参数区间估计.ppt
区间估计ppt课件
极端值处理问题
剔除极端值
在数据分析前,对极端值进行识别和处理,如采用箱线图、Zscore等方法剔除异常值。
转换数据
对数据进行适当的转换,如对数转换、平方根转换等,使极端值的 影响减小。
使用稳健统计量
采用对极端值不敏感的稳健统计量进行区间估计,如中位数、截尾 均值等。
多重比较问题
控制比较次数
在实验设计和数据分析阶段,合理控制比较次数,避免不必要的 多重比较。
02
抽样分布与中心极限定理
抽样分布概念及类型
抽样分布概念
从总体中随机抽取一定数量的样本,统计量的分布称为抽样分布。
常见抽样分布类型
正态分布、t分布、F分布、卡方分布等。
中心极限定理内容及应用
中心极限定理内容
当样本量足够大时,无论总体分布如何,样本均值的分布将近似于正态分布。
中心极限定理应用
在统计学中,中心极限定理是推断统计的理论基础,常用于区间估计、假设检验 等。
构造方法
根据样本均值、标准差和样本量,结 合正态分布或t分布的性质,可以构造 出总体均值的置信区间。
比例p置信区间构建方法
二项分布与比例估计
01
当总体服从二项分布时,样本比例是总体比例的一个良好估计
量。
置信区间的构造
02
利用样本比例、样本量和二项分布的性质,可以构造出总体比
例的置信区间。
注意事项
03
配对样本t检验原理及应用
原理
配对样本t检验是通过比较同一组样本在不同条件下的均值差异来检验两个总体均值是否存在显著差 异的方法。其原假设为两个总体均值相等,备择假设为两个总体均值不等或大于/小于另一个总体均 值。
应用
配对样本t检验适用于前后测量、两种处理方法等配对设计的数据分析。例如,在医学领域,可以通过 配对样本t检验来比较同一种药物在不同剂量下的疗效差异;在教育领域,可以通过配对样本t检验来 比较同一种教学方法在不同班级中的教学效果差异。
概率论与数理统计-参数估计_图文
或
于是得到
的置信水平为 的置信区间为
为已知
其中
于是得到
的置信水平为 的置信区间为
其中
例3 为比较 I ,ቤተ መጻሕፍቲ ባይዱⅡ 两种型号步枪子弹的枪口
速度 ,随机地取 I 型子弹 10 发 ,得到枪口速度的平
均值 为
标准差
随
机地取 Ⅱ 型子弹 20 发 ,得到枪口速度的平均值为
标准差
假设两总
体都可认为近似地服从正态分布.且生产过程可认
2. 估计的精度要尽可能的高. 如要求区间长度
尽可能短,或能体现该要求的其它准则.
可靠度与精度是一对矛盾,一般是在保证 可靠度的条件下尽可能提高精度.
二、置信区间的求法
在求置信区间时,要查表求分位点.
定义 设
, 对随机变量X,称满足
的点 为X的概率分布的上 分位点.
若 X 为连续型随机变量 , 则有 所求置信区间为
X~N( )
样本均值是否是 的一个好的估计量?
样本方差是否是 的一个好的估计量?
这就需要讨论以下几个问题: (1) 我们希望一个“好的”估计量具有什么特性? (2) 怎样决定一个估计量是否比另一个估计量“好”?
(3) 如何求得合理的估计量?
常用的几条标准是:
1.无偏性 2.有效性 3.相合性
这里我们重点介绍前面两个标准 .
概率论与数理统计-参数估计_图文.ppt
参数估计
现在我们来介绍一类重要的统计推断问题 参数估计问题是利用从总体抽样得到的信息来估 计总体的某些参数或者参数的某些函数.
估计新生儿的体重
估计废品率
在参数估计问题
估计降雨量 中,假定总体分 布形式已知,未
… 知的仅仅是一个 … 或几个参数.
概率论与数理统计第7章参数估计PPT课件
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,
参数的区间估计
参数的区间估计1. 参数的概念参数是指一种描述总体特性的量,通常用符号表示。
以样本均值为例,我们通常用$\bar{x}$表示样本均值,用$\mu$表示总体均值,$\bar{x}$就是关于$\mu$的一个参数。
2. 区间估计的基本思想区间估计是通过样本的统计量来估计总体的参数,因为样本数据毕竟是有限的,所以估计值与真实值之间必然存在误差。
为了消除这种误差,我们采用确定一个区间的方法,即“置信区间”。
置信区间是指用样本数据计算出来的一个范围,其含义是真实的总体参数值有一定的置信水平(置信度)落在这个区间内。
①确定信赖水平(置信度)$1-\alpha$,$\alpha$称为显著性水平。
②根据样本均值选择合适的经验公式或理论公式来计算样本估计量的标准误差。
③根据置信度$1-\alpha$,查找$t$分布表或正态分布表,得到置信水平为$1-\alpha$的$t$值或$z$值。
④根据样本容量和总体方差是否已知,确定区间估计公式。
⑤根据置信度和样本数据计算出置信区间。
下面具体介绍区间估计的步骤:A. 确定总体所服从的概率分布总体可以服从正态分布、泊松分布、二项分布等概率分布,其中正态分布是最为常用的一种分布。
B. 确定样本容量$n$样本容量$n$的大小直接影响到置信区间的精度,当样本容量越大,置信区间的长度就越短。
一般观测数据越多,则样本容量越大。
C. 确定置信度$1-\alpha$置信度是指总体参数落在某一特定区间内的概率,一般取$95\%$或$99\%$。
D. 求出样本均值$\bar{x}$样本均值$\bar{x}$是样本中所有元素值的总和除以样本容量$n$,即$\bar{x}=\frac{\sum_{i=1}^nx_i}{n}$E. 求出样本方差$s^2$若总体标准差未知,用样本标准差$s$代替,$S(\bar{x})=\frac{s}{\sqrt{n}}$G. 选择合适的分布当总体服从正态分布,$\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$服从标准正态分布;当总体未知且样本容量$n$较小($n<30$),$\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}$服从$t$分布。
第四章 参数的区间估计(Confidence Interval Estimation)
Chap 4-34
PHStat用于解决此类问题
PHStat | confidence intervals | estimate for the population total Excel spreadsheet for the voucher example
第四章 参数的区间估计 (Confidence Interval Estimation)
阅读教材:第7章
Chap 4-1
本章概要
估计的步骤(Estimation process) 点估计(Point estimates) 区间估计(Interval estimates) 均值的置信区间( 已知) 样本容量的确定(Determining sample size) 均值的置信区间 ( 未知) 比例的置信区间
n
) 1
Chap 4-9
区间估计的要素
置信度
区间内包含未知总体参数的确定程度 与未知参数的接近程度 获得容量为 n 的样本所需付出的代价
精度
成本
Chap 4-10
置信度
以 100 1 %表示,如:90%,95%,99% 相对频率意义上的解释
从长期来看, 所构建的所有置信区间中,100 1 % 的置信区间都将含有未知参数,即未知参数落入区间的 概率;
n
( z 2 ) (1 )
2
E2
其中: E z 2
(1 )
n
2. 3.
E的取值一般小于0.1 (=p) 未知时,可取最大值0.5
二项分布和泊松分布参数的区间估计-PPT
p u / 2
n , p u / 2
n
0.8 1.96
0.8(1 0.8) , 0.8 1.96 100
0.8(1 0.8) 100
0.722, 0.878
大家学习辛苦了,还是要坚持
继续保持安静
3、泊松分布参数 得区间估计
设总体X服从参数为λ得泊松分布, x1, x2 , , xn 为总体得一个样本,则有:
p P p(1 p)
u / 2 } 1
n
P{ p u / 2
p(1 p) n P p u / 2
p(1 p) } 1
n
所以总体率P得 1 得置信区间为:
p(1 p)
p(1 p)
p u / 2
n P p u / 2
n
p(1 p)
p(1 p)
p u / 2
2
2
(n
1)
,
2 1 2
(n
1)
第五章 参数估计
第三节 二项Байду номын сангаас布和泊松分布参数的区间估计
主要内容
一、大样本正态近似法 二、小样本精确估计法
一、大样本正态近似法
例5-11、对100只小鼠给予有机磷农药100mg/kg灌胃后 有80只死亡,试求给予该有机农药100mg/kg灌胃引起 小鼠死亡率得95%置信区间、
样本死亡率: p 80 0.80 100
总体死亡率: P
95%置信区间
1、总体率与样本率得定义
总体率:设总体得容量为N,其中具有某种特点
得个体数为M,则称 P M N
为具有某种特点得个体得总体率。
置信区间
样本率:设总体中抽取容量为n得样本,其中具 有某种特点得个体数为m,则称
概率论第七章参数估计2区间估计
2 / 2 ( n 1)
即
置信区间:
标准差σ的一个置信水平为 1 的置信区间
2 (n 1) S , 2 (n 1) 2
(n 1) S 2 1 (n 1) 2
2
注意:在密度函数不对称时,如 2分布和F 分布,
置信度 1 下,来确定 的置信区间[ , ]
⑴ 已知方差 ,估计均值μ
2
n 1 2 设已知方差 2 0 ,且 X X i 是 的 n i 1 一个无偏点估计,
又
X ~ N (0 , 1) 0 / n
且 对于给定的置信度 查正态分布表,找出
临界值
使得:
2 1 2 2
一个无偏估计, 因为X与Y 相互独立,所以
X Y ~ N ( 1 2 ,
X Y ( 1 2 )
2 1
n1
2 2
n2
)
2 1
n1 n2 所以 1 2 的置信水平为1-α的置信区间为
2 2
~ N (0,1)
( X Y z / 2
已知
由样本值算得:
查表 t0.025 (6) 2.447
得区间:
对某种型号飞机的飞行速度进行15次试验, 测 例 5: 得最大飞行速度(单位: 米/秒)为 422.2, 417.2, 425.6 420.3, 425.8, 423.1, 418.7, 438.3, 434.0, 412.3, 431.5 413.5, 441.3, 423.0, 428.2, 根据长期经验, 可以认为 最大飞行速度服从正态分布. 求飞机最大飞行速度
第三节 区间估计 譬如,在估计湖中鱼数的问题中,若 我们根据一个实际样本,得到鱼数 N 的极 大似然估计为1000条.
统计学参数估计PPT课件
在应用参数估计时,需要注意样本的代表性、数据的准确性和可靠性等问题, 以保证估计的准确性和可靠性。
对未来研究的建议
01
进一步探讨参数估计的理论基础
可以进一步探讨参数估计的理论基础,如大数定律和中心极限定理等,
以更好地理解和掌握参数估计的方法和原理。
02
探索新的估计方法
随着统计学的发展,可以探索新的参数估计方法,以提高估计的准确性
指导决策
评估效果
基于参数估计结果,制定科学合理的 决策。
利用参数估计,评估政策、项目等实 施效果。
预测未来
通过参数估计,预测未来的趋势和变 化。
02
参数估计的基本概念
点估计
定义
点估计是用一个单一的数值来估 计未知参数的值。
举例
在调查某班级学生的平均身高时, 我们可能使用所有学生身高的总 和除以人数来估计平均身高,这 里的总和除以人数就是点估计。
最小二乘法的缺点是假设误差项独立 同分布,且对异常值敏感,可能影响 估计的稳定性。
最小二乘法的优点是简单易行,适用 于线性回归模型,且具有优良的统计 性质。
贝叶斯估计法
贝叶斯估计法是一种基于贝叶 斯定理的参数估计方法,通过 将先验信息与样本数据相结合 来估计参数。
贝叶斯估计法的优点是能够综 合考虑先验信息和样本数据, 给出更加准确的参数估计。
高维数据的参数估计问题
1 2 3
高维数据对参数估计的影响
随着数据维度的增加,参数估计的复杂度和难度 也会相应增加,容易出现维度诅咒等问题。
高维数据参数估计的方法
针对高维数据,可以采用降维、特征选择、贝叶 斯推断等方法进行参数估计,以降低维度对估计 的影响。
第二章 参数估计2-3 区间估计
I=0.814
上页 下页 返回
钢厂铁水含碳量X 例3. 钢厂铁水含碳量 ~ N(µ,0.1082), 现在随机测定 该厂9炉铁水得 炉铁水得X=4.484,求在置信度为 求在置信度为0.95 的条件 该厂 炉铁水得 求在置信度为 下铁水平均含碳量的置信区间。 下铁水平均含碳量的置信区间。 解
置信区间为
上页
下页
返回
联合方差
上页
下页
返回
1、 µ1 - µ2的1-α置信区间 、 α (1)、 σ12 、σ22已知 、
由于 X −Y ~ N(µ1 − µ2 ,
选取
2 2 σ1 σ2
n1
+
n2
)
因此置信度为1-α 因此置信度为 α的µ1 - µ2置信区间可为
上页
下页
返回
(2)、σ12 、σ22未知,且n1,n2较大 如大于 、 未知, 较大(如大于 如大于50)
=27.5, ,
=6.26, ,
上页
下页
返回
测量一批铅锭的比重,设铅锭的比重X 例6. 测量一批铅锭的比重,设铅锭的比重 ~ N(µ, 现进行16次检测得铅锭的比重有 σ2),现进行 次检测得铅锭的比重有 现进行 次检测得铅锭的比重有X=2.705, , S2=0.0292,试求总体 的均值µ和方差 σ2置信度为 求总体X的均值 0.95 的置信区间。 的置信区间。 解 (1)求µ的置信区间 σ2未知 n=16,α=0.05. 求 的置信区间, 未知, α 选取 查表得 置信区间为
(二)、总体X数学期望 (二)、总体X数学期望µ未知 数学期望µ 样本X 的无偏估计. 样本 1,X2, • • • , Xn, 且S2是σ2的无偏估计
选取样本函数
应用数理统计第二章参数估计(3)区间估计
例1 有一大批月饼,现从中随机地取16袋,称得重量(以克 计)如下:506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 ,设袋装月饼的重量近似地服从正态 分布,试求总体均值的置信度为0.95的置信区间。 解: 2未知, 1-=0.95, /2=0.025,n-1=15, t0.975 (15) 2.1315 由已知的数据算得 x 503.75, S* 6.2022
n1 (n2 1) S12 12 n1 (n2 1) S12 P F (n 1, n1 1) 2 F (n 1, n1 1) 1 2 /2 2 2 1 / 2 2 2 n2 (n1 1) S2 n2 (n1 1) S2
10
得所求的标准差的置信区间为 (4.58, 9.60)
2.4.3 两个正态总体参数的区间估计
在实际中常遇到下面的问题:已知产品的某一质量指标 服从正态分布,但由于原料、设备条件、操作人员不同,或 工艺过程的改变等因素,引起总体均值、总体方差有所改变, 我们需要知道这些变化有多大,这就需要考虑两个正态总体 均值差或方差比的估计问题。
ˆ a ˆ b} {g(a) T ( X , X ,..., X ; ) g(b)} { 1 2 n
其中g ( x )为可逆的已知函数, T ( X 1 , X 2 ,..., X n ; 况
设总体X~N(,2),X1, X2, …,Xn是总体X的样本,求,2 /2 /2 的置信水平为(1)的置信区间.
求得 的置信水平为(1)的置信区间: ( 2未知)
S S* t1 2 (n 1) or X t1 2 (n 1) X n1 n
正态总体参数的区间估计
总体均值μ的区间估计是一种基于抽样 调查的方法,通过样本均值和标准差 来估计总体均值的范围,常用t分布或z 分布计算置信区间。
详细描述
在进行总体均值μ的区间估计时,首先 需要收集样本数据,计算样本均值和 标准差。然后,根据样本数据的大小 和置信水平,选择适当的分布(如t分 布或z分布)来计算置信区间。最后, 根据置信区间的大小和分布特性,可 以得出总体均值μ的可能取值范围。
正态分布的性质
集中性
正态分布的曲线关于均值μ对称。
均匀变动性
随着x的增大,f(x)逐渐减小,但速 度逐渐减慢。
随机变动性
在μ两侧对称的位置上,离μ越远, f(x)越小。
正态分布在生活中的应用
金融
正态分布在金融领域的应用十分 广泛,如股票价格、收益率等金 融变量的分布通常被假定为正态 分布。
生物医学
THANKS
感谢观看
实例二:总体方差的区间估计
总结词
在正态分布下,总体方差的区间估计可以通过样本方 差和样本大小来计算。
详细描述
当总体服从正态分布时,根据中心极限定理,样本方差 近似服从卡方分布。因此,总体方差σ²的置信区间可以 通过以下公式计算:$[s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2}), s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2})]$,其中$s^2$是样本 方差,$n$是样本容量,$F^{-1}$是自由度为1的卡方 分布的逆函数,$alpha$是显著性水平。
详细描述
当总体服从正态分布时,根据中心极限定理,样本均值 近似服从正态分布。因此,总体均值μ的置信区间可以通 过以下公式计算:$[bar{x} - frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2}), bar{x} + frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2})]$,其中$bar{x}$是样 本均值,$s$是样本标准差,$n$是样本容量,$Phi^{1}$是标准正态分布的逆函数,$alpha$是显著性水平。
《点估计与区间估计》课件
目录 CONTENTS
• 点估计概述 • 点估计方法 • 区间估计概述 • 区间估计方法 • 点估计与区间估计的比较
01
点估计概述
点估计的定义
点估计
用样本统计量来估计未知的参数,如均值、方差等。
样本统计量
样本均值、样本中位数等。
参数
总体均值、总体方差等。
点估计的分类
有效性
在所有无偏估计中,有效估计应具有最小 的方差。
充分性
如果一个统计量是参数的函数,并且与该 参数的所有其他函数不相关,则称该统计 量为参数的充分统计量。
一致性
当样本容量趋于无穷大时,点估计量的分 布应趋于正态分布。
02
点估计方法
矩估计法
基于样本矩来估计未知参数的方法
矩估计法是一种常用的点估计方法,它通过使用样本矩来估计总体矩,进而求解未知参数。这种方法基于大数定律和中心极 限定理,具有简单、直观和易于计算的特点。
03
区间估计概述
区间估计的定义
区间估计的定义
区间估计是一种统计推断方法,它利用样本 统计量来估计未知参数的可能取值范围。具 体来说,它是以一定的可信度(或置信水平 )来估计未知参数的取值范围。
区间估计的原理
区间估计基于大数定律和中心极限定理,通 过样本统计量来推断总体参数的可能取值范 围。它利用样本数据的分布特性,结合样本 数量ຫໍສະໝຸດ 置信水平,来计算未知参数的置信区 间。
置信区间法
适用场景
适用于样本量较大、分布较稳定的情况。
注意事项
需要合理选择置信水平和样本量,以确保估计的准确性和可靠性。
预测区间法
总结词
基于回归分析,通过建立自变量与因变量的关系来预 测因变量的取值范围。
参数的区间估计三
缺点
依赖于样本数据
区间估计的结果依赖于样本数据, 因此可能会受到样本波动的影响。
可能存在误导
如果样本量较小或者数据分布不 符合假设条件,那么置信区间可 能会产生误导,使得人们对参数 真值的范围产生错误的判断。
计算相对复杂
相比于点估计,区间估计的计算 相对复杂,需要更多的计算资源 和时间。
与其他方法的比较
选择
在实际应用中,通常会根据问题的具体要求和研究者的经 验来选择合适的置信水平,常用的置信水平有90%、95% 和99%等。
区间宽度
01
定义
区间宽度是指置信区间的上限与下限之差。
02
重要性
区间宽度反映了区间估计的精确程度,宽度越窄,说明估计的精度越高。
03
影响因素
样本量、总体分布、置信水平等因素都会影响区间宽度。在样本量一定
04
区间估计的优缺点
优点
提供了参数估计的范围
区间估计给出了参数的一个置信区间,这个区间包含了参数真值 的一个范围,从而提供了比点估计更多的信息。
置信水平可调整
通过调整置信水平,可以得到不同宽度的置信区间,以适应不同的 需求。
反映了估计的不确定性
置信区间反映了估计的不确定性,即参数真值落在某个范围内的概 率。
的情况下,置信水平越高,区间宽度越宽;总体分布越离散,区间宽度
也越宽。
无偏性
定义
无偏性是指对于总体参数的估计量,其期望值等于总体参数的真值。
重要性
无偏性是评价估计量优良性的一个重要标准,它保证了在多次重复抽样下,估计量的平均 值能够接近总体参数的真值。
检验方法
通常通过计算估计量的偏差(即估计量的期望值与总体参数真值之差)来判断其是否具有 无偏性。如果偏差为零,则该估计量是无偏的。
第六章---参数估计ppt课件
1、条件分析:总体分布为正态,且总体方差已 知,用正态法进行估计。 2、计算标准误 3、确定置信水平为0.95,查表得
51
4、计算置信区间 D=0.95时 D=0.99时
52
解释:总体均数μ落在75.61-84.39之间的可 能性为95%,超出这一范围的可能只有5%。而 作出总体μ落在74.22-85.78之间结论时的正 确概率为99%,犯错误的可能性为1%。
38
( 二)、 分布法, 未知 1、前提条件: 总体正态分布, n不论大小,
2、使用 t分布统计量
D=0.95时 D=0.99时
39
例:总体正态, 未知,
,
,
,
,
平均数0.95的置信区间是多少?
,
,试问总体
40
解: 1、条件分析:总体正态, 未知,
小
于30,只能用 分布
2、计算标准误
3、计算自由度
9
一、点估计
(一)意义 含义:直接用样本统计量的值作为总体参数的估 计值 无偏估计量:恰好等于相应总体参数的统计量。
例8-1;假设某市六岁男童平均身高110.7cm,随机 抽取113人测得平均身高110.70cm.总体的平均数, 标准差是多少
10
(二)良好点估计的条件
无偏性: 一致性: 有效性: 无偏估计量的变异性问题。
47
1 、条件分析:总体分布为非正态, 未知, >30,只能用近似正态估计法。
2、计算标准误
3、确定置信水平为0.95,查表得
48
4、计算置信区间
5、结果解释:该校的平均成绩有95%的可能落 在50.2~54.0之间。
49
课堂练习
已知某总体为正态分布,其总体标准差为10。 现从这个总体中随机抽取n1=20的样本,其平 均数分别80。试问总体参数μ在0.95和0.99的 置信区间是多少。
参数区间估计
使 P{|Xn|u2}1
从中解得
P { X n u 2 X n u 2 } 1
P{Xnu2Xnu2} 1
于是所求的 置信区间为
[X nu2, X nu2]
也可简记为
X
n u 2
从例1解题的过程,我们归纳出求置 信区间的一般步骤如下:
1. 明确问题, 是求什么参数的置信区间?
类似地,我们可得到若干个不同的置信
区间.
任意两个数a和b,只要它们的纵标包含
f(u)下95%的面积,就确定一个95%的置信
区间.
a a
a
f (u)
0.95
bu
0.95
b
u
0.95
0
b
u
我们总是希望置信区间尽可能短.
在概率密度为单峰且对称的情形,当a =-b时 求得的置信区间的长度为最短.
a a
a
很小的正数.
置信水平的大小是根据实际需要选定的.
例如,通常可取置信水平1 =0.95或0.9等.
根据一个实际样本,由给定的置信水平,我
们求出一个尽可能小的区间 [ˆ1,ˆ2],使
P {ˆ1ˆ2}1
称区间 [ˆ1,ˆ2]为 的 置信水平为1 的
置信区间.
在求置信区间时,要查表求分位数.
教材已经给出了概率分布的上侧分位数(分 位点)的定义,为便于应用,这里我们再简 要介绍一下.
这里,我们主要讨论总体分布为正态 的情形. 若样本容量很大,即使总体分布 未知,应用中心极限定理,可得总体的近 似分布,于是也可以近似求得参数的区间 估计.
教材上讨论了以下几种情形:
单个正态总体均值和方差 2的区间估计.
两个正态总体均值差 1 2和方差比
第4节正态总体参数的区间估计
3
, 给定 ,0 1 , 定义 设是总体的一个未知参数
确定两个统计量
ˆ , ˆ 分别称为置信下限和置信上限. 区间. 1 2
ˆ , ˆ ]为 的 置信水平为 1 的 置信 则称区间 [ 1 2
1.75 1.96 1.96 0.49, n 50
所以 的置信区间为
(4.10 0.49, 4.10 0.49 ) (3.61, 4.59 ) .
10
例3 在上例中 , 为使 的置信水平是 0.95 的置信区间
的长度 L 1.5, 求样本容量 .
, u0.025 1.96, 1.75, 解 0.05
u / 2
x
X | | u / 2 X u / 2 X u / 2 / n n n
于是所求 的置信区间为 ( X u 有时简记为 ( X u / 2
2
n
, X u 2 ), n n
7
).
2 某厂生产滚珠,直径 X 服从正态分布 N ( , ). 例1 为了估计 , 抽检 6 个滚珠, 测得直径为 ( mm) : 14.70, 15.21,14.90,14.91,15.32,15.32,
对给定的置信水平 1 ,
按标准正态分布的 水平双侧分位数的定义,
查正态分布表得 u 2 ,
6
1.
已知时 的置信区间
2
/2
( x)
X U ~ N (0,1) , / n
1
O
/2
X P{ | | u 2 } 1 , n
参数估计PPT课件
目录
• 参数估计简介 • 最小二乘法 • 最大似然估计法 • 贝叶斯估计法 • 参数估计的评估与选择
01 参数估计简介
参数估计的基本概念
参数估计是一种统计学方法,用于估计未知参数的值。通过使用样本数据和适当的统计模型,我们可 以估计出未知参数的合理范围或具体值。
参数估计的基本概念包括总体参数、样本参数、点估计和区间估计等。总体参数描述了总体特征,而 样本参数则描述了样本特征。点估计是使用单一数值来表示未知参数的估计值,而区间估计则是给出 未知参数的可能范围。
到样本数据的可能性。
最大似然估计法的原理是寻找 使似然函数最大的参数值,该 值即为所求的参数估计值。
最大似然估计法的计算过程
确定似然函数的表达式
根据数据分布和模型假设,写出似然函数的表达式。
对似然函数求导
对似然函数关于参数求导,得到导数表达式。
解导数方程
求解导数方程,找到使似然函数最大的参数值。
确定参数估计值
04
似然函数描述了样本数据与参数之间的关系,即给定参数值下观察到 样本数据的概率。
贝叶斯估计法的计算过程
首先,根据先验信息确定参数的先验分布。 然后,利用样本信息和似然函数计算参数的后验分布。 最后,根据后验分布进行参数估计,常见的估计方法包括最大后验估计(MAP)和贝叶斯线性回归等。
贝叶斯估计法的优缺点
参数估计的常见方法
最小二乘法
最小二乘法是一种常用的线性回归分析方法,通过最小化误差的平方和来估计未知参数。这种方法适用于线性回归模 型,并能够给出参数的点估计和区间估计。
极大似然法
极大似然法是一种基于概率模型的参数估计方法,通过最大化样本数据的似然函数来估计未知参数。这种方法适用于 各种概率模型,并能够给出参数的点估计和区间估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对给定的置信水平1 ,
查正态分布表得 u 2 ,
使
P{|
X
n
|
u
2}
1
为什么 这样取?
对给定的置信水平1 ,
查正态分布表得 u /2 ,
使
P{|
X
n
|
u
2}
1
从中解得
P{X
n
u
2
X
n
u
2}
1
P{X
n u
2
X
n
u
2}
1
于是所求 的 置信区间为
[ X n u 2 , X n u 2 ]
也可简记为
2 1
2
1)S 2 } (n 1)
1
(n 1)S 2 (n 1)S 2
于是
[ 2 2 (n 1) ,
2 1
2 (n
] 1)
即为所求.
2、两个正态总体参数的区间估计
给定置信度为1 ,并设X1 , X 2 ,, X n1为 第一个总体 N (1 , 12 )的样本,Y1 ,Y2 , ,Yn2 为第二 个总体 N (2 , 22 )的样本, X ,Y分别是第一、二个 总体的样本均值 , S1 2 , S2 2分别是第一、二个总体 的修正样本方差 .两总体相互独立
ˆ1 ˆ1( X1, X2,, Xn),ˆ2 ˆ2( X1, X2,, Xn)
(ˆ1 ˆ2 ) 满足 P{ˆ1 ˆ2} 1
则称区间 [ˆ1,ˆ2 ]是 的置信水平(置信度、 置信概率)为1 的置信区间.
ˆ1和ˆ2 分别称为置信下限和置信上限.
可见,
对参数 作区间估计,就是要设法找出
两个只依赖于样本的界限(构造统计量)
ˆ1 ˆ1(X1,…Xn) ˆ2 ˆ2(X1,…Xn)
(ˆ1 ˆ2 )
一旦有了样本,就把 估计在区间[ˆ1,ˆ2 ]
内. 这里有两个要求:
1. 要求 以很大的可能被包含在区间[ˆ1,ˆ2 ]
内,就是说,概率P{ˆ1 ˆ2}要尽可能大.
即要求估计尽量可靠.
引言
前面,我们讨论了参数点估计. 它 是用样本算得的一个值去估计未知参数. 但是,点估计值仅仅是未知参数的一个 近似值,它没有反映出这个近似值的误 差范围. 区间估计正好弥补了点估计的 这个缺陷 .
一、 置信区间定义:
设 是 一个待估参数,给定 0,
若由样本X1,X2,…Xn确定的两个统计量
Sn
对给定的置信度1 ,确定分位数 t 2 (n 1),
使 P{| t | t 2 (n 1)} 1
即
P{|
X S
n
| t
2 (n 1)} 1
从中解得
P{X
S n
t
2 (n
1)
X
S n
t
2
(n
1)}
1
[X
S n
t
2 (n
1),
X
S n
t
2
(n
1)]
即为
均值 的置信水平为1 的区间估计.
再求方差 2的置信水平为1 的区间估计.
2. 估计的精度要尽可能的高. 如要求区间
长度 ˆ2 ˆ1 尽可能短,或能体现该要求的其
它准则. 可靠度与精度是一对矛盾, 一般是在保证可靠度的条件下 尽可能提高精度.
二、置信区间的求法
例1 设X1,…Xn是取自N (, 2 )的样本, 2已知,
求参数 的置信度为 1 的置信区间.
解: 选 的点估计为 X
寻找未知参数的
取 U 明确X 问 题n 置,~是N信求(水0什,平1么)是参多数少的?一置个信良区好间估? 计.
寻找一个待估参数和 估计量的函数 ,要求 其分布为已知.
有了分布,就可以求出 U取值于任意区间的概率.
对于给定的置信水平(大概率), 根据U的分布, 确定一个区间, 使得U取值于该区间的概率为 置信水平.
讨论两个总体均值差和方差比的估计问题.
I. 两个总体均值差1 2 的置信区间
Hale Waihona Puke (1)2 1和
2
2
均为已知,
1 2的一个置信度为1 的置信区间
X
Y
u / 2
2 1
n1
2 2
n2
.
推导过程如下:
因为 X , Y 分别是 1, 2 的无偏估计,
所以 X Y 是 1 2 的无偏估计,
由 X , Y 的独立性及
1 2的一个置信度为1 的近似置信区间
X
Y
u / 2
S1 2 n1
例2 已知某地区新生婴儿的体重X~N (, 2 ), , 2未知,
…
随机抽查100个婴儿 得100个体重数据 X1,X2,…,X100
求 和 2的区间估计(置信水平为1- ).
解:这是单总体均值和方差的估计
已知X ~ N (, 2), , 2未知
先求均值 的区间估计.
因方差未知,取 t X ~ t(n 1)
取枢轴量
(n 1)S2
2
~
2(n 1)
对给定的置信度 1, 确定分位数
2 1
2 (n
1)
,
2
2 (n
1)
,
使
P{12
2 (n 1)
(n 1)S 2
2
2
2 (n 1)} 1
从中解得
P{
(n
2
1)S 2(n
2
1)
2
(n
2 1
2
1)S 2 } (n 1)
1
P{
(n
2
1)S 2(n
2
1)
2
(n
参数 (这样我们才能确定一个大概率区间).
而这与总体分布有关,所以,总体分布的 形式是否已知,是怎样的类型,至关重要.
置信区间是一个随机区间,样本的每 一个观测值都确定一个对应的区间.
这里,我们主要讨论总体分布为正态 的情形. 若样本容量很大,即使总体分布 未知,应用中心极限定理,可得总体的近 似分布,于是也可以近似求得参数的区间 估计.
X
~
N 1,
2 1
n1
,
Y
~
N
2
,
2 2
n2
,
可知
X
Y
~
N
1
2
,
2 1
n1
22
n2
,
或 X Y 1 2 ~ N 0, 1,
2 1
2 2
n1 n2
于是得 1 2的一个置信度为1 的置信区间
X
Y
u
/2
2 1
n1
2 2
n2
.
(2) 12和 22均为未知,
只要n1和n2都很大(实用上 50即可), 则有
的分布,确定常数a, b,使得
P(a ≤S(T, )≤b)= 1 5. 对“a≤S(T, )≤b”作等价变形,得到如下 形式: P{ˆ1 ˆ2} 1
则[ˆ1,ˆ2 ]就是 的100(1 )%的置信区间.
可见,确定区间估计很关键的是要寻找
一个待估参数 和估计量T 的函数S(T, ), 且S(T,)的分布为已知, 不依赖于任何未知
X
n u 2
从例1解题的过程,我们归纳出求置 信区间的一般步骤如下:
1. 明确问题, 是求什么参数的置信区间?
置信水平 1 是多少?
2. 寻找参数 的一个良好的点估计
T (X1,X2,…Xn)
3. 寻找一个待估参数 和估计量T的函数
S(T, ),且其分布为已知.
称S(T, )为枢轴量.
4. 对于给定的置信水平1 ,根据S(T, )