”的原则,切勿忘记真数大于0这一条件.当堂检测1.若函数f (x )=⎝ ⎛⎭⎪⎫13x的反函数是y =g (x ),则g (3)=( ).A .127B .27C .-1D .12.若log 5x <-1,则x 的取值范围是( ).A .x <15B .0<x <15C .x >15 D .x >53.下列不等式成立的是( ). A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 324.函数y =__________.5.画出下列函数的图像,并根据图像写出函数的定义域、值域以及单调区间: (1)y =log 3(x -2); (2)y =|12log x |.答案:课前预习导学 【预习导引】1.y =log a x 底数 10 e预习交流1 提示:根据对数函数的定义,只有严格符合y =log a x (a >0,a ≠1,x >0)形式的函数才是对数函数.例如y =log 3x (x >0),12log y x =(x >0)是对数函数,而y =2log 2x ,212log y x =等都不是对数函数.2.反函数 互换 y =x3.(1)描点法 先画函数x =log 2y 的图像,再变换为y =log 2x 的图像. (2)(1,0) y 轴右边 x 轴上方 x 轴下方 (0,+∞)4.(0,+∞) (-∞,+∞) (-∞,0) (0,+∞)预习交流2 提示:不论a (a >0,且a ≠1)取何值,总有log a 1=0,因此对数函数图像过定点(1,0),对于函数y =log a f (x ),若令f (x )=1解得x =x 0,那么其图像经过定点(x 0,0).预习交流3 提示:当a >1时,a 值越大,图像越靠近x 轴; 当0<a <1时,a 值越大,图像越远离x 轴.课堂合作探究 【问题导学】活动与探究1 思路分析:(1)根据对数函数的定义进行判断;(2)根据指数函数y =a x与对数函数y =log a x 的关系直接写出函数的反函数.(1)C 解析:由对数函数的定义知,只有函数14log y x =是对数函数,其余选项中的函数均不是对数函数,故选C.(2)解:①指数函数y =⎝ ⎛⎭⎪⎫12x,它的底数是12,它的反函数是对数函数12log y x =.②对数函数y =ln x ,它的底数是e ,它的反函数是指数函数y =e x.迁移与应用 1.()14log f x x = 解析:设f (x )=log a x (a >0,且a ≠1),由已知得log a 16=-2,因此a -2=16,解得a =14,故()14log f x x =.2.B 解析:由题意,知f (x )=log a x . ∵其图像过(a ,a ),∴a =log a a .∴a =12.∴()12log f x x =.活动与探究2 思路分析:(1)x 取值需使分母不等于零且真数为正实数; (2)x 取值需使被开方数为非负数且真数为正实数.解:(1)要使函数有意义,需有⎩⎪⎨⎪⎧4-x >0,x -3≠0,解得x <4,且x ≠3,所以函数的定义域为(-∞,3)∪(3,4).(2)要使函数有意义,需有⎩⎪⎨⎪⎧4x -3>0,log 0.1(4x -3)≥0,即⎩⎪⎨⎪⎧4x -3>0,4x -3≤1,解得34<x ≤1.所以函数的定义域为⎝ ⎛⎦⎥⎤34,1. 迁移与应用 解:(1)∵由⎩⎪⎨⎪⎧lg(x +1)-3≠0,x +1>0,得⎩⎪⎨⎪⎧x +1≠103,x >-1,∴x >-1,且x ≠999,∴函数的定义域为{x |x >-1,且x ≠999}. (2)要使函数有意义,应有log 3x -1≥0, 即log 3x ≥1,所以x ≥3, 即函数的定义域为{x |x ≥3}. 活动与探究3 思路分析:将函数f (x )化为分段函数,结合对数函数及图像变换可作出函数图像,然后通过图像求出值域和单调区间.解:f (x )=|log 3x |=⎩⎪⎨⎪⎧log 3x ,x ≥1,-log 3x ,0<x <1,所以f (x )的图像在[1,+∞)上与y =log 3x 的图像相同,在(0,1)上的图像与y =log 3x的图像关于x 轴对称,据此可画出其图像如下:从图像可知:函数f (x )的值域为[0,+∞),递增区间是[1,+∞),递减区间是(0,1).迁移与应用 D 解析:由于f (x )=log 41x=-log 4x ,其图像与y =log 4x 的图像关于x轴对称,故选D.活动与探究 4 思路分析:(1)①中两数同底不同真,可利用对数函数的单调性;②中同真不同底,可结合图像判断;③中底数中含有字母,需分类讨论.(2)对底数a 进行讨论,结合对数函数的单调性求解. 解:(1)①12log y x =在(0,+∞)上递减,又因为45<67,所以112246log >log 57.②因为在x ∈(1,+∞)上,15log y x =的图像在12log y x =图像的上方,所以1125log 3<log 3.③当a >1时,y =log a x 为增函数,所以log a 2<log a 3.当0<a <1时,y =log a x 为减函数, 所以log a 2>log a 3.(2)当a >1时,依题意有⎩⎪⎨⎪⎧ 1-2x >0,1+2x >0,1-2x >1+2x ,解得-12<x <0;当0<a <1时,依题意有⎩⎪⎨⎪⎧1-2x >0,1+2x >0,1-2x <1+2x ,解得0<x <12.因此当a >1时,x 的取值范围是⎝ ⎛⎭⎪⎫-12,0,当0<a <1时,x 的取值范围是⎝ ⎛⎭⎪⎫0,12. 迁移与应用 1.A 解析:∵函数y =log 2x 在(0,+∞)上是增函数,∴log 2π>log 23,即a >b .又∵b =12log 23>12,c =12log 32<12,∴b >c .∴a >b >c .2.解:当a >1时,原不等式可化为log a 3<log a a , ∴a >3.当0<a <1时,原不等式可化为log a 3<log a a , ∴a <3.又∵0<a <1,∴0<a <1.综上知,所求a 的取值范围是(0,1)∪(3,+∞). 【当堂检测】1.C 解析:依题意g (x )=13log x ,所以g (3)=13log 3=-1.2.B 解析:由log 5x <-1可得log 5x <log 515,所以0<x <15.3.A 解析:∵y =log 2x 在(0,+∞)上是增函数,∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数, ∴log 32<log 33=1. ∴log 32<log 23<log 25.4.[0,1) 解析:∵由12log (1)x -≥0,得0<1-x ≤1,∴0≤x <1.5.解:(1)函数y =log 3(x -2)的图像可看作把函数y =log 3x 的图像向右平移2个单位长度得到的,如图①.其定义域为(2,+∞),值域为R ,在区间(2,+∞)上是增函数.(2)y =|12log x |=122log ,01,log ,1,x x x x <≤⎧⎪⎨⎪>⎩其图像如图②.其定义域为(0,+∞),值域为[0,+∞),在(0,1]上是减少的,在(1,+∞)上是增加的.。
高中数学 第三章 指数函数和对数函数 3.5 对数函数学案 北师大版必修1-北师大版高一必修1数学学
3.5 对数函数第1课时 对数函数的概念 对数函数y =log2x 的图像和性质[核心必知]1.对数函数的概念 (1)对数函数的定义:一般地,函数y =log a x (a >0,a ≠1)叫作对数函数,a 叫作对数函数的底数. (2)两种特殊的对数函数:我们称以10为底的对数函数y =lg_x 为常用对数函数;称以无理数e 为底的对数函数y =ln_x 为自然对数函数.2.反函数指数函数y =a x与对数函数y =log a x (a >0且a ≠1)互为反函数. 3.函数y =log 2x 的图像和性质图像性质(1)定义域:(0,+∞)(2)值域:R(3)过点(1,0),即x =1,y =0 (4)当x >1时,y >0;当0<x <1时,y <0 (5)单调性:在(0,+∞)上是增函数[问题思考]1.函数y =log 3x (x >0),y =log 12x (x >0),y =2log 2x ,y =log 12x 2都是对数函数吗?为什么?提示:根据对数函数的定义,只有严格符合y =log a x (a >0,a ≠1,x >0)形式的函数才是对数函数.因此y =log 3x (x >0),y =log 12x (x >0)是对数函数,而y =2log 2x ,y=log 12x2等都不是对数函数.2.函数y =log a x 2与y =2log a x (a >0且a ≠1)是同一个函数吗?为什么?提示:不是,因为定义域不同. 3.对数函数y =log 2x 与指数函数y =2x有何关系?提示:(1)对数函数y =log 2x 与指数函数y =2x互为反函数,其图像关于直线y =x 对称;(2)对数函数y =log 2x 与指数函数y =2x的定义域与值域互换,即y =log 2x 的定义域(0,+∞)是y =2x的值域,而y =log 2x 的值域R 恰好是y =2x 的定义域.(3)对数函数y =log 2x 与指数函数y =2x的单调性一致,即都是增函数.讲一讲1.求下列函数的定义域.(1)y =-log 2(1-x );(2)y =lg(x -1)+log (x +1)(16-4x).[尝试解答] (1)要使函数有意义, 需有⎩⎪⎨⎪⎧1-x >0,-log 2(1-x )≥0,即⎩⎪⎨⎪⎧x <1,log 2(1-x )≤0,解得0≤x <1,所以函数的定义域为[0,1).(2)要使函数有意义,需有⎩⎪⎨⎪⎧ x -1>0,16-4x>0,x +1>0,x +1≠1,即⎩⎪⎨⎪⎧x >1,x <2,x >-1,x ≠0.∴1<x <2,故所求函数的定义域为(1,2).求函数的定义域时,若遇到简单的对数不等式,可利用对数函数的单调性或结合函数的图像求解.注意保证真数有意义:如log 2x <1,有人常由此得到x <2,而忘记x >0.同时应保证底数大于0且不等于1.对于含有字母的函数求定义域时应注意分类讨论,切记不能将结果写成交或并的形式.练一练1.求下列函数的定义域. (1)y=1-log 2x ;(2)y =lg(x +1)+1log 2(-x )+1.解:(1)要使函数有意义,需有⎩⎪⎨⎪⎧x >0,1-log 2x ≥0,即0<x ≤2,∴所求函数的定义域为(0,2]. (2)要使函数有意义,需有:⎩⎪⎨⎪⎧x +1>0,-x >0,log 2(-x )+1≠0.即-1<x <0且x ≠-12.∴所求函数的定义域为⎝⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫-12,0.讲一讲2.写出下列函数的反函数. (1)y =log 0.13x ;(2)y =3.05x. [尝试解答] (1)y =log 0.13x 的反函数是y =0.13x .(2)y =3.05x的反函数是y =log 3.05x .函数y =log a x 的反函数是y =a x(a >0,a ≠1);函数y =a x 的反函数是y =log a x (a >0,a ≠1).练一练2.写出下列函数的反函数.(1)y =lg x ;(2)y =ln x ;(3)y =⎝ ⎛⎭⎪⎫13x.解:(1)y =lg x 的反函数为y =10x. (2)y =ln x 的反函数为y =e x. (3)y =⎝ ⎛⎭⎪⎫13x的反函数为y =log 13x .讲一讲3.根据函数f (x )=log 2x 的图像和性质解决以下问题.(1)若f (a )>f (2),求a 的取值范围;(2)y =log 2(2x -1)在x ∈[2,14]上的最值.[尝试解答] 函数y =log 2x 的图像如图.(1)因为y =log 2x 是增函数, 若f (a )>f (2), 即log 2a >log 22, 则a >2.所以a 的取值范围为(2,+∞). (2)∵2≤x ≤14, ∴3≤2x -1≤27,∴log 23≤log 2(2x -1)≤log 227. ∴函数y =log 2(2x -1)在x ∈[2,14]上的最小值为log 23,最大值为log 227.(1)研究函数y =log 2x 的性质,应让学生熟悉其图像,由图像可一览无余地发现其相应的性质.(2)函数y =log 2x 的图像和性质的应用,突出表现在可用来比较大小、解相关不等式、求最值等,尤其要注意单调性的应用.练一练3.(1)比较log 245与log 234的大小;(2)若log 2(2-x )>0,求x 的取值范围. 解:(1)函数f (x )=log 2x 在(0,+∞)上为增函数,又∵45>34,∴log 245>log 234.(2)log 2(2-x )>0即log 2(2-x )>log 21,∵函数y =log 2x 为增函数,∴2-x >1,即x <1.∴x 的取值范围为(-∞,1).当m 为何值时,关于x 的方程|log 2(x -1)|=m 无解?有一解?有两解?[巧思] 将关于x 的方程解的问题转化为函数y =|log 2x -1|的图像与直线y =m 的交点个数问题,利用数形结合法求解.[妙解] 在同一坐标系,分别作出函数y =|log 2(x -1)|和y =m 的图像,如图所示.由图像得:当m <0时,方程无解,当m =0时,方程有一解,当m >0时,方程有两解.1.下列函数是对数函数的是( ) A .y =log a (2x ) B .y =lg(10x) C .y =log a (x 2+x ) D .y =ln x 解析:选D 形如y =log a x (a >0且a ≠1)的函数为对数函数,所以只有y =ln x 符合此形式.2.函数y =log 2x (1≤x ≤8)的值域是( )A .RB .[0,+∞)C .(-∞,3]D .[0,3]解析:选D ∵y =log 2x 在[1,8]上为增函数,∴log 21≤y ≤log 28,即y ∈[0,3].3.图中所示图像对应的函数可能是( )A .y =2xB .y =2x的反函数 C .y =2-xD .y =2-x 的反函数解析:选D 由y =⎝ ⎛⎭⎪⎫12x的图像以及与其反函数间的关系知,图中的图像对应的函数应为y =的图像.4.若函数f (x )=a x(a >0,且a ≠1)的反函数图像过点(2,-1),则a 的值是________.解析:依题意,f (x )的图像过点 (-1,2),∴a -1=2,即a =12.答案:125.函数y =log 2(3x -1+1)的定义域为________,值域为________.解析:由已知得x -1≥0,得x ≥1,故定义域为[1,+∞).又x -1≥0得3x -1≥30=1,∴3x -1+1≥2.∴y =log 2(3x -1+1)≥log 22=1.∴值域为[1,+∞).答案:[1,+∞) [1,+∞)6.已知对数函数f (x )=log 2(x +3)-1. (1)求此对数函数的定义域;(2)若f (a )>f (1),求a 的取值范围. 解:(1)由题意知x +3>0,即x >-3, ∴函数的定义域为(-3,+∞). (2)f (a )=log 2(a +3)-1,f (1)=log 2(1+3)-1=1,∵f (x )为增函数, ∴⎩⎪⎨⎪⎧a +3>0log 2(a +3)-1>1,即⎩⎪⎨⎪⎧a +3>0a +3>4∴a >1.即a 的取值范围是(1,+∞).一、选择题1.(重庆高考)函数y =lg(x +1)x -1的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧x +1>0,x -1≠0,∴⎩⎪⎨⎪⎧x >-1,x ≠1,故选C.2.函数y =log 2|x |的图像大致是( )解析:选Ay =log 2|x |=⎩⎪⎨⎪⎧log 2x (x >0),log 2(-x ) (x <0),分别作图知A 正确.3.已知函数y =log 2x ,其反函数y =g (x ),则g (x -1)的图像是( )解析:选C 由已知g (x )=2x,∴g (x -1)=2x -1,故选C.4.设f (x )是奇函数,当x >0时,f (x )=log 2x ,则当x <0时,f (x )等于( )A .-log 2xB .log 2(-x )C .log x 2D .-log 2(-x ) 解析:选 D ∵x <0,∴-x >0,∴f (-x )=log 2(-x ).又∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (x )=-log 2(-x ). 二、填空题5.集合A ={y |y =log 2x ,x >1},B =yy=⎝ ⎛⎭⎪⎫12x,x >1,则(∁R A )∩B =________. 解析:∵x >1,∴log 2x >log 21=0,∴A={y |y >0}.而当x >1时,0<⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫121,∴B =y 0<y <12.∴(∁R A )∩B ={y |y ≤0}∩⎩⎨⎧⎭⎬⎫y 0<y <12=∅.答案:∅6.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,其图像经过点(a ,a ),则f (x )=________.解析:∵y =f (x )的图像过点(a ,a ), ∴其反函数y =a x的图像过点(a ,a ),∴a a=a =,∴a =12,∴f (x )=.答案:7.若log 2a <log 2b <0,则a ,b,1的大小关系是________.解析:log 2a <log 2b <0⇔log 2a <log 2b <log 21,∵y =log 2x 在(0,+∞)上是增函数,∴a <b <1.答案:a <b <18.函数f (x )=log 2x 在区间[a,2a ](a >0)上的最大值与最小值之差为________.解析:∵f (x )=log 2x 在区间[a,2a ]上是增函数,∴f (x )max -f (x )min =f (2a )-f (a )=log 22a -log 2a =log 22=1.答案:1 三、解答题9.求下列函数的定义域. (1)y =lg(x +1)+2x 2-x;(2)y =log (x -2)(5-x ).解:(1)要使函数有意义,需⎩⎪⎨⎪⎧x +1>0,2-x >0,即⎩⎪⎨⎪⎧x >-1,x <2,∴函数的定义域为(-1,2).(2)要使函数有意义.需⎩⎪⎨⎪⎧ 5-x >0,x -2>0,x -2≠1,即⎩⎪⎨⎪⎧x <5,x >2,x ≠3.∴定义域为(2,3)∪(3,5).10.已知函数f (x )=log 2(x +1),g (x )=log 2(1-x ).(1)若函数f (x )的定义域为[3,63],求函数f (x )的最值;(2)求使f (x )-g (x )>0的x 的取值范围;(3)判断函数F (x )=f (x )+g (x )的奇偶性.解:(1)由题意知,3≤x ≤63,∴4≤x +1≤64,∵函数y =log 2x 是增函数,∴log 24≤log 2(x +1)≤log 264,∴2≤f (x )≤6,∴f (x )的最大值为6,最小值为2. (2)f (x )-g (x )>0⇔f (x )>g (x ), 即log 2(x +1)>log 2(1-x ),则⎩⎪⎨⎪⎧x +1>0,1-x >0,x +1>1-x ,得:0<x <1,∴x 的取值范围为(0,1).(3)要使函数F (x )=f (x )+g (x )有意义,需⎩⎪⎨⎪⎧1+x >0,1-x >0,即-1<x <1,∴定义域为(-1,1) 又F (-x )=f (-x )+g (-x ) =log 2(1-x )+log 2(1+x )=log 2(1-x 2)=f (x )+g (x )=F (x ), ∴F (x )为偶函数.第2课时 对数函数的图像和性质[核心必知]对数函数的图像和性质底数a >1 0<a <1图 像性质定义域 (0,+∞) 值域(-∞,+∞)过定点恒过点(1,0),即x =1时,y =0有界性当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0; 当0<x <1时,y >0 单调性在定义域内是增函数在定义域内是减函数[问题思考]对数函数y =log a x (a >0,a ≠1)的底数变化对图像位置有何影响?提示:在同一坐标系中作出对数函数y =log 2x ,y =log 5x ,y =log 12x ,y =log 15x 的图像如图所示:观察这些图像,可得如下规律: (1)上下比较:在直线x =1的右侧,a >1时,a 越大,图像越靠近x 轴,0<a <1时,a 越小,图像越靠近x 轴.(2)左右比较(比较图像与y =1的交点):交点的横坐标越大,对应的对数函数的底数越大.讲一讲1.比较大小(1)log23.4,log28.5;(2)log0.31.8,log0.32.7;(3)log67,log76;(4)log3π,log20.8;(5)log712,log812.[尝试解答] (1)考察对数函数y=log2x,∵2>1,∴它在(0,+∞)上是增函数.∴log23.4<log28.5.(2)考察对数函数y=log0.3x,∵0<0.3<1,∴它在(0,+∞)上是减函数,∴log0.31.8>log0.32.7.(3)∵log67>log66=1,log76<log77=1,∴log67>log76.(4)∵log3π>log31=0,log20.8<log21=0,∴log3π>log20.8.(5)法一:在同一坐标系中作出函数y=log7x与y=log8x的图像,由底数变化对图像位置的影响知:log7 12>log8 12.法二:log7 12log 8 12=lg 12lg 7lg 12lg 8=lg 8lg 7=log78>1.∵log812>0,∴log712>log812.比较对数值大小的类型及相应方法:[注意] 当底数为字母时要分类讨论.练一练1.比较下列各组中两个值的大小 (1)ln 0.3,ln 2; (2)log 23,log 0.32; (3)log a π,log a 3.141;解:(1)(单调性法)因为y =ln x 在(0, +∞)上是增函数,所以ln 0.3<ln 2.(2)(中间量法)因为log 23>log 21=0,log 0.32<0,所以log 23>log 0.32.(3)(分类讨论)当a >1时,函数y =log a x 在定义域上是增函数,则有log a π>log a 3.141;当0<a <1时,函数y =log a x 在定义域上是减函数,则有log a π<log a 3.141.综上所得,当a >1时,log a π>log a 3.141;当0<a <1时,log a π<log a 3.141. (4)(图像法)借助y =log 14x 及y =log 15x的图像,如图,在(1,+∞)上,y =log 14x的图像在y =log 15x 图像的下方,∴log 143<log 153.讲一讲2.画出下列函数的图像,并根据图像写出函数的定义域与值域以及单调区间:(1)y =log 3(x -2); (2)y =|log 12x |.[尝试解答] (1)函数y =log 3(x -2)的图像可看作把函数y =log 3x 的图像向右平移2个单位得到的,如图①.其定义域为(2,+∞),值域为R ,在区间(2,+∞)上是增加的;(2)y=|log12x |=⎩⎪⎨⎪⎧log 12x ,0<x ≤1,log 2x ,x >1,其图像如图②.其定义域为(0,+∞),值域为[0,+∞),在(0,1]上是减少的,在[1,+∞)上是增加的.把例2(2)变为y =,画出其图像,并根据图像写出定义域,判断奇偶性及单调性.解:y ==其图像如图所示.其定义域为{x |x ≠0},为偶函数. 在(-∞,0)为增加的,在(0,+∞)上为减少的.(1)与对数函数有关的一些对数型函数,如y =log a x +k ,y =log a |x |,y =|log a x +k |等,其图像可由y =log a x 的图像,通过平移,对称或翻折变换而得到.(2)对能画出图像的对数型函数性质及对数型方程解的研究,常先画出图像,再利用数形结合法求解.练一练2.已知函数f (x )=|log 2(x +1)|. (1)画出其图像,并写出函数的值域及单调区间;(2)若方程f (x )=k 有两解,求实数k 的取值范围.解:(1)函数y =|log 2(x +1)|的图像如图.由图像知,其值域为[0,+∞),单调减区间是(-1,0],单调增区间是[0,+∞).(2)由(1)的图像知,k >0即可.讲一讲3.已知f (x )=log a (1+x ),g (x )=log a (1-x ),其中a >0,a ≠1.(1)求函数f (x )-g (x )的定义域; (2)判断函数f (x )-g (x )的奇偶性,并予以证明;(3)求使f (x )-g (x )>0的x 的取值范围.[尝试解答] (1)要使函数f (x )-g (x )有意义,需有⎩⎪⎨⎪⎧1+x >01-x >0,解得-1<x <1,所以f (x )-g (x )的定义域为(-1,1). (2)任取x ∈(-1,1),则-x ∈(-1,1)f (-x )-g (-x )=log a (1-x )-log a (1+x )=-[f (x )-g (x )],所以f (x )-g (x )在(-1,1)上是奇函数. (3)由f (x )-g (x )>0得log a (1+x )>log a (1-x ),①当a >1时,则①可化为⎩⎪⎨⎪⎧1+x >1-x-1<x <1,解得0<x <1;当0<a <1时,由⎩⎪⎨⎪⎧1+x <1-x-1<x <1,解得-1<x <0.所以当a >1时,x 的取值范围是(0,1), 当0<a <1时,x 的取值范围是(-1,0).(1)判断函数的奇偶性,首先应求出定义域,看是否关于原点对称.而对于类似于f (x )=log a g (x )的函数,利用f (-x )±f (x )=0来判断奇偶性更简捷.(2)判断函数的单调性有两种思路,①利用定义;②利用图像.练一练3.已知f (x )=log a (a x-1)(a >0且a ≠1).(1)求f (x )的定义域; (2)讨论f (x )的单调性.解:(1)要使函数f (x )=log a (a x-1)(a >0,且a ≠1)有意义,则a x-1>0.当a >1时,由a x-1>0得a x>1,即x >0,故函数的定义域为(0,+∞); 当0<a <1时,由a x-1>0得a x>1,即x <0,故函数的定义域为(-∞,0). (2)当a >1时, 设0<x 1<x 2,则∴f (x 1)-f (x 2)==,即f (x 1)<f (x 2).∴函数f (x )在(0,+∞)上是增函数.同理可证,当0<a <1时,f (x )在(-∞,0)上也是增函数.设函数y =f (x ),且log 2(log 2y )=log 23x +log 2(3-x ),求f (x )的值域.[错解] 由log 2(log 2y )=log 23x +log 2(3-x ),得log 2y =3x (3-x ),∴y =23x (3-x ).∵3x (3-x )=-3x 2+9x =-3⎝ ⎛⎭⎪⎫x -322+274≤274, ∴函数的值域为(-∞,2274].[错因] 产生错解的原因在于未掌握对数函数、指数函数需满足真数大于0,a x>0(a >0,且a ≠1).此题因在未确定定义域前求值域,从而把值域扩大了.[正解] 由log 2(log 2y )=log 23x +log 2(3-x ),得log 2y =3x (3-x ), ∴y =23x (3-x ),且⎩⎪⎨⎪⎧3x >0,3-x >0,log 2y >0,即⎩⎪⎨⎪⎧0<x <3,y >1.而-3x 2+9x =-3⎝ ⎛⎭⎪⎫x -322+274.∵0<x <3,∴0<-3x 2+9x ≤274,.1.已知函数f (x )=log (a +1)x 是(0,+∞)上的增函数,那么a 的取值范围是( ) A .(0,1) B .(1,+∞) C .(-1,0) D .(0,+∞)解析:选D 由题意得a +1>1,解得a >0. 2.函数y =1+log 3x 的图像一定经过点( ) A .(1,0) B .(0,1) C .(2,0) D .(1,1)解析:选D ∵y =log 3x 一定过定点(1,0).∴y =1+log 3x 的图像一定过点(1,1). 3.(天津高考)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a解析:选A a =21.2>2,而b =⎝ ⎛⎭⎪⎫12-0.8=20.8,所以1<b <2,c =2log 52=log 54<1,所以c <b <a .4.函数y =lg(4-x )x -3的定义域是________.解析:要使该函数有意义,需有⎩⎪⎨⎪⎧4-x >0,x -3≠0,即⎩⎪⎨⎪⎧x <4,x ≠3.∴x ∈(-∞,3)∪(3,4). 答案:(-∞,3)∪(3,4)5.已知0<a <1,0<b <1,如果a log b (x -3)<1,那么x 的取值范围为________. 解析:a log b (x -3)<1即a log b (x -3)<a 0. ∵0<a <1,∴y =a x在(-∞,+∞)上是减函数, ∴log b (x -3)>0, 又∵0<b <1,∴y =log b x 在(0,+∞)上是减函数, ∴0<x -3<1,解得3<x <4.答案:(3,4)6.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤1,log 3x 3·log 3x9,x >1.(1)求f ⎝ ⎛⎭⎪⎫log 232的值; (2)求f (x )的最小值. 解:(1)∵log 232<log 22=1,∴f ⎝ ⎛⎭⎪⎫log 232=2-log 232=2log 223=23, 即f ⎝⎛⎭⎪⎫log 232=23. (2)当x ∈(-∞,1]时,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ≥12,即f (x )min =12.当x ∈(1,+∞)时,f (x )=(log 3x -1)(log 3x -2), 令log 3x =t ,则t >0,∴f (x )=(t -1)(t -2)=⎝ ⎛⎭⎪⎫t -322-14.∵t >0,∴当t =32时,f (x )min =-14<12.∴f (x )的最小值是-14.一、选择题1.若a =log 3π,b =log 76,c =log 20.8,则( ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a解析:选A a =log 3π>log 33=1,log 71<b =log 76<log 77, ∴0<b <1,c =log 20.8<log 21=0,∴a >b >c .2.函数f (x )=ln(x 2+1)的图像大致是( )解析:选A 依题意,得f (-x )=ln(x 2+1)=f (x ),所以函数f (x )为偶函数,即函数f (x )的图象关于y 轴对称,故排除C.因为函数f (x )过定点(0,0),排除B ,D ,应选A.3.函数y =log a (x -3)+2的图像恒过定点( ) A .(3,0) B .(3,2) C .(4,0) D .(4,2)解析:选D 令x =4,则y =log a (4-3)+2=2, ∴函数的图像恒过定点(4,2). 4.已知函数f (x )=⎩⎪⎨⎪⎧log 2(-x ),x <0,log 12x , x >0,若f (m )<f (-m ),则实数m 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C 当m >0时,-m < 0,f (m )<f (-m )⇒log 12m <log 2m ⇒log 21m <log 2m ⇒1m <m ,可得m >1;当m <0时,-m >0,f (m )<f (-m )⇒log 2(-m )<log 12(-m )⇒log 2(-m )<log 2(-1m )⇒-m <-1m,可得-1<m <0.故m 的取值范围是-1<m <0或m >1. 二、填空题5.已知函数f (x )=2log 12x 的值域为[-1,1],则函数f (x )的定义域是________.解析:由题意知-1≤2log 12x ≤1,即-1≤-2log 2x ≤1.∴-12≤log 2x ≤12,即log 222≤log 2x ≤log 22, ∴22≤x ≤ 2. 答案:⎣⎢⎡⎦⎥⎤22,2 6.已知f (x )=|lg x |,则f ⎝ ⎛⎭⎪⎫14,f ⎝ ⎛⎭⎪⎫13,f (2)的大小关系为________.解析:f ⎝ ⎛⎭⎪⎫14=lg 14=-lg 4=lg 4, f ⎝ ⎛⎭⎪⎫13=lg 13=-lg 3=lg 3,f (2)=|lg 2|=lg 2,∴f (2)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫14.答案:f (2)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫14 7.方程⎝ ⎛⎭⎪⎫13|x |=|log 13x |的根的个数为________.解析:同一坐标系中作出y =⎝ ⎛⎭⎪⎫13|x |与y =|log 13x |的图像,可知有两个交点,故有两解.答案:28.已知函数f (x )的图像与函数g (x )=3x的图像关于直线y =x 对称,令h (x )=f (1-|x |),则关于函数h (x )有以下命题:(1)h (x )的图像关于原点(0,0)对称; (2)h (x )的图像关于y 轴对称; (3)h (x )的最小值为0;(4)h (x )在区间(-1,0)上单调递增.其中正确的是________.解析:∵函数f (x )的图像与函数g (x )=3x的图像关于直线y =x 对称,∴f (x )与g (x )互为反函数,∴f (x )=log 3x ;∴h (x )=f (1-|x |)=log 3(1-|x |). 由1-|x |>0得-1<x <1. ∵h (x )的定义域关于原点对称,且h (-x )=log 3(1-|-x |)=log 3(1-|x |)=h (x ). ∴h (x )是偶函数,其图像关于y 轴对称,(2)正确; 又当x ∈(-1,0)时,h (x )=log 3(1+x ), 显然h (x )在(-1,0)上是递增的,∴(4)正确;利用特殊点验证可知,(1)不正确;由于h (x )在(-1,0)上单调递增,且h (x )为偶函数, ∴h (x )在[0,1)上单调递减,∴h (x )在(-1,1)上有最大值,h (0)=log 31=0,无最小值,故(3)不正确. 答案:(2)(4) 三、解答题9.(1)已知函数f (x )=log 3(3x+1)+12ax 是偶函数,求a 的值;(2)已知函数f (x )=log a (1-x )+log a (x +3)(a >0且a ≠1). ①求函数的定义域和值域;②若函数f (x )有最小值为-2,求a 的值. 解:(1)函数的定义域是R ,由于f (x )为偶函数,∴f (-x )=f (x ),即对任意x ∈R ,总有log 3(3-x +1)-12ax =log 3(3x+1)+12ax ,∴log 3(3-x+1)-log 3(3x+1)=ax ,即(a +1)x =0,由于x 是任意实数,∴a =-1.(2)①由⎩⎪⎨⎪⎧1-x >0,x +3>0得-3<x <1.∴函数的定义域为{x |-3<x <1}.f (x )=log a (1-x )(x +3).设t =(1-x )(x +3)=4-(x +1)2, ∴t ≤4,又t >0,则0<t ≤4.当a >1时,y ≤log a 4,值域为(-∞,log a 4]. 当0<a <1时,y ≥log a 4,值域为[log a 4,+∞); ②由题意及①知,当0<a <1时,函数有最小值. ∴log a 4=-2.∴a =12.10.设函数f (x )=x 2-x +b ,且满足f (log 2a )=b ,log 2[f (a )]=2(a >0,a ≠1),求f (log 2x )的最小值及对应的x 值.解:由f (log 2a )=b 可得,(log 2a )2-log 2a +b =b , ∴log 2a =1或log 2a =0.∴a =2或a =1(舍去). 又∵log 2[f (a )]=2,即log 2(2+b )=2, ∴2+b =4,b =2.∴f (x )=x 2-x +2. ∴f (log 2x )=⎝ ⎛⎭⎪⎫log 2x -122+74.∴当log 2x =12,即x =2时,y min =74.。
高中数学 第3章 指数函数、对数函数和幂函数 3.2 对数函数 3.2.2 对数函数 第1课时 对数
第1课时对数函数的概念、图象及性质1.了解对数函数的概念.2.会画对数函数的图象,记住对数函数的性质.3.掌握对数函数图象和性质的应用.[学生用书P52]1.对数函数的概念一般地,函数y=log a x(a>0,a≠1)叫做对数函数,对数函数的定义域是(0,+∞),值域为(-∞,+∞).2.对数函数的图象与性质定义y=log a x(a>0且a≠1)底数a>10<a<1图象定义域{x|x>0}值域R单调性增函数减函数共点性图象过点(1,0),即log a1=0函数值x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0]对称性函数y=log a x与y=log1ax的图象关于x轴对称趋势a值越大图象越靠近x,y轴a值越小图象越靠近x,y轴x趋于零,y趋于-∞;x趋于+∞,y趋于+∞x趋于零,y趋于+∞;x趋于+∞,y趋于-∞3.y=a x称为y=log a x的反函数,反之,y=log a x也称为y=a x的反函数,一般地,如果函数y =f(x)存在反函数,那么它的反函数记作y=f-1(x).1.判断(正确的打“√”,错误的打“×”)(1)y=log2x2与y=log x3都不是对数函数.( )(2)对数函数的图象一定在y轴右侧.( )(3)当0<a <1时,若x >1,则y =log a x 的函数值都大于零.( ) (4)函数y =log 2x 与y =x 2互为反函数.( ) 答案:(1)√ (2)√ (3)× (4)× 2.函数y =log 4.3x 的值域是________. 答案:R3.函数y =(a 2-4a +4)log a x 是对数函数,则a =________. 答案:34.函数f (x )=log 5(1-x )的定义域是________. 答案:{x |x <1}与对数函数有关的定义域问题[学生用书P52]求下列函数的定义域: (1)y =lg(x +1)+3x21-x; (2)y =log (2x -1)3x -2. 【解】 (1)要使函数有意义, 需⎩⎪⎨⎪⎧x +1>0,1-x >0,即⎩⎪⎨⎪⎧x >-1,x <1.所以-1<x <1.所以函数的定义域为(-1,1). (2)由⎩⎪⎨⎪⎧2x -1>0,2x -1≠1,3x -2>0,解得x >23,且x ≠1,所以函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞).若将例题(2)函数改为“y =log3x -2(2x -1)”,则其定义域应为________.解析:由⎩⎪⎨⎪⎧2x -1>0,3x -2>0,3x -2≠1,解得x >23,且x ≠1,所以函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞).答案:⎝ ⎛⎭⎪⎫23,1∪(1,+∞)(1)求与对数函数有关的函数定义域时应遵循的原则①分母不能为0;②根指数为偶数时,被开方数非负; ③对数的真数大于0,底数大于0且不为1. (2)求函数定义域的步骤①列出使函数有意义的不等式(组); ②化简并解出自变量的取值范围; ③确定函数的定义域.1.求下列函数的定义域:(1)y =1lg (x +1)-3;(2)y =log a (4x -3)(a >0,且a ≠1).解:(1)由⎩⎪⎨⎪⎧lg (x +1)-3≠0,x +1>0得⎩⎪⎨⎪⎧x +1≠103,x >-1, 所以x >-1,且x ≠999,所以函数的定义域为{x |x >-1,且x ≠999}. (2)log a (4x -3)≥0⇒log a (4x -3)≥log a 1. 当a >1时, 有4x -3≥1,x ≥1 . 当0<a <1时,有0<4x -3≤1,解得34<x ≤1.综上所述,当a >1时,函数的定义域为[1,+∞),当0<a <1时,函数的定义域为⎝ ⎛⎦⎥⎤34,1. 对数函数的图象和性质[学生用书P53](1)如图所示的曲线是对数函数y =log a x 的图象,已知a 的取值可为35,110,3,43,则相应曲线C 1,C 2,C 3,C 4的底数a 的值依次为________.(2)若函数y =log a (x +b )+c (a >0,a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为________,________.【解析】 (1)由底数对对数函数图象的影响,可知C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应的曲线C 1,C 2,C 3,C 4的底数依次是3,43,35,110.(2)因为函数的图象恒过定点(3,2), 所以将(3,2)代入y =log a (x +b )+c , 得2=log a (3+b )+c .又当a >0,a ≠1时,log a 1=0恒成立, 所以log a (3+b )=0,所以b =-2,c =2. 【答案】 (1)3,43,35,110(2)-2 2(1)对数函数的性质可以结合图象去理解记忆.(2)对数函数图象的画法有两种:一是描点法;二是通过图象变换画出.2.已知a >0,且a ≠1,则函数y =a x与y =log a (-x )的图象可能是( )解析:选B.法一:若0<a <1,则函数y =a x的图象下降且过点(0,1),而函数y =log a (-x )的图象上升且过点(-1,0),以上图象均不符合.若a >1,则函数y =a x的图象上升且过点(0,1),而函数y =log a (-x )的图象下降且过点(-1,0),只有B 中图象符合.法二:首先指数函数y =a x的图象只可能在x 轴上方,函数y =log a (-x )的图象只可能在y 轴左方,从而排除A ,C ;再看单调性,y =a x与y =log a (-x )的单调性正好相反,排除D.只有B 中图象符合.法三:如果注意到y =log a (-x )的图象关于y 轴的对称图象为y =log a x ,又y =log a x 与y =a x互为反函数(图象关于直线y =x 对称),则可直接确定选B.利用对数函数的单调性比较大小[学生用书P53]比较下面各组数中两个值的大小. (1)log 33.4,log 38.5; (2)log 0.21.8,log 0.22.7;(3)log a 5.1,log a 5.9(a >0且a ≠1). 【解】 (1)考察对数函数y =log 3x ,因为它的底数3>1,所以它在(0,+∞)上是增函数, 于是log 33.4<log 38.5.(2)考察对数函数y =log 0.2x ,因为它的底数0.2<1,所以它在(0,+∞)上是减函数,于是log 0.21.8>log 0.22.7.(3)对数函数的增减性决定于对数的底数是大于1还是小于1,而已知条件并未明确指出底数a 与1哪个大,因此要对底数a 进行讨论:当a >1时,函数y =log a x 在(0,+∞)上是增函数, 于是log a 5.1<log a 5.9;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数, 于是log a 5.1>log a 5.9.(1)如果同底,可直接利用单调性求解.如果底数为字母,则要分类讨论. (2)如果不同底,一种方法是化为同底对数,另一种方法是寻找中间变量.(3)如果不同底同真数,可利用图象的高低与底数的大小的关系解决或利用换底公式化为同底,再进行比较.(4)若底数、真数都不相同,则常借助中间量1,0,-1等进行比较.3.比较下列各组数的大小:(1)log 0.20.4,log 0.20.3,log 0.23; (2)log 123,log 133,log 143;(3)log 23,log 45,log 76.解:(1)因为函数y =log 0.2x 是区间(0,+∞)上的单调减函数,且0.3<0.4<3, 所以log 0.20.3>log 0.20.4>log 0.23.(2)因为函数f (x )=log 3x 在(0,+∞)上是增函数, 又0<14<13<12<1,所以log 314<log 313<log 312<0,即1log 143<1log 133<1log 123<0, 所以log 123<log 133<log 143. (3)log 23=log 49>log 45>1, 而log 76<log 77=1, 故log 76<log 45<log 23.1.关于对数函数概念的两点说明(1)对数函数的概念与指数函数类似,都是形式化定义,如y =2log 2x ,y =log 2x3都不是对数函数,可称其为对数型函数.(2)由指数式与对数式的关系知:对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞).2.a 对对数函数的图象的影响(1)底数a 与1的大小关系决定了对数函数图象的“升降”:当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.(2)底数的大小决定了图象对应位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.函数f (x )=1log 2x -1的定义域为________.[解析] 要使函数有意义,则⎩⎪⎨⎪⎧x >0,log 2x -1>0,解得x >2.[答案] (2,+∞)(1)解答本题只注意被开方数大于零,而忽视真数大于零.(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.1.下列函数表达式中,是对数函数的有( ) ①y =log x 2;②y =log a x (a ∈R );③y =log 8x ; ④y =ln x ;⑤y =log x (x +2). A .1个 B .2个 C .3个D .4个解析:选B.形如y =log a x (a >0且a ≠1)的函数即为对数函数,符合此形式的函数表达式有③、④,其他的均不符合.2.函数y =lg (x +1)x -1的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)解析:选C.要使函数式有意义,需⎩⎪⎨⎪⎧x +1>0,x -1≠0,解得x >-1,且x ≠1,故函数的定义域为(-1,1)∪(1,+∞),故选C.3.函数y =2x的反函数为________.解析:由对数函数y =log a x (a >0,a ≠1)和y =a x (a >0,a ≠1)互为反函数知y =2x的反函数为y =log 2x .答案:y =log 2x4.若函数y =log a (x +a )(a >0且a ≠1)的图象过点(-1,0). (1)求a 的值; (2)求函数的定义域.解:(1)将(-1,0)代入y =log a (x +a )(a >0且a ≠1)中,有0=log a (-1+a ), 则-1+a =1,所以a =2.(2)由(1)知y =log 2(x +2),x +2>0,解得x >-2, 所以函数的定义域为{x |x >-2}.[学生用书P112(单独成册)])[A 基础达标]1.若f (x )=log a x +(a 2-4a -5)是对数函数,则a =( ) A .-1 B .5 C .-1或5D .1解析:选B.由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.2.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析:选B.a =log 0.60.5>log 0.60.6=1,b =ln 0.5<0,0<c =0.60.5<0.60=1,故a >c >b .3.函数y =lg(x -1)+lg(x -2)的定义域为M ,函数y =lg(x 2-3x +2)的定义域为N ,则( ) A .MN B .N MC .M =ND .M ∩N =∅解析:选A.y =lg(x 2-3x +2) =lg[(x -1)(x -2)], 所以⎩⎪⎨⎪⎧x -1>0x -2>0或⎩⎪⎨⎪⎧x -1<0x -2<0,即x >2或x <1.所以N ={x |x >2或x <1}. 又M ={x |x >2}. 所以MN .4.已知函数f (x )=log a (x -m )的图象过点(4,0)和(7,1),则f (x )在定义域上是( ) A .增函数 B .减函数 C .奇函数D .偶函数解析:选A.将点(4,0)和(7,1)代入函数解析式,有⎩⎪⎨⎪⎧0=log a (4-m ),1=log a (7-m ).解得a =4和m =3,则有f (x )=log 4(x -3).由于定义域是{x |x >3},则函数不具有奇偶性.很明显函数f (x )在定义域上是增函数.5.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B .12x C .log 12xD .2x -2解析:选A.函数y =a x(a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .6.下列四个数:0.2-0.1,log 1.20.3,log 0.20.3,log 0.20.5,由小到大的顺序为________.解析:因为0.2-0.1>1,log 1.20.3<0,0<log 0.20.5<log 0.20.3<log 0.20.2=1, 所以log 1.20.3<log 0.20.5<log 0.20.3<0.2-0.1. 答案:log 1.20.3<log 0.20.5<log 0.20.3<0.2-0.17.已知函数y =log a (x +3)-89(a >0,a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=3x+b的图象上,则b =________.解析:当x +3=1,即x =-2时, 对任意的a >0,且a ≠1都有y =log a 1-89=0-89=-89,所以函数y =log a (x +3)-89的图象恒过定点A ⎝ ⎛⎭⎪⎫-2,-89,若点A 也在函数f (x )=3x+b 的图象上, 则-89=3-2+b ,所以b =-1.答案:-18.已知log a 3>log b 3>0,则a ,b 的大小关系是________. 解析:因为log a 3>log b 3>0,所以a >1,b >1. 由换底公式有1log 3a >1log 3b >0,所以log 3b >log 3a >0. 所以b >a . 答案:b >a9.求下列函数的定义域:①y =log 3(3x );②y =log 34x -5; ③y =1log 12x ;④y = log 2(2x +6).解:①由3x >0,得x >0,所以函数y =log 3(3x )的定义域为(0,+∞). ②由4x -5>0,得x >54,所以函数y =log 34x -5的定义域为⎝ ⎛⎭⎪⎫54,+∞. ③由x >0及log 12x ≠0得x >0且x ≠1,所以函数y =1log 12x的定义域为(0,1)∪(1,+∞).④log 2(2x +6)≥0,得2x +6≥1,即x ≥-52,所以函数y =log 2(2x +6)的定义域为⎣⎢⎡⎭⎪⎫-52,+∞.10.解不等式:log a (2x -5)>log a (x -1). 解:当a >1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5>x -1.解得x >4.所以原不等式的解集为{x |x >4}. 当0<a <1时,原不等式等价于 ⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4. 综上,当a >1时,不等式的解集为{x |x >4};当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪52<x <4.[B 能力提升]1.已知函数f (x )=lg|x |,设a =f (-3),b =f (2),则a 与b 的大小关系是________. 解析:f (x )=lg|x |定义域为(-∞,0)∪(0,+∞),是偶函数,且f (x )在(0,+∞)上为增函数.a =f (-3)=f (3),b =f (2),因为f (3)>f (2),所以a >b .答案:a >b2.已知f (x )=|lg x |,若1c>a >b >1,则f (a ),f (b ),f (c )的大小关系是________.解析:先作出函数y =lg x 的图象,再将图象在x 轴下方的部分沿x 轴翻折到上方,这样,我们便得到了y =|lg x |的图象,如图.由图可知,f (x )=|lg x |在(0,1)上单调递减,在(1,+∞)上单调递增,于是f ⎝ ⎛⎭⎪⎫1c>f (a )>f (b ),而f ⎝ ⎛⎭⎪⎫1c =⎪⎪⎪⎪⎪⎪lg 1c =|-lg c |=|lg c |=f (c ).所以f (c )>f (a )>f (b ).答案:f (c )>f (a )>f (b )3.已知函数f (x )=log (2a -1)(2x +1)在区间⎝ ⎛⎭⎪⎫32,+∞上满足f (x )>0,试求实数a 的取值范围. 解:当x ∈⎝ ⎛⎭⎪⎫32,+∞时,2x +1>4>1.因为log(2a -1)(2x +1)>0=log (2a -1)1,所以2a -1>1,即2a >2,解得a >1.即实数a 的取值范围是(1,+∞).4.(选做题)已知函数f (x )=log 21+x 1-x. (1)求证:f (x 1)+f (x 2)=f ⎝⎛⎭⎪⎫x 1+x 21+x 1x 2; (2)若f ⎝ ⎛⎭⎪⎫a +b 1+ab =1,f (-b )=12,求f (a )的值. 解:(1)证明:左边=log 21+x 11-x 1+log 21+x 21-x 2=log 2⎝ ⎛⎭⎪⎫1+x 11-x 1·1+x 21-x 2 =log 21+x 1+x 2+x 1x 21-x 1-x 2+x 1x 2. 右边=log 21+x 1+x 21+x 1x 21-x 1+x 21+x 1x 2=log 21+x 1+x 2+x 1x 21+x 1x 2-x 1-x 2. 所以左边=右边.(2)因为f (-b )=log 21-b 1+b =-log 21+b 1-b =12, 所以f (b )=log 21+b 1-b =-12, 利用(1)可知:f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+ab , 所以f (a )-12=1, 解得f (a )=32.。
必修一第三章指数函数与对数函数复习教案
第三章指数函数及对数函数总复习教学目标:1、知识及技能理解有理数指数器的含义,掌握塞的运算性质 理解指数函数的概念和性质,能画出指数函数的图像 通过实例,了解指数函数模型背景 理解对数的概念及运算性质,会灵活运用换底公式 理解对数函数的概念和性质,能画出对数函数的图像通过实例,了解对数函数模型背景知道指数函数及对数函数互为反函数,理解互为反函数的两个函数的定义域及值域的关系, 及会求一个函数的反函数。
(8)体会三种函数的增长率。
2、过越方法让学生结合实际问题,感受运用函数概念建立模型的过程及方法。
3、情感、态度及价值(1)通过本章的学习,充分认识到数学的应用价值(2)培养学生的观察问题、分析问题的能力(3)体会函数及方程、数形结合、分类讨论等数学思想方法0教学重点:L 指数函数及对数函数的概念2 .指数函数及对数函数的图像、性质和运算性质3 .函数增长快慢的比较教学难点:指数函数及对数函数的图像及性质的应用(1)(2)(3)(4)(5) (6) (7)(1)(g)"-4・(-2)一3+(;)° -9 2(2)(√9)^7(√10Γ)Ξ÷√100Γ(3)l g500+lg^-∣lg64+50(lg2+l g5)2(4) |1 + Ig0.001∣ + Jg2∣-41g3 + 4 + lg6-lg0.02 2、化简2 1 I 1 1 5(1) (2a y h2)(-6a2b3)÷(-3a^b^)2÷lg0.36 + -lg8Iog rt√27÷ log rt 8-Iog w√≡⑷-------------- j ------------------------------------- (U Y " D-Iog fl 0.3 +log, 23、求值l-2x(1)已知121=3,12'=2,求8∣, 的值(2)若涉<0,且。
高中数学第三章指数函数和对数函数3.3第1课时指数函数的图像与性质学案含解析北师大版必
学习资料§3指数函数第1课时指数函数的图像与性质内容标准学科素养1。
理解指数函数的概念和意义.2。
能借助计算器或计算机画出指数函数的图像.3.初步掌握指数函数的有关性质。
精确数学概念提升数学运算熟练等价转化授课提示:对应学生用书第44页[基础认识]知识点指数函数错误!(1)细胞分裂时,第1次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?这个函数式与y=x2有什么不同?提示:y=2x。
它的底数为常数,自变量为指数,而y=x2,恰好反过来.(2)函数的性质包括哪些?如何探索指数函数的性质?提示:函数的性质通常包括定义域、值域、特殊点、单调性、最值、奇偶性,可以通过描点作图,先研究具体的指数函数性质,再推广至一般.知识梳理指数函数思考:1.函数y=3·5x是指数函数吗?为什么?提示:不是.不符合指数函数的定义,指数函数的解析式必须满足:①自变量为x在指数位置上;②底数a>0且a≠1;③a x的系数是1.2.指数函数定义中为什么规定a>0且a≠1?提示:(1)如果a=0,当x>0时,a x=0;当x≤0,a x无意义.(2)如果a<0,当x=错误!,错误!等时,a x无意义.(3)如果a=1,当a x=1,无研究的价值.为了避免上述各种情况,所以规定a>0且a≠1.[自我检测]1.函数y=2-x的图像是图中的()解析:y=2-x=错误!x.答案:B2.函数y=(a-1)x在R上为减函数,则a的取值范围是()A.a>0,且a≠1 B.a>2C.a<2 D.1<a<2解析:由0<a-1<1,解得1<a<2.答案:D3.若指数函数y=f(x)的图像经过点(π,e),则f(-π)=________。
解析:设f(x)=a x(a>0,且a≠1),则f(π)=e,即aπ=e。
∴f(-π)=a-π=1aπ=错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.5 对数函数问题导学一、对数函数的概念及对数函数与指数函数的关系活动与探究1(1)下列函数是对数函数的是( ). A .y =log 2(3x ) B .y =log 2x 3 C .14log y x =D .121log y x= (2)写出下列函数的反函数:①y =⎝ ⎛⎭⎪⎫12x ;②y =ln x.迁移与应用1.若对数函数f (x )的图像经过点(16,-2),那么f (x )的解析式为__________. 2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图像经过点(a ,a ),则f (x )等于( ).A .log 2xB .12log x C .12x D .x 2(1)判断一个函数是否是对数函数,主要根据解析式的特征来判定,求对数函数解析式时,主要利用待定系数法求出底数a 的值.(2)函数y =log a x 的反函数是y =a x (a >0,且a ≠1);函数y =a x 的反函数是y =log a x (a >0,且a ≠1).二、求与对数函数有关的函数的定义域活动与探究2求下列函数的定义域:(1)f (x )=lg(4-x )x -3;(2)y =log 0.1(4x -3).迁移与应用求下列函数的定义域:(1)y =1lg(x +1)-3;(2)y =log 3x -1.求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要注意对数函数自身的要求:真数大于零.三、对数函数的图像活动与探究3作出函数f (x )=|log 3x |的图像,并求出其值域和单调区间.迁移与应用函数f (x )=log 41x的大致图像为( ).1.作函数的图像通常采用描点法和图像变换法,可灵活选用;2.一般地,函数y =-f (x )与y =f (x )的图像关于x 轴对称,函数y =f (-x )与y =f (x )的图像关于y 轴对称,函数y =-f (-x )与y =f (x )的图像关于原点对称.四、对数函数单调性的应用活动与探究4(1)比较下列各组数的大小:①124log 5与log 1267; ②12log 3与15log 3;③log a 2与log a 3.(2)若log a (1-2x )>log a (1+2x ),求实数x 的取值范围.迁移与应用 1.设a =log 2π,b =log 23,c =log 32,则( ). A .a >b >c B .a >c >b C .b >a >c D .b >c >a 2.若log a 3<1,求a 的取值范围.(1)比较两个对数值的大小,常用方法有:①底数相同,真数不同时,用对数函数的单调性来比较;②底数不同,而真数相同时,常借助图像比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.④分类讨论:当底数与1的大小关系不确定时,要对底数与1比较,分类讨论.(2)解与对数有关的取值范围问题通常转化为不等式(组)求解,其依据是对数函数的单调性.(3)解决与对数函数相关的问题时,要遵循“定义域优先”的原则,切勿忘记真数大于0这一条件.当堂检测1.若函数f (x )=⎝ ⎛⎭⎪⎫13x的反函数是y =g (x ),则g (3)=( ).A .127B .27C .-1D .12.若log 5x <-1,则x 的取值范围是( ).A .x <15B .0<x <15C .x >15 D .x >53.下列不等式成立的是( ). A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 324.函数y =__________.5.画出下列函数的图像,并根据图像写出函数的定义域、值域以及单调区间: (1)y =log 3(x -2); (2)y =|12log x |.答案:课前预习导学 【预习导引】1.y =log a x 底数 10 e预习交流1 提示:根据对数函数的定义,只有严格符合y =log a x (a >0,a ≠1,x >0)形式的函数才是对数函数.例如y =log 3x (x >0),12log y x =(x >0)是对数函数,而y =2log 2x ,212log y x =等都不是对数函数.2.反函数 互换 y =x3.(1)描点法 先画函数x =log 2y 的图像,再变换为y =log 2x 的图像. (2)(1,0) y 轴右边 x 轴上方 x 轴下方 (0,+∞)4.(0,+∞) (-∞,+∞) (-∞,0) (0,+∞)预习交流2 提示:不论a (a >0,且a ≠1)取何值,总有log a 1=0,因此对数函数图像过定点(1,0),对于函数y =log a f (x ),若令f (x )=1解得x =x 0,那么其图像经过定点(x 0,0).预习交流3 提示:当a >1时,a 值越大,图像越靠近x 轴; 当0<a <1时,a 值越大,图像越远离x 轴. 课堂合作探究 【问题导学】活动与探究1 思路分析:(1)根据对数函数的定义进行判断;(2)根据指数函数y =a x 与对数函数y =log a x 的关系直接写出函数的反函数.(1)C 解析:由对数函数的定义知,只有函数14log y x =是对数函数,其余选项中的函数均不是对数函数,故选C.(2)解:①指数函数y =⎝ ⎛⎭⎪⎫12x,它的底数是12,它的反函数是对数函数12log y x =.②对数函数y =ln x ,它的底数是e ,它的反函数是指数函数y =e x.迁移与应用 1.()14log f x x = 解析:设f (x )=log a x (a >0,且a ≠1),由已知得log a 16=-2,因此a -2=16,解得a =14,故()14log f x x =.2.B 解析:由题意,知f (x )=log a x . ∵其图像过(a ,a ),∴a =log a a .∴a =12.∴()12log f x x =.活动与探究2 思路分析:(1)x 取值需使分母不等于零且真数为正实数; (2)x 取值需使被开方数为非负数且真数为正实数.解:(1)要使函数有意义,需有⎩⎨⎧4-x >0,x -3≠0,解得x <4,且x ≠3,所以函数的定义域为(-∞,3)∪(3,4).(2)要使函数有意义,需有⎩⎨⎧4x -3>0,log 0.1(4x -3)≥0,即⎩⎨⎧4x -3>0,4x -3≤1,解得34<x ≤1.所以函数的定义域为⎝ ⎛⎦⎥⎤34,1.迁移与应用 解:(1)∵由⎩⎨⎧ lg(x +1)-3≠0,x +1>0,得⎩⎨⎧x +1≠103,x >-1,∴x >-1,且x ≠999,∴函数的定义域为{x |x >-1,且x ≠999}. (2)要使函数有意义,应有log 3x -1≥0, 即log 3x ≥1,所以x ≥3, 即函数的定义域为{x |x ≥3}.活动与探究3 思路分析:将函数f (x )化为分段函数,结合对数函数及图像变换可作出函数图像,然后通过图像求出值域和单调区间.解:f (x )=|log 3x |=⎩⎨⎧log 3x ,x ≥1,-log 3x ,0<x <1,所以f (x )的图像在[1,+∞)上与y =log 3x 的图像相同,在(0,1)上的图像与y =log 3x 的图像关于x 轴对称,据此可画出其图像如下:从图像可知:函数f (x )的值域为[0,+∞),递增区间是[1,+∞),递减区间是(0,1).迁移与应用 D 解析:由于f (x )=log 41x=-log 4x ,其图像与y =log 4x 的图像关于x 轴对称,故选D.活动与探究4 思路分析:(1)①中两数同底不同真,可利用对数函数的单调性;②中同真不同底,可结合图像判断;③中底数中含有字母,需分类讨论.(2)对底数a 进行讨论,结合对数函数的单调性求解.解:(1)①12log y x =在(0,+∞)上递减,又因为45<67,所以112246log >log 57.②因为在x ∈(1,+∞)上,15log y x =的图像在12log y x =图像的上方,所以1125log 3<log 3.③当a >1时,y =log a x 为增函数,所以log a 2<log a 3.当0<a <1时,y =log a x 为减函数, 所以log a 2>log a 3.(2)当a >1时,依题意有⎩⎨⎧1-2x >0,1+2x >0,1-2x >1+2x ,解得-12<x <0;当0<a <1时,依题意有⎩⎨⎧1-2x >0,1+2x >0,1-2x <1+2x ,解得0<x <12.因此当a >1时,x 的取值范围是⎝ ⎛⎭⎪⎫-12,0,当0<a <1时,x 的取值范围是⎝ ⎛⎭⎪⎫0,12.迁移与应用 1.A 解析:∵函数y =log 2x 在(0,+∞)上是增函数,∴log 2π>log 23,即a >b .又∵b =12log 23>12,c =12log 32<12,∴b >c .∴a >b >c .2.解:当a >1时,原不等式可化为log a 3<log a a , ∴a >3.当0<a <1时,原不等式可化为log a 3<log a a , ∴a <3.又∵0<a <1,∴0<a <1.综上知,所求a 的取值范围是(0,1)∪(3,+∞). 【当堂检测】1.C 解析:依题意g (x )=13log x ,所以g (3)=13log 3=-1.2.B 解析:由log 5x <-1可得log 5x <log 515,所以0<x <15.3.A 解析:∵y =log 2x 在(0,+∞)上是增函数,∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数, ∴log 32<log 33=1. ∴log 32<log 23<log 25.4.[0,1) 解析:∵由12log (1)x -≥0,得0<1-x ≤1,∴0≤x <1. 5.解:(1)函数y =log 3(x -2)的图像可看作把函数y =log 3x 的图像向右平移2个单位长度得到的,如图①.其定义域为(2,+∞),值域为R ,在区间(2,+∞)上是增函数.(2)y =|12log x |=122log ,01,log ,1,x x x x <≤⎧⎪⎨⎪>⎩其图像如图②.其定义域为(0,+∞),值域为[0,+∞),在(0,1]上是减少的,在(1,+∞)上是增加的.。