第3讲 有理数的加减运算和答案
七年级数学上培优辅导讲座 第03讲 有理数的加减乘除运算拔尖训练能力提升竞赛辅导试题含答案
第三讲 有理数的加减乘除运算培优训练 1.(2013,南京),计算12-7×(-4)+8÷(-2)的结果是( ). A . -24 B .-20 C .6 D .36 2.(2012,绍兴)在一条笔直的公路边,有一些树和灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离都是10 m ,如图,第一棵树左边5m 处有一个路牌,则从此路牌起向右510 m ~550 m 之间树与灯的排列顺序是( ).3(2013,杭州)32 ×3.14+3×(-9.42)= . 4.计算:0-(-2)= ;(12-1)×(23-)= ;4-÷ =-2 5如果2(a 1)20b -++=,则220082007(b a)(a b)2(a b)ab -++++= .6.计算:(1)(-16.75)- 435-+( 1164+)+4.4; (2)-32÷3+(1223-)×12-32.7.计算:(1)-16-(-8)+(-11)-2; (2)(-22)+(-2÷12)- 3-×(-1)2011.8.初一某班有60名学生,在周练中分数超过90分的部分用正分表示,不足90分的部分用负分表示,在与90分的差值(单位:分) -26 -18 -8 0 8 15 人数481218108(1)该班的最高分与最低分相差____;(2)该班成绩低于90分的同学占全班同学的百分比是多少? (3)计算出该班这次数学周练的平均成绩.9.(武汉二中)10月,武汉二中广雅中学举行秋季运动会,初一某班选取36名同学参加入场式,若以160cm(1)有一栏记录被墨迹盖住,请求出该身高的同学有几人? (2)这36名同学的平均身高是多少?10.已知a ,b 互为相反数,c ,d 互为倒数,12x -=.求(a b)x cdx x++-的值.竞赛训练11.(华师一附中理科招生)若实数x ,y 使得x +y ,x -y ,xy ,xy这四个数中的三个数相等,则y x -的值等于( ).A . 12-B .0C .12D .3212.(2011,“城市杯”竞赛) 1111120023003400460068008+++-=( ) A .16006 B . 17007- C . 98008 D . 19009-13.(2013,武汉市武珞路中学)让我们轻松一下,做一个抽签游戏.有一个盒子里面有三张纸签,每个纸签上分别写有一个数,它们分别是-0.31,-3.69,+122,甲从中抽出一个纸签,看完纸签上的数后放回盒子中,将盒子中的纸签摇匀后,再抽出一个纸签看完纸签上的数后,将两次的数相乘,再放回盒子中,你能算出所有这样的乘积的总和吗? 答案:总和为____(填一填).14. (2013,武汉二中):将1,2,3,…,40,这40个自然数,任意分成20组,每组两个数,现将每组两个数中任一数值记作a ,另一个记作b (a >b )代入式子1(a b)2a b -++中进行计算,求出其结果,代入后可求得20个值,求这20个值的和的最大值____.15.(华师一附中理科招生)整数x 0,x 1,x 2,…,x 2008满足条件:x 0=1,101x x =+,211x x =+,…,200820071x x =+,则0122008...x x x x ++++的最小值为16(2011,长郡中学自主招生)用数字1,2,3,4,5,6,7,8不重复地填写在下面连等式的方框中,使这个连等式成立:1+口+口=9+口+口 =8+口+口 =6+口+口 17.(2011,蚌自主招生)按下列程序进行运算.规定:程序运行到“判断结果是否大于244”为一次运算,若x =5,则运算进行____次才停止;若运算进行了5次才停止,则x 的取值范围是____.18.图中显示的填数“魔方”只填了一部分,将下列9个数:14,12,1,2,4,8,16, 32, 64填入方格中,使得所有行、列及对角线上各数相乘的积相等.求图中x 的值. 32 x64参考答案: 1.D2. B [提示:因为相邻的树与树,树与灯闻的距离都是10 m ,所以相邻两灯之间是40m .12×40=480,13×40= 520.而第一棵树左边5m 处有一个路牌,所以从此路牌起向右510 m -550m 之间树与灯的排列顺序是B ]3.0. 4. 2;1;-2.5.- 2.[提示;易知a =1,b =-2,则220082007()()2()ba ab ab a b = 220082007(21)(12)21(2)(12)= 9141=-2]6.(1)原式=-16.75-3.8+16.25+4. 4=-0.1.(2)原式=-9÷3+(-16)×12-9=-3-2-9=-14.7.(1)原式=-16+8-11-2=-21.(2)原式=-4+(-4)-3×(-1)=-8+3=-5. 8. (1)41. (2)(4+8+12) ÷60=24÷60=40%. (3)90+(26)4(18)8(8)1281015860= 90+(-2.4)=87.6(分).9.(1)36-5-4- 5-5= 17(人).(2)3554(1)1725(2)536+160=160.5(cm ).10.∵ a .b 互为相反数,c ,d 互为倒数,∴a +b =0,cd =1∵12x -=,∴x =3或-1.当x =3时,(a b)x cd x x++-=13+0- 3=-223;当x =-1时,(a b)x cd x x++-=11+0-1=-211.C [提示:若x +y =x -y ,则y =0,这与x y 有意义矛盾,∴x +y ≠x -y ,则x +y =xy =x y 或x -y =xy =xy.由xy =xy可知xy 2=x , ∴x =0或y =±1.若x =0,则y =0,不合题意;若y =1, 则x +1=x ,不合题意;若y =-1,则x -1=-x ,故x =12,此时y =-1,∴y -x =1-12=12]12.C [提示:原式=11001(12+13+14+16-18)=11001×98=98008] 13.2. 25.[提示:总和为(-0.31-3.69+212)2=(-1.5)2 =2.25.]14. 610.[提示:∵a >b ,∴12(a b +a +b )=12(a -b +a +b )=a ,故分组时,只要这20组中的a 对应的数分别为40,39,38,…,21时,和最大.] 15.8.16. 1+8+6=9+5+1=8+3+4=6+7+2.17.4;2<x ≤4. [提示:(1)x =5,第一次:5×3-2=13, 第二次:13×3-2= 37,第三次:37×3-2=109, 第四次:109×3-2=325>244→停止. (2)第1次,结果是3x -2.第2次,结果是3×(3x -2)-2=9x -8;第3次,结果是3×(9x-8)-2=27x-26;第4次,结果是3×(27x-26) -2=81x-80;第5次,结果是3×(81x-80) -2=243x-242;∴243x-242>244……①,81x-80≤244……②,由①式子得x>2;由②式子得x≤4.∴2<x≤4,即5次停止的x的取值范围是2<x≤4.]18.这9个数的积为14×12×1×2×…×64=643所以每行、每列、每条对角线上三个数字之积为64 得ac=1,ef=1,ax=2.所以a,c,e,f分别为14,4,2,12,故x=8(如图所示)第18题图。
第3讲有理数加减乘除及混合运算(学生版)
第3讲有理数加减乘除及混合运算1.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加,仍得这个数。
2.有理数减法法则即减去一个数,等于加这个数的相反数。
有理数的减法可以转化为加法来进行。
如果你记不住上面的加减法规则,请参照以下:傻瓜加减法则1、遇见小数减大数,负号表示“差多少”(其实就是符号不同的两数相加的情况)2、遇见减去负数时,负负得正变加号(其实就是小学的去括号变号问题)3.有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.4.几个有理数相乘时积的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个有理数相乘,有一个因数为0,积就为0.注意:第一个因数是负数时,可省略括号.5.有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.(两数相除,同号得正,异号得负,并把绝对值相除.)0除以任何一个不为0的数,都得0.【例题1】选择正确答案(1)若a+b=a b+,则a 、b 的关系是( )A 、a 、b 绝对值相等B 、a 、b 异号C 、a 、b 的和是非负数D 、a 、b 同号或其中至少一个为0 (2)若一个有理数减去它的相反数是一个负数,则( ) A 、这个有理数一定是负数 B 、这个有理数一定是正数C 、这个有理数可以为正数、负数D 、这个有理数为零(3)已知有理数a 、b 、c 在数轴上的位置如图所示。
则下列结论错误的是( ) A 、b +c<0 B 、-a +b +c<0 C 、a b+>a c+ D 、a b+<a c+(4)已知|a|>a,|b|>b,且|a|>|b|,则( ) A 、a>b B 、a<b C 、不能确定 D 、a=b(5)一个数在数轴上对应点与其相反数在数轴上对应点的距离为12单位长,则这个数是( ) A 、12或-12 B 、14或-14 C 、12或-14 D 、-12或14【例题2】计算:(1) 7.27.27.2---+ (2) 13616--++-【例题3】计算:.)702.11()6514(537(6155(5213(---++++-+)532()]57()323(6.8[324-+-++-+【例题4】如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y 的值是多少?【练习1】|x|=4,|y|=6,求代数式|x+y|的值【例题5】完成下列填空1、两数相乘,同号得 ,异号得 ,并把绝对值 。
专题03 有理数的加减法(解析版)
第3讲有理数的加减法有理数的加法知识点1、有理数的加法1.有理数加法法则(1)同号两数相加:取相同的符号,并把绝对值相加。
(2)异号两数相加:绝对值值相等时和为0,绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0 相加,仍得这个数。
2.加法运算律2.加法交换律加法结合律a +b =b +a(a +b) +c =a + (b +c)1.计算:(1)|﹣7|+|﹣9|(2)(﹣7)+(﹣3)(3)(+4.85)+(﹣3.25)(4)(﹣7)+(+10)+(﹣1)+(﹣2)(5)(﹣2.6)+(﹣3.4)+(+2.3)+1.5+(﹣2.3)(6).【解答】解:(1)原式=7+9=;(2)原式=﹣7﹣3=﹣==﹣;(3)原式=4.85﹣3.25=1.6;(4)原式=﹣7+10﹣1﹣2=0;(5)原式=﹣2.6﹣3.4+2.3+1.5﹣2.3=﹣4.5;(6)原式=,=﹣3.36+[7.36+]=﹣3.36+7.36+=1+4=5.2.计算:(1)1+(﹣2)+3+(﹣4)+5+…+2001+(﹣2002)+2003+(﹣2004)(2)1+(﹣2)+(﹣3)+4+5+(﹣6)+(﹣7)+8+…+2001+(﹣2002)+(﹣2003)+2004.【解答】解:(1)1+(﹣2)+3+(﹣4)+5+…+2001+(﹣2002)+2003+(﹣2004),=(﹣1)×1002,=﹣1002;(2)1+(﹣2)+(﹣3)+4+5+(﹣6)+(﹣7)+8+…+2001+(﹣2002)+(﹣2003)+2004,=(1﹣2﹣3+4)+(5﹣6﹣7+8)+(9﹣10﹣11+12)+…+(2001﹣2002﹣2003+2004),=0×501,=0.有理数的减法知识点2 有理数减法法则减去一个数,等于加上这个数的相反数。
3.计算(1)(﹣3﹣5)﹣(6﹣10)(2)(﹣32)﹣[(﹣27)﹣(﹣72)]﹣87.【解答】解:(1)(﹣3﹣5)﹣(6﹣10)=﹣8+4=﹣4;(2)(﹣32)﹣[(﹣27)﹣(﹣72)]﹣87=﹣32﹣45﹣87=﹣77﹣87=﹣164.4.计算下列各式.(1)(﹣32)﹣(﹣12)﹣5﹣(﹣15);(2)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75);(3)(﹣1)﹣(+1)﹣(﹣2)﹣2.【解答】解:(1)(﹣32)﹣(﹣12)﹣5﹣(﹣15)=﹣32+12﹣5+15=﹣20+10=﹣10.(2)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)=﹣3+7+2﹣2.75=4.(3)(﹣1)﹣(+1)﹣(﹣2)﹣2=﹣1﹣1+2﹣2=﹣3﹣1+2=﹣4+2=﹣2.有理数的混合运算知识点3有理数加减混合运算一般统一成加法运算,从左到右的顺序,利用加法交换律和结合律简化运算。
有理数的加减法讲义
初一数学讲义(三)有理数的混合运算姓名成绩知识要点:1、有理数加减混合运算中,减法可以根据减法法则转化成加法,统一成只含有加法运算的和式.例如:(-5)+(-3)-(-7)-(+2)可转化为:(-5)+(-3)+(+7)+(-2)2、在一个和式里,通常把各个加数的括号和它前面的加号省略不写,如上式可写成:-5-3+7-23、省略加号的和式的读法有两种如-5-3+7-2,其意义表示-5,-3,+7,-2的和,只不过加号省略未写,因此,它可读作“-5,-3,+7,-2的和”;第二种读法是按习惯读作:“负5减3加7减2”。
第一种读法有利于用加法运算律简化运算.4、在运用加法交换律和结合律时,要注意连同前面的符号一起移动,如计算-5-3+7-2时,先交换成-5-3-2+7,再进行结合为(-5-3-2)+7,无论交换加数的位置,还是进行结合,都应连同符号移动,当省略“+”号的首项移到后面时,应补上“+”,如5-7+3=-7+5+3,事实上,代数和中符号应看作数的一部分.5、有理数加减混合运算的步骤(1)把算式中的减法转化成加法;(2)省略加号与括号写成代数和的形式;(3)用加法法则计算,尽可能运用运算律简便计算.例1:把(-36)-(-28)+(+125)+(-4)-(+53)-(-40)写成省略加号的和的形式并把它读出来.例2、计算-8+(-11)-2003.12-9-(-9)-(+2)-(-2003.12).例3、已知a=13,b=-12.1,c=-10,d=25.1求a-b-(c+d)的值综合练习一、判断题1.一个数的相反数一定比原数小;()2.如果两个有理数不相等,那么这两个有理数的绝对值也不相等;()3.|-2.7|>|-2.6|; ( )4.若a+b=0,则a,b互为相反数。
( )二.选择题1.相反数是它本身的数是()A. 1B. ﹣1C. 0D.不存在2.下列语句中,正确的是()A.不存在最小的自然数B.不存在最小的正有理数C.存在最大的正有理数D.存在最小的负有理数3.两个数的和是正数,那么这两个数()A.都是正数B.一正一负C.都是负数D.至少有一个是正数4、下列各式中,等号成立的是()A、-=6 B、=-6 C、-=-1D、=-3.145、在数轴上表示的数8与-2这两个点之间的距离是()A、6B、10C、-10 D-66、一个有理数的绝对值等于其本身,这个数是()A、正数B、非负数C、零D、负数三、填空题1. |-4|-|-2.5|+|-10|=________;2. 最大的负整数是___ ___;最小的正整数是____________3. 绝对值小于5的整数有______个;绝对值小于6的负整数有_______个4. 数轴三要素是__________,___________,___________5. 若上升6米记作+6米,那么-8米表示。
有理数的减法——有理数的减法法则 精品课件
1 2
=
5 6
.
3
0
+7
1 3
=0+
7
1 3
=
7
1 3
.
总结
知1-讲
我们必须明确两点: 一是进行有理数减法运算的关键在于利用法则 变减法为加法; 二是有理数减法不能直接进行计算,只有转化 为加法后才能进行计算.
1 在下列括号中填上适当的数.
(1)(-8)-(-6)=(-8)+(____6____);
(2)4
1 2
-2
1 4
=2
1 4
,对应点之间的距离为2
1 4
.
(3)(-4)-4=-8,对应点之间的距离为8.
(4)-5-(-2)=-3,对应点之间的距离为3.
发现:所得的距离与这两数的差的绝对值相等.
总结
知2-讲
1.求数轴上两点间的距离的方法:一可利用数轴 求.二可利用数轴上两点间的距离公式求(绝对 值中阅读题中的结论);
“两变”中一变运算符号,减号变加号;二变减 数,减数变为它的相反数;“一不变”被减数 不变; (2)运用加法法则进行计算.
例1 计算:(1) (-3)-(-5). (2)0-7.
(3)7.2-(-4.8).
(4)
3
1 2
5
1 4
.
解:(1) (-3)-(-5)= (-3)+5=2;
第一章 有理数
1.3 有理数的加减法
第3课时 有理数的减法——有 理数的减法法则
1 课堂讲解 2 课时流程
有理数的减法法则 有理数减法法则的应用
第3讲 有理数的混合运算 例题和习题
有理数的混合运算知识点1 有理数的乘除一、有理数乘法例1计算:(1) (-8)×4; (2)(-6)×(- 73)(3)5×(-3)× 15例2 若a + b < 0, ab > 0,则这两个数( )A.都是正数B.都是负数C.—正一负D.符号不能确定二、有理数除法例3 计算:(1)3× (- 56)÷(- 134) (2) 58 ×13 ÷5×(-8)三、乘法分配律例4 计算:(1)(-36)×(13+ 56-34)(2)(-36)×(14-19-112)×(-12)练4.1 计算:(1112-76+ 34-1324)×(-48)知识点2 有理数的乘方一、有理数的乘法例5(1) .下列各式中,不相等的是( )A.(-3)2与-32B.(-2)3与-23C.(-3)2与32D.|-2|3与|-23|练5.1对于任意有理数a,下列各式一定成立的是()A.a2 = (- a)2B.a3 = (-a)3C.-a2 = |a|2D.|a|3 = a3二、正指数科学计数法例6用激光测距仪测得两座山峰之间的距离为165000米,将数据165000用科学记数法表示为______________.练6.1“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()。
A. 0.18 x 107B. 1.8 x 105C. 1.8 x 106D. 18 x 105例7截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()知识点3 有理数的混合运算一、有理数的五则混合运算例8 计算:(1)|- 2|+(-1)2019+ 1×(-3)29(2)4+(-2)3×5-(-28)÷4+(-6)2(3)-14-32÷[(-2)3+4]练8.1 计算:(1)- 12+3×(-2)2+ ×(-9)÷(-13)2(2)- 12 +(-2)3+ |- 3|÷13(3)[-22+ (-1)2019 ] ÷154×43。
第二章有理数及其运算第三讲有理数的运算法则(教案)
-有理数混合运算:掌握混合运算的顺序和法则,解决实际问题。
举例解释:
-加法重点:强调两个正数或两个负数相加时,结果的符号不变,绝对值为两个数绝对值之和。如:3 + 4 = 7,-3 + (-4) = -7。
-减法重点:强调减法实际上是加上相反数,如:5 - 3 = 5 + (-3)。
第二章有理数及其运算第三讲有理数的运算法则(教案)
一、教学内容
本节课选自教材第二章“有理数及其运算”的第三讲,主题为“有理数的运算法则”。教学内容主要包括以下几点:
1.有理数的加法法则:掌握同号相加、异号相加的规律,理解“正负相抵”的概念。
-同号相加:两个正数或两个负数相加,结果为同号的较大绝对值。
五、教学反思
在今天的教学中,我重点关注了有理数的运算法则这一章节。我尝试通过日常生活中的例子引入新课,希望这样能让学生感受到数学与生活的紧密联系。在理论讲解部分,我尽力将有理数的概念和运算法则阐述清楚,同时用具体的案例帮助学生理解这些抽象的规则。
课堂上,我发现学生在异号相加和乘法符号规律这两个部分有些吃力。我通过反复举例和对比分析,尽量让学生明白这些难点。在实践活动和小组讨论中,我鼓励学生积极思考,提出问题,并尝试解决问题。看到他们认真讨论、动手操作的样子,我觉得他们已经开始体会到数学学习的乐趣。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“有理数的运算法则”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量,比如温度上升和下降?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数运算法则的奥秘。
数学 第三讲有理数的四则运算
第三讲有理数的四则运算二有理数的加减法1. 有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0相加,仍得这个数。
2. 有理数加法的运算步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:(1)先确定加法类型(同号还是异号);(2)确定和的符号;(3)绝对值的加减运算。
3. 有理数加法的运算律(1)两个加数相加,交换加数的位置,和不变。
a+b=b+a(加法交换律)(2)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=a+(b+c)(加法结合律)4. 有理数加法的运算技巧(1)分数与小数均有时,应先化为统一形式。
(2)带分数可分为整数与分数两部分参与运算。
(3)多个加数相加时,若有互为相反数的两个数,可先结合相加,得零。
(4)若有可以凑整的数,即相加得整数时,可先结合相加。
(5)若有同分母的分数或易通分的分数,应先结合在一起。
(6)符号相同的数可以先结合在一起。
5. 有理数的减法法则减去一个数,等于加这个数的相反数。
a-b=a+(-b)6. 有理数减法的运算步骤(1)把减号变为加号(改变运算符号)(2)把减数变为它的相反数(改变性质符号)(3)把减法转化为加法,按照加法运算的步骤进行运算。
7. 有理数加减法混合运算的步骤(1)把算式中的减法转化为加法;(2)省略加号与括号;(3)利用运算律及技巧简便计算,求出结果。
注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即求几个正数、负数和0的和,这个和称为代数和。
为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式,例如:(+3)+(-0.15)+(-9)+(+5)+(-11)=3-0.15-9+5-11,它的含义是正3,负0.15,负9,正5,负11的和。
【精品讲义】人教版 七年级数学(上) 专题1.3 有理数的加减法(知识点+例题+练习题)含答案
第一章 有理数1.3 有理数的加减法1.有理数的加法(1)有理数加法法则:①同号两数相加,取___________的符号,并把___________相加;②绝对值不相等的异号两数相加,取绝对值较___________的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得___________. ③一个数同0相加,仍得这个数. (2)用字母表示有理数加法法则: ①同号两数相加:若a >0,b >0,则a b +=___________; 若a <0,b <0,则a b +=___________. ②异号两数相加:若a >0,b <0,且||||a b >时,则a b +=___________; 若a >0,b <0,且||||a b <时,则a b +=___________; 若a >0,b <0,且a b =时,则a +b =___________. ③a +0=___________. (3)有理数的加法运算律: ①加法交换律:文字语言:两个数相加,交换加数的位置,和___________. 符号语言:a +b =___________. ②加法结合律:文字语言:三个数相加,先把前两个数相加,或者先把后两个数相加,和___________. 符号语言:(a +b )+c =___________. 2.有理数的减法:(1)有理数的减法法则:减去一个数,等于加上这个数的___________. 即a –b =a +(–b ).(2)对于有理数的减法运算,应先转化为___________,再根据有理数加法法则计算,即加法与减法是互逆运算.(3)有理数减法的三种情况:①减去一个正数等于加上一个负数;②减去一个负数等于加上一个正数;③任何数减去0仍得这个数,0减去一个数等于这个数的相反数.1.(1)相同,绝对值,大,02.(1)相反数 (2)加法一、有理数的加法法则有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.1)5+8;(2)8+(–21);(3)102+0.【解析】(1)5+8=13;(2)8+(–21)=–(21–8)=–13; (3)102+0=102.二、有理数的加法运算律加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变. 表达式:a+b=b+a .加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变. 表达式:(a+b )+c=a+(b+c )(1)交换律;(2)结合律.【答案】(1)a +b =b +a ;(2)(a +b )+c =a +(b +c )【解析】根据有理数的加法运算律,可得答案为:(1)交换律:a +b =b +a ;(2)结合律:(a +b )+c =a +(b +c ).【名师点睛】在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: (1)互为相反数的两个数先相加——“相反数结合法”; (2)符号相同的两个数先相加——“同号结合法”; (3)分母相同的数先相加——“同分母结合法”; (4)几个数相加得到整数,先相加——“凑整法”; (5)整数与整数、小数与小数相加——“同形结合法”.三、有理数的减法法则1.有理数减法法则:减去一个数,等于加这个数的相反数. 字母表示:a –b =a +(–b ).2.有理数减法法则是一个转化法则,把减数变为它的相反数,从而将减法转化为加法.可见,引进负数后的加减法运算,可以统一为加法运算来解决.1)(–3)–(–7);(2)11()43--. 【解析】(1)(–3)–(–7)=(–3)+7=4; (2)11()43--=1143+=712. 【名师点睛】运用法则时,应注意“两变,一不变”.“两变”:一是运算符号“–”变为“+”;二是减数变成它的相反数.一不变:被减数和减数的位置不能交换,即减法没有交换律.四、利用特殊规律解有关分数的计算题1.一个有理数由符号和绝对值两部分组成,所以进行加法运算时,要先确定符号,后确定绝对值. 2.当一个加数为负数时,这个负数必须用括号括起来,即两个符号要用括号隔开,如(–2)+(–1)中–1必须用括号括起来,不要写成–2+–1这样的形式.3.将减法变为加法时,注意“两变”和“一不变”.“两变”即改变运算符号(减变加)和改变减数的性质符号(变为相反数);“一不变”即被减数和减数的位置不能变换. 4.两数相减,当被减数大于减数时,差为正数;当被减数小于减数时,差为负数.5.根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.5231591736342--+-.【答案】原式5231591736342=----++--5231(59173)()6342=--+-+--+-5433(59317)()6664=---++---+3(1717)(2)4=-++-+1014=-114=-.【解析】带分数相加,可将带分数中整数部分与分数部分拆开分别相加.【名师点睛】利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性.五、有理数与相反数、绝对值的综合考查1.互为相反数的两个数的和为0. 2.绝对值具有非负性.|x –3|与|y +2|互为相反数,求x +y +3的值.【答案】4【解析】因为|x –3|与|y +2|互为相反数, 所以|x –3|+|y +2|=0,所以|x–3|=0,|y+2|=0,即x–3=0,y+2=0,所以x=3,y=–2.所以x+y+3=3+(–2)+3=4.六、有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,–0.8,2.3,1.7,–1.5,–2.7,2,–0.2,则这8箱橘子的总重量是多少?【答案】1.2+(–0.8)+2.3+1.7+(–1.5)+(–2.7)+2+(–0.2)=1.2–0.8+2.3+1.7–1.5–2.7+2–0.2=(1.2–0.2)+(2.3+1.7+2)+(–0.8–2.7–1.5)=1+6–5=2.则15×8+2=122(千克).答:这8箱橘子的总重量是122千克.【解析】本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?【答案】详见解析.【解析】(1)能.三家修理部的位置如下图所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5–(–3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|–3.5|+|–7.5|+|–3|=8+3.5+7.5+3=22(千米).答:货车一共行驶了22千米.1.一个数加–0.6和为–0.36,那么这个数是A.–0.24 B.–0.96 C.0.24 D.0.962.把+3–(+2)–(–4)+(–1)写成省略括号的和的形式是A.–3–2+4–1 B.3–2+4–1 C.3–2–4–1 D.3+2–4–13.下列算式正确的是:A.(–14)–(+5)=–9 B.0–(–3)=3 C.(–3)–(–3)=–6 D.︱5–3︱=–(5–3) 4.下列结论中,正确的是A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数C.零减去一个数,仍得这个数D.两个相反数相减得05.有理数a、b在数轴上的位置如图所示,则a+b的值A.大于0 B.小于0 C.等于0 D.大于b6.如果两个数的和是负数,那么这两个数A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数7.计算│–4+1│的结果是A.–5 B.–3 C.3 D.58.比–2208大1的数是A.–2207 B.–2009 C.2007 D.20099.绝对值大于1且小于4的所有整数的和是A.6 B.–6 C.0 D.4 10.0–(–2017)=___________.11.计算:5–(–6)=___________.12.计算:–9+5=___________.13.计算:2113()() 3838---+-.1.在下列执行异号两数相加的步骤中,错误的是①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④2.在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,再向东行驶1m,这时车模的位置表示什么数?”用算式表示以上过程和结果的是A.(–3)–(+1)=–4 B.(–3)+(+1)=–2C.(+3)+(–1)=+2 D.(+3)+(+1)=+43.计算12+16+112+120+130+…+19900的值为A.110099B100.1C99.100D99.4.甲、乙、丙三地的海拔高度分别为20m、–15m和–10m,那么最高的地方比最低的地方高__________m.5.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=__________.6.若室内温度是20°C,室外温度是−5°C,则室内温度比室外温度高_______°C.7.计算:–14+23+(–23).8.计算:(9)(10)(2)(8)(3)+-++---++.9.a=4,b=2018,a b+≠a+b,试计算a+b的值.10.足球循环赛中,红队胜黄队4︰1,黄队胜蓝队1︰0,蓝队胜红队1︰0,计算各队的净胜球数.11.计算:(1)–(–2)+(–3);(2)(–5.3)+|–2.5|+(–3.2)–(+4.8).1.(2019•孝感)计算–19+20等于A.–39 B.–1 C.1 D.392.(2019•天水)已知|a|=1,b是2的相反数,则a+b的值为A.–3 B.–1 C.–1或–3 D.1或–33.(2019•成都)比–3大5的数是A.–15 B.–8 C.2 D.84.(2019•淄博)比–2小1的数是A.–3 B.–1 C.1 D.35.(2019•金华)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四6.(2019•随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为__________.7.(2019•乐山)某地某天早晨的气温是–2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是__________℃.1.【答案】C【解析】根据加数+加数=和,可得–0.36–(–0.6)=–0.36+0.6=0.24.故选C.【名师点睛】此题主要考查了有理数的加减法,解题的关键是根据加减法的互逆性,把加法转化为减法,再利用减去一个数等于加上这个数的相反数,即可计算,比较简单.2.【答案】A【解析】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,可得+3–(+2)–(–4)+(–1)=+3–2+4–1.故选A.【名师点睛】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.3.【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(–14)–(+5)=(–14)+(–5)=–19;0–(–3)=0+(+3)=3;(–3)–(–3)=(–3)+3=0;︱5–3︱=5–3=2.故选B.4.【答案】A【解析】根据有理数的减法法则依次分析即可判断.A.有理数减法中,被减数不一定比减数大,本选项正确;B.减去一个数,等于加上这个数的相反数,本选项错误;C.零减去一个数,得这个数的相反数,本选项错误;D.两个相反数相加得0,本选项错误;故选A.【名师点睛】解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数. 5.【答案】A【解析】异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.根据数轴可得b的绝对值大于a的绝对值,则和取b的符号.6.【答案】D【解析】因为两个数的和为负数数,所以至少要有一个负数,故选D.【名师点睛】本题考查了有理数的加法法则,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.7.【答案】C【解析】│–4+1│=│–3│=3,故选C.8.【答案】A【解析】–2208+1=–(2208–1)=–2207.故选A.9.【答案】C【解析】绝对值大于1小于4的整数有:±2;±3.–2+2+3+(–3)=0.故选C.10.【答案】2017【解析】0–(–2017)=0+2017=2017.11.【答案】11【解析】5–(–6)=5+6=11.12.【答案】–4【解析】–9+5=–(9–5)=–4.13.【答案】1 2【解析】21132113211311 ()()1 38383838338822---+-=-+-=+--=-=.1.【答案】D【解析】①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的差作为结果的绝对值;故选D.【名师点睛】本题主要考查的是异号两数相加的计算法则,属于基础题型.理解计算法则是解题的关键.2.【答案】B【解析】由题意可得:(–3)+(+1)=–2.故选B.【名师点睛】本题主要考查了有理数的加法的应用,根据题意,正确列出算式是解题的关键.3.【答案】B【解析】原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100-+-+-+⋯+-, =1–1100=99100. 故选B .【名师点睛】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.【答案】35【解析】最高甲,最低乙,所以最高比最低高()2015201535--=+=.故答案为:35. 5.【答案】–2【解析】因为a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,所以a =1,b =0,c =0,d =–2,e =–1,所以a +b +c +d +e =1+0+0–2–1=–2.故答案为:–2.【名师点睛】本题考查了有理数的基础知识及有理数的加法运算,根据题意求得a =1,b =0,c =0,d =–2,e =–1,再利用有理数的加法法则计算.6.【答案】25【解析】用室内温度减去室外温度,即20–(–5)=20+5=25(°C ),故答案为:25.7.【答案】–14【解析】–14+23+(–23)=–14; 8.【答案】8【解析】原式=[(9)(8)(3)][(10)(2)](20)(12)8++++++-+-=++-=. 9.【答案】a +b 的值为–2014或–2022. 【解析】因为a =4,所以a =±4.因为b =2018,所以b =±2018. 因为a b +≠a +b ,所以=–(a +b ),所以a +b <0.当a =4,b =–2018时,a +b =4+(–2018)=–2014.当a =–4,b =–2018时,a +b =(–4)+(–2018)=–2022.当b =2018时,不符合题意.a b +所以a+b的值为–2014或–2022.10.【答案】红队净胜球数为2;黄队净胜球数为–2;蓝队净胜球数为0.【解析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为该队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为:(+4)+(–1)+(–1)=4+(–2)=2;黄队共进2球,失4球,净胜球数为:(+1)+(+1)+(–4)=2+(–4)=–2.蓝队共进1球,失1球,净胜球数为1+(–1)=0.11.【答案】(1)–1;(2)–10.8.【解析】(1)原式=2–3=–1;(2)原式=–5.3+2.5–3.2–4.8=–5.3–3.2+2.5–4.8=–8.5+2.5–4.8=–6–4.8=–10.8.1.【答案】C【解析】–19+20=1.故选C.【名师点睛】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.【答案】C【解析】因为|a|=1,b是2的相反数,所以a=1或a=–1,b=–2,当a=1时,a+b=1–2=–1;当a=–1时,a+b=–1–2=–3;综上,a+b的值为–1或–3,故选C.【名师点睛】本题主要考查有理数的加法,解题的关键是根据相反数和绝对值的性质得出a、b的值.3.【答案】C【解析】–3+5=2.故选C.【名师点睛】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.4.【答案】A【解析】–2–1=–(1+2)=–3.故选A.【名师点睛】本题考查了有理数的减法运算,熟记运算法则是解题的关键.5.【答案】C【解析】星期一温差10–3=7℃;星期二温差12–0=12℃;星期三温差11–(–2)=13℃;星期四温差9–(–3)=12℃;故选C.【名师点睛】本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.6.【答案】2;9【解析】设图中两空白圆圈内应填写的数字从左到右依次为a,b.因为外圆两直径上的四个数字之和相等,所以4+6+7+8=a+3+b+11①,因为内、外两个圆周上的四个数字之和相等,所以3+6+b+7=a+4+11+8②,联立①②解得:a=2,b=9,所以图中两空白圆圈内应填写的数字从左到右依次为2,9,故答案为:2;9.【名师点睛】此题比较简单,主要考查了有理数的加法,主要依据题中的要求①②列式即可以求解.7.【答案】–3【解析】–2+6–7=–3,故答案为:–3.【名师点睛】本题主要考查有理数的加减法,正确列出算式是解题的关键.。
七年级数学人教版(上册)【知识讲解】第3课时有理数的加减乘除混合运算
9.某儿童服装店老板以 32 元/件的价格买进 30 件连衣裙,针对
不同的顾客,30 件连衣裙的售价不完全相同.若以 45 元为标准,将
超过的钱数记为正,不足的钱数记为负,记录结果如下表:
售出件数/件 7
6
3
5
4
5
售价/元
+3 +2 +1 0 -1 -2
该服装店售完这 30 件连衣裙后,赚了 412 元.
6.(2020·杭州)已知某快递公司的收费标准为:寄一件物品不超
过 5 kg,收费 13 元;超过 5 kg 的部分每千克加收 2 元.圆圆在该快
递公司寄一件 8 kg 的物品,需要付费( B )
A.17 元
B.19 元
C.21 元
D.23 元
7.小明在山顶测得温度是-2.5 ℃,同一时刻小红在山脚测得 温度是 5.5 ℃.已知该地区高度每增加 100 m,气温大约降低 1 ℃, 则这座山峰的高度大约是多少米?
解:由题意,得[5.5-(-2.5)]÷1×100=800(m). 答:这座山峰的高度大约是 800 m.
8.(2021·镇江)如图,输入数值 1 921,按所示的程序运算(完成 一个方框内的运算后,把结果输入下一个方框继续进行运算),输出 的结果为( D )
A.1 840 C.1 949
B.1 921 D.2 021
21 1 = 8 -4-8
5 =2-4
3 =-2.
知识点 2 利用计算器进行有理数的加减乘除混合运算 5.用计算器计算(结果保留两位小数): (1)(-37)×125÷(-75)≈ 61.67 . (2)-4.375×(-0.112)-2.321÷(-5.157)≈ 0.94 .
知识点 3 有理数运算的实际应用
七年级上 第3讲 2 《有理数的加减混合运算》同步练习(含答案)
有理数的加减混合运算一、选择题1.2017·绍兴期中计算6-(+3)-(-7)+(-5)所得的结果是( )A .-7B .-9C .5D .-32.计算0-2+10-7-5的结果为( )A .0B .-4C .6D .-63.下列计算正确的是( )A .-6+(-3)+(-2)=-1B .7+(-0.5)+2-3=5.5C .-3-3=0D .(-1)-⎝⎛⎭⎫-34+(-4)=3344.某天早晨的气温为-3 ℃,中午上升了6 ℃,半夜又下降了7 ℃,则半夜的气温是( )A .-5 ℃B .-4 ℃C .4℃D .-16 ℃5.-15减去5与-215的和,差是( ) A .-3 B .225 C .3 D .3356.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( )A .-1B .0C .1D .27.小张今年在银行中办理了7笔储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出12.5万元,取出2万元,这时小明在银行的存款 ( )A .增加了12.25万元B .减少了12.25万元C .增加了10万元D .减少了12万元二、填空题8.用算式表示“7与比它的相反数小3的数的差”是__________,结果是________.9.若a b c d =a +b -c -d ,则1 23 4的值是________. 10.-25与-35的和减去-415所得的差是________. 11.分别输入-1,-2,按图K -9-1所示的程序运算,则输出的结果分别是________. 输入→+4→-(-3)→-5→输出图K -9-112.一架飞机在空中做特技表演,起飞后的高度变化是上升4.5 km ,下降3.2 km ,上升1.1 km ,下降1.4 km ,那么此时飞机比起飞点高________km .三、解答题13.计算:(1)23-17-(-7)+(-16); (2)32+⎝⎛⎭⎫-15-1+13; (3)34-72+⎝⎛⎭⎫-16-⎝⎛⎭⎫-23-1.14.用简便方法计算:(1)(-26.54)+(-6.4)-18.54+6.4; (2)13-(+0.25)+(-34)-(-23);(3)-2-⎝⎛⎭⎫+712+⎝⎛⎭⎫-715-⎝⎛⎭⎫-14-⎝⎛⎭⎫-13+715.15.小明和小红在做游戏,两人抽取的数据如图K-9-2.游戏规定:正方形表示对应的数前是正号,圆形表示对应的数前是负号,计算其和,结果小者获胜.请列式计算说明小明和小红谁将获胜.图K-9-216.某检修小组乘汽车检修供电线路,约定前进为正,后退为负.某天该检修小组乘汽车自A地出发到收工时,所走路程(单位:千米)为+22,-3,+4,-2,-8,+17,-2,-3,+12,+7,-5,收工时该检修小组距A地多远?若汽车每千米耗油0.2升,则从A 地出发到收工时,汽车共耗油多少升?1.思维拓展计算下列各题:(1)112-256+3112-41920+5130-64142+7156-87172+9190;(2)⎪⎪⎪⎪15-150559+⎪⎪⎪⎪150559-13-⎪⎪⎪⎪-13.2.新定义运算设[a ]表示不超过a 的最大整数,例如:[2.3]=2,⎣⎡⎦⎤-413=-5,[5]=5. (1)求⎣⎡⎦⎤215+[-3.6]-[-7]的值;(2)求⎣⎡⎦⎤234-[-2.4]+⎣⎡⎦⎤-614.详解详析【课时作业】课堂达标1.[解析]C 6-(+3)-(-7)+(-5)=6-3+7-5=13-8=5.2.[答案]B3.[解析]B A .原式=-6-3-2=-11,错误;B .原式=9-3.5=5.5,正确;C .原式=-6,错误;D .原式=-5+34=-414,错误.故选B . www .czsx .com .cn 4.[答案]B5.[解析]A -15-⎣⎡⎦⎤5+⎝⎛⎭⎫-215=-15-245=-3.故选A . 6.[解析]C 最小的自然数为0,最大的负整数为-1,绝对值最小的有理数为0,由此可得a =0,b =-1,c =0,∴a -b +c =1.7.[解析]C 设取出为负,存入为正,由题意,得-9.5+5-8+12+25-12.5-2=-9.5-8-12.5-2+5+12+25=-32+42=10(万元).故选C .8.[答案] 7-(-7-3) 179.[答案]-410.[答案]-1115[解析] [-25+(-35)]-(-415)=-1+415=-1115. 11.[答案] 1,0[解析]当输入-1时,输出的结果=-1+4-(-3)-5=-1+4+3-5=1;当输入-2时,输出的结果=-2+4-(-3)-5=-2+4+3-5=0.故答案为:1,012.[答案] 1[解析]上升记为正,由题意,得4.5-3.2+1.1-1.4=4.5+1.1+(-3.2-1.4)=1(km ).13.解:(1)-3.(2)1930. (3)原式=34-72-16+23-1 =912-4212-212+812-1 =912+812-4212-212-1 =1712-4412-1 =-134. 14.解:(1)-45.08. (2)0.(3)原式=-2+⎝⎛⎭⎫-712+⎝⎛⎭⎫-715+⎝⎛⎭⎫+14+⎝⎛⎭⎫+13+⎝⎛⎭⎫+715 =-2+⎣⎡⎦⎤⎝⎛⎭⎫-712+⎝⎛⎭⎫+14+⎝⎛⎭⎫+13+ ⎣⎡⎦⎤⎝⎛⎭⎫-715+⎝⎛⎭⎫+715 =-2+0+0=-2.15.解:小明:-4.5+3.2-1.1+1.4=-5.6+4.6=-1;小红:-8+2-(-6)+(-7)=-8+2+6-7=-7.∵-7<-1,∴小红将获胜.16.[导学号:63832195]解:+22-3+4-2-8+17-2-3+12+7-5=(22+4+17+12+7)+(-3-2-8-2-3-5)=62-23=39(千米).|+22|+|-3|+|+4|+|-2|+|-8|+|+17|+|-2|+|-3|+|+12|+|+7|+|-5|=22+3+4+2+8+17+2+3+12+7+5=85(千米),85×0.2=17(升).答:收工时该检修小组距A 地39千米,从A 地出发到收工时,汽车共耗油17升. 素养提升1.[导学号:63832196]解:(1)原式=1+12+16-3+3+112-5+120+5+130-7+142+7+156-9+172+9+190=1+12+16+112+120+130+142+156+172+190=1+12+12-13+13-14+…+19-110=1+12+12-110=1910. (2)原式=⎝⎛⎭⎫150559-15+⎝⎛⎭⎫13-150559-13=-15. 2.[解析] (1)根据新定义,得⎣⎡⎦⎤215=2,[-3.6]=-4,[-7]=-7,再代入计算即可;(2)根据新定义,得⎣⎡⎦⎤234=2,[-2.4]=-3,⎣⎡⎦⎤-614=-7,再代入原式进行计算. 解:(1)⎣⎡⎦⎤215+[-3.6]-[-7]=2+(-4)-(-7)=2-4+7=5. (2)⎣⎡⎦⎤234-[-2.4]+⎣⎡⎦⎤-614=2-(-3)+(-7)=5-7=-2.。
有理数四则混合运算
第三讲有理数的加、减、乘、除(一)一.知识梳理1.有理数加法的运算法则2.有理数加法的运算定律3.有理数加法的运算法则4.有理数的加减法混合运算二.课堂例题精讲与随堂演练知识一:有理数加法的运算法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得0。
(4)一个数同0相加,仍得这个数。
例1:(1)(-8)+(-5)(2)(-8)+(+5)(3)(+8)+(-5)例2 填下列表格加数加数和的组成和(结果)符号绝对值-12 3 -9 16 -9 -5 -16 16 -15 0例3 今年我省元月份某一天的天气预报中,延安市最低温度为-6℃,西安市最低温度为2℃,这一天延安市最低温度比西安市低 ( )A.8℃B.-8℃C.6℃D.2℃随堂演练: A 级 1.填空:(1)(-5)+(-6)=-( + )= (2)(-25)+9=-( - )= (3)(-0.4)+3.6=3.6 0.4= B 级2.两数相加,如果和为负数,则这两个数 ( )A.都是负数B.都是正数C.一个正数,一个负数D.至少有一个为负数知识二:有理数加法的运算律:加法交换律:两个数相加,交换加数的位置,和不变。
a b += b+a 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
a b c ++=()a b c ++=()a b c ++注:多个有理数相加,可任意交换加数的位置,也可先把其中几个数相加,使计算简化。
灵活运用加法的运算律:互为相反数的两个数,可以先相加。
如:2(5)5+-+=2[(5)5]+-+=202+=符号相同的数可以先相加。
如:(1)3(3)[(1)(3)]3(4)31-++-=-+-+=-+=- 分母相同的数可以先相加。
如:121121117()[()]2552552510++-=++-=+= 几个数相加能得到整数的可以先相加。
有理数第三讲(有理数加减法)(学生版)
有理数第三讲【知识框架】【入门测】1、已知a ,b 互为相反数,求3532a ba b +++-的值.2、化简下列各式的符号:(a)-+= ; (a)--= ; [(a)]-+-= ; [(a)]---= ; 3、已知43x -=,求x .4、2340a b c -+-+-=,求a b c ++= .一、有理数的加法【笔记】(1)有理数加法可以分为:同号:正数+正数负数+负数异号:正数+负数负数+正数同0加:正数+0 负数+0(2)同号两数相加:同号两数相加,取相同的符号,并把绝对值相加。
(3)异号两数相加:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较少的绝对值【例1】计算(1)8+3 (2)4+9(3)(-8)+(-3)(4)(-4)+(-9)【例2】计算(1)-5+15 (2)-5+5 (3)-5+3【例3】计算(1)0+8 (2)0+(-8)(3)0+0【例4】计算(1)-8+16 (2)16+(-8)【例5】计算(1)[8(2)](3)+-+- (2)8[(2)(3)]+-+-【例6】计算 (1)2314(2)()()3737-+-++- (2)124.4()(3)( 2.4)33+-+-+-【过关检测】1、(1)122()33+- (2)33()()24-+-2、(1)1(3)(7.5)2-++ (2)(3)(6)-+--3、(1)3121()()()(1)7575-++++-(2)521(3)(15.5)(6)(5)772-+++-+- 4、1(2)(3)45(6)(7)82013(2014)(2015)2016(2017)+-+-+++-+-++++-+-++-二、有理数的减法【笔记】(1)小学减法复习被减数-减数=差 被减数-差=减数 减数+差=被减数 (2)有理数减法法则减去一个数,等于加上这个数的相反数,即()a b a b -=+-. (3)去括号法则括号前面是+号,去掉括号不变号 括号前面是—号,去掉括号都变号 【例1】武汉某天的气温是-8~3℃,这天的温差(最高气温减最低气温,单位:℃)就是 . 【例2】计算(1)4(11)--- (2)08-(3)3.6(8.2)-- (4)313744--【过关检测】1、计算(1)63-49 (2)44-68(3)-18-39 (4)18-(-23)(5)-18-(-32) (6)-41-(-9)(7)0-32 (8)0-(-9)2、(1)181-63+19 (2)(-141)+20-29 (3)-118-(-42)-42 (4)228-39-(-42)3、(1)1113(2)()322-+--(2)119(1)()424--+--三、混合有理数的加减法【例1】(1)8+(5-3)(2)8-(5-3)(3)8+5-3 (4) 8-5+3【例2】把下列各式去掉括号后为:(1)-110-(-42)+(+2)(2)228-(-86)+(-26)【例3】(-2)+(-4)+6+(-5)+2【例4】11 2( 3.5) 6.2(2)25 -+-++-【例5】(1)(-141)-22+(-29)(2)1113 42(2)9 2424++-+【例6】5432[()][()]9779--++---【过关检测】1、计算(1)123()()()555-+--- (2)113()()()244+--+-2、计算(1)3[(1)(6)2(5)]--+---- (2)1152()[()()]2323----+-+3、计算 (1)31511[()()]4664----+-- (2)173[2(3)()(5)]416---+-+-+【出门测】一、计算(1)(-3)+(-9)(2)(-4.7)+3.9(5)23+(-17)+6+(-22)(6)(-2)+3+1+(-3)+2+(-4)(7)1111()()236+-++-(8)12323(2)5(8)4545+-++-(9)(-3)-(-5)(10)0-7(11)7.2-(-4.8)(12)11 (3)524 --(13)(-7)-(+5)+(-4)-(-10)(14)3712()()1 4263-+----【课后习题】一.选择题(共11小题)1.(﹣2)+(﹣5)=()A.﹣7 B.7 C.﹣3 D.32.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)3.下列表示某地区早晨、中午和午夜的温差(单位:℃),则下列说法正确的是()A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃4.若()﹣(﹣2)=3,则括号内的数是()A.﹣1 B.1 C.5 D.﹣55.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个6.对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式成立的是()A.a+b=|a|+|b| B.a+b=﹣(|a|+|b|)C.a+b=﹣(|a|﹣|b|)D.a+b=﹣(|b|﹣|a|)7.如果|a+b|=|a|+|b|,那么()A.a,b同号B.a,b为一切有理数C.a,b异号D.a,b同号或a,b中至少有一个为08.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃C.6℃D.﹣6℃9.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c 的值为()A.2 B.﹣2 C.2或﹣2 D.以上都不对10.已知|m|=5,|n|=2,且n<0,则m+n的值是()A.﹣7 B.+3 C.﹣7或﹣3 D.﹣7或311.一天早晨的气温是﹣7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A.﹣5℃B.﹣6℃C.﹣7℃D.﹣8℃二.填空题(共9小题)12.计算:|1﹣3|= .13.计算:﹣10+(+6)= .14.已知a、b互为相反数,且|a﹣b|=6,则b﹣1= .15.已知|a+2|+|b﹣1|=0,则(a+b)﹣(b﹣a)= .16.已知m是6的相反数,n比m的相反数小2,则m﹣n等于.17.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c= .18.一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位.19.观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1= .20.计算:= .三.解答题(共7小题)21.(1)0﹣11 (2)(﹣13)+(﹣8)(3)(﹣2)﹣(﹣9)(4)(﹣4)﹣5(5)23+(﹣17)+6+(﹣22)(6)(﹣)+(﹣)++(﹣)(7)0﹣(﹣6)+2﹣(﹣13)﹣(+8)(8)﹣4.2+5.7﹣8.4+10.22.计算题(1)5.6+4.4+(﹣8.1)(2)(﹣7)+(﹣4)+(+9)+(﹣5)(3)+(﹣)+(4)5(5)(﹣9)+15(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)23.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.24.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?25.若有理数x、y满足|x|=7,|y|=4,且|x+y|=x+y,求x﹣y的值.26.计算:1﹣2+3﹣4+5﹣6+…+2007﹣2008+2009﹣2010+2011.27.某人用400元购买了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.(单位:元)(1)当他卖完这八套儿童服装后是盈利还是亏损?(2)盈利(或亏损)了多少钱?。
第三讲 有理数的四则运算
第三讲 有理数的四则运算一、 知识点:1、 有理数乘法法则:两个有理数相乘,同号得正,异号得负,绝对值相乘. 任何有理数和0相乘都得02、有理数除法法则:两个有理数相除,同号得正,异号得负,绝对值相除. 0除以任何非0的数都得0.(注意:0不能作除数.)3、除法的法则也可以这样说,除以一个数,就等于乘以这个数的倒数. (注意:0没有倒数,即0不能作除数.)4、如何求一个数的倒数互为倒数的两个数乘积为1,所以知道其中一个数,求它的倒数就用1除以这个数即可. 如:求53-的倒数,1÷(53-)=35- 所以35-是53-的倒数. 5、几个非0的有理数相乘除除,结果的符号怎样确定?6、有理数的四则运算和整数的四则运算一样,先算乘除,后算加减,有括号先算括号里的。
二、 例题:填空题:1.-2的倒数是 ;-0.2的倒数是 ,负倒数是 。
2. 被除数是215-,除数是1211-的倒数,则商是 。
3. 若0<a b ,0<b ,则a 0。
4. 若0<c ab ,0>ac ,则b 0。
5、一个数的相反数是-5,则这个数的倒数是 。
6、若a ·(-5)=58,则a = 。
解答题:1、(1)(—0.1)÷10;(2)(—271)÷(—145);(3)61÷(—2.5) (4)(—10)÷(—8)÷(—0. 25);2、(1))5489(5.4⨯-÷-; (2)0÷(—5)÷100;(3)3.5÷()323()154-⨯-; (4))75.0(813542313-÷⎪⎭⎫ ⎝⎛-÷÷⎪⎭⎫ ⎝⎛-.3、求下列各数的倒数,并用“>”连接. -32,-2,|21|,3,-1三、 课堂练习:一、 选择题1.若ab>0,a+b>0,则a 、b 两数( )(A)同为正数. (B)同为负数. (C)异号. (D)异号且正数绝对值较大.2.互为相反数的两数的积是( )(A)等于0. (B)小于0. (C)非正数. (D)非负数.3.如果两个数的差乘以这两个数的和时,积为零,则这两个数 ( )(A)相等. (B)互为倒数. (C)互为相反数. (D)绝对值相等.4.下列各对数中互为倒数的是( )(A)-7和7. (B)-1和1. (C)-312和27. (D)0.25和-14. 5.(-6)÷3⨯13的值为( ) (A)-6. (B)6. (C)-23. (D)23. 6. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.35 7.天安门广场面积约为44万平方米,请你估计一下,它的百万分之一可能会是( )(A)教室地面的面积 (B)黑板面的面积 (C)课桌面的面积 (D)铅笔盒盒面的面积8.一个非零有理数和它的相反数的商是( )(A)0. (B)1. (C)-1. (D)以上结论都不对.二、填空题9.等式[(-7.3÷(-517)=0 表示的数是 .10. 7.20.9 5.6 1.7---+=。
有理数的加减法(讲义及答案)
有理数的加减法(讲义)➢课前预习1.请回忆分数的运算法则,并填空,根据法则解决问题:(1)分数的加减法则:同分母分数相加减,_______不变,只把_______相加减.计算结果,能约分的需要约分成为最简分数.异分母分数相加减,先______,然后按照同分母分数加减法进行计算.(2)计算:①23+77;②13+88;③11+24;④15+36.2.用a,b,c代表三个数,写出加法交换律和加法结合律:加法交换律:________________________________;加法结合律:________________________________.3.填空:(1)2的相反数是_____,绝对值是_______;(2)43的相反数是_____,绝对值是_______;(3)12的相反数是_____,绝对值是_______.➢ 知识点睛1. 有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 一个数同0相加,仍得这个数. 2. 有理数的运算律 加法交换律:a b b a +=+ 加法结合律:()()a b c a b c ++=++3. 有理数减法法则:__________________________________.➢ 精讲精练1. ①(3)(6)-+-=_________,(10)(1)-+-=_________;②113322⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭_______,(4)2-+=____________; ③(3)(1)++-=_______,(15)(35)-++=____________; ④0(5)+-=_________; ⑤2(3)(5)+-+-=_______;⑥[]8(8)(3)+-+-=_______;[]8(8)(3)+-+-=_______; ⑦2(4)7(1)-+-++-=_________; ⑧41(28)2869+-++=__________; ⑨139072(061)328....-++-+=__________.2. 下列运算正确的是( )A .(2)20-+=B .(6)(4)10-++=-C .0(3)3+-=D .0.56(0.26)0.3+-=-3. 下列说法正确的是( )A .两个加数之和一定大于每一个加数B .两数之和一定小于每一个加数C . 两个数之和一定介于这两个数之间D .以上皆有可能4. 计算下列各式:(1)(5)3(4)5-++-+;(2)43(77)27(43)+-++-;(3)[]3.5( 6.5)(5)-+-++;(4)1531214646⎛⎫⎛⎫⎛⎫⎛⎫-+++-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.5. ①9(5)--=_____+_____=__________;②(3)1--=______+_______=___________; ③22(18)--=______+_______=___________; ④(8)(8)---=______+_______=___________; ⑤0(3)--=______+_______=___________;⑥(72)(37)(22)17------=____+_____+_____+_____=______+_____=_____;⑦314555⎛⎫-+- ⎪⎝⎭=_____+_____+_____ =_____+_____=_____;⑧-20+(-14)-(-18)+(-13) =____+_____+_____+_____=_____+_____=_____;⑨2718(7)32-+--=____+_____+_____+_____=_____+_____=_____;⑩32(28)(72)78------=_____+______+______+_______=_____+______=________. 6. 下列计算正确的是( )A .5(3)8---=-B .5(4)1+--=C .550---=D .5(6)1+-+=-7. 计算:(1)(41)(28)59(72)-++---;(2)4028(19)(24)----+-;(3)15120.51266⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭;(4)314( 3.85)(3)( 3.15)44-+--+-;(5)[]151(204)----.8. 如表是郑州市2019年1月1日上午七点到十点的天气情况,从七点到十点最高温度与最低温度差是()A.2℃B.3℃C.4℃D.5℃9.冬季供暖后,乐乐发现室内的温度为20℃,此时冰箱冷冻室的温度为-5℃,则室内的温度比冷冻室的温度高________℃.10.下表为国外几个城市与北京的时差(甲城市与乙城市的时差为两城市同一时刻的时数之差,如当北京时间为8:00时,东京时间为9:00,而巴黎时间为1:00,那么东京与北京的时差为9-8=+1(h),巴黎与北京的时差为1-8=-7(h)):(2)北京6月11日23时时,悉尼时间是多少?(3)小莹的爸爸于6月11日23时从北京乘飞机,经过16小时的航行到达纽约,到达纽约时北京时间是多少?纽约时间是多少?11.墨尔本与北京的时差是+3小时,班机从墨尔本飞到北京需用12小时,若乘坐从墨尔本8:00(当地时间)起飞的航班,到达北京机场时,当地时间是()A.15:00 B.17:00 C.20:00 D.23:0012.寒冬将至,为保证我市供暖工作顺利,热力公司对取暖设备进行全面检查,某线路检修小组从总站A地驾车出发,在东西向的路上检修线路.若规定向东为正,则一天中从出发到收工的行驶记录如下(单位:千米):-5,+8,-10,+9,-6,-2,+7.(1)哪次记录时距总站A地最远?(2)若收工时在B地,则B在A的什么方向,距离A有多远?(3)若每千米汽车耗油0.3升,则从出发到收工共耗油多少升?13.在东西向的马路上有一个巡岗亭A,巡岗员甲从岗亭A出发以13 km/h的速度匀速来回巡逻,如果规定向东巡逻为正,向西巡逻为负,巡逻情况记录如下:(单位:千米)(2)在第几次结束时距岗亭A最远?距离A多远?(3)巡逻过程中配置无线对讲机,并一直与留守在岗亭A的乙进行通话,则在甲巡逻过程中,甲与乙的保持通话时长共多少小时?【参考答案】➢课前预习1.(1)分母;分子;通分(2)①57;②12;③34;④76.2.a b b a+=+;()()a b c a b c++=++ 3.(1)-2;2;(2)43-;43;(3)12;12➢知识点睛3.减去一个数等于加上这个数的相反数➢精讲精练1.①-9;-11;②0;-2;③2;20;④-5;⑤-6;⑥-3;-3;⑦0;⑧110;⑨22. A3. D4.(1)-1;(2)-50;(3)-5;(4)-1.5.①9;5;14;②-3;(-1);-4;③22;18;40;④-8;8;0;⑤0;3;3;⑥-72;37;22;(-17);-50;20;-30;⑦35-;15;45-;75-;15;65-⑧-20;(-14);18;(-13);-47;18;-29⑨27;(-18);(-7);(-32);20;(-50);-30⑩-32;28;72;(-78);-110;100;-106. D7.(1)0;(2)-73;(3)-1;(4)1;(5)-10.8. D9.2510.(1)巴黎的时间是6月11日16时;(2)悉尼的时间是6月12日1时;(3)到达纽约时北京时间为6月12日15时,纽约时间是6月12日2时.11.B12.(1)第3次;(2)B在A的东边,距离A有1千米;(3)14.1升.13.(1)在岗亭A的东边,距离A有1千米;(2)第五次结束时距A最远,距A 5千米;(3)2小时.。
第3讲有理数的加减法、乘除法及混合运算
第3讲有理数的加减法、乘除法及混合运算进门测易1.﹣2019的相反数是()A.﹣2019B.﹣C.2019D.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:C.2.若实数a、b互为相反数,则下列等式中成立的是()A.a﹣b=0B.a+b=0C.ab=1D.ab=﹣1【解答】解:∵实数a、b互为相反数,∴a+b=0.故选:B.3.﹣25的绝对值是()A.﹣25B.25C.D.【解答】解:|﹣25|=25,故选:B.4.若a是非零实数,则()A.a>﹣a B.C.a≤|a|D.a≤a21【解答】解:当a=﹣1时,a<﹣a,a=,故选项A、B错误;当a=时,a>a2,故选项D错误;当a时非0实数时,a≤|a|,故选项C正确.故选:C.5.下面说法:①﹣a一定是负数;②若|a|=|b|,则a=b;③一个有理数中不是整数就是分数;④一个有理数不是正数就是负数.其中正确的个数有()A.1个B.2个C.3个D.4个【解答】解:①﹣a一定是负数,说法错误,如果a=﹣1,则﹣a=1;②若|a|=|b|,则a=b,说法错误,例如|3|=|﹣3|,但是3≠﹣3;③一个有理数中不是整数就是分数,说法正确;④一个有理数不是正数就是负数,说法错误,还有0,0既不是正数也不是负数;正确的个数有1个,故选:A.6.下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①②B.①③C.①②③D.①②③④【解答】解:0是绝对值最小的有理数,所以①正确;相反数大于本身的数是负数,所以②正确;数轴上在原点两侧且到原点的距离相等的数互为相反数,所以③错误;两个负数比较,绝对值大的反而小,所以④错误.故选:A.2中1.如果a与﹣3互为相反数,那么a等于()A.﹣3B.3C.D.【解答】解:∵a与﹣3互为相反数,∴a=3.故选:B.2.若m﹣2的相反数是5,那么﹣m的值是()A.+7B.﹣7C.+3D.﹣3【解答】解:∵m﹣2的相反数是5,∴m﹣2=﹣5,解得:m=﹣3,故﹣m=3.故选:C.3.下列各组数中,互为相反数的一组是()A.﹣和0.333B.﹣[+(﹣7)]和﹣(﹣7)C.﹣0.25和0.25D.﹣(﹣6)和6【解答】解:A、﹣和互为相反数,此选项错误;B、﹣[+(﹣7)]=7,﹣(﹣7)=7,则﹣[+(﹣7)]=﹣(﹣7),此选项错误;C、﹣0.25和0.25互为相反数,此选项正确;D、﹣(﹣6)=6,此选项错误;故选:C.34.若|﹣a|=a,则a应满足的条件为.【解答】解:∵|﹣a|=a,∴a≥0,故答案为:a≥0.5.绝对值小于2.5的所有整数是.【解答】解:绝对值小于2.5的所有整数是﹣2、﹣1、0、1、2.故答案为:﹣2、﹣1、0、1、2.难1.若a﹣5和﹣7互为相反数,求a的值.【解答】解:根据性质可知a﹣5+(﹣7)=0,得a﹣12=0,解得:a=12.2.(1)已知:x和2x﹣12互为相反数,求x的值(2)已知:a是1的相反数,b的相反数是﹣3,c是最大的负整数,求a+b+c的值.【解答】解:(1)∵x和2x﹣12互为相反数,∴x+2x﹣12=0,解得:x=4;(2)∵a是1的相反数,∴a=﹣1,∵b的相反数是﹣3,∴b=3,4∵c是最大的负整数,∴c=﹣1,∴a+b+c=﹣1+3﹣1=1.3.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)【解答】解:由图示知,b﹣a=4,①当a>0,b>0时,由题意可得|a|=3|b|,即a=3b,解得a=﹣6,b=﹣2,舍去;②当a<0,b<0时,由题意可得|a|=3|b|,即a=3b,解得a=﹣6,b=﹣2,故数轴的原点在D点;③当a<0,b>0时,由题意可得|a|=3|b|,即﹣a=3b,解得a=﹣3,b=1,故数轴的原点在C点;综上可得,数轴的原点在C点或D点.故填C、D.4.﹣4,5,﹣7三数的和比这三数的绝对值的和小多少?【解答】解:根据题意得:|﹣4|+|5|+|﹣7|﹣(﹣4+5﹣7)=4+5+7+4﹣5+7=22,则﹣4、﹣5、+7三个数的和比这三个数绝对值的和小22.5.化简:|2x﹣3|+|3x﹣5|﹣|5x+1|【解答】解:①当x<﹣时,原式=3﹣2x+5﹣3x+5x+1=9.②当﹣≤x时,原式=3﹣2x+5﹣3x﹣5x﹣1=﹣10x+7.③当≤x<时,原式=2x﹣3+5﹣3x﹣5x﹣1=﹣6x+1.④当x≥时,原式=2x﹣3+3x﹣5﹣5x﹣1=﹣95有理数的加减法及混合运算知识讲解1. 有理数加法法则①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数加减,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.③一个数同0相加仍得这个数.✓方法指引:在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.)2. 加法运算律加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c).2. 有理数减法法则减去一个数,等于加这个数的相反数.即:a-b=a+(-b)✓方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.3. 有理数加减混合运算的方法有理数加减法统一成加法.✓方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的6和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.典型例题1.计算:(1)(+)+(﹣)(2)(﹣10.5)+(﹣1.3)(3)(﹣)+(﹣)+(﹣)+(+)(4)(+0.56)+(﹣0.9)+(+0.44)+(﹣8.1)【解答】解:(1)(+)+(﹣)=﹣==;(2)(﹣10.5)+(﹣1.3)=﹣11.8;(3)(﹣)+(﹣)+(﹣)+(+)=(﹣﹣)+(﹣+)7=﹣1﹣2=﹣3;(4)(+0.56)+(﹣0.9)+(+0.44)+(﹣8.1)=(0.56+0.44)+(﹣0.9﹣8.1)=﹣8.2.计算:(1)(﹣2)+3+1+3+(﹣3)+2+(﹣4);(2)3+(﹣2)+5+(﹣8).【解答】解:(1)(﹣2)+3+1+3+(﹣3)+2+(﹣4)=(﹣2﹣3﹣4)+(3+1+3+2)=﹣9+9=0(2)3+(﹣2)+5+(﹣8)=(3+5)﹣(2+8)=9﹣11=﹣2.3.﹣﹣【解答】解:﹣﹣=(﹣)+(﹣)=(﹣)+(﹣)=﹣.4.计算:﹣(+9)﹣12﹣(﹣).【解答】解:﹣(+9)﹣12﹣(﹣)=﹣(﹣)﹣9﹣12=1﹣21=﹣2085.0.47﹣4﹣(﹣1.53)﹣1.【解答】解:0.47﹣4﹣(﹣1.53)﹣1=(0.47+1.53)﹣(4+1)=2﹣6=﹣4.6.计算:(+5)﹣(﹣3)+(﹣7)﹣(+12)【解答】解:原式=5+3﹣7﹣12,=﹣11.7.计算:【解答】解:原式=1+﹣=1﹣=1.8.计算:﹣5+(+2)+(﹣1)﹣(﹣)【解答】解:﹣5+(+2)+(﹣1)﹣(﹣)=(﹣5﹣1)+(2+)=﹣7+3=﹣4.变式练习1.计算:(﹣)+(0.75)+(+)++1【解答】解:原式=﹣++++1=﹣++++1=﹣++1=.92.(﹣3)+(+15.5)+(﹣6)+(﹣5)【解答】解:原式=(﹣3﹣6)+(15.5﹣5)=﹣10+10=0.3.计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).【解答】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.4.计算(1)﹣5++(﹣1)(2)﹣++(﹣)(3)|﹣|++(﹣)【解答】解:(1)﹣5++(﹣1)=﹣6+=﹣;(2)﹣++(﹣)=﹣;(3)|﹣|++(﹣)10=+﹣=﹣=.5.10﹣(﹣7)【解答】解:10﹣(﹣7)=10+7=17.6.计算:(﹣5)﹣(+12)﹣(﹣7).【解答】解:原式=﹣5+(﹣12)+7=﹣17+7=﹣10.7.计算:12﹣(﹣18)+(﹣5)﹣6.【解答】解:12﹣(﹣18)+(﹣5)﹣6=12+18﹣5﹣6=30﹣5﹣6=19.8.计算:3+(﹣)﹣2.【解答】解:3+(﹣)﹣2=3﹣2﹣=1﹣=.9.(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4.11【解答】解:(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4=﹣﹣﹣+++4=﹣4++4=.有理数的乘除法及混合运算知识讲解1.(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同零相乘,都得0.(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.(4)方法指引:①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.2. 倒数:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.✓方法指引:①倒数是除法运算与乘法运算转化的“桥梁”和“渡船”.正像减法转化为加法与相反数一样,非常重要.倒数是伴随着除法运算而产生的.②正数的倒数是正数,负数的倒数是负数,而0没有倒数,这与相反数不同.【规律方法】求相反数、倒数的方法求求求求求求求求求求求求求求求求求求求求求求求求求求求求“-”求求12求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求注意:0没有倒数.3.(1)有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•(b≠0)(2)方法指引:①两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.②有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.4. 有理数乘除混合运算的方法有理数乘除法统一成乘法.✓方法指引:①在一个式子里,有乘法也有除法,根据有理数除法法则,把除法都转化成乘法,然后确定积的符号,最后把各乘数的绝对值相乘求出结果.②把除法都转化成乘法后,就可以应用乘法的运算律,使计算简化.典型例题1.(﹣8)×(﹣)×(﹣1.25)×【解答】解:原式=﹣8×1.25××=﹣.2.计算:()×24.【解答】解:原式=×24+×24﹣×24=3+16﹣1813=19﹣18=1.3.用简便方法计算:(﹣9)×18.【解答】解:原式=(10﹣)×(﹣18)=﹣180+=﹣179.4.(﹣)÷(﹣)【解答】解:原式=×=.5.计算:6÷(﹣3)×().【解答】解:6÷(﹣3)×()=﹣2×()=3.6.计算:【解答】解:原式=﹣16÷5=﹣.7.计算:×(﹣4)÷1【解答】解:原式=.8.(﹣)×(﹣)÷(﹣2).【解答】解:原式=(﹣)×(﹣)×(﹣)=﹣.14变式练习1.×(﹣)××.【解答】解:×(﹣)××=(×)×(﹣×)=×(﹣)=﹣.2.(﹣3)××(﹣)×(﹣)【解答】解:(﹣3)××(﹣)×(﹣)=(﹣)×(﹣)×(﹣)=×(﹣)=﹣3.﹣99×36.【解答】解:﹣99×36=(﹣100+)×36=﹣100×36+×36=﹣3600+=﹣3599.154.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)×(﹣)×(﹣2).【解答】解:(1)原式=﹣0.75×(﹣0.4 )×=××=;(2)原式=0.6×(﹣)×(﹣)×(﹣2)=﹣×××=﹣1.5.计算:【解答】解:原式=××=.6.计算(1)﹣2.5÷(2)﹣4×÷(﹣)×2【解答】解:(1)原式=﹣××(﹣)=1;(2)原式=﹣4××(﹣2)×2=8.7.计算:﹣×16【解答】解:原式=﹣××=﹣.8.÷(﹣1)×.【解答】解:原式=﹣××=﹣.有理数的加减乘除混合运算知识讲解1. 有理数加减乘除混合运算的方法(1)有理数的加减乘除混合运算的顺序:先乘除,后加减,有括号的先计算括号里面的;(2)同级运算中,按照自左向右的顺序计算.典型例题1.(1)﹣1﹣2×|﹣|+(﹣6)×(﹣)(2)(﹣+﹣)×(﹣36)【解答】解:(1)﹣1﹣2×|﹣|+(﹣6)×(﹣)=﹣1﹣2×+2=﹣1﹣+2=;(2)(﹣+﹣)×(﹣36)=16+(﹣30)+1517=1.2.计算:①13+(﹣5)﹣(﹣21)﹣19.②(﹣3)×6÷(﹣2)×.【解答】解:①原式=13﹣5+21﹣19=34﹣24=10;②原式===.3.计算:(﹣24)÷4+(﹣4)×(﹣).【解答】解:原式=﹣6+6=0.4.计算:(﹣3)×2+(﹣24)÷4﹣(﹣3)【解答】解:(﹣3)×2+(﹣24)÷4﹣(﹣3)=﹣6﹣6+3=﹣9.变式练习1.计算:(1)2+3÷18(2)(3)2(4)1【解答】解:(1)2+3÷=2+3×5=2+15=17;(2)==4;(3)2=2÷()×=2÷×=2×=15;(4)1==÷[()×]19=÷(4×)===.2.计算:﹣1﹣(1+0.5)×|﹣|÷(﹣4)【解答】解:﹣1﹣(1+0.5)×|﹣|÷(﹣4)=﹣1﹣=﹣1+=﹣.3.计算:【解答】解:原式=×(﹣)+×2=1﹣+=1+=.4.计算:(1)﹣7﹣3+8(2)20【解答】解:(1)原式=﹣10+8=﹣2;(2)原式=﹣×6+4﹣30=﹣30.出门测易1. 8+(﹣21)【解答】解:8+(﹣21)=﹣(21﹣8)=﹣13.2. 9+(﹣17)+21+(﹣23)【解答】解:原式=9+21+(﹣17)+(﹣23)=30+(﹣40)=﹣10 3.计算:12﹣(﹣18)+(﹣7)﹣20【解答】解:原式=12+18﹣7﹣20=30﹣27=3.4.计算:.【解答】解:原式=×(﹣60)﹣×(﹣60)﹣×(﹣60)=﹣40+55+56=71.5.计算:(﹣1)×(﹣)=.【解答】解:原式=×=.中211.计算:(﹣5)+(﹣17)﹣(+3).【解答】解:原式=﹣5﹣17﹣3=﹣25.2.计算:1.25【解答】解:原式===.3.(﹣+)÷(﹣)【解答】解:原式=(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=(﹣9)﹣(﹣1)+(﹣4)=(﹣9)+(+1)+(﹣4)=﹣12.4.计算:3×(﹣)÷(﹣1).【解答】解:原式==.5.计算:(1)﹣(﹣).(2)10+()×(﹣12).22【解答】解:(1)﹣(﹣)==1;(2)10+()×(﹣12)=10+(﹣3)+6+(﹣8)=5.难1.计算(1)9+(﹣7)+10+(﹣3)+(﹣9)(2)12+(﹣14)+6+(﹣7)(3)﹣(4)﹣4.2+5.7+(﹣8.7)+4.2.【解答】解:(1)原式=9﹣7+10﹣3﹣9=0;(2)原式=12﹣14+6﹣7=﹣3;(3)原式=﹣﹣﹣+=﹣1﹣=﹣1;(4)原式=﹣4.2+4.2+5.7﹣8.7=﹣3.2.计算:10﹣8﹣(﹣6)﹣(+4).【解答】解:10﹣8﹣(﹣6)﹣(+4),=10﹣8+6﹣4,=10+6﹣8﹣4,23=4.3.计算题(1)(﹣6)+(+11)(2)﹣28+(﹣4)+29+(﹣24)(3)(﹣0.6)﹣(3)﹣(+7)+2﹣2(4)12.32﹣14.17﹣|﹣2.32|+(﹣5.83)【解答】解:(1)原式=11﹣6=5;(2)原式=﹣(28+4+24)+29=﹣56+29=﹣27;(3)原式=﹣+(﹣7)+2﹣3﹣2=﹣8﹣﹣2=﹣10;(4)原式=12.32﹣2.32﹣(14.17+5.83)=10﹣20=﹣10.4.计算:(1)(2)2×(﹣7)﹣6×(﹣9).【解答】解:(1)原式=;(2)原式=﹣14+54=40.5.(1)(﹣)×(﹣3)÷(﹣1)÷3(2)[(+)﹣(﹣)﹣(+)]÷(﹣)【解答】解:(1)原式=﹣×××=﹣;24(2)原式=(+﹣)×(﹣105)=﹣15﹣35+21=﹣29.课后巩固易1.计算﹣6+4的结果为()A.10B.﹣10C.2D.﹣2【解答】解:原式=﹣2,故选:D.2.计算4+(﹣3)的结果等于()A.﹣7B.7C.﹣1D.1【解答】解:4+(﹣3)=4﹣3=1故选:D.3.计算(﹣5)﹣3的结果等于()A.﹣8B.﹣2C.2D.8【解答】解:(﹣5)﹣3=(﹣5)+(﹣3)=﹣8,故选:A.4.计算﹣3﹣5结果正确的是()A.﹣8B.﹣2C.2D.8【解答】解:﹣3﹣5=﹣8,故选:A.5.按照有理数加法则,计算(﹣180)+(+20)的正确过程是()A.﹣(180﹣20)B.+(180+20)C.+(180﹣20)D.﹣(180+20)25【解答】解:(﹣180)+(+20)=﹣(180﹣20)=﹣160,故选:A.6.下列计算正确的是()A.5+(﹣6)=﹣11B.﹣1.3+(﹣1.7)=﹣3 C.(﹣11)﹣7=﹣4D.(﹣7)﹣(﹣8)=﹣1【解答】解:A.5+(﹣6)=﹣1,此选项错误;B.﹣1.3+(﹣1.7)=﹣3,此选项正确;C.(﹣11)﹣7=(﹣11)+(﹣7)=﹣18,此选项错误;D.(﹣7)﹣(﹣8)=(﹣7)+8=1,此选项错误;故选:B.7.计算﹣1的结果是()A.1B.﹣1C .D .﹣【解答】解:原式=(﹣)=1.故选:A.8.计算﹣×=.【解答】解:﹣×=﹣,故答案为:﹣.9.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B .(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)26【解答】解:把(﹣)÷(﹣)转化为乘法是(﹣)×(﹣),故选:D.10.计算(﹣6)÷(﹣2)的结果是()A.3B.﹣3C.4D.﹣4【解答】解:(﹣6)÷(﹣2)=3,故选:A.11.计算﹣4÷×(﹣2)=.【解答】解:原式=﹣16×(﹣2)=32,故答案为:32.中1.比﹣2大3的数是()A.3B.1C.﹣2D.﹣3【解答】解:比﹣2大3的数是﹣2+3=1,故选:B.2.下列说法中,正确的个数有()①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;27⑥若a=|b|,则a=bA.1个B.2个C.3个D.4个【解答】解:①﹣a不一定是负数,此结论错误;②|﹣a|一定是非负数,此选项错误;③倒数等于它本身的数是±1,此结论正确;④绝对值等于它本身的数是所有非负数,此结论错误;⑤两个有理数的和不一定大于其中每一个加数,此结论错误;⑥若a=|b|,则a=±b,此结论错误;故选:A.3.温度由﹣4℃上升7℃后的温度为()A.﹣3℃B.3℃C.﹣11℃D.11℃【解答】解:根据题意知,升高后的温度为﹣4+7=3(℃),故选:B.4.计算:﹣1﹣的值为()A .B .﹣C .D .﹣【解答】解:﹣1﹣=﹣1+(﹣)=﹣,故选:D.5.北京、武汉两个城市在2019年一月份的平均气温分别是﹣4.5℃、3.5℃,则2019年一月份武汉市的平均气温比北京市的高()A.﹣7℃B.7℃C.8℃D.﹣8℃【解答】解:3.5﹣(﹣4.5)=8(℃)答:2019年一月份武汉市的平均气温比北京市的高8℃.286.已知a=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.3B.﹣3C.﹣13D.13【解答】解:∵|b|=8,∴b=±8,又∵a=5,a+b<0,∴b=﹣8,则a﹣b=5﹣(﹣8)=13,故选:D.7.在下列变形中,错误的是()A.(﹣2)﹣3+(﹣5)=﹣2﹣3﹣5B.(﹣3)﹣(﹣5)=﹣3﹣﹣5C.a+(b﹣c)=a+b﹣cD.a﹣(b+c)=a﹣b﹣c【解答】解:A.(﹣2)﹣3+(﹣5)=﹣2﹣3﹣5,本选项正确;B.(﹣3)﹣(﹣5)=﹣3++5,本选项错误;C.a+(b﹣c)=a+b﹣c,本选项正确;D.a﹣(b+c)=a﹣b﹣c,本选项正确;故选:B.8.把(﹣8)+(+3)﹣(﹣5)﹣(+7)写成省略括号的代数和形式是()A.﹣8+3﹣5﹣7B.﹣8﹣3+8﹣7C.﹣8+3+5+7D.﹣8+3+5﹣7【解答】解:由题意得:(﹣8)+(+3)﹣(﹣5)﹣(+7)=﹣8+3+5﹣7,299.下列说法正确的是()A.绝对值是它本身的数只有0B.如果几个数积为0,那么至少有一个因数为0C.整数只包括正整数和负整数D.﹣1是最大的负有理数【解答】解:A、绝对值是它本身的数是非负数,故此选项错误;B、如果几个数积为0,那么至少有一个因数为0,正确;C、整数只包括正整数和负整数、0,故此选项错误;D、﹣1是最大的负整数,故此选项错误.故选:B.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A .B.49!C.2450D.2!【解答】解:==50×49=2450故选:C.11.若a+b<0且ab<0,那么()A.a<0,b>0B.a<0,b<0C.a>0,b<0D.a,b异号,且负数绝对值较大30【解答】解:∵a+b<0且ab<0,∴a>0,b<0且|a|<|b|或a<0,b>0且|a|>|b|,即a,b异号,且负数绝对值较大,故选:D.12.计算:﹣2.5÷×(﹣)=()A.﹣2B.﹣1C.2D.1【解答】解:﹣2.5÷×(﹣)=﹣××(﹣)=1.故选:D.13.现有以下五个结论:①正数、负数和0统称为有理数;②若两个非0数互为相反数,则它们相除的商等于﹣1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数,则乘积为负数.其中正确的有()A.0个B.1个C.2个D.3个【解答】解:①正有理数、负无理数和0统称为有理数,此结论错误;②若两个非0数互为相反数,则它们相除的商等于﹣1,此结论正确;③数轴上的每一个点均表示一个确定的实数,此结论错误;④绝对值等于其本身的有理数是零和正数,此结论错误;⑤几个有理数相乘,负因数个数为奇数,则乘积为负数,也有可能是0,此结论错误.故选:B.难1.亚民驾驶一辆宝马汽车从A地出发,先向东行驶15公里,再向西行驶25公里,然后又向东行驶20公里,再向西行驶40公里,问汽车最后停在何处?已知这种汽车行驶100公里消耗的油量为8升,并且31汽车最后回到A地,问亚民这次消耗了多少升汽油?【解答】解:设向东为正,向西为负,则15+(﹣25)+20+(﹣40)=﹣30(公里),即汽车在A地西边30公里处;|15|+|﹣25|+|20|+|﹣40|+|﹣30|=130,130×=10.4(升),则亚民消耗了10.4升油.2.已知|a|=3,|b|=2,且a<b,求a+b的值.【解答】解:∵|a|=3,|b|=2,且a<b,∴a=﹣3,b=2或﹣2,则a+b=﹣1或﹣5.3.列式计算:(1)已知甲、乙两数之和为﹣2020,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.【解答】解:(1)根据题意知乙数为﹣2020﹣(﹣7)=﹣2020+7=﹣2013;(2)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.4.已知:|m|=7,|n|=5,且m<n.求:m﹣n+4的值.【解答】解:∵|m|=7,|n|=5,且m<n,∴m=﹣7,n=±5,(1)m=﹣7,n=5时,m﹣n+4=﹣7﹣5+4=﹣8.(2)m=﹣7,n=﹣5时,m﹣n+4=﹣7﹣(﹣5)+4=2.32∴m﹣n+4的值是﹣8或2.5.列式计算:(1)4 与﹣3的和的相反数.(2)﹣1减去﹣与的和,所得的差是多少?【解答】解:(1)4 与﹣3的和的相反数是:﹣(4﹣3)=﹣1;(2)根据题意得:﹣1﹣(﹣+)=﹣,答:所得的差是﹣.6.阅读下面文字:对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫折项法,你看懂了吗?仿照上面的方法,计算:(1)﹣1+(﹣2)+7+(﹣4)=计算:(2)(﹣2017)+2016+(﹣2015)+16.33【解答】解:(1)原式=(﹣1﹣2+7﹣4)+(﹣﹣+﹣)=﹣,故答案为:﹣;(2)原式=(﹣2017+2016﹣2015+16)+(﹣+﹣+)=﹣2000﹣=﹣20007.小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,在输入数b,就可以得到运算:a*b=(a﹣b)﹣|b﹣a|.(1)求(﹣3)*2的值;(2)求(3*4)*(﹣5)的值.【解答】解:(1)(﹣3)*2=(﹣3﹣2)﹣|2﹣(﹣3)|=﹣5﹣5=﹣10;(2)∵3*4=(3﹣4)﹣|4﹣3|=﹣2,(﹣2)*(﹣5)=[(﹣2)﹣(﹣5)]﹣|﹣5﹣(﹣2)|=0,∴(3*4)*(﹣5)=0.8.乘积是6的两个负整数之和为.【解答】解:乘积是6的两个负整数为﹣1和﹣6或﹣2与﹣3,之和为﹣7或﹣5,故答案为:﹣7或﹣59.已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.【解答】解:∵|x|=5,34∴x=5或﹣5,∵|y|=3,∴y=3或﹣3,(1)当x﹣y>0时,x=5,y=3或x=5,y=﹣3,此时x+y=5+3=8或x+y=5+(﹣3)=2,即x+y的值为:8或2;(2)当xy<0,x=5,y=﹣3或x=﹣5,y=3,此时|x﹣y|=8或|x﹣y|=8,即|x﹣y|的值为:8;(3)①x=5时,y=3时,x﹣y=5﹣3=2;②x=5时,y=﹣3时,x﹣y=5+3=8;③x=﹣5时,y=3时,x﹣y=﹣5﹣3=﹣8;④x=﹣5时,y=﹣3时,x﹣y=﹣5+3=﹣2,综上:x﹣y=±2或±8.10.现有以下五个结论:①有理数包括所有正数、负数和0;②若两个数互为相反数,则它们相除的商等于﹣1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数则乘积为负数.其中正确的有()A.0个B.1个C.2个D.3个【解答】解:①有理数包括所有正有理数、负有理数和0;故原命题错误;②若两个数(除零)互为相反数,则它们相除的商等于﹣1;故原命题错误;③数轴上的每一个点均表示一个确定的实数;故原命题错误;④绝对值等于其本身的有理数是零和正数,故原命题错误;⑤几个非零的有理数相乘,负因数个数为奇数则乘积为负数,故原命题错误.35故选:A.11.÷()【解答】解:原式=÷=×3=.36。
初中数学 有理数的减法(解析版)七年级数学上册同步精品讲义(人教版)
第3讲 1.3.2 有理数的减法1.熟练掌握有理数的加法法则;2.能灵活地进行有理数加减法混合运算.知识点有理数的减法1.有理数的减法法则:(1)减去一个数,等于加上这个数的相反数;即.2.一般地,较小的数减去较大的数,所得的差是负数3.引入相反数后,加减混合运算可以统一为加法运算:4.点A表示的数是,点B表示的数是,则点A,点B之间的距离为|一、选择题1.计算()A. -2B. 2C. 4D. -4 【答案】A【解析】【解答】解:故答案为:A【分析】先计算绝对值,再计算有理数的减法,从而可得答案.2..下列运算中正确的是()A. 8﹣(﹣5)=3B. ﹣9﹣(﹣6)=﹣3C. ﹣4+2=﹣6D. ﹣7﹣5=﹣2 【答案】B【解析】【解答】解:A、8﹣(﹣5)=8+5=13,故错误,不符合题意;B、﹣9﹣(﹣6)=﹣9+6=﹣3,正确,符合题意;C、﹣4+2=﹣(4﹣2)=﹣2,故错误,不符合题意;D、﹣7﹣5=﹣12,故错误,不符合题意,故选B.【分析】利用有理数的加减混合运算法则进行计算后即可确定正确的选项.3.某地区2021年元旦的最高气温为,最低气温为,那么该地区这天的最低气温比最高气温低()A. B. C. D.【答案】C【解析】【解答】解:9-(-2)=9+2=11,故答案为:C.【分析】利用最高气温减去最低气温,列出算式,再计算即可.4.数轴上点A表示的运算结果完全正确的是()A. B.C. D.【答案】C【解析】【解答】,A、点A表示的数是0,与运算结果不符,此项不符合题意;B、数轴未标出原点和单位长度,此项不符合题意;C、数轴规范,且点A表示的数是,此项符合题意;D、数轴未画出正方向,此项不符合题意;故答案为:C.【分析】先根据有理数的加减运算法则求出运算结果,再根据数轴的定义即可得.5.下列各式与A﹣B+C的值相等的是()A. A+(﹣B)+(﹣C)B. A﹣(+B)﹣(+C)C. A﹣(+B)﹣(﹣C)D. A﹣(﹣B)﹣(﹣C)【答案】C【解析】【解答】解:A、∵A+(﹣B)+(﹣C)=A﹣B﹣C,∴该选项不符合题意;B、A﹣(+B)﹣(+C)=A﹣B﹣C,∴该选项不符合题意;C、A﹣(+B)﹣(﹣C)=A﹣B+C,∴该选项符合题意;D、A﹣(﹣B)﹣(﹣C)=A+B+C,∴该选项不符合题意.故选C.【分析】将四个选项中的代数式去掉括号,再与A﹣B+C比较后即可得出结论.6.下列说法中错误的是()A. 减去一个负数等于加上这个数的相反数B. 两个负数相减,差仍是负数C. 负数减去正数,差为负数D. 正数减去负数,差为正数【答案】B【解析】【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数对各选项分析判断后利用排除法求解.【解答】A、减去一个负数等于加上这个数的相反数正确,故本选项错误;B、两个负数相减,差仍是负数错误,差有可能是正数、负数或零,故本选项正确;C、负数减去正数,差为负数,正确,故本选项错误;D、正数减去负数,差为正数,正确,故本选项错误.故选B.【点评】本题考查了有理数的减法,熟记运算法则是解题的关键。
有理数的加减(知识解读+真题演练+课后巩固)(原卷版)
第3讲有理数的加减1.理解有理数加法和减法法则;2.能利用加法和减法法则进行简单的有理数的加法、减法运算;3.能掌握加法、减法的运算定律和运算技巧,熟练计算;4.通过将减法转化成加法,初步培养学生数学的归一思想知识点1 :加法法则⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
知识点2:加法运算定律(1)加法交换律:两数相加,交换加数的位置,和不变。
即a+b=b+a(2)加法结合律:在有理数加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
即a+b+c=(a+b)+c=a+(b+c)知识点3 :减法法则减法法则:减去一个数,等于加上这个数的相反数。
即a-b=a+(﹣)b【题型 1 有理数的加减法的概念辨析】【典例1】(2023•青龙县二模)把18﹣(+10)+(﹣7)﹣(﹣5)写成省略括号的形式后,正确的是()A.18﹣10﹣7﹣5B.18﹣10﹣7+5C.18+10﹣7+5D.18+10﹣7﹣5【典例1-2】(2023•江源区一模)计算8﹣(5﹣2)的结果等于()A.2B.5C.﹣2D.﹣8(2023•香坊区一模)哈市某天的最高气温为11℃,最低气温为﹣6℃,【变式1-1】则最高气温与最低气温的差为()A.17℃B.5℃C.﹣17℃D.﹣5℃【变式1-2】(2022秋•辉县市校级期末)把(+5)﹣(+3)﹣(﹣7)+(﹣2)写成省略括号的和的形式是()A.﹣5﹣3+7﹣2B.5﹣3﹣7﹣2C.5﹣3+7﹣2D.5+3﹣7﹣2【变式1-3】(2023春•闵行区期中)如果两个数的和是正数,那么()A.这两个加数都是正数B.一个加数为正数,另一个加数为0C.一个加数为正数,另一个加数为负数,且正数的绝对值大于负数的绝对D.以上皆有可能【题型 2 有理数的加减法在数轴上的运用】【典例2】(2023•珠晖区校级模拟)如图,数轴上A、B两点所表示的数之和为()A.2B.﹣2C.4D.﹣4【变式2-1】(2022秋•泗水县期末)有理数a,b在数轴上的对应点如图所示,则下面式子中错误的是()A.b<0<a B.|b|>|a|C.b﹣a>0D.a﹣b>a+b【变式2-2】(2022秋•鹤峰县期中)已知a,b是有理数,若a在数轴上的对应点的位置如图所示,a+b<0,有以下结论:①b<0;②b﹣a>0;③|﹣a|>﹣b;④<﹣1.则所有正确的结论是()A.①③B.①④C.②③D.②④【变式2-3】(2021秋•牡丹区期末)在数轴上,到原点的距离等于1的点表示的所有有理数的和是.【题型3有理数的加减法混合运算】【典例3】(2022秋•张店区校级月考)计算:(1)+(﹣)+(﹣);(2)43+(﹣77)+27+(﹣43);(3)(+1.25)+(﹣)+(﹣)+(+1).【变式3-1】(2022秋•商水县校级月考)计算:(1)25+(﹣18)+4+(﹣10);(2)(﹣3)+(+7)+(5.5).【变式3-2】(2022•南京模拟)计算:(1)(﹣2)+(+3)+(+4)+(﹣3)+(+5)+(﹣4);(2).(1)(﹣2.7)+1.5+(﹣0.9)+(﹣0.3)+3.9;(2)(﹣3)+9+(﹣1)+3+(﹣14)+5.【典例4】计算下列各题,能简算的要简算.(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)2﹣(+10)+(﹣8)﹣(+3);(3)598﹣12﹣3﹣84.【变式4-1】(2022•南京模拟)计算:(﹣4)﹣(﹣5)+(﹣4)﹣3.(1)7+(﹣2)﹣3.4;(2)(﹣21.6)+3﹣7.4+(﹣);(3)31+(﹣)+0.25;(4)7﹣(﹣)+1.5;(5)49﹣(﹣20.6)﹣;(6)(﹣)﹣7﹣(﹣3.2)+(﹣1)【题型 4 有理数的加减法与绝对值综合】【典例5】(2021秋•广丰区期末)计算:﹣﹣|﹣|﹣(﹣)+1.【变式5-1】(2021秋•大洼区期末)计算:7+(﹣14)﹣(﹣9)﹣|12|.【变式5-2】(2022秋•庆云县校级月考)计算:(1)0﹣5;(2)(﹣1.13)﹣(+1.12);(3)﹣5+(﹣2);(4)﹣3﹣|﹣6|;(5)(﹣0.75)+3|;(6)6.47﹣4.【变式5-3】(2022秋•临泽县校级月考)计算:(1)﹣7﹣(﹣10)+4;(2)1+(﹣2)﹣5+|﹣2﹣3|;(3);(4)12﹣(﹣6)+(﹣9);(5)(﹣40)﹣28﹣(﹣19)+(﹣24);(6)15﹣[1﹣(﹣20﹣4)].【题型5有理数的加减法中的规律计算】【典例6】(2022秋•椒江区校级月考)在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式;①|7﹣21|=;②||=;(2)用合理的方法计算:||+||﹣|﹣|;(3)用简单的方法计算:|﹣1|+|﹣|+|﹣|+|﹣|+…+||.【变式6-1】(2022秋•卧龙区校级月考)阅读下面的计算过程,体会“拆项法”计算:﹣5+(﹣9)+17+(﹣3).解:原式=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=(﹣1)启发应用用上述的方法完成下列计算:(﹣3)+(﹣1)+2﹣(+2).【变式6-2】(2021秋•长兴县月考)在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式;①|7﹣21|=;②|﹣+0.8|=;③|﹣|=;(2)用合理的方法计算:|﹣|+|﹣|﹣|﹣|;(3)用简单的方法计算:|﹣|+|﹣|+|﹣|+…+|﹣|.【变式6-3】﹣=,﹣=,﹣=,…,﹣=.(1)可得﹣=.(2)利用上述规律计算:+++++.【题型 6 有理数的加减法的实际应用】【典例7】(2022秋•洛川县校级期末)为了庆祝中华人民共和国成立72周年,空军航空开放活动在其机场举行,某特技飞行队做特技表演时,其中一架J31型飞机起飞0.5km后的高度(上升记为正)变化为:+2.5km,﹣1.2km,+1.1km,﹣1.4km.(1)求该飞机完成这四个表演动作后离地面的高度;(2)已知飞机平均上升1km需消耗5L燃油,平均下降1km需消耗3L燃油,那么这架飞机在做完这四个表演动作过程中,一共消耗了多少升燃油?【变式7-1】(2022秋•市中区期末)2021年9月28日,第十三届中国航展在广东珠海举行,中国空军航空大学“红鹰”飞行表演队在航展上表演特技飞行,如图所示,表演从空中某一位置开始,上升的高度记作正数,下降的高度记作负数,五次特技飞行高度记录如下:+2.5,﹣1.2,+1.1,﹣1.5,+0.8.(单位:千米)(1)求飞机最后所在的位置比开始位置高还是低?高了或低了多少千米?(2)若飞机平均上升1千米需消耗6升燃油,平均下降1千米需消耗4升燃油,则飞机在这5次特技飞行中,一共消耗多少升燃油?【变式7-2】(2022秋•万源市校级期末)某仓库原有商品300件,现记录了10天内该类商品进出仓库的件数如下所示(“+”表示进库,“﹣”表示出库):+30,﹣10,﹣15,+25,+17,+35,﹣20,﹣15,+13,﹣35.(1)请问经过10天之后,该仓库内的商品是增加了还是减少了?此时仓库还有多少商品?(2)如果商品每次进出仓库需要人工搬运费是每件3元,请问这10天要付多少人工搬运费?【变式7-3】(2022秋•罗山县期末)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?【题型7 有理数的加减法中的新定义问题】【典例8】(2022秋•海珠区校级期末)现将偶数个互不相等的有理数分成个数相同的两排,需满足第一排中的数越来越大,第二排中的数越来越小.例如,轩轩将“1,2,3,4”进行如下分组:第一列第二列第一排12第二排43然后把每列两个数的差的绝对值进行相加,定义为该分组方式的“M值”.例如,以上分组方式的“M值”为M=|1﹣4|+|2﹣3|=4.(1)另写出“1,2,3,4”的一种分组方式,并计算相应的“M值”;(2)将4个自然数“a,6,7,8”按照题目要求分为两排,使其“M值”为6,求a的值.【变式8-1】(2021秋•沿河县期末)定义:对于一个有理数x,我们把[x]称作x 的对称数:若x≥0,则[x]=x﹣2,若x<0,则[x]=x+2:例:[1]=1﹣2=﹣1,[﹣2]=﹣2+2=0.(1)求[2]+[﹣1]的值;(2)若x<﹣1时,解方程:[2x]+[x+1]=1.【变式8-2】(2021秋•永春县期中)设[a]表示不超过a的最大整数,例如:.(1)填空:=;[3.6]=.(2)令(a)=a﹣[a],求(3)﹣[﹣2.4]+(﹣7)(说明:此式第一,三项表示所定义的运算).【变式8-3】(2022春•衡阳县期末)定义:对于确定位置的三个数:a,b,c,计算a﹣b,,,将这三个数的最小值称为a,b,c的“分差”,例如,对于1,﹣2,3,因为1﹣(﹣2)=3,=﹣1,=﹣,所以1,﹣2,3的“分差”为﹣.(1)﹣2,﹣4,1的“分差”为;(2)调整“﹣2,﹣4,1”这三个数的位置,得到不同的“分差”,那么这些不同“分差”中的最大值是;(3)调整﹣1,6,x这三个数的位置,得到不同的“分差”,若其中的一个“分差”为2,求x的值.1.(2022•沈阳)计算5+(﹣3),结果正确的是()A.2B.﹣2C.8D.﹣8 2.(2022•天津)计算(﹣3)+(﹣2)的结果等于()A.﹣5B.﹣1C.5D.1 3.(2021•西宁)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(﹣2),根据这种表示法,可推算出图2所表示的算式是()A.(+3)+(+6)B.(+3)+(﹣6)C.(﹣3)+(+6)D.(﹣3)+(﹣6)4.(2022•呼和浩特)计算﹣3﹣2的结果是()A.﹣1B.1C.﹣5D.55.(2022•杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.﹣8℃B.﹣4℃C.4℃D.8℃6.(2022•河北)与﹣3相等的是()A.﹣3﹣B.3﹣C.﹣3+D.3+ 7.(2021•河北)能与﹣(﹣)相加得0的是()A.﹣﹣B.+C.﹣+D.﹣+ 8.(2022•台湾)算式+﹣(﹣)之值为何?()A.B.C.D.9.(2019•德州)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}=.1.(2022秋•徐州月考)下列说法正确的有()个①在数轴上0和−1之间没有负数②有理数分为正有理数和负有理数③绝对值是它本身的数只有0④两数之和一定大于每个加数A.0个B.1个C.2个D.3个2.(2022秋•赣州期末)有理数a,b在数轴上的位置如图,则下列说法中,错误的是()A.a<0B.b>0C.b﹣a>0D.a+b<0 3.(2021春•随县期末)已知[x]表示不超过x的最大整数.如:[3.2]=3,[﹣0.7]=﹣1.现定义:{x}=[x]﹣x,如{1.5}=[1.5]﹣1.5=﹣0.5,则{3.9}+{﹣}﹣{1}=.4.(2022秋•通州区期末)计算:(﹣17)﹣(﹣46)﹣(+13)+(﹣16).5.(2022秋•薛城区校级月考)计算:(1)﹣20﹣(﹣18)+(﹣14)+13;(2)﹣85﹣(﹣77)+|﹣85|﹣(﹣3);(3)(﹣2.5)﹣(﹣2)+2;(4).6.(2022秋•甘井子区期中)计算下列各题:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣+(﹣)+﹣(﹣)﹣1.7.(2021秋•沭阳县校级月考)计算题(1)(﹣20)+16;(2)(﹣18)+(﹣13);(3)+(﹣)++(﹣);(4)|﹣45|+(﹣71)+|﹣5|+(﹣9).8.(2022秋•滕州市校级月考)计算(1)(8)+(﹣15)﹣(9)﹣(﹣12)(2)16+(﹣25)+14﹣(﹣40)(3)5.27+(﹣6)﹣(﹣2.27)+1.73(4)2﹣2.25﹣(﹣1)+2﹣0.2(5)(﹣6)﹣(﹣4)+(﹣3)﹣(﹣5)(6)(﹣)+4+(﹣3)﹣22.5+(﹣).9.(2022秋•西城区校级期中)在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=﹣6+7;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+2|=9;②|﹣+|=;(2)用简单的方法计算:|﹣|+|﹣|+|﹣|+…+|﹣|.10.(2021秋•绿园区期末)某村共有8块小麦试验田,每块试验田今年的收成与去年相比情况如下(增产为正,减产为负,单位:kg):55,﹣40,10,﹣16,27,﹣5,﹣23,38.那么今年的小麦总产量与去年相比是增加了还是减少了?增加或减少了多少?11.(2022秋•市南区校级期末)某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?12.(2021秋•康定市期末)某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km)第1批第2批第3批第4批第5批5km2km﹣4km﹣3km6km (1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.3升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米加1.6元收费,在这过程中该驾驶员共收到车费多少元?13.找规律,完成下列各题:(1)如图①,把正方形看作1,=.(2)如图②,把正方形看作1,=.(3)如图③,把正方形看作1,=.(4)计算:=.(5)计算:=.。
六年级春季班第3讲:有理数的加减
有理数的加减法是初中数学六年级下学期第1章第2节的内容,通过这一讲的学习,同学们需要熟练掌握有理数加减法的法则,并做到快速准确地进行有理数加减法的运算.1、有理数加法法则(1)同号两数相加:取原来的符号,并把绝对值相加.(2)异号两数相加:绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号.(3)一个数同零相加:仍得这个数.2、有理数加法的运算律交换律:a b b a+=+;结合律:()()a b c a b c++=++.有理数的加减内容分析知识结构模块一:有理数的加法知识精讲【例1】 计算:()50++=______,()0 2.7++=______,()03+-=______,1305⎛⎫-+= ⎪⎝⎭______. 【难度】★【答案】5;2.7;3-;513-. 【解析】同号两数相加:取原来的符号,并把绝对值相加;一个数同零相加:仍得这个数.【总结】考察有理数的加法法则的运用.【例2】 计算:(1)()()3547+++;(2)()13.7523++; (3)()12.732⎛⎫-+- ⎪⎝⎭; (4)2322234⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭. 【难度】★【答案】(1)82;(2)1216;(3) 6.2-;(4)12525-. 【解析】同号两数相加:取原来的符号,并把绝对值相加【总结】考察有理数的加法法则的运用,注意分数和小数运算时先化成同类型的再计算.【例3】 计算:()2424-+=______,115555⎛⎫+-= ⎪⎝⎭______,()33.37538-+=______. 【难度】★【答案】0;0;0.【解析】异号两数相加:绝对值相等时和为零.【总结】考察有理数的加法法则的运用.【例4】 计算3586⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭所得结果正确的是( ) A .5124- B .5124 C .8114- D .3524- 【难度】★【答案】A【解析】同号两数相加:取原来的符号,并把绝对值相加.【总结】考察有理数的加法法则的运用.例题解析【例5】 计算:(1)()()3547++-;(2)()13.7523⎛⎫++- ⎪⎝⎭; (3)()12.732⎛⎫-++ ⎪⎝⎭; (4)2322234⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭. 【难度】★★【答案】(1)12-;(2)1251;(3)0.8;(4)121119. 【解析】异号两数相加:绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值 所得的差,其和的符号取绝对值较大的加数的符号.【总结】考察有理数的加法法则.【例6】 计算:(1)1728+;(2)()()1728-+-; (3)()1728-+;(4)()1728+-.【难度】★★【答案】(1)45;(2)-45;(3)11;(4)-11.【解析】同号两数相加:取原来的符号,并把绝对值相加;异号两数相加:绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值所得的差,其 和的符号取绝对值较大的加数的符号.【总结】考察有理数的加法法则.【例7】 若两个数的和为正数,则不可能的是( )A .两个数均为正数B .两个数一个正数,一个是零C .两数一正一负,正数比负数的绝对值大D .两数一正一负,正数比负数的绝对值小【难度】★★【答案】D【解析】异号两数相加:绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝 对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号.【总结】考察有理数的加法法则和运算律的运用.【例8】 计算:(1)()()323 4.25⎛⎫-+++ ⎪⎝⎭;(2)()()()4.27 3.58 2.71++-+-. 【难度】★★【答案】(1)5.8;(2)-2.02.【解析】异号两数相加:绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝 对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号.【总结】考察有理数的加法法则和运算律的运用.【例9】 计算:(1)212373⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭;(2)5975112141214⎛⎫⎛⎫⎛⎫⎛⎫++-+++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【难度】★★【答案】(1)71;(2)1. 【解析】(1)21222111037333777⎛⎫⎛⎫⎛⎫⎛⎫+++-=++-+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (2)()59755795112111214121412121414⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++-+++-=++++-+-=+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦. 【总结】考察有理数的加法法则和运算律的运用.【例10】 计算:(1)()()()()2.4 3.5 4.6 3.5-+++-++;(2)()13122625 5.63535⎡⎤⎛⎫⎛⎫++-+-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 【难度】★★【答案】(1)0;(2)524-. 【解析】(1)()()()()()2.4 4.6 3.5 3.5770=-+-++++=-+=⎡⎤⎡⎤⎣⎦⎣⎦原式;(2)()113222=226 5.65=0+15=4335555⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+-++-+-+-- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦原式. 【总结】考察有理数的加法法则和运算律的运用.【例11】 3和5-的和的绝对值等于______,3和5-的绝对值的和等于______; 4-和7的和的相反数等于______,4-和7的相反数的和等于______.【难度】★★【答案】2,8,3-,11-.【解析】()2253=-=-+;85353=+=-+;()374-=+--;()1174-=-+-.【总结】考察有理数的加法法则的运用及对绝对值的综合运用.【例12】 若()()a b a b +=-+-,那么下列各式一定成立的是( )A .0a b ==B .0a >,0b <,a b =-C .0a b +=D .()0a b +-=【难度】★★【答案】C【解析】因为()()a b a b +=-+-,所以022=+b a , 所以0=+b a .【总结】考察有理数的加法法则.【例13】 某外卖送餐员中午骑电动摩托车给客户送餐,先从餐厅出发,先向东行驶了3.3公里(记向东为正),之后又向西行驶了2.7公里,再向西行驶了1.5公里,问这时,送餐员想要回到餐厅需向哪个方向行驶多少公里?【难度】★★【答案】想要回到餐厅需向东行驶0.9公里.【解析】送餐员现在的位置为()()9.05.17.23.3-=-+-+,即餐厅向西0.9公里,则送餐员 想要回到餐厅需向东行驶0.9公里.【总结】考察有理数的加法在实际中的应用.【例14】 计算:()()()246898100-++-+++-+. 【难度】★★★【答案】50.【解析】()()()246898100-++-+++-+ ()()()=24689810025-++-+++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦(共对) =222+++ =225⨯=50.【总结】考察有理数的加法.注意简便运算.【例15】 某单位一周中收支情况如下:524.5+元,274.3-元,490+元,100-元,29.7+元,123.6-元,232.1-元.问该单位这一周,总共收入多少元?总共支出多少元?收支相抵后,余额是多少元?【难度】★★★【答案】共收入1044.2元,共支出730元,收支相抵后,余额为314.2元.【解析】共收入为:()524.5++()490+()+29.7=1044.2+元,共支出为:()274.3+-()100-()+123.6-()+232.1730-=-元收支相抵为:()2.3147302.1044=-+元.【总结】考察有理数的加法的实际应用.1、 有理数减法法则减去一个数,等于加上这个数的相反数:()a b a b -=+-.2、 有理数加减混合运算先把减法变成加法,再按有理数加法法则进行计算.【例16】 下列计算正确的是( )A .()()1459--+=-B .()033--=C .()()336---=-D .()5353-=-- 【难度】★【答案】B【解析】A 答案错误,正确答案为()()14519-+-=-;C 答案错误,正确答案为()330-+=;D 答案错误,正确答案为()5353-=-.【总结】考察有理数的减法的运用.【例17】 1122⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭______,509⎛⎫--= ⎪⎝⎭______. 【难度】★【答案】0;95. 【解析】有理数减法法则:减去一个数,等于加上这个数的相反数:()a b a b -=+-.【总结】考察有理数的减法的运用.模块二:有理数的减法 知识精讲 例题解析【例18】 计算:(1)3255⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭; (2)()1213⎛⎫--+ ⎪⎝⎭; (3)4.3 6.2-;(4)()72 3.48--. 【难度】★【答案】(1)51-;(2)313-;(3)9.1-;(4)275.6. 【解析】有理数减法法则:减去一个数,等于加上这个数的相反数:()a b a b -=+-.【总结】考察有理数的减法的运用.【例19】 若两个不为零的数a 与b 的差为负数,则以下四种情况中可能出现的是( )○1a 、b 均为正数;○2a 、b 均为负数;○3a 正,b 负;○4a 负,b 正. A .○1○2○3 B .○1○2○4 C .○1○3○4 D .○2○3○4 【难度】★★【答案】B【解析】当a 正,b 负时,根据有理数减法可知()b a b a -+=-,而a 为正数,b -为正数, 所以结果为正数.故只有③错误.【总结】考察有理数的减法的运用.【例20】 一个数加上0.11-,得0.011-,那么这个数是( )A .0.111-B .0.099C .0.099-D .0.1【难度】★★【答案】B【解析】()099.011.0011.011.0011.0=+-=---,故选B .【总结】考察有理数的减法的运用.【例21】 计算:(1)()4.670.69 2.98---; (2)11113215.25183⎛⎫--- ⎪⎝⎭. 【难度】★★【答案】(1)38.2-;(2)2536-. 【解析】(1)()4.670.69 2.98 4.670.69 2.98 2.38---=--+=-;(2)11111112513215.2513215183183436⎛⎫---=--+=- ⎪⎝⎭. 【总结】考察有理数的减法的运用,注意去括号时,括号前面是负号要变号.【例22】 计算:(1)()()()()()1789614------+--;(2)21513263⎛⎫⎛⎫⎛⎫⎛⎫--+---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)()()1112 6.5 6.3625⎛⎫⎡⎤---+--- ⎪⎢⎥⎝⎭⎣⎦. 【难度】★★【答案】(1)8;(2)0;(3) 6.1-.【解析】(1)()()()()()178961417896148------+--=-++-+=;(2)215121151155503263332632666⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+----=-+-+=--+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; (3)()111112 6.5 6.3612 6.412 6.4 6.12522⎛⎫⎡⎤⎛⎫⎛⎫=---+-=---=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭原式.【总结】考察有理数的减法的运用,注意去括号时,括号前面是负号要变号.【例23】 计算:(1)245.22315--+; (2)21512326⎛⎫-+- ⎪⎝⎭. 【难度】★★【答案】(1)375-;(2)323-. 【解析】(1)2413435.227731515155--+=-+=-; (2)2155521223326663⎛⎫⎛⎫-+-=-+-=- ⎪ ⎪⎝⎭⎝⎭.【总结】考察有理数的减法,注意计算结果要化到最简.【例24】 计算:(1)()()379+ 3.72 3.251425⎛⎫---+- ⎪⎝⎭; (2)231321234243⎡⎤⎛⎫---+-- ⎪⎢⎥⎝⎭⎣⎦; (3)51055511251317132121⎡⎤⎛⎫-+-- ⎪⎢⎥⎝⎭⎣⎦. 【难度】★★【答案】(1)8;(2)21-;(3)17713. 【解析】(1)()()379+ 3.72 3.251425⎛⎫---+- ⎪⎝⎭()()379 3.25 3.721425⎡⎤⎡⎤⎛⎫=--+-+- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦ 3118793311358442525⎡⎤⎛⎫⎛⎫⎛⎫=++-+-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦;(2)原式23132212=121234243323⎡⎤⎡⎤----+-=---+-⎢⎥⎢⎥⎣⎦⎣⎦2121123232=-+-+=-; (3)原式5105555555101125112513171321211313212117⎛⎫⎛⎫=--+-=-+-- ⎪ ⎪⎝⎭⎝⎭ 10107951413171717=+-=-=. 【总结】考察有理数的加减法的混合运算,注意相关法则的准确运用.【例25】 计算:(1)()1131130.25 3.75 4.5244⎛⎫----+-- ⎪⎝⎭; (2)()()11131511532242⎛⎫⎛⎫-+-+----- ⎪ ⎪⎝⎭⎝⎭. 【难度】★★【答案】(1) 4.5-;(2)43-. 【解析】(1)原式11313111331133 4.51133 4.52444424444⎡⎤⎛⎫⎛⎫⎛⎫=-+-+--=--++-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦00 4.5 4.5=+-=-;(2)原式()1113331515122244⎡⎤⎛⎫=-++-++-=-⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎣⎦. 【总结】考察有理数的加减法和运算律的应用,注意简便运算.【例26】 已知143a =-,566b =-,122c =-,求下列各式的值. (1)a b c --; (2)()b a c --; (3)a b c --; (4)a c b --.【难度】★★★【答案】(1)5;(2)5-;(3)5-;(4)328. 【解析】(1)1511511146246222536236222a b c ⎛⎫⎛⎫⎛⎫--=-----=-++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)()5115115564264261563263266b a c ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--=-----=---+=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦; (3)1511514624625362362a b c --=-----=--=-; (4)115115552426426168326326663a cb ⎛⎫⎛⎫--=-----=-++=+= ⎪ ⎪⎝⎭⎝⎭. 【总结】考察有理数的加减法运算和运算律的综合应用.【例27】 如果2113x ⎛⎫+-= ⎪⎝⎭,那么x 等于______. 【难度】★★★ 【答案】322=x 或223x =-. 【解析】因为2113x ⎛⎫+-= ⎪⎝⎭,所以2211233x ⎛⎫=--= ⎪⎝⎭, 所以322=x 或223x =-. 【总结】考察有理数的加减法和绝对值运算.【例28】 计算:135********-+-+-++-. 【难度】★★★【答案】50-.【解析】原式()()()()1357911979925=-+-+-++-(共对) ()()()222=-+-++-()=252⨯-50=-.【总结】考察有理数的加减法运算,注意找出规律进行简便运算.【例29】 计算:1234997998999999999999999999-+--+---+-. 【难度】★★★【答案】999499. 【解析】原式1234997998999999999999999999=-+-+--+ 1234997998(499999999999999999999⎛⎫⎛⎫⎛⎫=-++-+++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭共对) 111=+499999999999++(共个) 499=999.【总结】考察有理数的加减法运算及与绝对值的综合计算,注意要简便运算.【例30】 如果规定运算()()23a b a b ⊗=---,求73124⎛⎫⊗- ⎪⎝⎭的值. 【难度】★★★【答案】1253-. 【解析】7373795=2331241246412⎡⎤⎛⎫⎛⎫⎛⎫⊗--⨯--⨯-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 【总结】本题主要考察新运算与有理数的加减法的综合运用.【习题1】 (1)同号两数相加,取______的符号,并把______相加;(2)异号两数相加,绝对值不相等时,其和的符号取______________的符号,和的绝对值为_________________________;(3)有理数减法的法则是,减去一个数,等于加上_________________.【难度】★【答案】(1)原来;绝对值(2)绝对值较大的加数;较大的绝对值减去较小的绝对值的差;(3)这个数的相反数.【解析】考察有理数的运算法则.【习题2】 两个有理数的和比其中任意一个加数都小,则这两个数( )A .一正一负B .至少一个是零C .都是正数D .都是负数【难度】★【答案】D【解析】可以根据有理数运算法则,运用排除法选D .【解析】考察有理数运算法则.【习题3】 如果规定运算a b a b *=--,那么()31 1.24⎛⎫*-= ⎪⎝⎭___________. 【难度】★★【答案】1120-. 【解析】()333111 1.21( 1.2)1 1.244420⎛⎫*-=---=-+=- ⎪⎝⎭. 【总结】考察新运算及有理数的加减混合运算的综合运用.随堂检测(1)()113.75 1.54842⎛⎫⎛⎫-+---+ ⎪ ⎪⎝⎭⎝⎭; (2)()12430.130.3325⎛⎫⎧⎫------⎡⎤⎨⎬ ⎪⎣⎦⎝⎭⎩⎭. 【难度】★★【答案】(1)2-;(2)1077-. 【解析】(1)原式3111311131483418810242424422⎛⎫⎛⎫=-+-=++--=-=- ⎪ ⎪⎝⎭⎝⎭;(2)原式=[]1212117430.130.33430.243725252510⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫----+=---=--=-⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎩⎭⎝⎭⎝⎭⎝⎭. 【总结】考察有理数的加减混合运算及去括号法则的综合运用.【习题5】 计算:(1)1111513 4.522553---+-+; (2)21917887.21435312.792121-++-. 【难度】★★【答案】(1)325-;(2)175. 【解析】(1)1111513 4.522553---+-+ ()1111124.5531252125255333⎛⎫⎛⎫=--+-+-+=-+--+=- ⎪ ⎪⎝⎭⎝⎭; (2)21917887.21435312.792121-++- ()()219178435387.2112.79178971001752121⎛⎫=+++-+-=++-=⎡⎤ ⎪⎣⎦⎝⎭.【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.(1)711145438248⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)3153221442683⎛⎫⎛⎫⎛⎫⎛⎫--+----+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【难度】★★【答案】(1)436-;(2)87-. 【解析】(1)711145438248⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭7111711113454343548168248882444⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++-+-=-+-++-=-+=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦;(2)3153221442683⎛⎫⎛⎫⎛⎫⎛⎫--+----+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭315327214426838⎛⎫=++-+-=- ⎪⎝⎭.【总结】考察有理数的加减混合运算及去括号法则的综合运用.【习题7】 计算:(1)515511342118126812⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-++-++++ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦; (2)()113.16223350.16224⎛⎫---+-+- ⎪⎝⎭. 【难度】★★【答案】(1)615;(2)43-. 【解析】(1)原式5511151132411165881212666⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++++-+=-++= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦;(2)原式113.16223350.16224⎛⎫=+-+-+- ⎪⎝⎭()113.1620.162233524⎛⎫=-++--+ ⎪⎝⎭ 11332335244⎛⎫=++--+=- ⎪⎝⎭【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.【习题8】 计算:()3833 2.16 3.25211111⎡⎤⎛⎫⎛⎫---+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 【难度】★★★【答案】56.09.【解析】原式3833 2.16 3.25211111=-++ ()38=3321+ 2.16 3.251111⎛⎫+-+ ⎪⎝⎭ 55+1.0956.09==.【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.【习题9】 计算:21150543236-+---. 【难度】★★★ 【答案】31. 【解析】原式211521154543236322=-+--=-+-- 2111543223=-+-=【总结】考察有理数的加减混合运算及绝对值的综合运用.【习题10】 计算:123456789101112201720182019+--++--++--+++-.【难度】★★★【答案】0.【解析】123456789101112201720182019+--++--++--+++-()()()()504123456789101112201720182019=+--++--++--+++-对括号45042016=-⨯+20162016=-+0=. 【总结】考察有理数的混合运算,注意观察规律进行简便运算.【作业1】 判断下列算式是否正确:(1)()()220-+-=;( )(2)()()6410-++=-;( )(3)()033+-=+;( )(4)512663⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭;( ) (5)337744⎛⎫⎛⎫--+-=- ⎪ ⎪⎝⎭⎝⎭.( ) 【难度】★【答案】(1)×;(2)×;(3)×;(4)√;(5)√.【解析】(1)错误,正确答案为()()224-+-=-;(2)错误,正确答案为()()642-++=-;(3)错误,正确答案为()033+-=-.【总结】考察有理数的运算,注意法则的准确运用.【作业2】 用字母a 、b 、c 表示有理数加法的交换律是________________,结合律是____________________.【难度】★【答案】交换律:a b b a +=+;结合律:()()a b c a b c ++=++.【解析】考察有理数运算律的理解.课后作业【作业3】 计算:()31 1.24⎛⎫-++= ⎪⎝⎭_____,()31 1.24⎛⎫--+= ⎪⎝⎭_____,()31 1.24⎛⎫-+-= ⎪⎝⎭_____. 【难度】★【答案】0.55-; 2.95-; 2.95-.【解析】同号两数相加:取原来的符号,并把绝对值相加;异号两数相加:绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值所得的差,其 和的符号取绝对值较大的加数的符号.【总结】考察有理数的加减法法则的运用.【作业4】 计算:21131333⎛⎫⎛⎫--+-= ⎪ ⎪⎝⎭⎝⎭______,()()137 5.42⎛⎫-+++= ⎪⎝⎭______. 【难度】★ 【答案】31;9.9. 【解析】同号两数相加:取原来的符号,并把绝对值相加;异号两数相加:绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值所得的差,其 和的符号取绝对值较大的加数的符号.【总结】考察有理数的加减法法则的运用.【作业5】 计算:(1)515 6.54 3.4618--; (2)3492318.725.254⎛⎫--- ⎪⎝⎭; (3)225103 1.2850.72376----. 【难度】★★【答案】(1)1855;(2)18.7;(3)4219-. 【解析】(1)()555515 6.54 3.4615 6.54 3.461510518181818--=-+=-=; (2)()33492318.725.254918.7+2325.25=4918.7+4918.744⎛⎫=-+-=+--+-= ⎪⎝⎭原式; (3)()()2252252319103 1.2850.72=1035 1.280.72123763764242------+--=+-=-.【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.【作业6】 计算:(1)111113131354543--+-; (2)135154723464--++. 【难度】★★【答案】(1)313-;(2)0. 【解析】(1)11111111111131313331130033545435544333⎛⎫⎛⎫--+-=-+-+-=+-=- ⎪ ⎪⎝⎭⎝⎭; (2)1351153111547257422203464364422⎛⎫⎛⎫--++=-++-+=-= ⎪ ⎪⎝⎭⎝⎭. 【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.【作业7】 计算:(1)5353432 3.151********⎛⎫⎛⎫⎛⎫+-+--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【难度】★★【答案】(1)15.3-;(2)436-. 【解析】(1)原式()55334231 3.1522 3.15 3.1512122222⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-=+--=- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦;(2)原式7111111134354854246882424244⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--+--+-=-++-=-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.【作业8】 计算:()9585 5.3753117817⎡⎤⎡⎤⎛⎫⎛⎫-----+ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦. 【难度】★★【答案】16. 【解析】原式9589855 5.3753151 5.375379161781717178⎛⎫⎛⎫=+++=+++=+= ⎪ ⎪⎝⎭⎝⎭.【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.【作业9】 计算:123456201520162017-+-+-++-+. 【难度】★★★【答案】1009.【解析】123456201520162017-+-+-++-+ ()()()()1008123456201520162017=-+-+-++-+对110082017=-⨯+=1009.【总结】考察有理数的加减混合运算,注意能简便运算时要简便运算.【作业10】 如果规定23x y y x x y =---,求3546⎛⎫- ⎪⎝⎭的值. 【难度】★★★ 【答案】32-. 【解析】355335293729372=23466446121212123⎛⎫⎛⎫⎛⎫-⨯---⨯--=--=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【总结】本题主要考察新运算与有理数的加减法的综合运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲 有理数的加减运算
一、【有理数的加减运算法则】
1、加法法则:同号相加取同号,绝对值相加;
异号相加取绝对值大的符号,绝对值相减(大减小)。
▲ 互为相反数的两个数相加得0。
2、减法法则:减去一个数等于加上这个数的相反数。
3、多重符号的化简
(1)+ 可省略,不影响数的变化。
-不能省 (2)同号得正,异号得负。
填空
① 若a >0,b >0,那么a+ b 0; ② 若a <0,b <0,那么a+ b 0; 【思考】 熟悉|a+b |和|a —b |的几种情况
熟悉a +b 和a —b 的几种情况
二、【典型例题】
[例1] (1))9()3(-+- (2)9.3)7.4(+- 解:(1)12)93()9()3(-=+-=-+- 国防费
(2)9.3)7.4(+-=3.9-4.7= -0.8
[例2] 足球循环比赛中,红队胜黄队1:4,黄队胜蓝队0:1,蓝队胜红
队0:1,计算各队的净胜球数。
解:每个队的进球总数记为正数,
失球总数记为负数,这两个数的和为这个队的净胜球数。
红队净胜球数为2)2()4(+=-++
黄队净胜球数为2)24(0)4()2(-=--=-++ 蓝队净胜球数为01)1(=+-
[例3] 计算:)35(24)25(16-++-+ 解:)35(24)25(16-++-+ = 16-25+24-35 = 40-60 =-20
[例4] 每袋小麦的标准重量为90千克,10袋小麦称重分别为:91、91、91.5、89、91.2、91.3、88.7、88.8、91.8、91.1与标准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少? 解:每袋小麦超过标准重量的千克数记作正数,不足的千克数记作负数,10袋小麦对应数为+1、+1、+1.5、1-、+1.2、+1.3、3.1-、2.1-、+1.8、+1.1
1.18.1)
2.1()
3.1(3.12.1)1(5.111++-+-+++-+++
4.5)8.1
5.11.11()]3.1(3.1[)]2.1(2.1[)]1(1[=++++-++-++-+=
4.9054.51090=+⨯
[例5] 计算:(1))5()3(--- (2)70-
(3))8.4(2.7-- (4)
4
15
)213
(--
解:(1)253)5()3(=+-=---
(2)70-=-7
(3)128.42.7)8.4(2.7=+=-- (4)=-(312 +514 )=83
4
[例6] )7()5()3()20(+---++- 解:)7()5()3()20(+---++- = -20+3+5-7 = 8-27
= -19
三、【培优】
1、计算:3510.752(0.125)124478⎛⎫⎛
⎫⎛⎫+-+++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
解:原式= 34 -234 +18 -418 -125
7 =-2-4-125
7
=-185
7 2、计算:(1)、()()
56
0.94
.48.11+-++-+
(2)、(-18.75)+(+6.25)+(-3.25)+18.25 (3)、(-4
23
)+111362324⎛⎫⎛⎫⎛⎫
-+++- ⎪ ⎪ ⎪⎝
⎭
⎝
⎭
⎝
⎭
解:(1)原式= 56-0.9+4.4-8.1+1 =56+4.4+1-(0.9+8.1)
= 61.5-9
= 52.5
(2)原式=6.25+18.25-(18.75+3.25) =24.5-22 =2.5
(3)原式=-(4
2
3
+313 )+612 -21
4 =-8+4 =-4
3、计算:①()232321
1.75343⎛
⎫⎛⎫⎛⎫
------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
②111142243⎛⎫⎛⎫⎛⎫
-+--- ⎪ ⎪ ⎪⎝
⎭
⎝
⎭
⎝
⎭
解: 原式= -32
3+234 +12
3
-1.75
=-323+12
3
+234 -134
=-2+1 =-1 四、【课后巩固】 一. 计算
1. )6()10(++-
2. )4()12(-++
3. )7()5(-+-
4. )9()6(-++
5. )1(210)8(-+++-
6. )7()4(93)6(5-+-+++-+
7. 5.38.0)1.2()7.0(2.1)8.0(++-+-++-
8. )31
()21
(5
4)3
2(2
1
-+-
++
-
+
二. 一天早晨的气温是C ︒-7,中午上升了C ︒11,半夜又下降了C ︒9,半夜的气温是多少?
三. 有8筐白菜,以每筐25千克为标准,超过的记作正数,不足的记作负数称重记录如下:1.5、3-、2、5.0-、1、2-、2-、5.2-
这8筐白菜总重量是多少?
四. 一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元,第二天最高价比开盘价高0.2元,最低价比开盘价低0.1元。
第二天最高价等于开盘价,最低价比开盘价低0.13元,求每天差价的平均值?
五.化简:计算:(1)711145438248⎛
⎫
⎛
⎫
⎛
⎫
⎛
⎫
---+--+ ⎪ ⎪ ⎪ ⎪⎝
⎭
⎝
⎭
⎝
⎭
⎝
⎭
(2)35123.7540.1258623
⎡⎤
⎛⎫⎛⎫⎛⎫----+-+- ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝
⎭⎝
⎭
⎣⎦
(3)()()340115477⎡
⎤
⎛
⎫
⎛
⎫+-----+--+- ⎪ ⎪⎢⎥⎝
⎭
⎝
⎭⎣
⎦
【答案】
一. 1. 4- 2. 8+ 3. 12- 4. 3- 5. 3+ 6. 0 7. 9.1 8.
5
1-(简便预算)
二. (-7)+11-9=C ︒-5
三. 1.5+(3-)+2+(5.0-)+1+(2-)+(2-)+(5.2-)= -5.5 8×25-5.5 =200-5.5 = 5.194(千克)
四. 31.03)]13.0(0)1.0(2.0)2.0(3.0[=÷--+--+--元 五.(1)原式=-478 -318 +512 -41
4 =-8 +114
(2)原式=3.75-[(56 +423 )-(38 +1
2 )]-0.125 =334 -(512 -118 )-18 =334 -512 +118 -1
8
=-(512 -434 )= -3
4
(3)原式=1-(-1+37 -5+4
7 )+4 =5-(-5) =10。