第13章 氢的安全
无机化学第13章_氢和稀有气体
⑤野外工作,用硅等两性金属与碱液反应
0.63kg Si可制取1m3H2 :
Si+2NaOH+H2O→Na2SiO3+2H2(g)
或 LiAlH4+4H2O→Al(OH)3+LiOH+4H2(g)
19
Light work with water, NATHAN S. LEWIS Nature 414, 589 - 590 (December 6, 2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, ZHIGANG ZOU, JINHUA YE, KAZUHIRO SAYAMA & HIRONORI ARAKAWA Nature 414, 625 - 627 (December 6, 2001)
11
11/20/2020
性质: a. 溶解性 273K时1体积水仅能溶解0.02体积氢 b. 可燃性 燃料
c. 氢的化学性质:还原剂原料
冶金
加氢反应等
Vegetable oil to fat 植物油 氢化到 脂肪
人造黄油
肥料
12
检验反应:PdCl2(aq) + H2 → Pd(s) + 2HCl(aq)
11/20/2020
第13章 氢和稀有气体
“机遇号”重大发 现
1
11/20/2020
序言
从本章开始学习元素部分。HUMPHREYO说:“真正的化学 是叙述性化学,即元素化学。只有理论没有性质那就不是化 学。”F A COFTON说:“我们确信象其他教科书那样,没有 或几乎没有包含实际内容的无机化学,就好象没有乐器演奏 的一张乐谱。”因此,我们的学习就是要掌握重要元素及其 化合物的重要性质。
第十三章+原子结构-2022-2023学年高二物理同步精品课堂(沪科版2020上海选择性必修第三册)
原子是一个球体,正电荷均匀
分布在球体中,电子镶嵌在正
电荷之中,就象枣点缀在一块
蛋糕里一样,所以又被人们称
为“枣糕模型(西瓜模型)”。
J.J 汤姆孙(英国)
1857 ~ 1940
这个模型不久就被
实验事实否定了
20
第十三章
从经典物理学的角度看,汤姆孙的模型是很成功的。
解释原子是电中性的,电子在原子里是怎样分布的,解释原子为什么会发光,能
第十三章 原子结构
主讲教师:XXX
1
第十三章
目录
01
电子的发现
02
原子的核式结构模型
03
玻尔的原子模型
2
第十三章
新课引入
科学家在研究稀薄气体放电时发现,
当玻璃管内的气体足够稀薄时,阴极就发
出一种射线。它能使对着阴极的玻璃管壁
发出荧光,这种射线的本质是什么呢?
3
第十三章
电子的发现
4
第十三章
赫兹
位卓越的物理学家参加了会议。但 当时的会议记录中根本没有提及卢瑟福对原子结构的研究工作。不久以后,曾在卢
瑟福实 验室工作的丹麦物理学家玻尔 (N. Bohr ,1885— 1962) 运用创造性的假说拯救了卢瑟福的 核式结构模型。
现代物理学史表明:卢瑟福的方法和理论开辟了研究原子结构的正确途径, 为原子物理学的发展做出了重要贡献。
线带负电
测出了粒子
的比荷
4.英国物理学家汤姆
3.猜想:
孙让阴极射线在电场
(1)阴极射线是一种电磁辐射.
和磁场中偏转.
(2)阴极射线是带电微粒.
10
第十三章
由实验测得的阴极射线粒子的比荷是氢离子比荷的近两千倍。 J.J汤姆孙猜测
《有机化学》第13章 杂环化合物和生物碱
4-甲基嘧啶
4-甲基噻唑
⑶ 连有取代基的杂环化合物命名时,也可将杂环作为取代基,以侧链为母体来命名。
4-嘧啶磺酸
β-吲哚乙酸(3-吲哚乙酸)
2-苯并咪唑甲酸乙酯
⑷ 为区别杂环化合物的互变异构体,需标明杂环上与杂原子相连的氢原子所在的位 置,并在名称前面加上标位的阿拉伯数字和大写H的斜体字。
2023/6/13
⑴ 卤代反应
在室温条件下,吡咯、呋喃和噻吩能与氯或溴发生激烈反应,得到多卤代物。将反应 物用溶剂稀释并在低温下进行反应时,可以得到一氯代物或一溴代物。碘化反应需要 在催化剂存在下进行。例如:
2023/6/13
6
(2)硝化反应
在低温条件下,吡咯、呋喃和噻吩能与比较缓和的硝化剂硝酸乙酰酯(CH3COONO2) 发生硝化反应,主要生成α-硝基化合物。例如:
3. 颜色反应
生物碱能与一些试剂发生颜色反应,比如钒酸铵的浓硫酸溶液、浓硝酸、浓硫酸、 甲醛、氨水等,利用此性质可鉴别生物碱。比如莨菪碱遇1%钒酸铵的浓硫酸溶液显 红色,可待因遇甲醛-浓硫酸试剂显紫红色等。
二、重要的生物碱 1. 烟碱 又叫尼古丁,主要以苹果酸盐及柠檬酸盐的形式存在于烟草中。其结构式
2023/6/13
13
血红素是卟啉环与Fe2+形成的配合物;叶绿素是卟啉环与Mg2+形成的配合物,它们的 结构式如下:
血红素在体内与蛋白质结合形成血红蛋白,存在于红细胞中,是人和其他哺乳动物 体内运输氧气的物质。叶绿素是植物进行光合作用不可缺少的物质。
2023/6/13
14
二、呋喃衍生物
呋喃甲醛是最常见的呋喃衍生物,又称为糠醛,它是一种无色液体,沸点为161.7℃, 在空气中易氧化变黑,是一种良好的溶剂。 糠醛是合成药物的重要原料,通过硝化可制得一系列呋喃类抗菌药物,如治疗泌尿 系统感染的药物呋喃坦丁、治疗血吸虫病的药物呋喃丙胺等。
第13章 热力学基础习题及答案
第十三章习题热力学第一定律及其应用1、关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是。
2、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。
3、一定量的理想气体,分别经历如图(1) 所示的abc过程,(图中虚线ac为等温线),和图(2) 所示的def过程(图中虚线df为绝热线).判断这两种过程是吸热还是放热.abc过程热,def过程热.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是。
(=γC p/C V)5、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.VV答案1、(1)(4)是正确的。
2、是A-B 吸热最多。
3、abc 过程吸热,def 过程放热。
4、P 0/2。
5、等压, 等压, 等压理想气体的功、内能、热量1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。
2、 一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为 。
3、一气缸内贮有10 mol 的单原子分子理想气体,在压缩过程中外界作功209J ,气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K)4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J.p (×105 Pa)3 m 3)5、 1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量. (2) 气体对外界所作的功. (3) 气体吸收的热量. (4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)答案1、3J2、-700J3、124.7 J ,-84.3 J4、500J ;700J5、解:)(25)(112212V p V p T T C E V -=-=∆ (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ).(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R .p p p 12循环过程1、 如图表示的两个卡诺循环,第一个沿ABCDA 进行,第二个沿A D C AB ''进行,这两个循环的效率1η和2η的关系及这两个循环所作的净功W 1和W 2的关系是 η1 η2 ,W 1 W 22、 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:3、一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为_______ K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加________ K .4、如图,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为η1_________,η2__________,η 3 __________.5、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求: (1) 第二个循环的热机效率; (2) 第二个循环的高温热源的温度.6、 1 mol 单原子分子理想气体的循环过程如T -V 图所示,其中c 点的温度为T c =600 K .试求:(1) ab 、bc 、c a 各个过程系统吸收的热量; (2) 经一循环系统所作的净功; (3) 循环的效率. BAC DC 'D 'p p-3m 3)p O 3T 0 2T 0 T 0fad b c e(注:循环效率η=W /Q 1,W 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量ln2=0.693)答案 1、=;<2、S 1 = S 2.3、500 ; 1004、33.3% ; 50%; 66.7%5、解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T W Q -= 且 1212T TQ Q =∴ Q 2 = T 2 Q 1 /T 1即 212122112T T T W T T T T T Q -=⋅-==24000 J 由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') =''='1/Q W η29.4% (2) ='-='η121T T 425 K6、解:单原子分子的自由度i =3.从图可知,ab 是等压过程,V a /T a = V b /T b ,T a =T c =600 KT b = (V b /V a )T a =300 K (1) )()12()(c b c b p ab T T R i T T C Q -+=-= =-6.23×103 J (放热) )(2)(b c b c V bc T T R iT T C Q -=-= =3.74×103 J (吸热) Q ca =RT c ln(V a /V c ) =3.46×103 J (吸热) (2) W =( Q bc +Q ca )-|Q ab |=0.97×103 J (3) Q 1=Q bc +Q ca , η=W / Q 1=13.4%热力学第二定律1、根据热力学第二定律判断下列说法的正误: (A) 功可以全部转换为热,但热不能全部转换为功. ( ) (B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 ( )(C) 不可逆过程就是不能向相反方向进行的过程.()(D) 一切自发过程都是不可逆的.()2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了___________________________的过程是不可逆的,而克劳修斯表述指出了________________的过程是不可逆的.3、所谓第二类永动机是指________________________________________,它不可能制成是因为违背了________________________________________.答案1、⨯,⨯,⨯,√2、功变热;热传导3、从单一热源吸热,在循环中不断对外作功的热机;热力学第二定律。
第13章检验一些无机化合物第2讲
第13章检验一些无机化合物第二讲混合物的检验[考纲要求] 1.了解常见气体的检验。
2.综合运用化学知识对常见的混合物进行鉴定和鉴别.分点清理查漏补缺考点一:常见气体的检验【基础再现】【题组建模】1.某无色气体可能由O2、CO、CO2、HCl、NH3、NO、Br2中的一种或几种组成,通过图中洗气瓶后气体体积减少(该装置前后都不与大气直接相连),通过干燥管(盛有Na2O2)后气体呈红棕色,则下列推断正确的A.原气体中一定有NO和O2B.原气体中一定有NH3、NO、CO2、COC.原气体中一定没有CO D.原气体中一定没有HCl、Br2、O2答案.D 解析:依题意气体无色,故无Br2,通过过氧化钠后呈红棕色,说明一定有CO2和NO,又因NO 与O2不能共存,故原混合气中无O2;通过浓硫酸时体积减少,则一定有NH3,NH3不能与HCl共存,故原混合气中无HCl;至于原混合气中有无CO则无法判断。
2、下图为常见实验装置,请根据要求填空.(装置可重复使用)(1)检验水蒸气存在的现象是(2)证明C02存在的原理是_________________________________(用化学方程式表示)(3)如果要吸收大量的C02气体,选择的装置是(填编号)(4)如果要验证混合气体中含有H2、C0和水蒸气,则仪器连接的先后顺序为______________(填编号)考点:常见气体的检验与除杂方法;仪器的装配或连接;二氧化碳的检验和验满;碱的化学性质。
专题:常见气体的实验室制法、检验、干燥与净化。
分析:本题属于气体的净化题,可以用不同的物质除去,用浓硫酸干燥氧气、氢气等常见气体,浓碱溶液可以吸收二氧化碳等酸性气体,二氧化碳用石灰水来检验;用无水硫酸铜检验是否有水生成,因为无水硫酸铜有一个特性:遇到水就会变蓝色.验证混合气体中含有H2、C0和水蒸气时,要注意先验证水,再检验其它气体.解答:解:(1)用无水硫酸铜检验是否有水生成,因为无水硫酸铜有一个特性:遇到水就会变蓝色.故答案为:D中固体变蓝色(2)二氧化碳用石灰水来检验,石灰水会变浑浊.二氧化碳和氢氧化钙反应生成碳酸钙白色沉淀和水.故答案为:CO2+Ca(0H)2=CaCO3↓+H2O(3)浓碱溶液可以吸收二氧化碳,因此二氧化碳可以用氢氧化钠溶液吸收.故答案为:B(4)混合气体中含有H2、C0和水蒸气时,要注意先验证水,通过E装置以后,验证生成产物时,还要注意先验证水,再验证二氧化碳,否则影响检验效果.故答案为:DAEDC点评:本考点考查了气体的净化或除杂质,也考查了气体的干燥,是中考的重点也是一个难点.根据物质的溶解性和除杂质的条件,要认真分析,综合把握.还要加强记忆除去常用离子的方法,从而突破难点.初中阶段常用的干燥剂要记牢,而且要掌握其性质,了解一种干燥剂能与哪一类物质反应,能做哪些气体的干燥剂等.本考点经常出现在选择题、填空题和实验题中.3、已知2H2SO4(浓)+C CO2↑+2SO2↑+2H2O.为了证明木炭与浓硫酸反应有二氧化碳和二氧化硫生成,甲、乙两位同学分别用下面的装置进行实验.实验中甲同学在C中盛放足量的饱和碳酸氢钠溶液,乙同学在C中盛放足量的酸性高锰酸钾溶液,两位同学在其他装置中盛放的药品相同且适量.①CO2不能使品红溶液褪色,SO2能使品红溶液褪色.②CO2与饱和NaHCO3溶液不发生反应;SO2+2NaHCO3═Na2SO3+H2O+2CO2.③CO2与酸性高锰酸钾溶液不发生反应;SO2与酸性高锰酸钾溶液能发生反应.④SO2+Ca(OH)2═CaSO3↓+H2O(1)D中盛放的试剂是________________________________________.(2)观察到现象,证明有二氧化硫生成.(3)甲、乙两位同学能够实现实验目的是,另一位同学不能实现实验目的原因是_____________________________________________________________________________.考点:实验探究物质的性质或变化规律;探究二氧化碳的性质;反应现象和本质的联系。
13第十三章 氢和稀有气体-
Elements chemistry
元素化学
元素化学—也称描述化学,即周期系中 各族元素的单质及其化合物的化学。 它是无机化学的中心内容,下一阶段将 分区分族简要介绍元素及其常见化合物的特 点、性质、 制备和用途。 丰富多彩的物质世界是由基本的元素及 其化合物所组成的。目前,教科书公布的已 发现元素为112种(实际已达到117种,甚至 更多),其中,有94种存在于自然界,人工 合成元素20多种,人体中含有其中60多种。
热力学、动力学、物质微观结构:G、K、 四大平衡、、原子结构、杂化轨道理论、 价层电子对互斥理论、分子轨道理论、晶体 结构、配位键理论等
第十三章
氢和稀有气体
第十三章 氢和稀有气体
勘误:
P324 倒数第12行 离子型、氢化物改 为离子型氢化物
自学内容:
13.1 氢
一、氢的发现
1、氢的发现
原 子 氢 的 性 质
三、氢的制备
实验室制备
实验室由活泼金属和稀酸 反应或两性金属与碱反应 制备,也可用电解法制备 由两性金 属与碱反 应或电解 法得到的 氢气纯度 更高
Zn + 2H+ = H2↑+ Zn2+ Zn + 2H2O + 2OH- = Zn(OH)42- + H2↑ 电解法 阴极: 2H2O + 2e =H2↑ + 2OH阳极: 4OH- - 4e ==O2↑ + 2H2O
1894年,Ramsay
Ar
Ne、Xe:1898年,Ne、Xe
Rn:1900年,Dorn,Rn;1908年,Ramsay和 Gray分离
二、制备——分馏空气
每 1000 dm3 空气中约含 9.3 dm3 氩, 18 cm3 氖, 5 cm3氦和0 .8 cm3氙
高等燃烧学讲义第13章(郑洪涛4学时)
第十三章 湍流非预混火焰—— 13.2 射流火焰——总论
• 图13.5是氢气-空气射流火焰中OH基的瞬时平面图像,清 楚地显示了富含OH基的高温区的旋卷形褶皱特征。 • 可以看到,随着下游距 离的增加,火焰区域(OH 基区域 ) 也随之增加,最 后在火焰顶部出现一个 很大的高温区。 • 温度场图像显示,有的 区域热量层很薄而温度 梯度很大,有的热量层 宽,其中温度几乎一致。 • 在很窄的火焰区域内 , 流体的结构非常复杂。
第十三章 湍流非预混火焰—— 13.2 射流火焰——简化分析
• 假设湍流质量扩散系数与动量传递的相同,则燃料质量分 数分布应等于无量纲速度分布,即YF(x, r)=v(r, x)/ve= f (x/dj)。 • 但这种关系只有当没有燃烧时才成立,因为有火焰的情况 下YF在火焰边界外为0,但是速度并没有减到0。 • 如第9 章所述,混合物分数可以代替燃料的质量分数,并与 无量纲的速度场有相似的性质。 • 这样,当给定燃料类型后,火焰的高度将与射流速度ve无关, 而与喷嘴直径成比例,而且射流扩展角与射流速度ve和喷嘴 直径dj均无关。 • 图13. 7 中的实验结果证明,对于小口径的喷管,火焰长度 确实与ve无关,而且火焰长度大致与喷嘴直径dj成比例。 • 另外,浮力将破坏射流火焰与绝热射流之间的近似,正好 可以解释对于更大直径的喷管,湍流火焰长度将不恒定。
第十三章 湍流非预混火焰—— 13.2 射流火焰——火焰长度
• 2. 影响火焰长度的因素 • 对于燃料射流喷入静止环境中所产生的竖直火焰来说,火 焰长度由4个主要因素决定: – 火焰中射流初始动量与作用在火焰上浮力的比Frf; – 化学当量值 fs; – 射流密度与环境气体密度的比ρe/ρ∞; – 初始射流直径dj。 • 第一个因素,火焰中射流初始动量与浮力之比可以由火焰 的弗劳德数Frf来表示。回顾第9 章,引入弗劳德数Frf 是为 了区分层流射流火焰中的动量控制模式和浮力控制模式(参 考式(9. 68)和式(9.69))。对于湍流射流火焰,弗劳德数Frf定 义为:
2014《步步高》物理大一轮复习讲义 第13章 第3课时 原子与原子核 氢原子光谱
第3课时原子与原子核氢原子光谱考纲解读 1.知道两种原子结构模型,会用玻尔理论解释氢原子光谱.2.掌握氢原子的能级公式并能结合能级图求解原子的跃迁问题.3.掌握原子核的衰变、半衰期等知识.4.会书写核反应方程,并能根据质能方程求解核能问题.1.[原子核式结构模型的理解]下列说法正确的是() A.汤姆孙首先发现了电子,并测定了电子电荷量,且提出了“枣糕”式原子模型B.卢瑟福做α粒子散射实验时发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,只有少数α粒子发生大角度偏转C.α粒子散射实验说明了原子的正电荷和绝大部分质量集中在一个很小的核上D.卢瑟福提出了原子“核式结构”模型,并解释了α粒子发生大角度偏转的原因答案BCD2.[光谱与光谱分析]对于原子光谱,下列说法正确的是() A.原子光谱是不连续的B.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的C.各种原子的原子结构不同,所以各种原子的原子光谱也不相同D.分析物质发光的光谱,可以鉴别物质中含哪些元素答案ACD解析原子光谱为线状谱,选项A正确;各种原子都有自己的特征谱线,故选项B错误,选项C正确;根据各种原子的特征谱线进行光谱分析可鉴别物质的组成,选项D 正确.3.[玻尔原子结构模型的理解]根据玻尔理论,下列说法正确的是() A.电子绕核运动有加速度,就要向外辐射电磁波B.处于定态的原子,其电子绕核运动,但它并不向外辐射能量C.原子内电子的可能轨道是不连续的D.原子能级跃迁时,辐射或吸收光子的能量取决于两个轨道的能量差答案BCD解析根据玻尔理论,电子绕核运动有加速度,但并不向外辐射能量,也不会向外辐射电磁波,故A错误,B正确.玻尔理论中的第二条假设,就是电子绕核运动可能的轨道半径是量子化的,不连续的,C正确.原子在发生能级跃迁时,要放出或吸收一定频率的光子,光子能量取决于两个能级之差,故D正确.4.[原子核衰变的理解]下列说法正确的是()A.原子核在衰变时能够放出α射线或β射线B.23290Th经过一系列α和β衰变,成为20882Pb,铅核比钍核少12个中子C.原子核的半衰期与物质的质量有关,质量大,半衰期长D.对物质加热或加压可以缩短原子核的半衰期答案 A考点梳理一、原子的核式结构1. α粒子散射实验的结果绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子的偏转超过了90°,有的甚至被撞了回来,如图1所示.图12.卢瑟福的原子核式结构模型在原子的中心有一个很小的核,叫原子核,原子的所有正电荷和几乎所有质量都集中在原子核里,带负电的电子在核外绕核旋转.3.原子核的尺度:原子核直径的数量级为10-15 m,原子直径的数量级约为10-10 m. 二、玻尔理论1.定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.2.跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n.(h是普朗克常量,h=6.63×10-34 J·s) 3.轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.4.氢原子的能级、能级公式(1)氢原子的能级图(如图2所示)图2(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV.②氢原子的半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.三、天然放射现象、原子核的组成1.天然放射现象(1)天然放射现象元素自发地放出射线的现象,首先由贝克勒尔发现.天然放射现象的发现,说明原子核还具有复杂的结构.(2)放射性和放射性元素物质发射某种看不见的射线的性质叫放射性.具有放射性的元素叫放射性元素.2.原子核(1)原子核的组成①原子核由中子和质子组成,质子和中子统称为核子.②原子核的核电荷数=质子数,原子核的质量数=中子数+质子数.③X元素原子核的符号为A Z X,其中A表示质量数,Z表示核电荷数.(2)同位素:具有相同质子数、不同中子数的原子,因为在元素周期表中的位置相同,同位素具有相同的化学性质.3.三种射线的比较1. 原子核的衰变(1)原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变. (2)分类α衰变:A Z X →A -4Z -2Y +42Heβ衰变:A Z X →A Z +1Y +0-1e2. 半衰期:放射性元素的原子核有半数发生衰变所需的时间.半衰期由核内部本身的因素决定,跟原子所处的物理或化学状态无关.5. [核能的计算方法]已知226 88Ra ,222 86Rn ,42He 的原子质量分别是226.025 4 u ,222.017 5 u ,4.002 6 u .求出226 88Ra 在α衰变226 88Ra →222 86Rn +42He 中放出的能量(以电子伏特为单位).答案 4.937 0×106 eV解析 衰变后的质量亏损为Δm =(226.025 4-222.017 5-4.002 6) u =0.005 3 u .因为1 u 相当于931.5 MeV ,因此释放的能量为ΔE =0.005 3×931.5 MeV ≈4.937 0 MeV =4.937 0×106 eV .6. [核能的计算方法]铀核裂变的许多可能的核反应中的一个是235 92U +10n →141 56Ba +9236Kr +310n.试计算一个铀235原子核裂变后释放的能量.(235 92U ,141 56Ba ,9236Kr ,10n 的质量分别为235.0439 u ,140.913 9 u,91.897 3 u,1.008 7 u .) 答案 200.6 MeV解析 裂变反应的质量亏损为Δm =(235.043 9+1.008 7-140.913 9-91.897 3-3×1.008 7) u =0.215 3 u. 一个铀235原子核裂变后释放的能量为 ΔE =Δmc 2=0.215 3×931.5 MeV =200.6 MeV . 方法提炼1. 核能:核子结合为原子核时释放的能量或原子核分解为核子时吸收的能量,叫做原子核的结合能,亦称核能. 2. 质能方程、质量亏损爱因斯坦质能方程E =mc 2,原子核的质量必然比组成它的核子的质量和要小Δm ,这就是质量亏损.由质量亏损可求出释放的核能ΔE =Δmc 2.考点一 氢原子能级及能级跃迁对原子跃迁条件的理解(1)原子从低能级向高能级跃迁,吸收一定能量的光子.只有当一个光子的能量满足hν=E 末-E 初时,才能被某一个原子吸收,使原子从低能级E 初向高能级E 末跃迁,而当光子能量hν大于或小于E 末-E 初时都不能被原子吸收.(2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差.特别提醒 原子的总能量E n =E k n +E p n ,由ke 2r 2n =m v 2r n 得E k n =12ke 2r n ,因此,E k n 随r 的增大而减小,又E n 随n 的增大而增大,故E p n 随n 的增大而增大,电势能的变化也可以从电场力做功的角度进行判断,当r 减小时,电场力做正功,电势能减小,反之,电势能增大.例1 如图3所示为氢原子能级示意图,现有大量的氢原子处于n =4的激发态,当向低能级跃迁时辐射出若干不同频率的光,下列说法正确的是( )A .这些氢原子总共可辐射出3种不同频率的光B .由n =2能级跃迁到n =1能级产生的光频率最小C .由n =4能级跃迁到n =1能级产生的光最容易表现出衍射现象图3D .用n =2能级跃迁到n =1能级辐射出的光照射逸出功为6.34 eV 的金属铂能发生光电效应解析 这些氢原子向低能级跃迁时可辐射出C 24=4×32=6种光子,选项A 错误;由n =4能级跃迁到n =3能级产生的光子能量最小,所以频率最小,选项B 错误;由n =4能级跃迁到n =1能级产生的光子能量最大,频率最大,波长最小,最不容易表现出衍射现象,选项C 错误;从n =2能级跃迁到n =1能级辐射出的光子能量为10.20 eV>6.34 eV ,所以能使金属铂发生光电效应,选项D 正确. 答案 D1.一个原子和一群原子的区别:一个氢原子只有一个电子,在某个时刻电子只能在某一个可能的轨道上,当电子从一个轨道跃迁到另一个轨道上时,可能情况有多种C2n=n(n-1)2,但产生的跃迁只有一种.而如果是大量的氢原子,这些原子的核外电子跃迁时就会出现所有的可能情况.2.入射光子和入射电子的区别:若是在光子的激发下引起原子跃迁,则要求光子的能量必须等于原子的某两个能级差;若是在电子的碰撞下引起的跃迁,则要求电子的能量必须大于或等于原子的某两个能级差.两种情况有所区别.突破训练1某光电管的阴极为金属钾制成的,它的逸出功为2.21 eV,如图4是氢原子的能级图,一群处于n=4能级的氢原子向低能级跃迁时,辐射的光照射到该光电管的阴极上,这束光中能使金属钾发生光电效应的光谱线条数是()A.2条B.4条C.5条D.6条答案 B考点二原子核和原子核的衰变图41.衰变规律及实质(1)两种衰变的比较发生α衰变或β衰变的过程中,产生的新核由于具有过多的能量(核处于激发态)而辐射出光子.2.原子核的人工转变用高能粒子轰击靶核,产生另一种新核的反应过程.典型核反应:(1)卢瑟福发现质子的核反应方程为:147N+42He→178O+11H.(2)查德威克发现中子的核反应方程为:94Be +42He →12 6C +10n.(3)居里夫妇发现放射性同位素和正电子的核反应方程为:2713Al +42He →3015P +10n. 3015P →3014Si +0+1e.3. 确定衰变次数的方法(1)设放射性元素A Z X 经过n 次α衰变和m 次β衰变后,变成稳定的新元素A′Z ′Y ,则表示该核反应的方程为A Z X →A ′Z ′Y +n 42He +m 0-1e根据电荷数守恒和质量数守恒可列方程 A =A ′+4n ,Z =Z ′+2n -m(2)确定衰变次数,因为β衰变对质量数无影响,先由质量数的改变确定α衰变的次数,然后再根据衰变规律确定β衰变的次数. 4. 半衰期(1)公式:N 余=N 原(12)t /τ,m 余=m 原(12)t /τ式中N 原、m 原表示衰变前的放射性元素的原子数和质量,N 余、m 余表示衰变后尚未发生衰变的放射性元素的原子数和质量,t 表示衰变时间,τ表示半衰期.(2)影响因素:放射性元素衰变的快慢是由原子核内部因素决定的,跟原子所处的物理状态(如温度、压强)或化学状态(如单质、化合物)无关.例2 (2011·海南·19(1))2011年3月11日,日本发生九级大地震,造成福岛核电站严重的核泄漏事故.在泄漏的污染物中含有131I 和137Cs 两种放射性核素,它们通过一系列衰变产生对人体有危害的辐射.在下列四个式子中,有两个能分别反映131I 和137Cs 的衰变过程,它们分别是________和________(填入正确选项前的字母).131I 和137Cs 原子核中的中子数分别是________和________. A .X 1―→137 56Ba +10nB .X 2―→131 54Xe +0-1eC .X 3―→137 56Ba +0-1eD .X 4―→131 54Xe +11p解析 根据核反应方程的质量数、电荷数守恒知,131I 的衰变为选项B,137Cs 的衰变为选项C,131I 的中子数为131-53=78,137Cs 的中子数为137-55=82. 答案 B C 78 82例3 关于放射性元素的半衰期,下列说法正确的有( )A .是原子核质量减少一半所需的时间B .是原子核有半数发生衰变所需的时间C .把放射性元素放在密封的容器中,可以减小放射性元素的半衰期D .可以用来测定地质年代、生物年代等解析原子核衰变后变成新核,新核与未衰变的核在一起,故半衰期并不是原子核的数量、质量减少一半,A错,B对;衰变快慢由原子核内部因素决定,与原子所处的物理状态或化学状态无关,常用其测定地质年代、生物年代等,故C错,D对.答案BD突破训练2由于放射性元素23793Np的半衰期很短,所以在自然界一直未被发现,只是在使用人工的方法制造后才被发现.已知23793Np经过一系列α衰变和β衰变后变成20983Bi,下列判断中正确的是()A.20983Bi的原子核比23793Np的原子核少28个中子B.20983Bi的原子核比23793Np的原子核少18个中子C.衰变过程中共发生了7次α衰变和4次β衰变D.衰变过程中共发生了4次α衰变和7次β衰变答案BC解析20983Bi的中子数为209-83=126,23793Np的中子数为237-93=144,20983Bi的原子核比23793Np的原子核少18个中子,A错,B对;衰变过程中共发生了α衰变的次数为237-2094=7次,β衰变的次数是2×7-(93-83)=4次,C对,D错.考点三核反应类型及核反应方程的书写例4①2411Na→2412Mg+0-1e;②23592U+10n→14156Ba+9236Kr+310n;③21H+31H→42He+10n.下列说法正确的是() A.①是裂变,②是β衰变,③是聚变B.①是聚变,②是裂变,③是β衰变C.①是β衰变,②是裂变,③是聚变D.①是β衰变,②是聚变,③是裂变(2)现有四个核反应:A.21H+31H→42He+10nB.23592U+10n→X+8936Kr+310nC.2411Na→2412Mg+0-1eD.42He+94Be→126C+10n①________是发现中子的核反应方程,________是研究原子弹的基本核反应方程,________是研究氢弹的基本核反应方程.②求B中X的质量数和中子数.解析(1)2411Na→2412Mg+0-1e中Na核释放出β粒子,为β衰变,23592U+10n→14156Ba+9236Kr+310n为铀核在被中子轰击后,分裂成两个中等质量的核,为裂变.而21H+31H→42He+10n 为聚变,故C正确.(2)①人工转变核反应方程的特点:箭头的左边是氦核与常见元素的原子核,箭头的右边也是常见元素的原子核.D是查德威克发现中子的核反应方程,B是裂变反应,是研究原子弹的基本核反应方程,A是聚变反应,是研究氢弹的基本核反应方程.②由电荷数守恒和质量数守恒可以判定,X质量数为144,电荷数为56,所以中子数为144-56=88.答案(1)C(2)①D B A②14488突破训练3三个原子核X、Y、Z,X核放出一个正电子后变为Y核,Y核与质子发生核反应后生成Z核并放出一个氦核(42He),则下面说法正确的是() A.X核比Z核多一个质子B.X核比Z核少一个中子C.X核的质量数比Z核的质量数大3D.X核与Z核的总电荷数是Y核电荷数的2倍答案CD解析设原子核X的符号为a b X,则原子核Y为a b-1Y,a b X→0+1e+a b-1Y,11H+a b-1Y→42He+a-3b-2Z,故原子核Z为a-3b-2Z.考点四关于核能的计算1.应用质能方程解题的流程图(1)根据ΔE=Δmc2计算,计算时Δm的单位是“kg”,c的单位是“m/s”,ΔE的单位是“J”.(2)根据ΔE=Δm×931.5 MeV计算.因1原子质量单位(u)相当于931.5 MeV的能量,所以计算时Δm的单位是“u”,ΔE的单位是“MeV”.2. 利用质能方程计算核能时,不能用质量数代替质量进行计算.例5裂变反应是目前核能利用中常用的反应,以原子核23592U为燃料的反应堆中,当235 92U俘获一个慢中子后发生的裂变反应可以有多种方式,其中一种可表示为:23592U +1n→13954Xe +9438Sr+310n235.043 9 1.008 7 138.917 8 93.915 4反应方程下方的数字是中子及有关原子核的静止质量(以原子质量单位u为单位).已知1 u的质量对应的能量为9.3×102 MeV,此裂变反应释放出的能量是______ MeV.解析裂变前后的质量亏损是Δm=(235.043 9+1.008 7-138.917 8-93.915 4-3×1.008 7) u=0.193 3 u.亏损质量转化为能量ΔE=Δmc2=0.193 3×9.3×102 MeV=1.8×102 MeV.答案 1.8×102突破训练4已知氦原子的质量为M He u,电子的质量为m e u,质子的质量为m p u,中子的质量为m n u,u为原子质量单位,且由爱因斯坦质能方程E=mc2可知:1 u对应于931.5 MeV的能量,若取光速c=3×108 m/s,则两个质子和两个中子聚变成一个氦核,释放的能量为() A.[2(m p+m n)-M He]×931.5 MeVB.[2(m p+m n+m e)-M He]×931.5 MeVC.[2(m p+m n+m e)-M He]·c2 JD.[2(m p+m n)-M He]·c2 J答案 B解析核反应方程为211H+210n→42He,质量亏损Δm=2(m p+m n)-(M He-2m e)=2(m p+m n+m e)-M He,所以释放的能量为ΔE=Δm×931.5 MeV=[2(m p+m n+m e)-M He]×931.5 MeV,选项B正确.高考题组1.(2012·重庆理综·19)以下是物理学史上3个著名的核反应方程x+73Li→2y y+147N→x+178Oy+94Be→z+126Cx、y和z是3种不同的粒子,其中z是() A.α粒子B.质子C.中子D.电子答案 C解析第二、三个核反应分别是发现质子和中子的核反应方程,根据核反应方程的质量数和电荷数守恒可得,x、y、z分别是11H、42He、10n,C正确.2.(2012·广东理综·18)能源是社会发展的基础,发展核能是解决能源问题的途径之一.下列释放核能的反应方程,表述正确的有()A.31H+21H→42He+10n是核聚变反应B.31H+21H→42He+10n是β衰变C.23592U+10n→14456Ba+8936Kr+310n是核裂变反应D.23592U+10n→14054Xe+9438Sr+210n是α衰变答案AC解析β衰变时释放出电子(0-1e),α衰变时释放出氦原子核(42He),可知B、D错误;选项A中一个氚核和一个氘核结合成一个氦核并释放出一个中子是典型的核聚变反应,A 正确;选项C中一个U235原子核吸收一个中子,生成一个Ba原子核和一个Kr原子核并释放出三个中子是典型的核裂变反应,C正确.3.(2012·四川理综·17)如图5所示为氢原子能级示意图的一部分,则氢原子()图5A.从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出电磁波的波长长B.从n=5能级跃迁到n=1能级比从n=5能级跃迁到n=4能级辐射出电磁波的速度大C.处于不同能级时,核外电子在各处出现的概率是一样的D.从高能级向低能级跃迁时,氢原子核一定向外放出能量答案 A解析因为E4-E3=0.66 eV<E3-E2=1.89 eV,根据c=λν和hν=E m-E n得,从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出电磁波的波长长,选项A正确;电磁波在真空中的传播速度都相等,与光子的频率无关,选项B错误;氢原子的核外电子处于不同能级时在各处出现的概率是不同的,能级越低,在靠近原子核较近的地方出现概率越大,选项C错误;氢原子从高能级跃迁到低能级时,是氢原子核外的电子从高能级跃迁到低能级时向外放出的能量,选项D错误.模拟题组4. 23892U是一种放射性元素,其能发生一系列放射性衰变,衰变过程如图6所示.请写出①、②两过程的衰变方程:①________________________________________________________;图6②________________________________________________________________________.答案①21083Bi→21084Po+0-1e②21083Bi→20681Tl+42He5.下列核反应方程及其表述完全正确的是()A.32He+21H→42He+11H是聚变反应B.23892U→23490Th+42He是人工转变C.23592U+10n→9236Kr+14156Ba+310n是裂变反应D.2411Na→2412Mg+0-1e是裂变反应答案AC解析在核反应过程中,反应前后核电荷数和质量数分别守恒,选项B中的核反应是α衰变;选项D中的核反应是人工转变,选项B、D错误,选项A、C正确.6.已知金属钙的逸出功为2.7 eV,氢原子的能级图如图7所示,一群氢原子处于量子数n =4能级状态,则()图7A.氢原子可能辐射6种频率的光子B.氢原子可能辐射5种频率的光子C.有3种频率的辐射光子能使钙发生光电效应D.有4种频率的辐射光子能使钙发生光电效应答案AC解析从n=4能级跃迁可能产生的光子为6种,选项A正确.若产生光电效应,则光子的能量需要大于2.7 eV,此时只有第4能级跃迁到第1能级、第3能级跃迁到第1能级、第2能级跃迁到第1能级3种频率的光子,选项C正确.(限时:30分钟)►题组1原子的核式结构模型1. 如图1所示为卢瑟福做α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,下述对观察到的现象的说法中正确的是()A.放在A位置时,相同时间内观察到屏上的闪光次数最多B.放在B位置时,相同时间内观察到屏上的闪光次数只比图1 A位置时稍少些C.放在C、D位置时,屏上观察不到闪光D.放在D位置时,屏上仍能观察到一些闪光,但次数极少答案AD解析α粒子散射实验的结果是,绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,少数α粒子发生了较大偏转,极少数α粒子被反弹回来.因此,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,在相同时间内观察到屏上的闪光次数分别为绝大多数、少数、少数、极少数,故A、D正确.2.卢瑟福通过α粒子散射实验,判断出原子中心有一个很小的核,并由此提出了原子的核式结构模型.如图2所示的平面示意图中①、③两条线表示α粒子运动的轨迹,则沿②所示方向射向原子核的α粒子可能的运动轨迹是()A.轨迹a B.轨迹b C.轨迹c D.轨迹d 图2答案 A解析α粒子带正电,因此α粒子靠近核时,与核间有斥力,沿方向②的α粒子比沿方向①的α粒子离核近,与核的作用强,因此α粒子沿方向②进入后与核作用向外侧散射的偏转角应该比沿①的大,故A正确.►题组2玻尔理论与氢原子跃迁3.下列说法中正确的是() A.氢原子由较高能级跃迁到较低能级时,电子动能增加,原子势能减少B.原子核的衰变是原子核在其他粒子的轰击下而发生的C.β衰变所释放的电子是原子核内的中子转化成质子而产生的D.放射性元素的半衰期随温度和压强的变化而变化解析原子核的衰变是自发进行的,选项B错误;半衰期是放射性元素的固有特性,不会随外部因素而改变,选项D错误.4.可见光光子的能量在1.61 eV~3.10 eV范围内.若氢原子从高能级跃迁到低能级,根据氢原子能级图(如图3所示)可判断()图3A.从n=4能级跃迁到n=3能级时发出可见光B.从n=3能级跃迁到n=2能级时发出可见光C.从n=2能级跃迁到n=1能级时发出可见光D.从n=4能级跃迁到n=1能级时发出可见光答案 B解析四个选项中,只有B选项的能级差在1.61 eV~3.10 eV范围内,故B选项正确.5.(2010·重庆理综·19)氢原子部分能级的示意图如图4所示.不同色光的光子能量如下表所示.图4处于某激发态的氢原子,发射的光的谱线在可见光范围内仅有2条,其颜色分别为() A.红、蓝-靛B.黄、绿C.红、紫D.蓝-靛、紫解析 原子发光时放出的光子的能量等于原子能级差,先分别计算各相邻的能级差,再由小到大排序.结合可见光的光子能量表可知,有两个能量分别为1.89 eV 和2.55 eV 的光子属于可见光,分别属于红光和蓝-靛光的范围,故答案为A. ►题组3 原子核的衰变、人工核反应6. 在下列4个核反应方程中,X 表示α粒子的是( )A.3015P →3014Si +XB.238 92U →234 90Th +XC.2713Al +X →2712Mg +11HD.2713Al +X →3015P +10n答案 BD解析 根据质量数守恒和电荷数守恒可知,四个选项中的X 分别代表:01e 、42He 、10n 、42He ,选项B 、D 正确.7. 如图5甲是α、β、γ三种射线穿透能力的示意图,图乙是工业上利用射线的穿透性来检查金属内部伤痕的示意图,请问图乙中的检查利用的是( )图5A .α射线B .β射线C .γ射线D .三种射线都可以 答案 C解析 由题意可知,工业上需用射线检查金属内部的伤痕,由题图甲可知,三种射线中γ射线穿透力最强,而α射线、β射线都不能穿透金属,所以答案为C.8. 一块含铀的矿石质量为M ,其中铀元素的质量为m ,铀发生一系列衰变,最终生成物为铅.已知铀的半衰期为T ,那么下列说法中正确的是( )A .经过2个半衰期后,这块矿石中基本不再含有铀B .经过2个半衰期后,原来所含的铀元素的原子核有m4发生了衰变C .经过3个半衰期后,其中铀元素的质量还剩m8D .经过1个半衰期后该矿石的质量剩下M2答案 C解析 经过2个半衰期后矿石中剩余的铀元素应该有m4,经过3个半衰期后矿石中剩余的铀元素还有m8.因为衰变产物大部分仍然留在矿石中,所以矿石质量没有太大的改变.9. (2012·大纲全国·15)235 92U 经过m 次α衰变和n 次β衰变,变成20782Pb ,则( )A .m =7,n =3B .m =7,n =4C .m =14,n =9D .m =14,n =18答案 B解析 衰变过程满足质量数守恒和电荷数守恒.先写出核反应方程:235 92U →207 82Pb +m 42He+n0-1e根据质量数守恒和电荷数守恒列出方程 235=207+4m 92=82+2m -n解得m =7,n =4,故选项B 正确,选项A 、C 、D 错误. ►题组4 关于核能的计算问题10.太阳内部持续不断地发生着4个质子(11H)聚变为1个氦核(42He)的热核反应,核反应方程是411H →42He +2X ,这个核反应释放出大量核能.已知质子、氦核、X 的质量分别为m 1、m 2、m 3,真空中的光速为c .下列说法中正确的是 ( )A .方程中的X 表示中子(10n)B .方程中的X 表示电子(0-1e)C .这个核反应中质量亏损Δm =4m 1-m 2D .这个核反应中释放的核能ΔE =(4m 1-m 2-2m 3)c 2 答案 D解析 由质量数守恒、电荷数守恒可推断出X 为01e ,A 、B 错;质量亏损为Δm =4m 1-m 2-2m 3,释放的核能为ΔE =Δmc 2=(4m 1-m 2-2m 3)c 2,C 错,D 对.11.2010年上海世博会太阳能应用技术引领了世界.太阳能屋顶、太阳能幕墙、太阳能汽车、太阳能动态景观……科学研究发现太阳发光是由于其内部不断发生从氢核到氦核的核聚变反应,即在太阳内部4个氢核(11H)转化成一个氦核(42He)和两个正电子(01e)并放出能量.已知质子质量m p =1.007 3 u ,α粒子的质量m α=4.001 5 u ,电子的质量m e =0.000 5 u ,1 u 的质量相当于931.5 MeV 的能量. (1)写出该热核反应方程;(2)一次这样的热核反应过程中释放出多少MeV 的能量?(结果保留四位有效数字)答案 (1)411H →42He +201e (2)24.87 MeV 解析 (1)411H →42He +201e(2)Δm =4m p -m α-2m e =4×1.007 3 u -4.001 5 u -2×0.000 5 u =0.026 7 uΔE=Δmc2=0.026 7×931.5 MeV=24.87 MeV.。
第13章氢冷设备和制氢
第十三章氢冷设备和制氢、储氢装置的运行与维护第一节试题一、填空题1.氢气是极具危险性的爆炸燃烧气体,在氧气或空气中极易自燃爆炸。
氢气在空气中的爆炸阈值为,在氧气中爆炸阈值扩展到。
2.禁止人员进入制氢室和氢罐区。
因工作需要进入制氢站的人员应实行制度。
3.禁止在制氢室、储氢罐、氢冷发电机以及氢气管路近旁进行或做能产生的工作。
4.制氢和供氢的管道、阀门或其他设备发生冻结时,应用或解冻,禁止用火烤。
为了检查各连接处有无漏氢的情况,可用仪器或肥皂水进行检查,禁止用检查。
5.储氢设备(包括管道系统)和发电机氢冷系统进行检修前,必须将检修部分与相连的部分,加装严密的。
6.排出带有压力的氢气、氧气或向储氢罐、发电机输送氢气时,应地打开设备上的阀门和节气门,使气体地放出或输送。
7.在发电机内充有氢气时或在电解装置上进行检修工作,应使用的工具,以防发生火花;必须使用钢制工具时,应涂上。
8.发电机氢冷系统和制氢设备中的氢气和,在运行中必须按专用规程的要求进行。
9.制氢室着火时,应立即电气设备运行,切断电源,排除系统压力,应用二氧化碳灭火器灭火。
10.由于漏氢而着火时,应用灭火并用密封漏氢处不使氢气逸出,或采用其他方法断绝气源。
11.不准用碰触电解槽,禁止用分别接触到不同的电极上。
12.制氢室应设检测装置,房顶应有经常处于开启状态的。
并采用木制门窗,门应向开。
13.电解槽氢氧两侧运行的温度差和压力差必须保持在的范围内。
14.储氢罐上的安全门应,保证动作良好。
15.应定期测定运行中储氢罐的氢气纯度、湿度和并保证在合格范围,应根据氢罐内的湿度定期排除氢罐内的。
16.在环境温度低于零度的地区,储氢罐的底部排水管道、阀门及向空安全阀应有,防止冻坏管道、阀门。
17.由制氢站向发电机补充氢气应经储氢罐,禁止由直接向发电机补氢。
18.储氢罐的氢气入口和供氢出口管路应设置,且供氢出口管应从储氢罐内的部引出。
19.氢冷发电机的冷却介质,由氢气换为空气,或由空气换为氢气的,应按专门的置换规程进行。
无机化学(第四版)课后答案
无机化学课后答案 第13章氢和稀有气体13-1 氢作为能源,其优点是什么?目前开发中的困难是什么? 1、解:氢作为能源,具有以下特点:(1)原料来源于地球上储量丰富的水,因而资源不受限制; (2)氢气燃烧时放出的热量很大;(3)作为燃料的最大优点是燃烧后的产物为水,不会污染环境; (4)有可能实现能量的储存,也有可能实现经济高效的输送。
发展氢能源需要解决三个方面的问题:氢气的发生,氢气的储备和氢气的利用13-2按室温和常压下的状态(气态 液态 固态)将下列化合物分类,哪一种固体可能是电的良导体?BaH 2;SiH 4;NH 3;AsH 3;PdH 0.9;HI13-3试述从空气中分离稀有气体和从混合气体中分离各组分的根据和方法。
3、解:从空气中分离稀有气体和从混合稀有气体中分离各组分,主要是利用它们不同的物理性质如:原子间不同的作用力、熔点沸点的高低以及被吸附的难易等差异达到分离的目的。
13-4试说明稀有气体的熔点 、沸点、密度等性质的变化趋势和原因?4、解:氦、氖、氩、氪、氙,这几种稀有气体熔点、沸点、密度逐渐增大。
这主要是由于惰性气体都是单原子分子,分子间相互作用力主要决定于分子量。
分子量越大,分子间相互作用力越大,熔点沸点越来越高。
密度逐渐增大是由于其原子量逐渐增大,而单位体积中原子个数相同。
13-5你会选择哪种稀有气体作为:(a )温度最低的液体冷冻剂;(b )电离能最低 安全的放电光源;(c )最廉价的惰性气氛。
13-6用价键理论和分子轨道理论解释HeH 、HeH +、He 2+粒子存在的可能性。
为什么氦没有双原子分子存在?13-7 给出与下列物种具有相同结构的稀有气体化合物的化学式并指出其空间构型:(a) ICl 4- (b)IBr 2- (c)BrO 3- (d)ClF7、 解: 4XeF 平面四边形 2XeF 直线形3XeO 三角锥 XeO 直线形13-8用 VSEPR 理论判断XeF 2 、XeF 4、XeF 6、XeOF 4及ClF 3的空间构型。
氢站安全管理规定
氢站安全管理规定第一章总则第一条目的和依据为了确保氢站的安全运营,防范事故风险,保护员工和公众的生命资产安全,特订立本规定。
依据《中华人民共和国安全生产法》《氢能源安全管理规定》等相关法律法规,订立本规定。
第二条适用范围本规定适用于公司旗下全部氢能源站点,包含建设、运营、维护、管理等环节。
第二章氢站建设与设备安全管理第三条设计与建设1.氢站建设应符合国家相关规范和标准,由专业设计机构进行设计并经验收合格后方可投入使用。
2.氢站设备应选用具备合格证书的可靠产品,不得使用伪劣产品。
3.施工单位应依照设计要求进行施工,并严格依照规定流程进行验收。
第四条设备检测与维护1.氢站设备应定期进行检测与维护,并建立相应的检测与维护记录,以确保设备良好状态。
2.检测与维护工作应由具备相关资质和经验的专业人员执行。
第五条库存安全管理1.氢站应设置安全储存区域,存放与氢有关的设备、气瓶和化学品,并严格遵守相关操作规程进行管理。
2.库存区域应符合防火、防爆要求,确保设备和化学品的安全存放。
第三章氢站操作与人员安全管理第六条氢站操作规程1.氢站应编制和完满操作规程,明确岗位责任,规范操作流程,确保安全操作。
2.操作规程应定期依据实际工作情况进行修订和完满,并向相关人员进行培训和宣传。
第七条岗位责任1.氢站应设立安全负责人,并明确其岗位职责,负责订立安全管理制度和规范,组织实施安全培训和应急救援工作。
2.氢站的运营人员应持相关证书,经过专业培训并取得合格后方可上岗。
第八条安全防范措施1.氢站应配备消防设备并进行定期检查和维护,确保消防安全。
2.氢站应定期进行安全检查,及时排查隐患并采取措施进行整改。
第九条突发事件应急预案1.氢站应订立并完满应急预案,明确突发事件的分类和处理程序,并进行实际演练。
2.氢站应建立健全应急救援队伍,并定期进行培训和演练,提高应急救援本领。
第四章考核与监督第十条考核标准1.氢站的安全管理工作将纳入年度考核指标之中,考核内容包含设备的维护情况、操作规程的执行情况、安全防范措施的落实等。
第十三章 氢和稀有气体汇总
二、希有气体化合物
巴特列:PtO2F6, 经X射线分析和其它实验证明,此化 合物的化学式为O2+PtF6-。
O2 O2 e 1175.7KJ mol1
Xe Xe e 1171.5KJ mol1
Xe + PtF6 = Xe+PtF6-
其中主要是Xe的化合物
3.处理好个性和共性的关系 在掌握通性的同时,特别要注意个性。
如F、Cl的电子亲合能的特点,特别小的 原因和特别大的原因、变化趋势等
研究某一类化合物(如卤化物、硫 化物)时,既要认识该类化合物的通性, 又要剖析若干具体化合物。对通性的认 识能指导对个别物质的认识,而认识了 个别化合物又能丰富对通性的认识。这 是一般和个别相结合的认识方法。
在一定条件下氟与Xe有下列反应 F2+Xe(过量)→XeF2 F2+Xe(少量)→XeF4 F2+Xe(少量)→XeF6
XeF2是强氧化剂,不太稳定。 2XeF2+2H2O = 2Xe+4HF+O2 XeF2+2KCl = Xe+2KF+Cl2
4XeF4+8H2O = 2XeO3+2Xe+O2+16HF XeF6+3H2O = XeO3+6HF
3、易被等过渡金属吸附。
二、氢的成键特征
1、H的价电子层构型为1s1,电负性为 2.2,可失去价电子,形成 H (质子)
它以两种形式存在:
气态质子流
结合态质子,如:H
3O
,NH
4
等
H+半径小,单独存在不稳定,易与 其它原子或分子相结合。H的还原性好, 是好的还原剂。
氢站安全管理规定
氢站安全管理规定第一章总则为了规范氢站的运营管理,保障社会公共安全,保护职工和环境的安全,根据国家相关法律法规和企业实际情况,制定本《氢站安全管理规定》(以下简称“本规定”)。
第二章管理标准第一节氢气储存管理1.氢气储存设备必须满足国家安全技术要求,并进行定期检测和维修保养。
2.氢气储存设备周围禁止堆放易燃、易爆、腐蚀性等危险物品。
3.氢气储存设备必须设置防火、防爆等安全设施,并定期进行维护和测试。
4.氢气储存区域内严禁吸烟、明火作业等火源。
5.氢气储存设备运行过程中必须有专人监控,同时配备灭火、急救设备,并进行定期检查。
6.氢气储存设备周边应设置醒目的安全警示标识,以提醒工作人员和来访人员注意安全。
第二节氢气加注管理1.氢气加注员必须经过专业培训,并且取得相应资格证书方可上岗。
2.氢气加注设备必须定期检测和维修保养,确保其正常运行。
3.氢气加注区域严禁无关人员进入,相关人员必须佩戴防爆工具,并遵守相关操作规程。
4.氢气加注设备周围禁止堆放易燃、易爆、腐蚀性等危险物品,并保持通风畅通。
5.氢气加注设备的操作过程中应注意防火、防爆等安全措施,并定期进行演练和应急处置培训。
6.氢气加注设备出现故障或异常情况时,应立即停止操作并上报相关领导,并进行紧急处理。
第三节氢气泄漏应急处理1.氢气泄漏情况发生时,首先应立即启动氢气泄漏报警装置,同时通知相关人员撤离现场。
2.根据泄漏情况的严重程度,启动相应级别的应急预案,组织人员进行紧急处置。
3.氢气泄漏应急处置人员必须佩戴防护装备,并按照相关程序进行泄漏源封堵、泄漏物排除等活动。
4.氢气泄漏事故发生后,必须及时进行事故调查和原因分析,提出改进措施,防止类似事故重演。
第三章考核标准第一节安全设备的管理考核1.定期检查氢气储存设备和加注设备的完好性和使用情况,评估其是否符合相关安全技术要求。
2.检查安全设备的保养情况,包括防火、防爆等安全设施是否正常运行。
3.检查氢气储存设备和加注设备周边的环境是否符合要求,是否存在危险品堆放等不安全因素。
第13章氢和稀有气体
制备方法
• • • • • • • • • 实验室方法 化学法、电解法 工业生产方法 用碳来还原水蒸气制取氢气 用烃类裂解的方法制取氢 水蒸气转换法 烷烃制取烯烃反应的副产物 盐型氢化物与水反应 利用硅与碱反应
3. 氢化物
(1) 离子型(类盐型)氢化物
形成
2M + H2 → 2MH (M代表碱金属)
(a)纯的为白色晶体, 不纯的为浅灰色至黑色 (b)具有离子化合物特征, 如熔、沸点较高, 熔融时能导电 (c)受热时能分解为氢气和游离金属 (d)与水反应产生氢气
MH + H2O → MOH + H2↑
性质
1. 离子型(类盐型)氢化物
(a)纯的为白色晶体, 不纯的为浅灰色至黑色 -能在非水溶剂中与B3+、Al3+、Ga3+等 H (b)具有离子化合物特征, 结合成复合氢化物 如熔、沸点较高, 熔融时能导电
(3)金属型氢化物
(a) 在过渡型氢化物中, 氢以三种形式存在
氢以原子状态存在于金属晶格中 氢的价电子进入氢化物导带, 氢以H+形式存在 氢从氢化物导带中得一个电子, 以H-形式存在
(b) 某些过渡金属和合金具有吸收和释放 氢气的作用 2Pd + H 2PdH 2 某些过渡金属或过渡金属合金可做储氢材料
第13章 氢和稀有气体
13.1
氢Leabharlann 13.1.1 氢的存在和物理性质
13.1.2 氢的化学性质和氢化物
13.1.1 氢的存在和物理性质 • 1766年,英国物理学家和化学家卡文 迪什用六种相似的反应制出了氢气, 这些反应包括锌、铁、锡分别与盐酸 或稀硫酸反应。但由于他是燃素学说 的忠实信徒,而不认为这是一种新的 气体。 • 1787年,杰出的化学家拉瓦锡首次明 确指出水是氢和氧的化合物,氢是一 种元素,并把它命名为Hydrogen。
第十三章气体动理论习题解
第十三章 气体动理论13-1 真空设备内部的压强可达到1.013×10-10 Pa ,若系统温度为300K ,在此压强下,气体分子数密度为多少?解: 102310102.45300101.38101.013⨯=⨯⨯⨯==--kT p n m -313-2 2.0×10-2 kg 氢气装在2.0×10-3 m 3的容器内,当容器内的压强为3.90×105 Pa 时,氢气分子的平均平动动能为多大?解: 根据公式p =k εn 32,可得5222233333 3.9010 1.94102.010 6.021022 2.010 2.010k p nε----⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯J13-3 体积为1.0×10-3 m 3的容器中含有1.01×1023个氢气分子,如果其中压强为1.01×105Pa ,求该氢气的温度和分子的方均根速率。
解: 由理想气体物态方程可得氢气温度为:T =p / (nk )=p V / (Nk )=72.5K氢气分子的方均根速率为:29.5110m ==⨯s -113-4 一容器内贮有氧气,其压强为1.01×105 Pa ,温度为27.0℃,求:(1)气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离(设分子间均匀等距排列)。
解: (1)气体分子的数密度n =p / (kT )=2.44⨯1025 m -3 (2)氧气的密度ρ=m / v =p M / R T =1.30 kg ⋅m -3 (3)氧气分子的平均平动动能k ε=3kT / 2=6.21⨯10-21J(4)氧气分子的平均距离d⨯10-9 m(本题给出了通常状态下气体的分子数密度、平均平动动能、分子间平均距离等物理量。
)13-5 某些恒星的温度可达到1.0×108 K ,这也是发生核聚变反应(也称热核反应)所需要的温度,在此温度下的恒星可视为由质子组成。
第13章 氧化物和氢氧化物大类
蛋白石
三、复杂氧化物类 尖晶石 MgAl2O4
【晶体结构】 等轴晶系。 【物理性质】 通常呈红色(含Cr),绿色(含Fe3+) 或褐黑色(含Fe2+和Fe3+);玻璃光泽。无解理;偶有 平行(111)裂开。硬度8。相对密度3.55 【成因产状】 尖晶石常产于侵入岩与白云岩或 镁质灰岩的接触带中。 【鉴定特征】 八面体晶形,高硬度。
碧玉:呈红、黄褐、绿色不透明的致密块体。 血玉髓(又名血石、鸡血石)绿色石髓碧玉,内含约色斑点。 玛瑙:各色条带状玉髓呈同心状自外向内排列。
石英/水晶
石 英 与 辰 砂 共 生
碧玉 玛瑙
Байду номын сангаас
水晶簇 紫水晶
烟水晶
蔷薇石英(芙蓉石)
发晶
蛋白石 SiO2·nH2O
【化学组成】 SiO2:65%~90%,H2O:常为4%~9%,最高 20% 【形态】 【物理性质】 颜色不定,通常呈蛋白色;微透明;玻璃光泽 或蛋白光泽。无色透明者称玻璃蛋白石;半透明而具强烈的橙、 红等反射色者称火蛋白石;半透明带乳光变彩的蛋白石称贵蛋 白石。硬度5~5.5。相对密度介于1.9~2.3之间。 【鉴定特征】 以蛋白光泽和变彩为鉴定特征,有时类似于石 髓,但硬度较低。 【主要用途】 优质者俗称“欧泊”为宝玉石材料,硅藻土 用作过滤剂和建材。
结晶形态
氧化物常可形成完好的晶形,如尖晶石、磁铁
矿、铬铁矿等;也常见柱状、粒状、致密块状及其
他集合体形态
氢氧化物则常见为胶态混合物,结晶好时,晶
体呈板状、细小鳞片状或针状。
物理性质
(1)硬度:氧化物高硬度(5.5以上),氢氧化物
硬度显著降低。
(2)解理:氧化物仅少数发育中等至不完全解理。
第十三章课后习题答案
第十三章 热力学基础13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( )(A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功(D) b1a 过程放热,作正功;b2a 过程吸热,作正功分析与解 bca ,b1a 和b2a 均是外界压缩系统,由⎰=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B).13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( )(A) 对外作正功 (B) 内能增加(C) 从外界吸热 (D) 向外界放热分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( )(A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2Δ=,可知欲使氢气和氦气升高相同温度,须传递的热量 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为( )分析与解由绝热过程方程pVγ=常量,以及等温过程方程pV=常量,可知绝热线比等温线要陡,所以(A)过程不对,(B)、(C)过程中都有两条绝热线相交于一点,这是不可能的.而且(B)过程的循环表明系统从单一热源吸热且不引起外界变化,使之全部变成有用功,违反了热力学第二定律.因此只有(D)正确.13 -5一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功()(A) 2 000J(B) 1 000J(C) 4 000J(D) 500J分析与解热机循环效率η=W/Q吸,对卡诺机,其循环效率又可表为:η=1-T2 /T1,则由W /Q吸=1 -T2 /T1可求答案.正确答案为(B).13 -6根据热力学第二定律()(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D) 任何过程总是沿着熵增加的方向进行分析与解 对选项(B):不可逆过程应是指在不引起其他变化的条件下,不能使逆过程重复正过程的每一状态,或者虽然重复但必然会引起其他变化的过程.对选项(C):应是热量不可能从低温物体自动传到高温物体而不引起外界的变化.对选项(D):缺少了在孤立系统中这一前提条件.只有选项(A)正确. 13 -7 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg -1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得.解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15K13 -8 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.分析 理想气体作功的表达式为()⎰=V V p W d .功的数值就等于p -V 图中过程曲线下所对应的面积.解 S ABCD =1/2(BC +AD)×CD故 W =150 J13 -9 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3s 倍,求空气膨胀时所作的功.分析 本题是等压膨胀过程,气体作功()1221d V V p V p W V V -==⎰,其中压强p 可通过物态方程求得.解 根据物态方程11RT pV v =,汽缸内气体的压强11/V RT p v = ,则作功为 ()()J 1097.92/31112112⨯==-=-=RT V V V RT V V p W v v 13 -10 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功? 它的内能改变了多少?分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值.解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102J其内能的改变为Q =ΔE +W =1.21 ×103J13 -11 0.1kg 的水蒸气自120 ℃加热升温到140℃,问(1) 在等体过程中;(2) 在等压过程中,各吸收了多少热量? 根据实验测定,已知水蒸气的摩尔定压热容C p,m =36.21J·mol -1·K -1,摩尔定容热容C V,m =27.82J·mol -1·K -1. 分析 由量热学知热量的计算公式为T C Q m Δv =.按热力学第一定律,在等体过程中,T C E Q ΔΔm V ,V v ==;在等压过程中, T C E V p Q ΔΔd m p,p v =+=⎰.解 (1) 在等体过程中吸收的热量为J 101.3ΔΔ3m V,V ⨯===T C Mm E Q (2) 在等压过程中吸收的热量为 ()J 100.4Δd 312m p,p ⨯=-=+=⎰T T C M m E V p Q 13 -12 如图所示,在绝热壁的汽缸内盛有1mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02m 2 .从汽缸底部加热,使活塞缓慢上升了0.5m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12J·mol -1·K -1,摩尔定容热容C V,m =20.80J·mol -1·K -1 )分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q Δm p,p v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2 -p 1 V 1 )/R =p(V 2 -V 1 )/R =p· S· Δl /R则 J 105.293m p,p ⨯==pS ΔSΔl C Q13 -13 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?分析 (1) 求Q p 和Q V 的方法与题13-11相同.(2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V ,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.4/2111-⨯===RT V p Mm v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=. (1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V ,V =-==T T C E Q v(2) 按分析中的两种方法求作功值解1 ① 利用公式()V V p W d ⎰=求解.在等压过程中,T R Mm V p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R Mm W W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C Mm E Q 由于在(1) 中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W0ΔV V =-=E Q W13 -14 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE AC ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE AC ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326J , W ABC =126J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200J由此可得从C 到A ,系统内能的增量为ΔE CA =-200J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热.13 -15 如图所示,一定量的理想气体经历ACB 过程时吸热700J ,则经历ACBDA 过程时吸热又为多少?分析 从图中可见ACBDA 过程是一个循环过程.由于理想气体系统经历一个循环的内能变化为零,故根据热力学第一定律,循环系统净吸热即为外界对系统所作的净功.为了求得该循环过程中所作的功,可将ACBDA 循环过程分成ACB 、BD 及DA 三个过程讨论.其中BD 及DA 分别为等体和等压过程,过程中所作的功按定义很容易求得;而ACB 过程中所作的功可根据上题同样的方法利用热力学第一定律去求.解 由图中数据有p A V A =p B V B ,则A 、B 两状态温度相同,故ACB 过程内能的变化ΔE CAB =0,由热力学第一定律可得系统对外界作功W CAB =Q CAB -ΔE CAB =Q CAB =700J在等体过程BD 及等压过程DA 中气体作功分别为()⎰==0d BD V V p W()⎰-=-==J 1200d 12A DA V V P V p W则在循环过程ACBDA 中系统所作的总功为J 500D A BD A CB -=++=W W W W负号表示外界对系统作功.由热力学第一定律可得,系统在循环中吸收的总热量为J 500-==W Q负号表示在此过程中,热量传递的总效果为放热.13 -16 在温度不是很低的情况下,许多物质的摩尔定压热容都可以用下式表示2m p,2--+=cT bT a C式中a 、b 和c 是常量,T 是热力学温度.求:(1) 在恒定压强下,1 mol 物质的温度从T 1升高到T 2时需要的热量;(2) 在温度T 1 和T 2 之间的平均摩尔热容;(3) 对镁这种物质来说,若C p ,m 的单位为J·mol -1·K -1,则a =25.7J·mol -1·K-1 ,b =3.13 ×10-3J·mol -1·K-2,c =3.27 ×105J·mol -1·K.计算镁在300K时的摩尔定压热容C p,m ,以及在200K和400K之间C p,m 的平均值. 分析 由题目知摩尔定压热容C p,m 随温度变化的函数关系,则根据积分式⎰=21d m p,p T T T C Q 即可求得在恒定压强下,1mol 物质从T 1 升高到T 2所吸收的热量Qp .故温度在T 1 至T 2之间的平均摩尔热容()12p m p,/T T Q C -=. 解 (1) 11 mol 物质从T 1 升高到T 2时吸热为()()()()11122122122m p,p d 2d 21----+-+-=-+==⎰⎰T T c T T b T T a T cT bT a T C Q T T (2) 在T 1 和T 2 间的平均摩尔热容为()()21212p m p,//T T c T T a T T Q C -+=-=(3) 镁在T =300 K 时的摩尔定压热容为-1-12m p,K mol J 9.232⋅⋅=-+=-cT bT a C镁在200 K 和400 K 之间C p ,m 的平均值为()-1-12112m p,K mol J 5.23/⋅⋅=-+=T T c T T a C13 -17 空气由压强为1.52×105 Pa ,体积为5.0×10-3m 3 ,等温膨胀到压强为1.01×105 Pa ,然后再经等压压缩到原来的体积.试计算空气所作的功. 解 空气在等温膨胀过程中所作的功为()()2111121T /ln /ln p p V p V V RT Mm W == 空气在等压压缩过程中所作的功为()⎰-==12d V V p V p W 利用等温过程关系p 1 V 1 =p 2 V 2 ,则空气在整个过程中所作的功为()J 7.55/ln 11122111=-+=+=V p V p p p V p W W W T p13 -18 如图所示,使1mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT Mm W 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J (2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =p C (V B -V C )=2.0×103JQ ACB =W A CB =2.0×103 J13 -19 将体积为1.0 ×10-4m 3 、压强为1.01×105Pa 的氢气绝热压缩,使其体积变为2.0 ×10-5 m 3 ,求压缩过程中气体所作的功.(氢气的摩尔定压热容与摩尔定容热容比值γ=1.41)分析 可采用题13-13 中气体作功的两种计算方法.(1) 气体作功可由积分V p W d ⎰=求解,其中函数p (V )可通过绝热过程方程pV C γ= 得出.(2)因为过程是绝热的,故Q =0,因此,有W =-ΔE ;而系统内能的变化可由系统的始末状态求出.解 根据上述分析,这里采用方法(1)求解,方法(2)留给读者试解.设p 、V 分别为绝热过程中任一状态的压强和体积,则由γγpV V p =11得 γγV V p p -=11氢气绝热压缩作功为J 0.231d d 121211121-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-===⎰⎰-V V V V γp V V V p V p W V V γγ 13 -20 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=.(2) 炮弹的出口速度(忽略摩擦).分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m,D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2.(1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p 气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W (2) 根据分析2122121v v m m W -=,则 -121s m 563⋅=+=v 2W/m v13 -21 1mol 氢气在温度为300K,体积为0.025m 3 的状态下,经过(1)等压膨胀,(2)等温膨胀,(3)绝热膨胀.气体的体积都变为原来的两倍.试分别计算这三种过程中氢气对外作的功以及吸收的热量.分析 这三个过程是教材中重点讨论的过程.在p -V 图上,它们的过程曲线如图所示.由图可知过程(1 ) 作功最多, 过程( 3 ) 作功最少.温度T B >T C >T D ,而过程(3) 是绝热过程,因此过程(1)和(2)均吸热,且过程(1)吸热多.具体计算时只需直接代有关公式即可.解 (1) 等压膨胀()()J 1049.23⨯==-=-=A A B AA AB A p RT V V V RT V V p W v()J 1073.8273,,⨯===-=+=A A m p A B m p p p T R T C T T C E ΔW Q v v (2) 等温膨胀 J 1073.12ln /3⨯===A A RT V W C T vRTlnV对等温过程ΔE =0,所以J 1073.13⨯==T T W Q(3) 绝热膨胀T D =T A (V A /V D )γ-1=300 ×(0.5)0.4=227.4K对绝热过程a 0Q =,则有 ()()J 1051.125Δ3,⨯=-=-=-=D A D A m V a T T R T T C E W v 13 -22 绝热汽缸被一不导热的隔板均分成体积相等的A 、B 两室,隔板可无摩擦地平移,如图所示.A 、B 中各有1mol 氮气,它们的温度都是T0 ,体积都是V0 .现用A 室中的电热丝对气体加热,平衡后A 室体积为B 室的两倍,试求(1) 此时A 、B 两室气体的温度;(2) A 中气体吸收的热量.分析 (1) B 室中气体经历的是一个绝热压缩过程,遵循绝热方程TVγ-1 =常数,由此可求出B 中气体的末态温度TB .又由于A 、B 两室中隔板可无摩擦平移,故A 、B 两室等压.则由物态方程pV A =νRT A 和pV B =νRT B 可知T A =2T B .(2) 欲求A 室中气体吸收的热量,我们可以有两种方法.方法一:视A 、B 为整体,那么系统(汽缸)对外不作功,吸收的热量等于系统内能的增量.即QA =ΔE A +ΔE B .方法二:A 室吸热一方面提高其内能ΔE A ,另外对“外界”B 室作功WA.而对B 室而言,由于是绝热的,“外界” 对它作的功就全部用于提高系统的内能ΔEB .因而在数值上W A =ΔE B .同样得到Q A =ΔE A +ΔE B . 解 设平衡后A 、B 中气体的温度、体积分别为T A ,T B 和V A ,V B .而由分析知压强p A =p B =p .由题已知⎩⎨⎧=+=022V V V V V B A B A ,得⎩⎨⎧==3/23/400V V V V BA (1) 根据分析,对B 室有B γB γT V T V 1010--=得 ()0010176.1/T T V V T γB B ==-;0353.2T T T B A == (2) ()()0007.312525ΔΔT T T R T T R E E Q B A A A A =-+-=+= 13-23 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量. 解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln 32121211⨯=-==+=V V T T R M m V V RT Mm W W W CD AB由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J 1081.325/ln /ln Δ42112121,121⨯=-+=-+=+=+=T T R M m V V RT Mm T T C M m V V RT Mm E W Q Q Q m V DAAB DA AB 由此得到该循环的效率为 %15/==Q W η13 -24 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =CT ,C 为常数.将其与理想气体物态方程pV =m/MRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题13-23的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C M m Q -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-= CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R/2,摩尔定容热容C V ,m =3R/2.故循环效率为()()3/125/2ln 2312/5/2ln 321/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η 13 -25 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫ ⎝⎛'--''-='-''=T ηηT T T 13 -26 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知 ()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=---=---=-=B A C D B C A B D CA B m p C D m p AB CD T T T T T T T T T T T T C MT T C M m Q Q η1/11111,, (1) 与求证的结果比较,只需证得BA C D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2)V C /T C =V D /T D (3) C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.13 -27 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式Q pt Q W η//==,可得此条件下的最大功率.解 根据分析,热机获得的最大功率为()-1712s J 100.2//1/⋅⨯=-==t Q T T t Q ηp13 -28 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη 分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q η/1/112-=-=出发,利用热力学第一定律和等体、等压方程以及γ=C p,m 桙C V,m 的关系来证明.证 该热机循环的效率为CA BC Q Q Q Q η/1/112-=-=其中Q BC =m /M C p,m (T C -T B ),Q CA =m/M C V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1 =T C /V 2,T A /P 1 =T C /P 2,代入上式得()()1/1/12121---=p p V V γη 13 -29 如图所示为理想的狄赛尔(Diesel)内燃机循环过程,它由两绝热线AB 、CD 和等压线BC 及等体线DA 组成.试证此内燃机的效率为()()()1//1/12312123---=-V V V V γV V ηγγ证 求证方法与题13-28相似.由于该循环仅在DA 过程中放热、BC 过程中吸热,则热机效率为 ()()B C AD B C m p A D m V BCDA T T T T γT T C M T T C M m Q Q η---=---=-=111/1,, (1) 在绝热过程AB 中,有1211--=γB γA V T V T ,即()121//-=γA B V V T T (2)在等压过程BC 中,有23//V T V T B C =,即23//V V T T B C = (3)再利用绝热过程CD,得1311--=γC γD V T V T (4)解上述各式,可证得()()()1//1/12312123---=-V V V V γV V ηγγ 13 -30 如图所示,将两部卡诺热机连接起来,使从一个热机输出的热量,输入到另一个热机中去.设第一个热机工作在温度为T 1和T 2的两热源之间,其效率为η1 ,而第二个热机工作在温度为T 2 和T 3 的两热源之间,其效率为η2.如组合热机的总效率以η=(W 1 +W 2 )/Q 1 表示.试证总效率表达式为η=(1 -η1 )η2 +η1 或 η=1 -T 3/T 1分析 按效率定义,两热机单独的效率分别为η1=W 1 /Q 1和η2=W 2 /Q 2,其中W 1 =Q 1-Q 2 ,W 2 =Q 2-Q 3 .第一个等式的证明可采用两种方法:(1) 从等式右侧出发,将η1 、η2 的上述表达式代入,即可得证.读者可以一试.(2) 从等式左侧的组合热机效率η=(W 1 +W 2 )/Q 1出发,利用η1、η2的表达式,即可证明.由于卡诺热机的效率只取决于两热源的温度,故只需分别将两个卡诺热机的效率表达式η1=1-T 2 /T 1 和η2=1-T 3 /T 2 代入第一个等式,即可得到第二个等式.证 按分析中所述方法(2) 求证.因η1=W 1 /Q 1 、η2=W 2 /Q 2 ,则组合热机效率12211211121Q Q ηηQ W Q W Q W W η+=+=+= (1) 以Q 2 =Q 1-W 1 代入式(1) ,可证得η=η1 +η2 (1-η1 ) (2) 将η1=1-T 2 /T 1 和η2=1-T 3 /T 2代入式(2),亦可证得η=1-T 2 /T 1 +(1-T 3 /T 2 )T 2 /T 1 =1-T 3 /T 113 -31 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 .解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107=8.0 kW·h13 -32 一定量的理想气体进行如图所示的逆向斯特林循环(回热式制冷机中的工作循环),其中1→2为等温(T 1 )压缩过程,3→4为等温(T 2 )膨胀过程,其他两过程为等体过程.求证此循环的制冷系数和逆向卡诺循环制冷系数相等.(这一循环是回热式制冷机中的工作循环,具有较好的制冷效果.4→1过程从热库吸收的热量在2→3过程中又放回给了热库,故均不计入循环系数计算.)证明 1→2 过程气体放热2111lnV V RT Q v = 3→4 过程气体吸热 2122lnV V RT Q v = 则制冷系数 e =Q 2 /(Q 1-Q 2 )= T 2/( T 1-T 2 ).与逆向卡诺循环的制冷系数相同.13 -33 物质的量为ν的理想气体,其摩尔定容热容C V,m =3R/2,从状态A(p A ,V A ,T A )分别经如图所示的ADB 过程和ACB 过程,到达状态B(p B ,V B ,T B ).试问在这两个过程中气体的熵变各为多少? 图中AD 为等温线.分析 熵是热力学的状态函数,状态A 与B 之间的熵变ΔSAB 不会因路径的不同而改变.此外,ADB 与ACB 过程均由两个子过程组成.总的熵变应等于各子过程熵变之和,即DB AD AB S S S ΔΔΔ+=或CB AC AB S S S ΔΔΔ+=. 解 (1) ADB 过程的熵变为()()D B p,m A D B D D A T BD P D A T DBAD AB T T C V V T T C T W T Q T Q S S S /ln /ln /d /d /d /d ΔΔΔm p,v vR v +=+=+=+=⎰⎰⎰⎰ (1)在等温过程AD 中,有T D =T A ;等压过程DB 中,有V B /T B =V D /T D ;而C p ,m =C V ,m +R ,故式(1)可改写为()()()()A B A B A B p,m A B B D ADB V T V V V T C V T V T S /ln 23/ln /ln /ln ΔvR vR v vR +=+=(2) ACB 过程的熵变为()()C B V,m A C p,m CB AC BA ACB T TC V T C S S Q/T S /ln /ln ΔΔd Δv v +=+==⎰ (2)利用V C =V B 、p C =p A 、T C /V C =T A /V A 及T B /p B =T C /p C ,则式(2)可写为()()()()()()()A B A B A A B B V,m A B A B A B V,m ACB V T V V V p V p C V V p p V V R C S /ln 23/ln /ln /ln /ln /ln ΔvR vR v vR v v +=+=++=通过上述计算可看出,虽然ADB 及ACB 两过程不同,但熵变相同.因此,在计算熵变时,可选取比较容易计算的途径进行.13 -34 有一体积为2.0 ×10-2m 3的绝热容器,用一隔板将其分为两部分,如图所示.开始时在左边(体积V 1 =5.0 ×10-3m 3)一侧充有1mol 理想气体,右边一侧为真空.现打开隔板让气体自由膨胀而充满整个容器,求熵变.分析 在求解本题时,要注意⎰=BA T Q S d Δ 的适用条件.在绝热自由膨胀过程中,d Q =0,若仍运用上式计算熵变,必然有ΔS =0.显然,这是错误的结果.由于熵是状态的单值函数,当初态与末态不同时,熵变不应为零.出现上述错误的原因就是忽视了公式的适用条件. ⎰=BA T Q S d Δ 只适用于可逆过程,而自由膨胀过程是不可逆的.因此,在求解不可逆过程的熵变时,通常需要在初态与末态之间设计一个可逆过程,然后再按可逆过程熵变的积分式进行计算.在选取可逆过程时,尽量使其积分便于计算.解 根据上述分析,在本题中因初末态时气体的体积V 1 、V 2 均已知,且温度相同,故可选一可逆等温过程.在等温过程中,d Q =d W =p d V ,而VRT M m p =,则熵变为 ()1-12K J 52.11/ln d 1d d Δ12⋅=====⎰⎰⎰V V R M m V V R M m T V p T Q S V V。
第13章氢冷设备和制氢
第十三章氢冷设备和制氢、储氢装置的运行与维护第一节试题一、填空题1.氢气是极具危险性的爆炸燃烧气体,在氧气或空气中极易自燃爆炸。
氢气在空气中的爆炸阈值为,在氧气中爆炸阈值扩展到。
禁止人员进入制氢室和氢罐区。
因工作需要进入制氢站的人员应实行制度。
禁止在制氢室、储氢罐、氢冷发电机以及氢气管路近旁进行或做能产生的工作。
制氢和供氢的管道、阀门或其他设备发生冻结时,应用或解冻,禁止用火烤。
为了检查各连接处有无漏氢的情况,可用仪器或肥皂水进行检查,禁止用检查。
储氢设备(包括管道系统)和发电机氢冷系统进行检修前,必须将检修部分与相连的部分,加装严密的。
排出带有压力的氢气、氧气或向储氢罐、发电机输送氢气时,应地打开设备上的阀门和节气门,使气体地放出或输送。
在发电机内充有氢气时或在电解装置上进行检修工作,应使用的工具,以防发生火花;必须使用钢制工具时,应涂上。
发电机氢冷系统和制氢设备中的氢气和,在运行中必须按专用规程的要求进行。
制氢室着火时,应立即电气设备运行,切断电源,排除系统压力,应用二氧化碳灭火器灭火。
由于漏氢而着火时,应用灭火并用密封漏氢处不使氢气逸出,或采用其他方法断绝气源。
不准用碰触电解槽,禁止用分别接触到不同的电极上。
制氢室应设检测装置,房顶应有经常处于开启状态的。
并采用木制门窗,门应向开。
电解槽氢氧两侧运行的温度差和压力差必须保持在的范围内。
储氢罐上的安全门应,保证动作良好。
应定期测定运行中储氢罐的氢气纯度、湿度和并保证在合格范围,应根据氢罐内的湿度定期排除氢罐内的。
在环境温度低于零度的地区,储氢罐的底部排水管道、阀门及向空安全阀应有,防止冻坏管道、阀门。
由制氢站向发电机补充氢气应经储氢罐,禁止由直接向发电机补氢。
储氢罐的氢气入口和供氢出口管路应设置,且供氢出口管应从储氢罐内的部引出。
氢冷发电机的冷却介质,由氢气换为空气,或由空气换为氢气的,应按专门的置换规程进行。
再置换过程中,必须保证与工作的正确性,防止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13章氢的安全本章主要内容:1. 高压氢气的安全2. 液氢的安全3. 氢的安全排放技术4. 氢的安全处理和防护13.1 氢的危险来源氢能系统的应用与发展中,最使人关心的一个问题就是氢的安全问题。
不论是制氢、储氢、输氢或用氢,也不论是气氢、液氢或固体金属氢化物,人们在接触、使用过程中都不免碰到氢的安全问题。
氢的安全性是与(1)氢本身特有的危险品质;(2)外界的使用环境和使用方法;(3)氢能系统的结构、材料有关。
此外,它当然还与使用人员对氢的规律的认识等因素有关。
13.1.1 氢的固有危险特性氢的某些固有特性是跟氢的安全性密切相关的,表13-1中列出跟安全有关的氢的各种固有特性。
从这些数据中可以归纳出氢的内在危险品质。
(1)氢的易燃特性氢的分子量小、比重轻、扩散系数大,故在管道、阀门、容器中容易泄漏。
容易与空气或氧气相混合,形成预混的可燃气体混合物。
氢在空气,特别是在氧气中,着火及爆炸范围非常宽广。
而且,点火所需的能量很小,在空气中它只有0.02mJ。
这比碳氢燃料跟对应氧化剂的点火能量小得多。
正是由于这些原因,故它很容易和空气或氧气混合燃烧或爆炸。
图13-1 甲烷-空气和氢-空气混合物着火极限曲线氢的燃烧热高,火焰传播速度快。
正常燃烧情况下,火焰的层流传播速度约为0.3m/s。
但在爆震条件下,其火焰速度可高达每秒几公里之多。
因此,当氢与空气的可燃混合物遇到强烈的火源,如:明火,爆炸物或爆震管等时容易酿成燃烧剧烈的火灾。
表13-1 有关安全性的氢的各种固有特性氢在自由空间中剧烈燃烧时,一般不易发展成为爆震。
但是,在封闭的管道或容器中,即使遇到弱的火源,也会从缓慢燃烧过渡到爆震。
由于氢与空气或氧气的可燃混合物的点火能量很小,着火范围宽广,故它很容易为各种火源所点着,有时在发生事故时很难鉴别是哪种火源所引起。
图13.1示有甲烷-空气混合物及氢—空气混合物的着火范围以及两种混合物点火所需能量跟可燃混合物的成分百分数之间的关系。
从图中可以看出:氢气的着火范围要比甲烷—空气的宽广得多(在相同的工作压力下),而氢的点火能量比甲烷的几乎小一个数量级。
氢的淬熄距离很小,在空气中只有0.06cm。
因此,在燃烧器中需有捕焰器或防爆装置,以防止氢焰返火进入充装有氢和空气的封闭管道或容器中。
氢馅的辐射很小,又不见颜色,所以容易使人在不知不觉中触及火焰,造成伤害事故。
纯氢和氧进行燃烧,它的燃烧产物主要是水蒸气(H2O)和很少量的羟基(OH)。
羟基是燃烧反应中的一种短命的中间产物,羟基辐射光带在近紫外光区内,水蒸气的辐射光带在红外光区内,H2O是最终的燃烧产物,因此氢燃烧时的火焰是无色透明的。
当液氢储罐破裂,液氢大量漏出时,由此而引起的氢火球会造成严重的燃烧事故。
大的氢火球燃烧甚至可波及到离火球中心几公里的远处。
氢气爆炸范围宽,起爆能量低,但并不意味着氢气比其他气体更危险。
由于空气中可燃性气体的积累必定从低浓度开始,因此,就安全性来讲,爆炸下限比爆炸上限更重要。
达到爆炸下限的第一种气体不是氢气,而是丙烷(图13-2)。
图13-2氢气、甲烷和丙烷的爆炸范围和起爆能量美国布鲁克梅文国家实验室研究了在650K下,密闭条件时氢、空气和水蒸气的混合气的爆燃和爆炸实验。
实验是用BNL的HTCP设备来进行的,这套设备可用来观察气态混合物中的火焰加速度、爆燃到爆炸的转变和临界管现象以及测量爆炸的强度。
HTFC的主要元件是一个内径为27cm,长21.3m的圆柱形燃烧测试管,在700K下,这个元件最大承受压力实验发现:(1)爆炸的强度是混合化合物和气体热力学条件的函数;(2)氢的临界爆炸浓度取决于实验的几何尺度和热力学条件;(3)随着混合气温度的增加,氢气爆燃转变为爆炸的可能性越大。
(2)液氢的低温特性液氢是一种仅次于液氦的深度冷冻液体,其液态的温度保持在20.3K到14K 之间,在这样的低温下,除了氦气以外,所有其他气体,包括氧气或空气也都要凝结成为固体。
当液氢中混有空气或氧气等杂质时会在液氢储箱或管道、阀门中凝结成为固态的空气或固氧。
后者在受热时又会先挥发成气体并与挥发的液氢构成易爆的可燃混合物,在管道或容器内部或者在其排放口造成燃烧或爆炸。
由于储存液氢的容器内的温度很低而液氢储罐外的环境温度较高,故容器内外之间形成一个很大的传热温差。
热流会从周围的环境不断传入容器内部,促使内存的液体不断气化。
液氢挥发所产生的氢气,假如不断积压在一个密闭的容器上部而不让它流放出去,则封闭管道或容器内的压力就会随储存时间的延长而越来越高。
最后,液氢杜瓦罐内的压力发生巨大的积压。
从表13.1中可知,当液氢气化为气氢时,容积的膨胀比可高达850倍左右。
在长期积压储存而不让排放的条件下,罐内建立的理论最高压力可达到2000个大气压,即200MPa左右。
如没有特殊的安全保护装置,就会使液氢室储罐超压破裂,酿成巨大事故。
低温的环境对容器及管道等材料也有影响。
材料的强度通常虽随温度的降低而有所增加,但其延展性则常随温度的降低而显著下降。
在液氢系统起动时的跑冷过程中,温度的大幅度变化会引起系统材料的局部应力集中。
管内的两相流动和系统的不均匀冷却可以引起输氢管道的过度弯曲。
以上这些也都是系统运行中的危险因素。
液氢的低温冷冻特性对人体的生理也有危害。
当人体的皮肤接触到深冷液氢或液氢的输送管道时,或者接触到刚开始挥发的气氢时,会造成皮肤组织的冻伤或损坏。
特别危险的是,当人体表皮与深冷液氢管壁相接触时,由于后者温度很低,且深冷器壁与体肤之间又没有液氢蒸发时的气膜来隔离,结果使皮肤直接冻结在深冷器壁上,造成皮肤和人肉的冻坏与撕离。
图13-3 3m3液化燃料溢出后产生可燃气体混合物的面积(风速4m/s) 需要指出的是,和其他液化的气体燃料相比,液氢挥发快,有利于安全。
假设3m3的液氢、甲烷和丙烷分别溅到地面上并蒸发,假设周围是平坦的,风速为4m/s,则图12-3给出它们影响的范围,丙烷、甲烷和氢的影响范围分别为13500m2,5000m2和1000m2可见液氢的影响范围最小。
(3)氢脆的危害性氢的化学活泼性与渗透能力使它能与多种金属发生反应造成金属组织的脆化,即所谓氢脆。
氢脆也是造成储氢系统的泄漏和管道容器破裂的部分原因。
氢对金属的脆化作用一股可分为三种:a)环境氢脆,当金属或合金处于高压氢的环境中时,会使金属产生塑性变形,造成表面裂纹的增加,丧失金属的延展能力以及降低它的断裂应力。
b)内部氢脆,氢渗透到金属内部的晶格并为它所吸收时,会引起金属内部的氢脆。
造成内部氢脆的原因可能是局部区域氢的浓度很高,而该区域的额外残余应力又很大,或结构材料有尖锐的缺口、裂纹或受到过高的应力,致使氢容易扩散到金属内部并为其晶格所吸收,氢的这种破坏往往是渐变的,在不知不觉下慢慢地发生。
c)反应氢脆,当金属吸氢而氢与基体金属或某种合金或杂质成分起反应时,会构成脆的金属氢化物并降低金属的延展性。
高强度钢和镍基合金在高压的氢环境中较易脆化。
许多延展性好的低强度钢和钛基合金也发现有严重的脆化现象。
(4)氢的窒息性氢虽是无色、无臭、无味和无毒的气体,但它对人有窒息作用,假如空气中的正常含氧量(2l%)受氢气的冲释而大大降低。
当空气中含氧量被氢稀释到12~14%时,人的脉搏加速、呼吸困难。
含氧量降到10~12%时,嘴唇发紫,知觉失灵。
含氧量降低到8~10%时,神志不清,脸色苍白。
人体如在含氧6~8%环境中只要逗留8分钟就会死亡。
表13-2 各种气体的粘性系数13.1.2 外界环境及使用条件的影响氢除了具有内在的危险特性之外,外界因素的激发对造成的事故也是一种不可忽视的问题。
(1)一般输氢管道及容器的漏泄氢与其他气体相比,它不仅分子量最小,而且它的黏度也是最小的(见表12-2),而更小的黏度意味着各种气体中氢更容易泄漏。
氢气和液氢输送过程的漏泄往往是造成灾祸的重要原因。
不论是系统中氢的外漏或者是外部空气经管道裂缝漏入系统,都会在封闭的容器内、或容器的外部形成可燃的气体混合物,从而潜伏着燃烧和爆炸的危险。
为了避免外部空气混入系统,管道成容器内的输氢压力必需大于外界的大气压力。
各类燃料中氢的黏度最小,最易泄漏,但氢还具有另外一种特性,即它极易扩散,氢的扩散系数比空气大3.8倍,若将2.25m3液氢倾泻在地面,仅需经过1min 之后,就能扩散成为不爆炸的安全混合物,所以微量的氢气泄漏,可以在空气中很快稀释成安全的混合气。
这又是氢燃料一个大的优点。
燃料泄漏后不能马上消散是最危险的。
表13-3列出了各种工业燃料在常温下的扩散系数。
以表中的扩散系数进行比较,氢的扩散系数比汽油大7.5倍。
由此可以证明文献中说氢比汽油安全是有根据的。
表13-3 各种工业燃料的扩散系数(2)高压氢气泄露高压氢气瓶的密封泄露是非常危险的,因为氢是一种非导电物质,在高压氢气泄漏时一定在漏隙处产生很高的流速,高速氢气流动,由于气流内自身的摩擦或气流和管壁的摩擦,可以使氢气带电,氢气流的静电位升高,从而形成高电位氢气流,使带电氢气在空气中着火燃烧。
对于高压氢气瓶泄漏引起的火灾,大都是因为高电位的氢气流着火引起的。
(3)系统的漏热或绝热不良系统绝热不良,会加速容器内液氢的蒸发和挥发损失。
箱内压力积聚过高时,就容易引起事故。
(4)明火及静电积累周围环境中火源或高温热源的存在是酿成氢事故的最大危害。
不论是在制氢、储氢、输氢或用氢的场合,那怕是小量的明火、摩擦、静电、雷击、系统突变或环境失火部有可能招来氢的爆炸。
(5)系统置换不彻底管道、容器内的氢气用空时需要里新加充,而加充氢气或液氢时首先要严格、彻底地抽空管道或容器内部的残存气体并加以置换。
假如置换不良,让空气或含有污染杂质的成分进入氢箱,则它们容易在受热的条件下和氢形成可燃混合物。
后者当受到摩擦或静电等作用时,就会发生爆炸。
(6)通风不良或放风不当氢气漏出到大气中并不可怕。
在露天现场的结霜的液氢输送管中,即使有时在法兰接头处有氢喷漏,但维护操作人员也可接近泄漏地方进行现场检修,而不致产生危险。
危险的是在通风不良的车间、试验现场或实验室之中,有氢气漏泄而又不能让它对流排空的情况。
结果造成局部地区有氢和空气的可燃混合气积累,其成分和含氢浓度落入着火极限的范围,这样一旦遇到火源就会导致着火和燃烧。
储液氢容器中的氢气或在系统置换时形成的氢气必须及时对空排放。
但如排放管设置不当或排空的氢气流速过高,有时也会在排氢管出口处着火,甚至使氢焰返入管道系统的内部,造成事故。
为此,现场的通风和排气的放空问题都须加足够重视。
其他像系统的仪表与监视系统失灵、操作不当、液氢罐内液氢充装量过度、输氢途中发生撞车、翻车、或者由于罐内液面震荡导致氢气压力快速增高等等情况,都是属于使用及操作上不当的危险作业因素。