风能发电技术

合集下载

风力发电技术总结

风力发电技术总结

风力发电技术总结随着环保意识的不断提高和能源危机的严峻形势,可再生能源已经引起全球各国的广泛重视,其中一项重要的可再生能源技术就是风力发电技术。

风力发电技术是一种利用风能将风能转化为电能的电力发电技术,具有清洁、可再生、低成本等优点,是未来发展方向的一个重要组成部分。

本文将对风力发电技术的原理、发展历程、应用领域、优点与不足进行总结。

一、风力发电技术原理风力发电技术是一种利用风能进行发电的技术,其原理是通过风能将风轮带动发电机运转,将机械能转化为电能,最终输出可用电源。

其基本结构包括风轮、发电机、塔架及电站控制系统等多个部分。

风轮是将风能转换为机械能的核心部位,风轮可分为直流风轮和变桨风轮两类,直流风轮一般采用三叶片,转动更平稳;而变桨风轮可根据风速的变化进行转速和转向的调控,能够在更大范围内适应风速的变化。

发电机负责将机械能转换成电能,直流发电机和交流发电机都可以应用于风力发电中,现在大部分的机组已经采用了三相交流同步发电机。

塔架是风轮和发电机的支撑结构,通常采用钢管制造。

电站控制系统由电站监视系统、电能控制系统和保护系统三个组成部分构成,负责监视电站运行状况、控制风轮和发电机的运行以及保护电站设备避免损坏等。

二、风力发电技术发展历程风力发电技术的起源可以追溯到公元2000年之前的中国汉代。

随着工业革命的兴起,风力发电技术也逐渐开始应用于工业领域。

最早的风轮发电机是由挪威农民思德巴克先生制造的,20世纪30年代,美国人理查德·瓦利曼发明了第一台风力发电机组,并迅速实现了商业化运营。

1970年代中国开始研制风力发电技术,到了1980年代,丹麦成为了风力发电技术的世界领先者,机组功率不断增长,横跨世界各洲。

1991年1月1日,德国的74家风力涡轮机厂家联合组建了风力涡轮机制造协会。

20世纪90年代,风力发电技术得到了飞速发展,尤其是在欧洲和北美洲等地区,全球风力发电年发电量已经达到了150亿千瓦时,占全球电力供应的1.5%。

风力发电简介介绍

风力发电简介介绍

04
风力发电的挑战与前景
风力发源,逐渐在全球范围内受 到关注。然而,风力发电也面临着一些挑战,同时也有着广 阔的前景。
THANKS
感谢观看
风力发电的原理
风力发电的原理可以概括为以下几个 步骤
2. 机械能转换:风轮的旋转通过传动 装置连接到发电机上,将风轮的机械 能传递给发电机。
1. 风能捕获:风力发电机的风轮叶片 受到风力的作用,开始旋转。叶片的 特殊设计使得风能能够有效地推动风 轮旋转。
3. 电能生成:发电机内部通过磁场和 导线的相对运动产生电流,即电能。 这个电能经过变压器升压,然后输送 到电网中供给用户使用。
风力发电的优势
01
02
03
04
05
风力发电具有许多优势 ,包括
1. 可再生能源:风能是 一种无穷尽的可再生能 源,与化石燃料相比, 风力发电不会释放温室 气体,对环境友好。
2. 能源安全:通过多样 化能源供应,减少对传 统能源的依赖,提高能 源安全性。
3. 创造就业机会:风力 发电项目的建设和运营 为当地经济创造大量就 业机会,促进经济发展 。
风力发电简介介绍
汇报人: 2023-11-20
目 录
• 风力发电概述 • 风力发电机组的构成与运行 • 风力发电技术发展趋势 • 风力发电的挑战与前景
01
风力发电概述
风力发电的定义
• 风力发电,又称风电,是通过风力发电机将风能转换成电能的 过程。风能是一种清洁、可再生的能源,具有巨大的开发潜力 。
垂直轴风力发电机组:叶片和轴心垂直布置,适 用于城市和小型风电场,具有较低的噪音和较好 的景观效果。
这些类型的风力发电机组在风能利用、机组性能 、适用环境等方面各具特点,根据实际需求选择 合适的风力发电机组是实现风能高效利用的关键 。

风力发电工程技术

风力发电工程技术

风力发电工程技术第一篇:风力发电工程技术简介一、概述风力发电是指利用风能发电的一种绿色能源技术。

正常情况下,风力发电是通过风机叶片拦截风能并驱动发电机转动来发电的。

风力发电广泛应用于国际上,逐渐成为了清洁能源中的一种代表。

二、基础设施风力发电的基础设施主要包括风机、发电机、变频器、变压器、电缆和塔架等。

其中,风机是风力发电的核心部件,主要由叶片、主轴、轴承、齿轮箱、制动器和变速器等组成。

发电机则是将机械能转化为电能的核心部件,通常采用异步发电机和永磁发电机。

变频器主要用于调节风机转速,保障发电机的负载性能。

变压器则是将发电机产生的低电压升高到30千伏及以上,以便于输送电网。

电缆主要负责将发电机产生的电能传输到变压器。

塔架则是支撑风机和提高其高度,便于风机捕捉到更多的风能。

三、发电过程在正常情况下,风机叶片会拦截到风能并将其传导到轴承。

轴承转动后会逐步传递到主轴和齿轮箱,从而驱动发电机转动。

发电机转动的过程中,通过引入强制电磁感应的方式在绕组中产生交变电势,从而将机械能转化为电能。

变电站则会将发电机产生的低电压升高到30千伏及以上,以便于输送电网。

四、技术优势风力发电具有无污染、可再生、经济等优势,因此逐渐成为了绿色能源的代表。

与其它清洁能源相比,风力发电有以下优势:1.稳定性高。

风力资源容易被推断和估计,因此能够提供可靠的电力供应。

2.适用性广。

风力发电可以适应各种风速和气温条件,因此在全球各个地方都具有潜力。

3.技术成熟。

风力发电的核心技术已经相对成熟,其运行维护成本也比较低。

五、发展前景根据国际能源机构的统计数据,全球风力发电比重逐年上升,其中,中国是目前最大的风力发电市场,占据全球风力发电装机容量的25%以上。

未来,随着新技术的推广和成本的降低,风力发电有望进一步扩大应用范围,成为未来清洁能源的重要来源之一。

第二篇:风力发电工程技术实践一、选址选址是风力发电工程的关键步骤。

一般而言,风力发电站需要具备良好的地理条件和风资源,例如地形平缓、平均海拔高度越高越好、海岸线等。

风力发电的原理是什么

风力发电的原理是什么

风力发电的原理是什么风力发电是指利用风能将风动能转换为电能的一种可再生能源发电技术。

它利用风能驱动风轮转动,将机械能转化为电能。

本文将详细介绍风力发电的原理及其工作原理。

风力发电原理风力发电的原理基于风的运动和空气的物理性质。

当地球受到太阳的照射,不同地区的气温和气压产生差异,形成气候系统。

气候系统中,气体在不同气压区域之间产生气流,形成风。

这种风能被称为风动能。

风力发电利用风动能,通过风轮转动,产生机械能,再由发电机将机械能转换为电能。

下面将详细介绍风力发电的工作过程。

风力发电的工作原理风力发电的工作原理可以归纳为以下几个步骤:1.风的捕获:风力发电机通常由三个主要部分组成:风轮、转子和发电机。

风轮是风力发电机中最重要的部分,它的作用是捕获风能。

风轮通常由多个叶片组成,通过叶片的形状和角度,能够最大程度地捕获风能。

2.风能转换:当风轮受到风的作用力时,风轮会转动。

转动的风轮会带动转子旋转,通过机械传动装置(如齿轮箱)将风轮转动的速度提高,并使其与发电机的转子同步旋转。

这样,机械能就被转化为转子的旋转动能。

3.电能转换:转子的旋转运动会激励发电机中的线圈产生感应电动势,然后通过电磁感应现象将机械能转换为电能。

发电机的输出电流经过电路控制系统处理,最终输入电网供人们使用。

4.电能传输和储存:发电后的电能经过变压器进行传输,将电压调整到合适的水平后输送到电网。

人们可以通过电网获得风力发电机产生的电能。

电能也可以通过储能设备,如电池,进行短期或长期的储存,以备不时之需。

风力发电的优势风力发电具有一系列的优势,使其成为一种重要的可再生能源发电技术:1.环保:风力发电不排放温室气体和污染物,对环境无污染,能够减少对化石燃料的依赖,有助于降低空气和水的污染。

2.可再生能源:风力是一种可再生能源,取之不尽,用之不竭。

利用风力发电可以减少对有限资源的消耗,对未来能源供应具有重要意义。

3.风力资源广泛:全球范围内都存在风力资源,且分布广泛。

《风力发电介绍》课件

《风力发电介绍》课件

成功风力发电项目介绍
01
成功案例一
荷兰的“巨人风车”项目
02
成功案例二
丹麦的哥本哈根风电场
03
04
成功案例三
德国的勃兰登堡风电场
成功案例四
美国加利福尼亚州的“沙漠之 风”风电场
风力发电在偏远地区的实际应用
应用一
为偏远地区提供电力供应,解决能源问题
应用二
促进偏远地区的经济发展,创造就业机会
应用三
改善偏远地区的生态环境,减少对化石燃料 的依赖
风力发电的原理
风力发电的基本原理是利用风的动力 ,通过风力发电机组的风轮机叶片旋 转,从而驱动发电机转动,将机械能 转化为电能。
风轮机叶片受到风的作用产生旋转动 力,驱动发电机转动,进而产生电能 。发电机产生的电能通过变压器升压 后接入电网,供给用户使用。
风力发电的优势与局限性
优势
风能是一种可再生、无污染的能源,风力发电能够减少化石 燃料的消耗和二氧化碳等温室气体的排放,有助于环境保护 和气候变化应对。同时,风能分布广泛,尤其在资源丰富的 地区,风力发电具有很大的开发潜力。
《风力发电介绍》ppt课件
目 录
• 风力发电概述 • 风力发电技术 • 风力发电的应用 • 风力发电的未来展望 • 风力发电案例研究
01
风力发电概述
风力发电的定义
01
风力发电是指利用风能转化为电 能的发电方式,通过风力发电机 组将风能转化为机械能,再通过 发电机将机械能转化为电能。
02
风力发电是一种可再生能源,具 有清洁、环保、可持续等优点, 是全球范围内大力推广的能源利 用方式。
应用四
提高偏远地区的能源安全,保障能源供应的 稳定性
大型风电场的建设与管理

风力发电-ppt概述

风力发电-ppt概述
德国北方风电项目
德国北方风电项目是全球最大的陆上风电项目之一,位于德国北部沿海地区。该项目由多个风电场组成,总装机 容量超过400兆瓦,每年可提供约1.2太瓦时的清洁能源。该项目采用先进的涡轮发电机技术,提高了能源转换效 率和可靠性。
中国风力发电项目介绍
甘肃酒泉风电基地
甘肃酒泉风电基地是中国最大的风电基地之一,位于甘肃省酒泉市。该基地总装机容量超过1000兆 瓦,拥有数千台风力发电机组,覆盖面积超过200平方公里。该基地的建设推动了当地经济发展和清 洁能源产业的发展。
风能资源的分布不均,主要集中在沿海地区、草原地区和部分山 区,其他地区的风能资源相对较少。
对土地资源的需求
建设风电场需要占用大量的土地资源,可能会对当地生态环境造成 一定影响。
对电网的依赖
风能具有不稳定性,因此需要依赖电网进行调节和平衡,对电网的 运行管理提出了更高的要求。
02
风力发电技术
风力发电机组
01
02
03
04
风力发电机组是风力发电的核 心设备,包括风轮、发电机、
塔筒等部分。
风轮将风能转化为机械能,通 过传动系统传递给发电机,最
终转化为电能。
风力发电机组有水平轴和垂直 轴两种类型,其中水平轴风力
发电机组应用更为广泛。
风力发电机组的功率和转速受 风速影响,需要进行调速和限
幅控制。
风力发电控制系统
清洁环保
风力发电是一种清洁能源,不会 排放有害气体和废弃物,对环境 友好。
风力发电的优势与局限性
节能高效
随着技术的不断进步,风力发电机组的效率和可靠性不断提高,能够满足大规 模能源需求。
地理分布广泛
风能分布广泛,尤其在沿海地区和内陆高原地区,具有较大的开发潜力。

简述风力发电的基本原理

简述风力发电的基本原理

风力发电的基本原理概述风力发电是一种利用风能转换成电能的可再生能源技术。

它通过捕捉风力和驱动涡轮机,将机械能转换为电能。

风力发电是一种清洁、环保和可持续发展的能源选择,具有广阔的应用前景。

这篇文章将详细介绍风力发电的基本原理及其工作过程。

风力发电的基本原理风力发电利用风的动能转换为机械能,然后再转换为电能。

其基本原理如下: 1. 风力捕捉:风力发电依赖于风的存在。

当气流中的风速超过一定阈值时,风能可以被有效地捕捉。

通常在具有较高平均风速的地区布置风力发电机组或风力发电场。

2. 涡轮机驱动:国际上广泛应用的风力发电机组主要是利用涡轮机来收集风能。

涡轮机内部包含多个叶片,当风力吹向涡轮机时,叶片被迫转动。

3. 机械能转化:涡轮机转动带动发电机转子转动。

这种机械转换过程将风能转化为机械能,使发电机内部的转子产生旋转。

4. 电能产生:转子旋转会激发发电机内部的磁场,产生感应电流。

通过电磁感应原理,机械能转化为电能。

最终,通过变压器将发电机产生的低电压输送到变电站,并转变为高电压以便输送到电网。

风力发电的工作过程风力发电的工作过程包括以下几个主要步骤:步骤1:风的捕捉风力发电需要选择具有足够风资源的地点进行建设。

通常在海岸线、高山地带或平坦的荒野地区设置风力发电场。

这些地区的风速相对较高,能够为发电机组提供足够的风能。

风力发电机组的数量和布局应该考虑到地形、风向和地表覆盖情况等因素。

步骤2:风能转换当风的速度达到一定阈值时,涡轮机内的叶片就会开始旋转,进而转动涡轮机。

涡轮机通常采用水平轴或垂直轴设计。

水平轴涡轮机是目前应用最广的设计,其中叶片垂直于地面,通过主轴连接到发电机。

叶片的数量和大小根据风场设计和风速变化情况进行确定。

步骤3:机械能转化涡轮机转动带动发电机转子转动,机械能转化为电能。

发电机内部的转子由电磁铁芯、线圈和永磁体组成。

当转子旋转时,它将产生电磁感应,使得线圈中的电流产生变化。

这个电流通过导线传输到变压器。

风力发电技术综述

风力发电技术综述

风力发电技术综述引言随着人们对可再生能源的关注度不断增加,风力发电作为一种绿色、清洁的能源选择,逐渐受到了全球范围内的关注和应用。

本文将从风力发电技术的原理、发展现状以及未来发展方向等几个方面进行综述,并探讨其在可再生能源领域发挥的作用。

一、风力发电技术原理风力发电技术是一种利用风能将其转换成机械能或电能的技术。

其原理主要包括风力的收集、风能的转换以及电能的输出三个步骤。

具体来说,当风吹过风力发电机组时,风力将被转化成机械能,驱动发电机组内的叶轮旋转。

随着叶轮旋转速度的增加,发电机内的发电机转子也会旋转,最终通过磁场感应产生电能输出。

二、风力发电技术的发展现状1.技术成熟度和发展速度:风力发电技术已经具备较高的成熟度并取得了快速的发展。

目前,风力发电已成为全球最主要的可再生能源之一,年装机容量以及发电量呈现持续增长的趋势。

2.主要技术类型:目前,主要的风力发电技术包括第一代风力发电技术、第二代风力发电技术以及第三代风力发电技术。

第一代技术主要是传统的风力发电机组,具有体积大、发电效率低等特点。

第二代技术则通过提高发电机效率和控制机组角度等方式提高了发电效率。

第三代技术则主要侧重于创新材料的运用以及提高风能利用率。

3.主要应用地区:风力发电技术在全球范围内得到了广泛应用,但应用地区主要集中在北欧、美国、中国和西欧等地,具体包括德国、丹麦、印度、美国等。

三、风力发电技术的挑战和解决方案1.风能的不稳定性:风速的不稳定性是风力发电技术面临的一个重要挑战。

高风速和低风速对机组的运行状态都存在风险。

为解决这个问题,研究人员通过引入风速预测、提高机组可调度性等方式来降低不稳定性带来的影响。

2.风力发电对环境的影响:风力发电机组的建设和运行过程中可能对野生动物的栖息地和迁徙路径产生影响。

针对这一问题,研究人员致力于设计更友好的风力发电机组,减少对生态环境的损害。

3.成本和经济性:风力发电设备的建设和维护费用较高,这对其经济性提出了挑战。

风力发电知识点总结大全

风力发电知识点总结大全

风力发电知识点总结大全一、风力发电的原理风力发电的原理是利用风能带动风机叶片旋转,进而带动发电机产生电能。

风机通常由塔架、主轴、叶片和发电机等部件组成。

其中,风机的叶片接收到风的动能,然后带动主轴旋转,主轴通过传动装置驱动发电机产生电能。

在发电过程中,所产生的电能可以被接入电网,也可以储存到电池中供以后使用。

二、风力发电的发展历史风力发电的历史可以追溯到公元前500年的古希腊时期,当时人们已开始使用风车来抽水和磨面。

而真正意义上的现代风力发电可以追溯到19世纪末的美国,当时科学家开发出了第一台风力发电机。

20世纪70年代,丹麦成为风力发电的先锋国家,开始大规模发展风电。

自此以后,风力发电逐渐成为一种主流的可再生能源形式,并在全球范围内得到广泛应用和推广。

三、风力发电的技术分类根据风力发电机的类型和结构,风力发电可以分为多种技术分类,包括水平轴风力发电机、垂直轴风力发电机和混合式风力发电机等。

其中,水平轴风力发电机是目前应用最为广泛的一种类型,它具有结构简单、稳定性好、效率高等特点;而垂直轴风机则具有风向适应性强、噪音小等优点;混合式风力发电机则融合了水平轴和垂直轴的优点,将风能转换成电能。

四、全球风力发电的发展状况目前,全球范围内的风力发电已经成为一种重要的能源形式,并且得到了广泛的推广和应用。

根据国际能源署(IEA)的数据,截至2019年,全球累计安装的风力发电容量已达到了651.7吉瓦,其中中国、美国、德国、印度和西班牙等国家是全球风力发电的主要发展国家。

同时,全球风力发电的装机容量每年都在稳步增长,并且逐渐成为了可再生能源中的主要形式之一。

五、风力发电的优缺点风力发电作为一种清洁的可再生能源,具有许多明显的优势,比如不排放二氧化碳、占地面积小、可再生性好等。

但同时,风力发电也存在一些缺点,比如对风资源的依赖性较强、噪音污染、对鸟类的生存造成影响等问题。

因此,在发展风力发电时,需要综合考虑其优缺点,采取相应的措施来解决其中的问题。

风力发电技术PPT课件

风力发电技术PPT课件

控制策略实施
实施效果评估
采用最大功率点跟踪和电网电压定向控制 策略,确保风力发电机在并网过程中能够 稳定运行,并实现对电网的友好接入。
通过实际运行数据对并网效果进行评估, 结果显示该并网方案和控制策略能够有效 提高风能利用率和电网稳定性。
06
运行维护与故障排除
运行维护管理体系建立
制定运行维护计划
02
风力发电机组成与工作原理
风轮结构与类型
01
02
03
水平轴风轮
风轮旋转轴与地面平行, 适用于大型风力发电机, 具有高风能利用率和稳定 性。
垂直轴风轮
风轮旋转轴与地面垂直, 适用于小型风力发电机, 具有结构简单、维护方便 等优点。
风轮叶片
叶片形状和材料对风能利 用率和噪音等性能有重要 影响,现代风力发电机多 采用复合材料叶片。
运行。
03
风力发电机组设计与选型
设计原则与方法
01
02
03
04
安全性原则
确保风力发电机组在各种恶劣 环境下的稳定运行,防止意外
事故发生。
经济性原则
在保障安全性的前提下,追求 经济效益最大化,降低度电成
本。
可靠性原则
提高风力发电机组的可利用率 和寿命,减少维护成本和停机
时间。
适应性原则
适应不同风资源和环境条件, 确保风力发电机组的良好运行
控制系统与辅助设备
控制系统
实现对风力发电机的启动、停机 、调速、并网等控制功能,保证
风力发电机的安全稳定运行。
偏航系统
根据风向变化调整风轮迎风角 度,提高风能利用率和减少风 轮载荷。
刹车系统
在紧急情况下实现风力发电机 的快速停机,保证设备安全。

4风力发电技术

4风力发电技术
的轴线为转子轴。
§4.2 风力机工作原理
2.风力机的特征系数
(1)风能利用系数Cp 定义:风力机的风轮能够从自然风能中吸取能量与 风轮扫过面积内未扰动气流所具风能的百分比。
P
C p 0.5 SV 3
式中 P——风力机实际获得的轴功率,w ρ——空气密度,kg/m3; S——风轮扫风面积,m2; V——上游风速,m/s
• 以典型的风力发电装置为例,若取风力机效率为70%,传 动效率和发电机效率为80%,因理想风力机的风能利用系 数为59.3%,所以装置的风能利用系数为Cp=0.593× 0.7×0.8=0.332
图4-15是Cp=0.332时,不同风速下风轮直径与发电机输出 功率的关系曲线。
§4.2 风力机工作原理
§4.1 风与风力资源
§4.2 风力机工作原理
风力机:风能转换装置。 风力机包括叶片(桨叶)、轮毂、转轴、支架(塔架)等 部分。其中由叶片和轮毂等构成的旋转部分又称为风轮。
按转轴与风向的关系,风力机大体上可分为两类: -水平轴风力机(风轮的旋转轴与风向平行); -垂直轴风力机(风轮的旋转轴垂直于地面或气流方向)。
研究表明,全国平均风能密度约为100W/m2,全国风能总储量 约48亿兆瓦, 陆上和近海区域10米高度可开发风能资源储量约为10亿千瓦, 其中有很好开发利用价值的陆上风资源大约有2.53亿千瓦。
§4.1 风与风力资源
中国气象局风能太阳能资源评估中心,公布了 全国平均风速分布和有效风功率密度分布情况
升力型风轮 阻力型风轮
FL
1 2
Cl SV
2
FD
1 2
Cd
SV
2
Cd和Cl—由实验得出的翼形随攻角a而变化的阻力系数和升 力系数

风力发电技术

风力发电技术

风力发电技术在当今能源短缺和环境污染问题愈加严重的时代,寻求环保、清洁且可持续的能源形式更加显得尤为重要。

风力发电作为一种非常具有潜力的技术形式,正越来越受到重视。

本文将会从风力发电的原理、发展历程以及技术现状和未来发展等方面进行探讨。

一、风力发电原理简介风力发电的原理十分简单明了,就是利用风的能量驱动风轮转动,转动后的机械能可以通过转子和发电机的转化,最终变成电能。

虽然在中国历史上早在2000多年前就有风车的应用,但是真正意义上的风力发电始于20世纪70年代末期,最初以风能驱动的柴油机驱动的发电机的方式运行。

而随着技术的迅速发展和成本的不断降低,风力发电被越来越多的国家和地区所关注。

二、风力发电的发展历程风力发电自1979年开始实现商业化生产以来,经历了40多年的发展,如今已经成为全球最快增长和最具活力的清洁能源形式之一。

以欧洲为例,2019年欧洲风力发电占总发电量的15%,而在丹麦等国家,风力发电所占比例更是高达40%甚至更多。

在我国,风能资源丰富,发展条件优越,风电发展也是快速的。

我国风电装机容量不断增加,2019年突破了210GW的装机容量,超越了欧洲,成为全球最大的风力发电国家。

而且,中国拥有丰富的风能资源,因此在充分利用的情况下,未来还有很大的发展空间。

三、风力发电技术现状目前,风力发电技术可谓是一片繁荣的景象。

风力发电技术已经实现了从小规模的风力机向大型化、高效化,和智能化的发展转型。

风力机的旋转轴高度和机翼长度都有了显著提高,机组容量也在不断增长。

比如,中国第一台3000千瓦的海上风电机组已经上网运行,并备受业内关注。

与此同时,风力发电的运维技术也在不断提高,通过数据监控和在线服务系统,可以对风力发电机进行实时监控和运营管理,提高了风力发电机组的稳定性和安全性。

此外,风力发电技术还在探索和研究新的技术方案,比如大型免维护的直驱发电机、大直径低速风力机、智能化的风电场运行管理等等。

风力发电简介

风力发电简介

升,成本也将逐渐降低。
02 03
海上风电发展
海上风电是未来风能发展的重要方向,具有风能资源丰富、不占用土地 等优点,随着技术的成熟和成本的降低,海上风电将得到更广泛的应用 。
分布式风电
分布式风电是指将小型风电机组分散布置在用户附近,直接接入配电网 或微电网中。这种模式具有灵活、可靠、就近供电等优点,将成为未来 风能发展的重要趋势之一。
04
风力发电机组的性能和 可靠性直接影响风力发 电的效率和安全性。
风力发电机类型
Байду номын сангаас01
02
03
04
水平轴风力发电机
风轮水平放置,风能利用率较 高,是目前应用最广泛的风力
发电机类型。
垂直轴风力发电机
风轮垂直放置,适用于低风速 地区,但风能利用率较低。
直驱式风力发电机
发电机与风轮直接耦合,结构 简单,维护方便,但发电效率
风力发电设施通常建设在偏远地区,减少了对自然生态环境的破坏,有助于保 护野生动植物的栖息地和生物多样性。
降低生态破坏风险
与传统的化石燃料发电相比,风力发电对生态环境的破坏较小,降低了因能源 开发引发的生态破坏风险。
风力发电的噪音与视觉影响
噪音污染
风力发电机在运行过程中会产生一定的噪音,可能对周边居民和野生动物的栖息 造成一定干扰。
国际补贴政策
国际上许多国家也采取了类似的补贴政策,以鼓励和促进本国风力发电产业的发展。例如,欧盟对风电机组实行 了长达20年的固定电价补贴政策,美国则提供了生产税收抵免等补贴政策。
风力发电的并网政策
国内并网政策
中国政府为了促进风力发电的并网运行,制定了一系列的并网政策。这些政策要求电网企业优先收购 风电电量,并规定了风电并网的电压等级、接入系统、调度管理等方面的要求。这些政策的实施,有 效地解决了风电并网难的问题,促进了风电的规模化发展。

风力发电技术

风力发电技术

风力发电技术风力发电技术,是把风能转变为电能的技术。

通过风力发电机实现,利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

风力发电机一般有风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。

风力发电机的工作原理比较简单,风轮在风力的作用下旋转,它把风的动能转变为风轮轴的机械能。

发电机在风轮轴的带动下旋转发电。

风轮是集风装置,它的作用是把流动空气具有的动能转变为风轮旋转的机械能。

一般风力发电机的风轮由2个或3个叶片构成。

在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。

风力发电机中调向器的功能是使风力发电机的风轮随时都迎着风向,从而能最大限度地获取风能。

一般风力发电机几乎全部是利用尾翼来控制风轮的迎风方向的。

尾翼的材料通常采用镀锌薄钢板。

限速安全机构是用来保证风力发电机运行安全的。

限速安全机构的设置可以使风力发电机风轮的转速在一定的风速范围内保持基本不变。

塔架是风力发电机的支撑机构,稍大的风力发电机塔架一般采用由角钢或圆钢组成的桁架结构。

风力机的输出功率与风速的大小有关。

由于自然界的风速是极不稳定的,风力发电机的输出功率也极不稳定。

风力发电机发出的电能一般是不能直接用在电器上的,先要储存起来。

目前风力发电机用的蓄电池多为铅酸蓄电池。

风力机部件,其良好的设计、可靠的质量和优越的性能是保证机组正常稳定运行的决定因素。

我国风机叶片行业的发展是伴随着风电产业及风电设备行业的发展而发展起来的。

由于起步较晚,我国风机叶片最初主要是依靠进口来满足市场需求的。

随着国内企业和科研院所的共同努力,我国风机叶片行业的供给能力迅速提升。

目前,我国风机叶片市场已经形成外资企业、民营企业、研究院所、上市公司等多元化的主体投资形式。

外资企业主要有GE、LM、G AMESA、VESTAS等,国内企业以时代新材、中材科技、中航惠腾、中复连众为代表。

风力发电知识点总结

风力发电知识点总结

风力发电知识点总结一、风力发电原理风力发电利用风力驱动风力发电机,将风能转化为机械能后再转化为电能,是一种可再生能源的发电方式。

风力发电原理主要包括风的形成原理、风力发电机的工作原理和发电机组的工作原理。

1. 风的形成原理风是因地球的自转和太阳辐射造成的。

太阳光照射到地球上的不同地区和表面,使得地球表面温度不均匀,产生不同的气压区。

气压差引起气流的移动,形成了风。

这个过程是地球大气环流的基础。

2. 风力发电机的工作原理风力发电机的基本工作原理是利用风力带动叶片旋转,通过传动系统转动发电机产生电能。

当风力带动叶片旋转时,发电机的转子受到机械传动装置的带动,旋转产生电能,这个过程就是固定磁场中导体回路的运动相对于磁场产生感应电动势的原理来实现的。

3. 发电机组的工作原理发电机组是由风力发电机、传动系统和调速装置组成的。

风力发电机叶片受到风力的作用带动转子旋转,通过传动系统将机械能传递到发电机,并通过发电机产生电能。

调速装置是指通过调整叶片的角度或调整传动系统的转速来保持发电机的稳定输出,并根据风速的变化调整叶片的角度,以保持发电机的稳定运行。

二、风力发电技术风力发电技术包括风电场选址、风力发电机设备、风力发电系统和风力发电控制系统。

1. 风电场选址风电场选址是指寻找适合建设风电场的地点。

一般来说,风电场选址需要考虑多种因素,包括地形地貌、气象条件、土地利用和环境保护等。

2. 风力发电设备风力发电设备主要由风力发电机、叶片和塔架组成。

风力发电机的类型包括水平轴风力发电机和垂直轴风力发电机。

水平轴风力发电机叶片与地面平行,能够利用风能进行旋转,而垂直轴风力发电机叶片与地面垂直,能够利用风能进行旋转。

塔架主要是支撑风力发电机的结构,使其能够在空中旋转。

3. 风力发电系统风力发电系统主要由控制系统、变流器、变压器和电网等组成。

控制系统可以根据风速的不同控制风力发电机的旋转,保持其在最佳工作状态,能够提高发电效率。

新能源行业风力发电技术手册

新能源行业风力发电技术手册

新能源行业风力发电技术手册引言随着环境污染和化石能源枯竭问题的日益严重,新能源行业的发展变得越来越迫切。

作为新能源中的重要组成部分,风力发电技术具有巨大的潜力。

本技术手册旨在介绍风力发电技术的原理、设备及运维,以帮助读者了解和应用该技术。

第一章:风力发电技术原理1.1 风力发电基本原理1.2 风能的获取与利用1.3 风力发电机组组成第二章:风力发电设备2.1 风力发电机组类型2.1.1 单根风力发电机组2.1.2 海上风电场2.1.3 陆上风电场2.2 风力发电机组结构2.3 风力发电机组维护与保养第三章:风力发电技术的应用3.1 风力发电在城市中的应用3.2 风力发电在农村地区的应用3.3 风力发电在工业领域的应用第四章:风力发电行业发展与前景4.1 风能资源的评估与开发4.2 风力发电行业政策与法规4.3 风力发电技术创新与发展4.4 风力发电行业的未来前景结论通过本技术手册,读者可以深入了解风力发电技术的原理、设备和应用领域。

同时,了解相关的政策和法规也有助于风力发电行业的发展。

未来,随着技术的不断进步和新能源行业的推动,风力发电有望在能源领域占据更重要的地位,为保护环境和可持续发展做出贡献。

参考文献(不用出现网址链接,请根据实际情况使用合适的格式)[1] Smith, John. The Future of Wind Power. New York: ABC Publishing, 2019.[2] Green Energy Association. Wind Power Statistics Report 2020. Green Energy Association Press, 2021.[3] Renewable Energy Agency. Policies and Regulations in Wind Power Industry. Renewable Energy Agency Press, 2018.。

风力发电技术手册

风力发电技术手册

风力发电技术手册一、引言随着全球对可再生能源需求的增长,风力发电作为一种清洁、可再生的能源形式,正逐渐成为主要的发电方式之一。

本手册将向读者介绍风力发电技术的基本原理、关键设备和系统结构,以及运维和维护等方面的知识,旨在提供一份详尽的风力发电技术指南。

二、风力发电原理风力发电是利用风能将机械能转换为电能的过程。

当风通过风机叶片时,叶片受到风力的作用而转动,进而带动发电机产生电能。

风力发电原理的核心在于捕捉和利用风能,而风能的转化主要受到风机叶片的设计和风况的影响。

三、风机叶片设计风机叶片是风力发电系统中最关键的组成部分之一。

其设计要考虑叶片的强度、 aer与效率。

材料的选择、外形与叶片数目的确定是风机叶片设计的主要考虑因素。

1. 叶片材料常见的叶片材料包括玻璃纤维增强复合材料和碳纤维复合材料。

这些材料具有较高的强度、抗腐蚀性和轻质化特性,适合用于制造长期暴露在自然环境中的风机叶片。

2. 叶片外形设计叶片外形设计旨在最大化叶片的 aer性能,并且能够适应不同风况下的工作需求。

通过采用合适的 aer型、各段长度和倾斜角度等参数的设计,可以提高风机的能量转化效率。

3. 叶片数目叶片数目是另一个重要的设计因素。

通常,多叶片的风机可以提供更高的起动转速,同时可以降低噪音和振动水平,但会增加制造和维修成本。

四、风力发电机组结构风力发电机组由风机叶片、主轴、变速箱、发电机和塔架等组成。

每个部件的设计和组织都对风力发电系统的性能和可靠性至关重要。

1. 主轴和变速箱主轴是将风机叶片产生的转动能量传递给发电机的关键部件。

它需要承受传动力矩和改变转速的作用。

变速箱的设计需要兼顾转速的控制、传动效率和系统可靠性。

2. 发电机发电机是将风能转化为电能的核心设备。

目前常用的发电机类型为异步发电机和同步发电机。

发电机的选型需要考虑风机的转速范围、输出功率和系统的响应速度等因素。

3. 塔架塔架是支撑风机叶片和发电机的结构,并将整个风力发电机组与地面连接起来。

《风力发电》课件

《风力发电》课件

《风力发电》PPT课件
风力发电是一种利用风能将其转化为电能的技术。本课件将介绍风力发电的 定义、原理、发展历程、优势、应用领域、挑战与解决方案,并对未来进行 展望。
什么是风力发电?
Байду номын сангаас定义
风力发电是将风能转化为电能的一种可再生能源技术。
原理
通过风轮驱动风力发电机转动,将机械能转化为电能。
风力发电技术的发展历程
农业领域
海洋利用
为农田提供电力,推动农业现代化。 开发海上风电场,利用海风发电。
风力发电的挑战与解决方案
风力强度不稳定
改进风力预测技术,提高发电效率。
环境影响
科学规划风电场,减少对野生动植物的干扰。
储能问题
发展储能技术,解决风力波动性带来的供电不稳定问题。
结论和展望
风力发电作为一种清洁、可再生的能源技术,具有巨大的潜力和前景。随着技术的进步和应用的推广,风力发电将 为人类提供可持续、稳定的能源供应。
1
古代
利用帆船、风车等形式利用风能。
2 0世纪初
2
发展出第一台风力发电机。
3
现代
引入大型风力发电机组,建设风电场。
风力发电的优势
1 清洁能源
无二氧化碳排放,对环境友好。
3 经济效益
能源成本低,助推经济发展。
2 可再生能源
风能源丰富,可持续利用。
风力发电的应用领域
工业用途
为工厂和工业设施提供可靠的电力 供应。

风力发电技术讲义PPT课件

风力发电技术讲义PPT课件

03
风力发电机组与设备
风力发电机组的主要类型与特点
水平轴风力发电机组
利用水平轴将风能转化为机械旋 转动力,根据风向调节转子叶片 角度,具有较高的风能利用率。
垂直轴风力发电机组
利用垂直轴将风能转化为机械 旋转动力,无需调节转子叶片 角度,适用于低风速地区。
大型风力发电机组
适用于风能资源丰富的地区, 具有高发电量、低成本等优点 ,但建设和安装周期较长。
预防性检修
根据机组运行状态和历史数据,预测 潜在的故障,提前进行检修,避免故 障发生。
风力发电场的运营模式与产业链
01
02
03
运营模式
介绍风力发电场的运营模 式,包括独立运营、合作 运营、租赁运营等。
产业链
分析风力发电产业链的各 个环节,包括设备制造、 风电场建设、运营维护、 电力输送等。
商业模式
风力发电技术的未来发展趋势
技术创新
未来风力发电技术的发展将继续依赖于技术创新,包括新材料、新工艺、智能控制等方面的研究与应 用。这些技术将进一步提高风能利用率和发电效率。
海上风电
海上风电是未来风能发展的重要方向。随着海上风电技术的成熟和成本的降低,海上风电将成为全球 能源供应的重要来源之一。同时,海上风电的建设也将促进海洋工程、船舶制造等相关产业的发展。
风力发电与其他可再生能源的协同发 展有助于提高可再生能源的总体占比, 加速能源结构的转型和优化。
感谢您的观看
THANKS
包括维护、管理、保险等方面 的费用。
投资回报期
评估风电场的投资回报期,判 断投资是否具有经济可行性。
05
风力发电的运行与维护
风力发电机组的运行管理
风力发电机组的启动与关闭
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风能发电技术一、风力发电简介风是一种潜力很大的新能源,人们也许还记得,十八世纪初,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。

仅就拔树一事而论,风在数秒钟内就发出了一千万马力(即750万千瓦;一马力等于0.75千瓦)的功率!有人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。

目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。

因此,国内外都很重视利用风力来发电,开发新能源。

利用风力发电的尝试,早在本世纪初就已经开始了。

三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。

这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。

不过,当时的发电量较低,大都在5千瓦以下。

目前,据了解,国外已生产出15,40,45,100,225千瓦的风力发电机了。

1978年1月,美国在新墨西哥州的克莱顿镇建成的200千瓦风力发电机,其叶片直径为38米,发电量足够60户居民用电。

而1978年初夏,在丹麦日德兰半岛西海岸投入运行的风力发电装置,其发电量则达2000千瓦,风车高57米,所发电量的75送入电网,其余供给附近的一所学校用。

1979年上半年,美国在北卡罗来纳州的蓝岭山,又建成了一座世界上最大的发电用的风车。

这个风车有十层楼高,风车钢叶片的直径60米;叶片安装在一个塔型建筑物上,因此风车可自由转动并从任何一个方向获得电力;风力时速在38公里以上时,发电能力也可达2000千瓦。

由于这个丘陵地区的平均风力时速只有29公里,因此风车不能全部运动。

据估计,即使全年只有一半时间运转,它就能够满足北卡罗来纳州七个县1%到2%的用电需要。

二、怎样利用风力来发电我们把风的动能转变成机械能,再把机械能转化为电能,这就是风力发电。

风力发电所需要的装置,称作风力发电机组。

这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。

(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵)风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。

当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。

桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。

(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。

为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。

铁塔是支承风轮、尾舵和发电机的构架。

它一般修建得比较高,为的是获得较大的和较均匀的风力,又要有足够的强度。

铁塔高度视地面障碍物对风速影响的情况,以及风轮的直径大小而定,一般在6-20米范围内。

发电机的作用,是把由风轮得到的恒定转速,通过升速传递给发电机构均匀运转,因而把机械能转变为电能。

三、多大的风力才可以发电一般说来,3级风就有利用的价值。

但从经济合理的角度出发,风速大于每秒4米才适宜于发电。

据测定,一台55千瓦的风力发电机组,当风速每秒为9.5米时,机组的输出功率为55千瓦;当风速每秒8米时,功率为38千瓦;风速每秒为6米时,只有16千瓦;而风速为每秒5米时,仅为9.5千瓦。

可见风力愈大,经济效益也愈大。

在我国,现在已有不少成功的中、小型风力发电装置在运转。

我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。

在这些地区,发展风力发电是很有前途的。

四、风力发电的原理风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。

风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。

风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。

小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。

风力发电机由机头、转体、尾翼、叶片组成。

每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

五、风力发电的输出风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。

然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。

通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。

目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。

功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。

在内地,小的风力发电机会比大的更合适。

因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。

当无风时人们还可以正常使用风力带来的电能,也就是说一台200W风力发电机也可以通过大电瓶与逆变器的配合使用,获得500W甚至1000W乃至更大的功率出。

六、风力发电机的分类1.概述尽管风力发电机多种多样,但归纳起来可分为两类:①水平轴风力发电机,风轮的旋转轴与风向平行;②垂直轴风力发电机,风轮的旋转轴垂直于地面或者气流方向。

2.水平轴风力发电机水平轴风力发电机科分为升力型和阻力型两类。

升力型风力发电机选抓速度快,阻力型旋转速度慢。

对于风力发电,多采用升力型水平轴风力发电机。

大多数水平轴风力发电机具有对风装置,能随风向改变而转动。

对于小型风力发电机,这种对风装置采用尾舵,而对于大型的风力发电机,则利用风向传感元件以及伺服电机组成的传动机构。

风力机的风轮在塔架前面的称为上风向风力机,风轮在塔架后面的则成为下风向风机。

水平轴风力发电机的式样很多,有的具有反转叶片的风轮,有的再一个塔架上安装多个风轮,以便在输出功率一定的条件下减少塔架的成本,还有的水平轴风力发电机在风轮周围产生漩涡,集中气流,增加气流速度。

3.垂直轴风力发电机垂直轴风力发电机在风向改变的时候无需对风,在这点上相对于水平轴风力发电机是一大优势,它不仅使结构设计简化,而且也减少了风轮对风时的陀螺力。

利用阻力旋转的垂直轴风力发电机有几种类型,其中有利用平板和被子做成的风轮,这是一种纯阻力装置;S型风车,具有部分升力,但主要还是阻力装置。

这些装置有较大的启动力矩,但尖速比低,在风轮尺寸、重量和成本一定的情况下,提供的功率输出低。

4.达里厄式风轮是法国G.J.M达里厄于19世纪30年代发明的。

在20世纪70年代,加拿大国家科学研究院对此进行了大量的研究,现在是水平轴风力发电机的主要竞争者。

达里厄式风轮是一种升力装置,弯曲叶片的剖面是翼型,它的启动力矩低,但尖速比可以很高,对于给定的风轮重量和成本,有较高的功率输出。

现在有多种达里厄式风力发电机,如Φ型,Δ型,Y型和H型等。

这些风轮可以设计成单叶片,双叶片,三叶片或者多叶片。

5.其他形式的垂直轴风力发电机有马格努斯效应风轮,他由自旋的圆柱体组成,当它在气流中工作时,产生的移动力是由于马格努斯效应引起的,其大小与风速成正比。

有的垂直轴风轮使用管道或者漩涡发生器塔,通过套管或者扩压器使水平气流变成垂直气流,以增加速度,偶写还利用太阳能或者燃烧某种燃料,是水平气流变成垂直方向的气流。

七、风能市场概况1.全球风电市场状况风能作为一种清洁的可再生能源,越来越受到世界各国的重视。

其蕴量巨大,全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。

中国风能储量很大、分布面广,仅陆地上的风能储量就有约2.53亿千瓦。

随着全球经济的发展,风能市场也迅速发展起来。

自2004年以来,全球风力发电能力翻了一番,2006年至2007年间,全球风能发电装机容量扩大27%。

2007年已有9万兆瓦,这一数字到2010年将是16万兆瓦。

预计未来20-25年内,世界风能市场每年将递增25%。

随着技术进步和环保事业的发展,风能发电在商业上将完全可以与燃煤发电竞争。

2.中国风电总体市场“十五”期间,中国的并网风电得到迅速发展。

2006年,中国风电累计装机容量已经达到260万千瓦,成为继欧洲、美国和印度之后发展风力发电的主要市场之一。

2007年我国风电产业规模延续暴发式增长态势,截至2007年底全国累计装机约600万千瓦。

2008年8月,中国风电装机总量已经达到700万千瓦,占中国发电总装机容量的1%,位居世界第五,这也意味着中国已进入可再生能源大国行列。

2008年以来,国内风电建设的热潮达到了白热化的程度。

2009年,中国(不含台湾地区)新增风电机组10129台,容量13803.2MW,同比增长124%;累计安装风电机组21581台,容量25805.3MW。

2009年,台湾地区新增风电机组37台,容量77.9MW;累计安装风电机组227台,容436.05MW。

3.中国风力发电行业的发展前景中国风力等新能源发电行业的发展前景十分广阔,预计未来很长一段时间都将保持高速发展,同时盈利能力也将随着技术的逐渐成熟稳步提升。

2009年该行业的利润总额将保持高速增长,经过2009年的高速增长,预计2010、2011年增速会稍有回落,但增长速度也将达60%以上。

风电发展到目前阶段,其性价比正在形成与煤电、水电的竞争优势。

风电的优势在于:能力每增加一倍,成本就下降15%,近几年世界风电增长一直保持在30%以上。

随着中国风电装机的国产化和发电的规模化,风电成本可望再降。

因此风电开始成为越来越多投资者的逐金之地。

八、风力发电的前景中国新能源战略开始把大力发展风力发电设为重点。

按照国家规划未来15年,全国风力发电装机容量将达到2000万至3000万千瓦。

以每千瓦装机容量设备投资7000元计算,根据《风能世界》杂志发布,未来风电设备市场将高达1400亿元至2100亿元。

九、风能发电的优缺点(一)优点清洁,环境效益好。

1、可再生,永不枯竭。

2、基建周期短、投资大。

相关文档
最新文档