材料力学(压杆稳定2)

合集下载

材料力学10压杆稳定_2经验公式

材料力学10压杆稳定_2经验公式
其中,直线公式适用的柔度的界限值 s = (a-s) / b,为材料常数
这类杆称为中长杆(或中柔度杆),亦即直线公式适用于中长杆 (或中柔度杆)
说明: 当 ≤ s,称为粗短杆,则应按强度问题处理。
三、临界应力总图
压杆的临界应力 cr 可视作压杆柔度 的分段函数,即
π2E 2
cr
查表得 a = 461 MPa、b = 2.567 MPa
临界应力 临界力
cr a b 461 2.567 64.7 294.9 MPa Fcr cr A 162.7 kN
3)由于连杆在 x-y、x-z 两个平面内的柔度 z = 64.7、y = 57.4 比

π 2 EI min
0.7l 2
870 kN
2)两端固定但可沿轴向相对移动
长度因数 = 0.5, 立柱柔度
3600
zz
s


l
imin

0.5 3600 24
75 p
此时,立柱为中柔度杆,应用直线公式计算其临界力
由表 10-2 查得 a = 304 MPa,b = 1.12 MPa
临界应力 临界力
cr a b 304 1.12 75 220 MPa Fcr cr A 220 48.541 1068 kN
[例2] 图示连杆,已知材料为优质碳钢,弹性模量 E = 210×109 GPa, 屈服极限 s = 306 MPa。试确定该连杆的临界力Fcr ,并说明横截面的 设计是否合理。
解: 由于连杆在两 个方向上的约束情 况不同,故应分别 计算连杆在两个纵 向对称平面内的柔 度,柔度大的那个 平面即为失稳平面
1)计算柔度 在 x-y 平面(弯曲中性轴为 z 轴): 两端铰支

材料力学第9章 压杆稳定

材料力学第9章 压杆稳定

第9章 压杆稳定 图9-6
第9章 压杆稳定
9.2.3 两端非铰支细长压杆的临界载荷 1.一端固定一端自由的细长压杆的临界载荷 图9-7所示为一端固定、一端自由的长为l的细长压杆。
当轴向压力F=Fcr时,该杆的挠曲轴与长为2l的两端铰支细 长压杆的挠曲轴的一半完全相同。因此,如果二杆各截面的 弯曲刚度相同,则临界载荷也相同。所以,一端固定一端自 由、长为l的细长压杆的临界载荷为
第9章 压杆稳定
9.2.2 大挠度理论与实际压杆 式(9-1)与式(9-2)是对于理想压杆根据小挠度挠
曲轴近似微分方程得到的。如果采用大挠度挠曲轴的微分方
程 ddx1xM ExI进行理论分析,则轴向压力F与压杆最
大挠度wmax之间存在着如图9-6中的曲线AB所示的确定关 系,其中A点为曲线的极值点,相应之载荷Fcr即为上述欧拉 临界载荷。
Fcr
2 EI
2l 2
(9-3)
第9章 压杆稳定
图9-7
第9章 压杆稳定
2.两端固定的细长压杆的临界载荷 图9-8所示为两端固定的长为l的细长压杆,当轴向压 力F=Fcr时,该杆的挠曲轴如图9-8(a)所示,在离两固定端 各l/4处的截面A、B存在拐点,A、B截面的弯矩均为零。因 此,长为l/2的AB段的两端仅承受轴向压力Fcr(见图9-8 (b)),受力情况与长为l/2的两端铰支压杆相同。所以,两 端固定的压杆的临界载荷为
Fcr
2EI
0.5l 2
(9-4)
第9章 压杆稳定
图9-8
第9章 压杆稳定
3.一端固定一端铰支的细长压杆的临界载荷 图9-9所示为一端固定一端铰支的长为l的细长压杆, 在微弯临界状态,其拐点与铰支端之间的正弦半波曲线长为

材料力学第九章 压杆稳定

材料力学第九章 压杆稳定

02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望

材料力学压杆稳定概念欧拉公式计算临界力

材料力学压杆稳定概念欧拉公式计算临界力

材料力学压杆稳定概念欧拉公式计算临界力材料力学是研究物体受力及变形行为的一门学科。

压杆稳定是材料力学中重要的概念之一、当一个杆件受到作用力时,如果杆件不发生任何形状上的变化,我们称之为杆件处于稳定状态。

然而,当作用力超过一定临界值时,杆件就会发生失稳,产生形状上的变化。

因此,欧拉公式就是用来计算杆件临界力的一种方式。

欧拉公式由瑞士数学家欧拉于18世纪中叶首次提出。

它的基本假设是杆件是理想化的,即杆件是均匀、无缺陷、具有均匀截面的杆件。

根据欧拉公式,杆件临界力可通过以下公式计算:Pcr = (π^2 * E * I) / L^2其中,Pcr表示临界力,E表示杨氏模量,I表示截面惯性矩,L表示杆件的有效长度。

从上述公式中可以看出,临界力与材料的弹性模量有关,即材料越硬,临界力越大;同时临界力与截面的形状也有关,即截面惯性矩越大,临界力越大;临界力还与杆件长度有关,即杆件越短,临界力越大。

例子:假设有一根长为L的无缺陷的圆柱形杆件,其截面半径为r,杨氏模量为E。

根据材料力学的知识,该圆柱形杆件的截面惯性矩可计算为I=(π*r^4)/4Pcr = (π^2 * E * ((π * r^4) / 4) ) / L^2通过上述公式,可以计算出该无缺陷的圆柱形杆件的临界力。

这个临界力表示了该杆件能够承受的最大作用力。

如果作用力超过了临界力,该杆件将发生失稳,产生形状上的变化。

总结起来,材料力学中的压杆稳定概念是指杆件在受力作用下不发生形状上的变化。

欧拉公式是用来计算杆件临界力的一种常用公式,可以帮助工程师们确定杆件的最大承载能力。

材料力学 第十章 压杆稳定问题

材料力学 第十章 压杆稳定问题

由杆,B处内力偶
MB Fcraq1 , q1
由梁,B处转角
MB Fcr a
q2

MBl 3EI
q1 B
MB MBl Fcra 3EI
3EI Fcr al
q2 C
l
Page21
第十章 压杆稳定问题
作业
10-2b,4,5,8
Page22
第十章 压杆稳定问题
§10-3 两端非铰支细长压杆的临界载荷
稳定平衡
b. F k l
临界(随遇)平衡
c. F k l
不稳定平衡
Fcr kl 临界载荷
F
k l
F 驱动力矩 k l 恢复力矩
Page 5
第十章 压杆稳定问题
(3)受压弹性杆受微干扰
F Fcr 稳定平衡 压杆在微弯位置不能平衡,要恢复直线
F >Fcr 不稳定平衡 压杆微弯位置不能平衡,要继续弯曲,导致失稳
(

w)
令 k2 F
EI
d 2w dx2

k
2w

k
2
l
l
FM w
x
F B
F

B F
Page24
第十章 压杆稳定问题
d 2w dx2

k2w

k 2
F
w

通解:
A
x
B
w Asinkx Bcoskx
l
考虑位移边界条件:
x 0, w 0,
B
x 0, q dw 0
Page31
第十章 压杆稳定问题
二、类比法确定临界载荷
l

材料力学压杆稳定第2节 细长压杆的临界载荷

材料力学压杆稳定第2节 细长压杆的临界载荷
解:查表 7-1 得 0.5
y
h
z
(1)截面对 y、z 轴的惯性矩分别为
b
Iy

hb3 12

100 643 12
m4
2.18106 m4
(1)截面对 y、z 轴的惯性矩分别为:
Iy

hb3 12

2.18106 m4
Iy

bh3 12
5.33106 m4
由于 I y Iz ,故应该将 I y 代入公式,得到
7
N
107 kN
例7-4 有一矩形截面压杆如图所示,两端固定, 但一端可沿轴向相对移动,材料为钢,已知弹性模量
E 200GPa,杆长 l 8m。 (1)当截面尺寸为b 64mm、h
100mm时,试计算压杆的临界载荷;
(2)若截面尺寸为h b 80mm,
此时压杆的临界载荷为多少?
压杆的横截面为圆形,其直径 d 60mm。
Fcr
求该压杆的临界载荷 。
解:查表 7-1 得 0.7
压杆截面 的惯性矩
Iy

d 4
64


0.064 64
m4
6.36107 m4
Fcr

2EI (l)2

3.14
2

210 109 6.36 (0.7 5)2
10
y
A (D2 d 2 ) bh 2b2
(20 2 16 2 ) mm 2 2b2
h
z
b 7.5 mm, h 15 mm
压杆横截面的惯性矩为
b
Iy

hb3 12

上海理工材料力学习题解答(压杆稳定)

上海理工材料力学习题解答(压杆稳定)

. 某型柴油机的挺杆长为l =257 mm ,圆形横截面的直径d =8 mm 。

所用钢材的E =210 GPa ,σp =240 MPa 。

挺杆所受的最大压力P = kN 。

规定n st =2~5。

试校核挺杆的稳定性。

解:(1) 求挺杆的柔度挺杆的横截面为圆形,两端可简化为铰支座,μ=1,i =d /4 计算柔度91614410.257128.50.0082101092.924010P ll id Eμμλλππσλλ⨯⨯====⨯===⨯∴挺杆是细长压杆,使用欧拉公式计算临界压力 (2) 校核挺杆的稳定性()()4410422910220.008 2.0110 646421010 2.0110 6.3110.257cr d I m EI P KNl ππππμ--⨯===⨯⨯⨯⨯⨯===⨯工作安全系数max 6.313.591.76cr P n P === 所以挺杆满足稳定性要求。

. 图示蒸汽机活塞杆AB 所受压力为P =120 kN ,l =1.8 m ,截面为圆形d =75 mm 。

材料为Q275钢,E =210 GPa ,s =240 MP 。

规定n st =8。

试校核活塞杆的稳定性。

解:(1) 求柔度极限值9162101092.924010PEλπσ⨯===⨯ 压杆的柔度11 1.8960.075/4liμλλ⨯====压杆是大柔度杆 (2) 压杆的临界压力()()44642296220.075 1.55310 646421010 1.55310993 1 1.8cr d I m EI P kNl ππππμ--⨯===⨯⨯⨯⨯⨯===⨯BAPPlp(3) 压杆的稳定性9938.275120cr st P n n P ===压杆稳定。

10.6. 三根圆截面压杆,直径均为d =160 mm 材料为Q235钢,E =200 GPa ,p =200 MPa ,s =240 MPa 。

三杆均为两端铰支,长度分别为l 1、l 2和l 3,且l 1=2l 2=4l 3=5m 。

材料力学-第十一章-压杆稳定

材料力学-第十一章-压杆稳定


π2
×
206 52
×109
×
π
×
160 ×10-3 64
4
= 2.6 ×106 N = 2.60 ×103 kN
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
2.已知: d =160 mm, Q235钢, E =206 GPa ,确定两根杆的临 界载荷
对于两端固定的压杆,就有
F
d2w + k2w = 0 k2 = F
dx 2
EI
M
F
F
w
微分方程的解: w =Asinkx + Bcoskx
边界条件:=x 0= , w 0 :
B=0
=x l= , w 0 :
Asin kl = 0
系数A,B不能全为0:sin kl = 0
= kl nπ , =n 1, 2,⋅ ⋅ ⋅
k=2
F n2π 2
EI l2
屈曲位移函数: w = Asin nπ x l
弯曲幅值A取决于弯曲程度,与压力F有关。
分叉点 F
Fcr
材料力学-第11章 压杆稳定
§11-2 两端铰支细长压杆的临界载荷
压杆稳定平衡路径
F
平衡路径
F<Fcr 时,直线平衡态为稳定且唯一的
平衡路径
F>Fcr 时,直线平衡态不稳定,一旦有 扰动,杆将转为弯曲平衡态
=
, =n 1, 2,⋅ ⋅ ⋅
EI l2
临界载荷: F=cr
n2π 2EI , =n
l2
1, 2,⋅ ⋅ ⋅
最小临界载荷:
Fcr
=
π 2EI
l2

材料力学09第十一章 压杆稳定问题

材料力学09第十一章 压杆稳定问题
n 2 2 EI Fcr 2 l
Fcr Fcr min
EI
2
l2
理想中心压杆的欧拉临界力
M(x)= Fcr(-w) =-Fcrw
EIw ' ' M ( x) Fcr w
x Fcr
A
Fcr 2 k 令 EI
w' ' k 2 w 0
与前面获得的结果相同。
w
w l 2 x
2)计算许可载荷[P]
1.5 y 0 : [ P ] P 2 0 [ P] 2.82( KN)
BC cr
§11-4 欧拉公式的应用范围 · 临界应力总图
1. 欧拉公式的应用范围
欧拉临界应力
I 2 EI 2 i Fcr 2 ( l ) A 2 2 2 E E EI Fcr cr 2 ( l ) A ( l ) 2 A ( l ) 2 A
约束越弱,μ系数越大, 临界力Fcr越低,稳定性越差。
其他支座条件下细长压杆的临界压力
由于边界条件不同,则:
2 EI Fcr ( l ) 2
I:最小惯性矩
称为长度系数。
一端固定一端自由:
2
1
两端铰支:
一端铰支一端固定:
临界应力
cr
Fcr A
0.7 0.5
压杆失稳的现象:
1. 轴向压力较小时,杆件能保持稳定的直线平衡状态; 2. 轴向压力增大到某一特殊值时,直线不再是杆件唯 一的平衡状态;
稳定:
理想中心压杆能够保持稳定的(唯一的)
直线平衡状态;
失稳(屈曲):理想中心压杆丧失稳定的(唯一的)直 线平衡状态; 临界力 压杆失稳时,两端轴向压力的特殊值

材料力学课件(压杆稳定性)

材料力学课件(压杆稳定性)

2 EI
2 a2
改变力F指向,BD成为压杆,临界压力
F2
2 EI
2a 2
Fcr
比较:Fcr Fcr
1 2 EI
2FAB FBD 2 a 2
例9-4.一端固定一端自由压杆,长为 l,弯曲刚度
为EI,设挠曲线方程
w
2l 3
(3lx 2
x3)
,为自由
端挠度。试用能量法去定临界压力的近似值。
思考: P 3169-4,习题9-11,13,14,18
练习: P 319习题9-10,12,15,17
(3)合理稳定性设计
[ ]st

L
i
成反比
合理截面:约束性质接近时,iminimax ——组合截面 提高 i ——使截面积远离形心
增强约束:缩短相当长度
思考:含有压杆的超静定问题
温度变化引起的稳定性问题
、[]st与 成反比
值:木杆——式(9 11,12)
钢杆——表 92,3
(2)稳定性条件
F A
[ ]st
[ ]
稳定性r 或 与 或 i 为非线性关系,选择截面
尺寸时需用迭代法
例9-5. Q235钢连杆,工字型截面A=552mm2,Iz= 7.40×104mm4,Iy=1. 41×104mm4,有效长度l= 580mm,两端柱形铰约束,xy平面失稳μz=1,xz 平面失稳μy=0.6,属 a 类压杆,轴向压力F=35kN, [σ]=206MPa。试求稳定许用应力,并校核稳定性。
思考:比较一根杆的柔度与柔度的界限值
影响大柔度、中柔度和小柔度杆临 界应力因素的异同
3. 压杆的稳定性条件与合理设计
(1)稳定许用应力
实际压杆与理想压杆的差异:初曲率、压力偏心、 材料缺陷等

材料力学第十章 压杆稳定性问题2

材料力学第十章 压杆稳定性问题2
在求Pcr 及 cr的基础上,进行稳定性校核。 的基础上 进行稳定性校核
Pcr P Pcr nst
nst 为稳定安全系数, 为稳定安全系数 一般大于强度安全系数 般大于强度安全系数。 由于初曲率、载荷偏差、材料不均匀、有钉子孔 等 都会降低 Pcr 。而且柔度越大,影响越大。 等,都会降低 而且柔度越大 影响越大
S
cr
max
若 P ,图中CD段选欧拉公式 若 S P ,图中 图中BC段选经验公式 若 S ,图中AB段按强度计算,即 cr
何斌
s
Page 13
Q235钢制成的矩形截面杆,两端约束以及所承受的载 荷如图示 荷如图示((a)为正视图(b)为俯视图),在AB两处为销钉 为 视图 为俯视图 在 两处为销钉 连接。若已知L=2300mm,b=40mm,h=60mm。材料的弹性模 量E=205GPa。试求此杆的临界载荷。 正视图平面弯曲截面z绕轴 正视图平面弯曲截面z 转动;俯视图平面弯曲截 面绕y 面绕 y轴转动。 轴转动 正视图:
2 对中长杆由于 cr与 P , s b 有关 2. 强度越高, cr也越高 3 对短粗杆:强度问题 3. 对短粗杆 强度问题
何斌
P

时才适用
2E P 2
2E P
E
P
P
欧拉公式适用于 P
Page 6
材料力学
第十章 压杆稳定问题
10.4 临界应力和长细比 细长杆 中长杆和短粗杆 细长杆、中长杆和短粗杆
1.细长杆: ① P 的压杆称为细长杆。 的压杆称为细长杆 ② 此类压杆只发生了弹性失稳 ③ 稳定计算:欧拉公式 稳定计算 欧拉公式
何斌

材料力学第八章压杆的稳定性

材料力学第八章压杆的稳定性
第八章
压杆的稳定性
§8-1 压杆稳定性的概念
工程中存在着很多受压杆件。 受轴向压缩的直杆,其破坏有两种形式: 1)短粗的直杆,其破坏是由于横截面上的正应力达到 材料的极限应力,为强度破坏。 2)细长的直杆,其破坏 是由于杆不能保持原有的直线 平衡形式,为失稳破坏。 对于相对细长的压杆,其 破坏并非由于强度不足,而是 由于荷载(压力)增大到一定 数值后,不能保持原有直线平 衡形式而失效。
z y x 轴销
解:先计算压杆的柔度。 在xz面内,压杆两端可视为铰支,μ=1。查型钢表,得 l 1 2 iy=4.14cm,故 y 48.3 i y 0.0414
在xy面内,压杆两端可视为固支, μ=0.5。查型钢表,得iz=1.52cm, 故 l 0.5 2 z 65.8 iz 0.0152
n2π2EI l2
(n = 0,1,2…)
(Euler公式)
x Fcr
π w =Asin l x (半波正弦曲线) l x= 2 时 w0= A
A是压杆中点的挠度w0。为任意的微小值。
l
w
F与中点挠度w0之间的关系 (1) 若采用近似微分方程,则F 与如折线OAB所示; (2) 若采用精确的挠曲线微 分方程,则可得F与w0之间的 关系如曲线OAB'所示; F B'
例 某钢柱长7m,由两根16b号槽钢组成,材料 为Q235钢,横截面如图所示,截面类型为b类。钢柱 的两端截面上有4个直径为30mm的螺栓孔。钢柱μ=1.3 , 受260kN的轴向压力,材料的[σ]=170MPa。 (1)求两槽钢的间距h。 (2)校核钢柱的稳定性和强度。
解:(1) 确定两槽钢的间距h 钢柱两端约束在各方向均相同, 因此,最合理的设计应使Iy=Iz , 从 而使钢柱在各方向有相同的稳定性。

材料力学压杆稳定

材料力学压杆稳定

材料力学压杆稳定材料力学是研究物质在外力作用下的形变和破坏规律的学科。

在材料力学中,压杆是一种常见的结构元素,它能够承受压缩力,用来支撑、传递和稳定结构的荷载。

压杆的稳定性是指在外力作用下,压杆不会发生失稳或破坏。

稳定性的分析对于设计和使用压杆结构具有重要意义,可以保证结构的安全可靠性。

本文将从材料的稳定性理论出发,探讨压杆稳定的原理和影响因素。

压杆的稳定性主要受到两种力的影响:压缩力和弯曲力。

压缩力使得杆件在长轴方向上缩短,而弯曲力使得杆件发生侧向的弯曲变形。

这两种力的作用会引起杆件在截面上的应力分布,当这些应力达到一定的极限时,杆件就会发生失稳或破坏。

为了保证压杆的稳定性,需要考虑以下几个因素:1.杆件的形状和尺寸:杆件的形状和尺寸是影响压杆稳定性的重要因素。

一般来说,杆件的截面形状应当是圆形或类圆形,这样能够均匀地分配应力,在承受压力时能够更好地抵抗失稳。

此外,杆件的直径或截面积也应当足够大,以提高材料的稳定性。

2.材料的性质:材料的性质对杆件的稳定性有着重要的影响。

一般来说,杆件所使用的材料应当具有足够的强度和刚度。

强度可以提供杆件抵抗失稳的能力,而刚度可以减小失稳时的弯曲变形。

此外,材料应当具有足够的韧性,以防止杆件发生断裂。

3.杆件的支撑条件:杆件的支撑条件也会对稳定性产生影响。

一般来说,杆件的两端应当进行良好的支撑,以减小弯曲变形和失稳的发生。

支撑条件可以通过适当的连接方式、支撑点的设置和钢结构的设计来实现。

4.外力的作用:外力的作用是导致杆件发生失稳的主要原因。

外力可以包括静力荷载、动力荷载和温度荷载等。

在设计和使用压杆结构时,需要对外力进行充分的分析和计算,确保结构在外力作用下能够稳定运行。

总之,压杆的稳定性是确保结构安全可靠性的重要因素。

在材料力学中,通过对压杆受力和形变规律的分析,可以找到保证压杆稳定的途径和措施。

合理选择杆件的形状和尺寸,使用适当的材料,提供良好的支撑条件,并进行准确的外力分析和计算,可以有效地提高压杆的稳定性,确保结构的安全运行。

材料力学-第9章压杆的稳定问题

材料力学-第9章压杆的稳定问题

0 1 0 sinkl coskl
sinkl 0
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
sinkl 0
FP k EI 由此得到临界载荷
2
kl nπ, n 1, 2 ,,
FPcr
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
微分方程的解 w =Asinkx + Bcoskx 边界条件 w ( 0 ) = 0 , w( l ) = 0
0 A+1 B 0 sinkl A coskl B 0
根据线性代数知识,上述方程中,常数A、B 不全为零的条件是他们的系数行列式等于零:
FP F FP P
FP>FPcr :在扰动作用下, 直线平衡构形转变为弯曲平 衡构形,扰动除去后, 不能恢复到直线平衡构形, 则称原来的直线平衡构形 是不稳定的。
第9章 压杆的稳定问题
压杆稳定的基本概念
当压缩载荷大于一定的数值时,在任意微小的外界扰动下, 压杆都要由直线的平衡构形转变为弯曲的平衡构形,这一过程 称为屈曲(buckling)或失稳(lost stability)。对于细长压杆, 由于屈曲过程中出现平衡路径的分叉,所以又称为分叉屈曲 (bifurcation buckling)。 稳定的平衡构形与不稳定的平衡构形之间的分界点称为临 界点(critical point)。对于细长压杆,因为从临界点开始, 平衡路径出现分叉,故又称为分叉点。临界点所对应的载荷称 为临界载荷(critical load)或分叉载荷(bifurcation load), 用FP表示。
第9章 压杆的稳定问题
压杆稳定的基本概念
在很多情形下,屈曲将导致构件失效,这种失 效称为屈曲失效(failure by buckling)。由于屈曲 失效往往具有突发性,常常会产生灾难性后果,因 此工程设计中需要认真加以考虑。

材料力学课件第十章压杆稳定

材料力学课件第十章压杆稳定

第十章
压杆稳定
① 强度
构件的承载能力
② 刚度 ③ 稳定性
工程中有些构件 具有足够的强度、刚 度,却不一定能安全可 靠地工作.
第十章
2.工程实例
压杆稳定
工程构件稳定性实验
第十章
压杆稳定
压杆稳定性实验
第十章
压杆稳定
第十章
其他形式的稳定问题
压杆稳定
F Fcr
第十章
3.失稳破坏案例
压杆稳定
案例1 20世纪初,享有盛誉的美国桥梁学家库柏在圣劳伦斯河 上建造1907年8月29日,发生稳定性破坏,86位工人伤亡,成为
理论分析计算
压杆什么时候发生稳定性问题,什么时候产生强度问题呢?
第十章
压杆稳定
10.2 两端绞支细长压杆的临界压力
x
F
l
m w
y B
m
x y
F M(x)=-Fw
m x B m
第十章
该截面的弯矩
压杆稳定
压杆任一 x 截面沿 y 方向的位移 w f ( x )
M ( x ) Fw
F M(x)=-Fw
第十章
10.1 压杆稳定的概念
压杆稳定
1.引言
第二章中,轴向拉、压杆的强度条件为 σmax
例如:一长为300mm的钢板尺,横截面尺寸为 20mm 1 能承受的轴向压力为 [F] = A[] = 3.92 kN
FN max [σ ] A
mm.钢的许用应力为[]=196MPa.按强度条件计算得钢板尺所 实际上,其承载能力并不取决于轴向压缩的抗压强度,而是 与受压时变弯有关.当加的轴向压力达到40N时,钢板尺就突然发 生明显的弯曲变形,丧失了承载能力.

材料力学-压杆的稳定性

材料力学-压杆的稳定性

压杆的平衡条件
压杆在平衡状态下需要满足一定的条件,包括受力平衡和挠度平衡。我们将详细讨论这些条件,并是否能够保持稳定的重要方法。我们将介绍常用的稳 定性分析方法,包括欧拉稳定性理论和能量法。
影响压杆稳定性的因素
压杆的稳定性受到多种因素的影响,包括几何形状、材料性质、外部载荷等。我们将讨论这些因 素,并分析它们对压杆稳定性的影响。
建筑
压杆在建筑结构中起着支撑和 稳定的作用,使得建筑物能够 抵抗外部压力。
机械
压杆在机械设计中用于传递力 量和实现稳定性,使得机械装 置能够正常运行。
航空航天
压杆在航空航天工程中起着支 撑和稳定的作用,使得飞机和 航天器能够在飞行过程中保持 结构的完整性。
材料力学基础知识回顾
在开始讨论压杆的稳定性之前,让我们回顾一些材料力学的基础知识,包括材料的应力和应变,杨氏模 量等。
总结和展望
通过本次演讲,我们深入了解了压杆的定义和应用,回顾了材料力学的基础知识,讨论了压杆的平衡条 件和稳定性分析方法,并分析了影响压杆稳定性的因素。希望这些知识能对大家的学习和实际工程应用 有所帮助。
几何形状
压杆的几何形状对其稳定性有重要影响,包括长度、直径等。
材料性质
材料的强度和刚度对压杆稳定性起着关键作用。
外部载荷
外部载荷会改变压杆的受力状态,从而影响其稳定性。
实际工程中的应用案例
在实际工程中,压杆的稳定性是一个重要的设计考虑因素。我们将介绍一些真实的工程案例,并探讨如 何应用稳定性分析来改进设计。
材料力学-压杆的稳定性
欢迎大家来到本次关于材料力学中压杆的稳定性的演讲。在这个演讲中,我 们将探讨压杆的定义和应用,材料力学基础知识回顾,压杆的平衡条件,稳 定性分析的方法,影响压杆稳定性的因素,实际工程中的应用案例,以及对 这个话题的总结和展望。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1)
π EI = Pcr = 2 (µ l)
2
π E
2
π d4
1 16
2 2
64 2 (µ l)
π 2 E I正
( 2) Pcr 正 Pcr 圆 =
(µ l) 2
π E I圆
2
=
I正 I圆
(µ l)
2
π d 4 a4 12 = 12 = 4 4 πd πd 64 64
=
附:求二阶常系数齐次微分方程y ′′ + p y ′ + q = 0 的通解
特征方程为 r + pr + q = 0
2
①两个不相等的实根 r1 、r2
y = C1e
r1 x
通解
r2 x
+ C2 e
②两个相等的实根 r1 = r2
通解
r1 x
y = (C1 + C2 x)e
αx
③一对共轭复根 r1,2 = α ± iβ 通解
解:
Pcr b Pcr a
4 π E Ib h 2 3 Ib (µ l) h 12 = 2 = = 3 = =8 I a hb b π E Ia 2 12 (µ l)
2
例:圆截面的细长压杆,材料、杆长和杆端 圆截面的细长压杆,材料、 约束保持不变,若将压杆的直径缩小一半, 约束保持不变,若将压杆的直径缩小一半,则 其临界力为原压杆的_____;若将压杆的 其临界力为原压杆的_____;若将压杆的 _____; 横截面改变为面积相同的正方形截面, 横截面改变为面积相同的正方形截面,则其临 界力为原压杆的_____。 界力为原压杆的_____。
1、塑性屈服 、 2、脆性断裂 、
芬奇--1、意大利的达·芬奇--意大利的达 芬奇 (Leonardo da Vinci) 报告了杆件轴向拉伸压缩 的强度问题。 的强度问题。 失效条件为:σ=σjx 失效条件为 以强度为失效标志。 以强度为失效标志。
但对于细长中心压杆: 但对于细长中心压杆: 还存在另一类问题------ 还存在另一类问题------ 稳定性问题
nπ = k= l
P EI

n π EP I 2
2 2
其最小非零解
Pcr =
π EI
2
l
2
两端铰支细长压杆临界压力的欧拉公式 两端铰支细长压杆临界压力的欧拉公式
Pcr =
临界力与哪些因素有关: 临界力与哪些因素有关: ①与材料有关 ②与截面尺寸有关 ③与压杆的长度有关 ④与截面形状有关 与支承有关: ⑤与支承有关
所以: 所以:压杆原有直线形式的平衡形式是 不稳定的。 不稳定的。 临界力:Pcr 临界力: 1、P< Pcr 杆件仍可保持为稳定的平衡。 、 杆件仍可保持为稳定的平衡。 2、P≥ Pcr压杆直线形状的平衡是不稳定的。 压杆直线形状的平衡是不稳定的。 临界压力P 就是压杆保持稳定平衡状态的极限荷载。 临界压力 cr就是压杆保持稳定平衡状态的极限荷载。 关键:压杆稳定性的计算,关键在于确定临界压力 关键:压杆稳定性的计算,
P=Pcr即压杆的临界力时,压杆可在任一微弯状态
下平衡。这是由小挠度理论(材料力学小变形假设) 而得,实际用大挠度理论,P与δ一一对应。
二、其它杆端约束条件下细长压杆的临界压力
Pcr =
π EI
2
l
2
π EI ⇒ Pcr = 2 ( µ l)
2
µ 称为长度系数
Pc r =
π EI
2
l
2
µ =1
Pc r =
第十四章 压杆稳定
目录 下节
§14-1 压杆稳定的概念 14§14-2 细长压杆的临界力的欧拉公式 §14-3 欧拉公式的适用范围 压杆的稳定性校核 §14-4 压杆的稳定性校核
第14章 14章
压杆的弹性稳定分析 与稳定性设计
工背景
前面介绍了压杆的强度计算: 前面介绍了压杆的强度计算: 压杆的强度计算
π EI
2
l
2
注意判断在哪个平面内失稳?
注意: 注意: 是压杆的临界力, 由于 Pcr 是压杆的临界力 , 为微弯状态的 最 小 外 力 , 因 而 应 取 Imin ( 最 小 主 惯 性 矩)。
挠曲线 ν = A sin
π
l
x 为半波正弦曲线
l x= 2
ν = A =δ
δ为任意(不确定)
意义:
钢板尺: 钢板尺:一端固定 一端自由
Pcr 称为临界压力
§14-2 14-
细长压杆的临界压力
研究压杆问题,一般采用两种力学模型。 研究压杆问题,一般采用两种力学模型。
1、将实际压杆抽象为理想中心压杆; 、将实际压杆抽象为理想中心压杆; 2、按压杆实际工作情况进行分析,即考虑 、按压杆实际工作情况进行分析, 压杆有初弯曲、初偏心、残余应力等。 压杆有初弯曲、初偏心、残余应力等。 理想压杆的概念 (1)完全对中等截面; )完全对中等截面; (2)载荷作用无偏心; )载荷作用无偏心; (3)光滑(球形)铰链 )光滑(球形)铰链。
y=e (C1 cos βx + C2 sin βx )
通解: v = A sin kx + B cos kx
边界条件:x = 0时:v = 0 ⇒ B = 0 x = l 时:v = 0 ⇒ A sin kl = 0
sin kl = 0 ⇒ kl = nπ
(n = 0,1,2,⋯ )
= P= k 2 l EI
2
θ = arc tg(ctg β )
θ

β
90°

例:三种不同截面形状的细长压杆如图所 示。试标出压杆失稳时各截面将绕哪根形心主 惯性轴转动。 惯性轴转动。
正方形
等边角钢
槽钢
解:图 (a ) 中,AD杆受压 2 π EI N AD = 2 P1 = 2 2a
(
)

1 π EI P1 = 2 2 a2
2
图(b)中,AB杆受压
N AB = P2 =
π EI
2
a
2

P2 =
π EI
2
a2
例:长方形截面细长压杆,b/h=1/2;如果 长方形截面细长压杆, ; 将 b改为 h 后仍为细长杆,临界力 cr是原来的 改为 后仍为细长杆,临界力P 多少倍? 多少倍?
7m
5m
(a)
(b)
9m (c)
解:三根压杆临界力分别为:
(a)
π EI Plj = = 2 (µ L )
2
π 2 × 200 ×109 ×
π × 0.16 4
64 = 2540kN
(1× 5)
2
(b ) (c )
π EI Plj = = 2 (µ L )
2
π 2 × 200 ×109 ×
π × 0.16 4
4
64a
2
例:图示结构,①、②两杆截面和材料相 图示结构, 两杆截面和材料相 同,为细长压杆。确定使载荷 P 为最大值时的 为细长压杆。 θ角(设0<θ<π/2)。 角 π/2)。 π/2
θ

β
90°

解:由静力平衡条件可解得两杆的压力分别为:
N 1 = P cosθ

N 2 = P sin θ
BD杆的临界压力:
Pcr =
(
π EI
2
2a
)
2
=
π EI
2
2a
2
故杆系所能承受的最大载荷
Pmax = Pcr =
π EI
2
2a
2
=
π Ed
3
4
128a
2
(b) 杆BD受拉,其余杆受压
四根受压杆的临界压力:
Pcr =
π EI
2
a
2
故杆系所能承受的最大载荷:
Pmax = 2 Pcr =
2 π Ed
3
π
3
例:五根直径都为 d的细长圆杆铰接构成 的细长圆杆铰接构成 平面正方形杆系ABCD,如各杆材料相同,弹 平面正方形杆系 ,如各杆材料相同, 性模量为E。求图 (a)、(b)所示两种载荷作用下 性模量为 。 、 所示两种载荷作用下 杆系所能承受的最大载荷。 杆系所能承受的最大载荷。
解:(a ) 杆BD受压,其余杆受拉
工程背景
工程背景
压杆
工程背景
桁架中的压杆
武 汉 长 江 一 桥
工程背景
液压缸顶杆
工程背景
液压缸 顶杆
工程背景
桁架中的压杆
工程背景
高压输电线路保持相间距离的受压构件
工程背景
高压输电线路保持相间距离的受压构件
可 变 夹 角 桁 架 试 验 架
工程背景
压杆稳定性实验
工程背景
工程构件稳定性实验
π EI
2
(2 l )
2
µ=2
Pc r =
π EI
2
(0.7 l )
2
µ = 0.7
Pc r =
π EI
2
(0.5 l )
2
µ = 0.5
Pc r =
π EI
2
π EI
2
π EI
2
π EI
2
l
2
(2l )
2
(0.7l )
2
(0.5l )
2
例: 材料相同,直径相等的三根细长压杆 细长压杆 如图示,如取 E=200GPa,d=160mm, 试计 算三根压杆的临界压力,并比较大小。
64
2
(0.7 × 7 )
π 2 × 200 ×109 ×
相关文档
最新文档