上海七年级第二学期数学各区期末考试压轴集合完整版

合集下载

上海徐汇中学七年级下学期数学期末压轴难题试卷及答案-百度文库

上海徐汇中学七年级下学期数学期末压轴难题试卷及答案-百度文库

上海徐汇中学七年级下学期数学期末压轴难题试卷及答案-百度文库 一、选择题1.14的算术平方根为()A .116 B .12±C .12D .12-2.下列车标,可看作图案的某一部分经过平移所形成的是( ) A .B .C .D .3.下列各点中,在第四象限的是( ) A .3,0B .()2,5-C .()5,2--D .()2,3-4.在以下三个命题中,正确的命题有( )①a ,b ,c 是三条不同的直线,若a 与b 相交,b 与c 相交,则a 与c 相交 ②a ,b ,c 是三条不同的直线,若a ∥b ,b ∥c ,则a ∥c ③若∠α与∠β互补,∠β与∠γ互补,则∠a 与∠γ互补 A .②B .①②C .②③D .①②③5.如图,已知直线AB ,CD 被直线AC 所截,AB ∥CD ,E 是平面内CD 上方的一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC 的度数可能是( )A .①②③B .①②④⑤C .①②③⑤D .①②③④⑤ 6.下列计算正确的是( )A .93=±B .382-=C .2(7)5=D .222=7.如图,把一个长方形纸条ABCD 沿AF 折叠,已知32ADB ∠=︒,//AE BD ,则DAF∠为( )A .30°B .28°C .29°D .26°8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2-,…,按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .()2018,0B .()2017,1C .()2021,1D .()2021,0二、填空题9.324-=________.10.点()2,3P -关于x 轴对称的点的坐标为_________.11.如图,在ABC 中,90C ∠=︒,30B ∠=︒,AD 是ABC 的角平分线,DE AB ⊥,垂足为E ,1DE =,则BC =__________.12.如图,∠B =∠C ,∠A =∠D ,有下列结论:①AB //CD ;②AE //DF ;③AE ⊥BC ;④∠AMC =∠BND .其中正确的有_____.(只填序号)13.如图,将一张长方形纸片沿EF 折叠后,点A ,B 分别落在A ′,B ′的位置.如果∠1=59°,那么∠2的度数是_____.14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是________.2,3,则15.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为() ()12,7对应的正整数是_______.第1列第2列第3列第4列……第1行12510……第2行43611……第3行98712……第4行16151413……第5行…………………………16.如图,正方形ABCD的各边分别平行于x轴或y轴,且CD边的中点坐标为(2,0),AD边的中点坐标为(0,2).点M,N分别从点(2,0)同时出发,沿正方形ABCD的边作环绕运动.点M按逆时针方向以1个单位/秒的速度匀速运动,点N按顺时针方向以3个单位/秒的速度匀速运动,则M,N两点出发后的第2021次相遇地点的坐标是_________.三、解答题17.计算:(1)|﹣2|+(﹣3)24(2)23252+-;(3)220183|3|27(4)(1)-+---+-. 18.求下列各式中的x 值 (1)()216149x += (2)3()81125x ﹣= 19.完成下列证明过程,并在括号内填上依据.如图,点E 在AB 上,点F 在CD 上,∠1=∠2,∠B =∠C ,求证AB ∥CD .证明:∵∠1=∠2(已知),∠1=∠4 ∴∠2= (等量代换), ∴ ∥BF ( ), ∴∠3=∠ ( ). 又∵∠B =∠C (已知), ∴∠3=∠B ∴AB ∥CD ( ).20.如图,在平面直角坐标系中,ABC ∆的顶点都在格点上,点C (41)-,. (1)写出点A ,B 的坐标; (2)求ABC ∆的面积.21.阅读材料,解答问题: 材料:∵479,即273<,∴7272.问题:已知52a +的立方根是3,31a b +-的算术平方根是4,c 13 (113 (2)求3a b c -+的平方根.二十二、解答题22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.(1)阴影正方形的面积是________?(可利用割补法求面积) (2)阴影正方形的边长是________?(3)阴影正方形的边长介于哪两个整数之间?请说明理由.二十三、解答题23.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.24.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.25.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”; (2)在图2中,若∠B=96°,∠C=100°,求∠P 的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间存在着怎样的数量关系(用α、β表示∠P ),并说明理由; (4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .26.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒; ③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题 1.C 解析:C 【分析】根据算术平方根的定义求解. 【详解】解:因为21124⎛⎫= ⎪⎝⎭,所以14的算术平方根为12.故选C. 【点睛】本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的定义.2.D 【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可. 【详解】解:A 、不是经过平移所形成的,故此选项错误; B 、不是是经过平移所形成的,故此选项错误; C 、不是经过平解析:D 【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可. 【详解】解:A 、不是经过平移所形成的,故此选项错误; B 、不是是经过平移所形成的,故此选项错误; C 、不是经过平移所形成的,故此选项错误; D 、是经过平移所形成的,故此选项正确; 故选:D . 【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义.3.B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答.【详解】解:A、(3,0)在x轴上,不合题意;B、(2,-5)在第四象限,符合题意;C、(-5,-2)在第三象限,不合题意;D、(-2,3),在第二象限,不合题意.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.A【分析】根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可.【详解】解:①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故①错误;②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确;③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误综上:正确的命题是②.故选A.【点睛】此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键.5.C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1= ,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.综上所述,∠AEC的度数可能是β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A3=,此项错误;B2=-,此项错误;C、27=≠D2==,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.7.C【分析】由 AE平行BD,可得∠AED=∠ADB=32°,可求∠BAE=122°,由折叠,可得∠BAF=∠EAF,可求∠EAF=61°即可【详解】∵AE//BD,∴∠AED=∠ADB=32°,∴∠BAE=∠BAD+∠DAE=90°+32°=122°,∵折叠,∴∠BAF=∠EAF,∴2∠EAF=∠BAE=122°∴∠EAF=61°∴∠DAF=∠EAF-∠EAD=61°-32°=29°故选择C【点睛】本题考查平行线性质,掌握折叠性质,平行线性质是解题关键.8.C【分析】根据第1、5、9、......位置上点的变化规律即可求出第2021个位置的点的坐标.【详解】解:设第n次运动后的点记为An,根据变化规律可知,, ......,∴,n为正整数,解析:C【分析】根据第1、5、9、......位置上点的变化规律即可求出第2021个位置的点的坐标.【详解】解:设第n 次运动后的点记为An ,根据变化规律可知()111A ,,()551A ,,()991A , ......, ∴()43431n A n --,,n 为正整数, 取506n =,则432021n -=,∴()202120211A ,,故选:C .【点睛】本题主要考查点的坐标的变化规律,关键是要发现第1、5、9、......的位置上的点的变化规律,第2021个点刚好满足此规律.二、填空题9.6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键. 解析:6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】32826-=故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.10.【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点关于轴对称点的坐标为:,故答案为.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析:()2,3--【分析】关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.11.【解析】已知∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.解析:【解析】已知∠C =90°,AD 是△ABC 的角平分线,DE ⊥AB ,根据角平分线的性质可得DC=DE =1;因30B DE AB ∠=︒⊥,,根据30°直角三角形的性质可得BD =2DE =2,所以BC=CD+DB =1+2=3. 12.①②④【分析】根据平行线的判定与性质分析判断各项正确与否即可.【详解】解:∵∠B =∠C ,∴AB ∥CD ,∴∠A =∠AEC ,又∵∠A =∠D ,∴∠AEC =∠D ,∴AE ∥DF ,∴∠AMC解析:①②④【分析】根据平行线的判定与性质分析判断各项正确与否即可.【详解】解:∵∠B =∠C ,∴AB ∥CD ,∴∠A =∠AEC ,又∵∠A =∠D ,∴∠AEC =∠D ,∴AE ∥DF ,∴∠AMC =∠FNM ,又∵∠BND =∠FNM ,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故答案为:①②④.【点睛】本题考查了对顶角的性质及平行线的判定与性质,难度一般.13.62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁解析:62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可.【详解】解:∵将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,∠1=59°,∴∠EFB′=∠1=59°,∴∠B′FC=180°−∠1−∠EFB′=62°,∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠B′FC=62°,故答案为:62°.【点睛】本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.14.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.15.138【分析】根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n解析:138【分析】2,3,可得表示方法,观察出1行1列根据表格中的数据,以及正整数6对应的位置记为()数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题.【详解】2,3,解:∵正整数6对应的位置记为()即表示第2行第3列的数,12,7表示第12行第7列的数,∴()由1行1列的数字是12-0=12-(1-1)=1,2行2列的数字是22-1=22-(2-1)=3,3行3列的数字是32-2=32-(3-1)=7,…n行n列的数字是n2-(n-1)=n2-n+1,∴第12行12列的数字是122-12+1=133,∴第12行第7列的数字是138,故答案为:138.【点睛】此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度.16.(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M、N速度分别为1单解析:(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M、N速度分别为1单位/秒,3单位/秒,则两个物体每次相遇时间间隔为1613=4秒,则两个物体相遇点依次为(0,2)、(﹣2,0)、(0,﹣2)、(2,0)∵2021=4×505…1,∴第2021次两个物体相遇位置为(0,2),故答案为:(0,2).【点睛】本题考查了平面直角坐标系中点的规律,找到规律是解题的关键.三、解答题17.(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5)=﹣,(3)原式=3﹣3﹣4解析:【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5,(3)原式=3﹣3﹣4+1=﹣3.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.18.(1);(2).【分析】(1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答.【详解】解:(1),.(2).【点睛】本题考查平方根、立方根,解析:(1)12311,44x x ==-;(2)32x =-.【分析】(1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答.【详解】解:(1)216(1)49x249(1)16x 714x ,∴12311,44x x ==-.(2)38(1)125x3125(1)8x 512x32x =-.【点睛】本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质. 19.∠4;CE ;同位角相等,两直线平行;C ;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=解析:∠4;CE ;同位角相等,两直线平行;C ;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE ∥BF (同位角相等,两直线平行),∴∠3=∠C (两直线平行,同位角相等).又∵∠B =∠C (已知),∴∠3=∠B (等量代换),∴AB ∥CD (内错角相等,两直线平行).故答案为:对顶角相等;CE ∥BF ;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.20.(1),;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(解析:(1)(3,4)A ,(0,1)B ;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(1)(3,4)A ,(0,1)B(2)3ABC S S S =-△长方形个三角形11145241533222=⨯-⨯⨯-⨯⨯-⨯⨯ =9【点睛】本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.(1);(2).【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.【详解】(1)∵即,∴的整数部分为3,小数部分为,解析:(1133;(2)4±.【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.【详解】(1)∵91316,即3134<, ∴133133, ∴13133;(2)∵52a +的立方根是3,31a b +-的算术平方根是4,c 13 ∴5227a +=,3116a b +-=,3c =,∴5a =,2b =,3c =,∴316a b c -+=,3a b c -+的平方根是4±.【点睛】本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.二十二、解答题22.(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的解析:(1)5;(23)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的面积是3×3-4×121 2⨯⨯=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5∴x(3)∵∴23<<∴阴影正方形的边长介于2与3两个整数之间.【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.二十三、解答题23.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;(2解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;(2)先根据内错角相等证GH∥PN,再根据同旁内角互补和等量代换得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ER∥FQ,得∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得1FPN Q ∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0, ∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°, ∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°; 理由:由(1)得AB ∥CD , ∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°, ∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R , ∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN , ∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y , 则有:122y x R y x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1,∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.24.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.25.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M 为交点的“8字形”有1个,以O 为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M 为交点的“8字形”有1个,以O 为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠BAP ,∠BDP=∠CDP ,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,两等式相减得到∠C ﹣∠P=∠P ﹣∠B ,即∠P=(∠C+∠B ),然后把∠C=100°,∠B=96°代入计算即可;(3)与(2)的证明方法一样得到∠P=(2∠C+∠B ).(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.【详解】解:(1)在图2中有3个以线段AC 为边的“8字形”,故答案为3;(2)∵∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,∴∠CAP=∠BAP ,∠BDP=∠CDP ,∵∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,∴∠C ﹣∠P=∠P ﹣∠B ,即∠P=(∠C+∠B ),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB ,∠CDP=∠CDB ,∴∠BAP=∠BAC ,∠BDP=∠BDC ,∵∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,∴∠C ﹣∠P=∠BDC ﹣∠BAC ,∠P ﹣∠B=∠BDC ﹣∠BAC ,∴2(∠C ﹣∠P )=∠P ﹣∠B ,∴∠P=(∠B+2∠C ),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为360°.26.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A +∠APB =50°,∴∠APB =40°;如图③,当2∠APB +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。

(6区期末)2020年上海市各区七年级数学下学期期末试卷合集含答案

(6区期末)2020年上海市各区七年级数学下学期期末试卷合集含答案

11
5
解:原式=163 8 2 26 ……………………………………………………3 分
43
5
= 23 22 26 ……………………………………………………2 分
=4
…………………………………………………………1 分
22、解:设∠A=x°,则∠C=2x°………………………………………1 分
因为 ∠B=60°
),…………………1 分
所以∠BAF=∠CAF( 全等三角形对应角相等 ),…………………1 分
即 AF 平分∠BAC.
25、(1) B (-3,4) , ……………………………………2 分
(2) C (3,-4)………………………………………1 分
D (5,0)………………………………………1 分
崇明区 2019 学年第二学期教学质量调研测试卷
七年级数学
(考试时间 90 分钟,满分 100 分)
考生注意: 1.本试卷含五个大题,共 28 题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试
卷上答题一律无效. 2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤. 3.考试中不能使用计算器.
15、BE=CE(答案不唯一)
18、45°或 36°
三、简答题(本大题共 4 题,每题 6 分,满分 24 分)
19、计算: 2 15 3 3 6 5
原式= 2 15 1 6 5 ………………………2 分 33
= 45 ……………………………………………………………2 分
= 20 ……………………………………………………………2 分
动的过程中, BCQ 的度数是否发生改变?如果不变,求出 BCQ 的度数;如果改变,请 说明理由; (3)在(2)的条件下,如果 AC ∥ BQ , AB 2 ,求 BP 的长.

上海市七年级下册数学期末压轴难题试卷及答案-百度文库

上海市七年级下册数学期末压轴难题试卷及答案-百度文库

上海市七年级下册数学期末压轴难题试卷及答案-百度文库一、选择题1.如图,A ∠与1∠是( )A .同位角B .内错角C .同旁内角D .对顶角2.四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字正确的是( )A .B .C .D .3.在平面直角坐标系中,下列各点在第二象限的是( ) A .()3,0-B .()2,1-C .()2,1-D .()2,1--4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( ) A .1个B .2个C .3个D .4个5.如图,已知直线AB ,CD 被直线AC 所截,AB ∥CD ,E 是平面内CD 上方的一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC 的度数可能是( )A .①②③B .①②④⑤C .①②③⑤D .①②③④⑤ 6.若a 2=163b =2,则a +b 的值为( )A .12B .4C .12或﹣4D .12或47.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( )A .12∠=∠B .34∠=∠C .2490∠+∠=D .14∠=∠8.一只青蛙在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2021次跳到点( )A .(6,45)B .(5,44)C .(4,45)D .(3,44)二、填空题9.计算:4﹣1=___.10.将点()14P -,先关于x 轴对称,再关于y 轴对称的点的坐标为_______. 11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B =50°,∠C =70°,则∠DAE =_____________°.12.如图,直线a ∥b ,直线c 与直线a ,b 分别交于点D ,E ,射线DF ⊥直线c ,则图中与∠1互余的角有 _______个.13.如图,沿折痕EF 折叠长方形ABCD ,使C ,D 分别落在同一平面内的C ',D 处,若155∠=︒,则2∠的大小是_______︒.14.如图,在纸面上有一数轴,点A表示的数为﹣1,点B表示的数为3,点C表示的数为3.若子轩同学先将纸面以点B为中心折叠,然后再次折叠纸面使点A和点B重合,则此时数轴上与点C重合的点所表示的数是_______.15.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为()2,3,则()12,7对应的正整数是_______.第1列第2列第3列第4列……第1行12510……第2行43611……第3行98712……第4行16151413……第5行…………………………16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2020的坐标是______.三、解答题17.计算(131252724-(2)221|18.求下列各式中x 的值. (1)4x 2=64; (2)3(x ﹣1)3+24=0.19.如图,已知EF ∥AD ,1 2.∠=∠试说明180.DGA BAC ∠+∠=︒请将下面的说明过程填写完整.解:EF ∥AD ,(已知)2∴∠=______.(______). 又12∠=∠,(已知)13∴∠=∠,(______).AB ∴∥______,(______) 180.(DGA BAC ∴∠+∠=︒______)20.如图,()3,2A -,()1,2B --,()1,1C -.将 ABC 向右平移 3 个单位长度,然后再向上平移 1 个单位长度,可以得到 111A B C .(1)画出平移后的 111A B C ,111A B C 的顶点 1A 的坐标为 ;顶点 1C 的坐标为 . (2)求 111A B C 的面积.(3)已知点 P 在 x 轴上,以 1A ,1C ,P 为顶点的三角形面积为 32,则 P 点的坐标为 .21.阅读下面的文字,解答问题.22的小数部分我们不可能全部地写出来,但是由于122<<2 1.21,差就是小数部分21-.根据以上的内容,解答下面的问题: (1)5的整数部分是___________,小数部分是___________; (2)若设23+整数部分是x ,小数部分是y ,求x y -的值.二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒. (1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).24.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.25.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.26.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.(1)l 2与l 3的位置关系是 ;(2)如图1,若CE 平分∠BCD ,且∠BCD =70°,则∠CED = °,∠ADC = °; (3)如图2,若CD ⊥BD 于D ,作∠BCD 的角平分线,交BD 于F ,交AD 于G .试说明:∠DGF =∠DFG ;(4)如图3,若∠DBE =∠DEB ,点C 在射线AM 上运动,∠BDC 的角平分线交EB 的延长线于点N ,在点C 的运动过程中,探索∠N:∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.【参考答案】一、选择题 1.A 解析:A 【分析】先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可. 【详解】解:根据图象,∠A 与∠1是两直线被第三条直线所截得到的两角,因而∠A 与∠1是同位角,故选:A.【点睛】本题主要考查了同位角的定义,是需要识记的内容,比较简单.2.C【分析】根据火柴头的方向、平移的定义即可得.【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有解析:C【分析】根据火柴头的方向、平移的定义即可得.【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了平移,掌握理解平移的概念是解题关键.3.C【分析】根据点在第二象限的符号特点横坐标是负数,纵坐标是正数作答.【详解】解:A、(0)在x轴上,故本选项不符合题意;B、(2,-1)在第四象限,故本选项不符合题意;D、(-2,1)在第二象限,故本选项符合题意;D、(-2,-1)在第三象限,故本选项不符合题意.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据几何初步知识对命题逐个判断即可.【详解】解:①对顶角相等,为真命题;②内错角相等,只有两直线平行时,内错角才相等,此为假命题;③平行于同一条直线的两条直线互相平行,为真命题;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题;⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题;①③命题正确.故选:B.【点睛】本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键.5.C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.综上所述,∠AEC的度数可能是β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.D【分析】根据平方根和立方根的意义求出a、b即可.【详解】解:∵a2=16,∴a=±4,∵3b2,∴b=8,∴a+b=4+8或﹣4+8,即a+b=12或4.故选:D.【点睛】本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a、b的值,注意:一个正数的平方根有两个.7.D【分析】直接利用平行线性质解题即可【详解】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴A,B,C正确.故选D.【点睛】本题考查平行线的基本性质,基础知识扎实是解题关键8.D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次解析:D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)是第48(6×8)次,依此类推,到(0,45)是第2025次,后退4次可得2021次所对应的坐标.【详解】解:青蛙运动的速度是每秒运动一个单位长度,(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)第48(6×8)次,依此类推,到(0,45)是第2025次.2025-1-3=2021,故第2021次时青蛙所在位置的坐标是(3,44).故选:D.【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.二、填空题9.1【分析】先计算算术平方根,然后计算减法.【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x2=a ,那么这个正数x解析:1【分析】先计算算术平方根,然后计算减法.【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.10.(1,-4)【分析】直角坐标系中,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.关于y 轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设关于x 轴对称的点为则点的坐标为解析:(1,-4)【分析】直角坐标系中,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.关于y 轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设()14P -,关于x 轴对称的点为P' 则P'点的坐标为(-1,-4)设点P'和点''P 关于y 轴对称则''P 的坐标为(1,-4)故答案为:(1,-4)【点睛】本题考查了关于坐标轴对称的点的坐标特征,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数,关于y 轴对称的两点,纵坐标相同,横坐标互为相反数.11.10【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAD ,根据直角三角形两锐角互余求出∠BAE ,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=1解析:10【分析】根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°,∵AD是角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵AE是高,∴∠BAE=90°-∠B=90°-50°=40°,∴∠DAE=∠BAE-∠BAD=40°-30°=10°.故答案为:10.【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.12.4【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个【详解】∵射线DF⊥直线c∴∠1+∠2=90°,∠1解析:4【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个【详解】∵射线DF⊥直线c∴∠1+∠2=90°,∠1+∠3=90°即与∠1互余的角有∠2,∠3又∵a∥b∴∠3=∠5,∠2=∠4∴∠1互余的角有∠4,∠5∴与∠1互余的角有4个故答案为:4【点睛】本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等.13.70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解.【详解】解:由长方形可得:,∵,∴,由折叠可得,∴;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易图可得155EFC ∠=∠=︒,由折叠的性质可得55EFC EFC '∠=∠=︒,然后问题可求解.【详解】解:由长方形ABCD 可得://AD BC ,∵155∠=︒,∴155EFC ∠=∠=︒,由折叠可得55EFC EFC '∠=∠=︒,∴218070EFC EFC '∠=︒-∠-∠=︒;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+(3+1)=7.与C重合的点表示的数:3+(36第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.15.138【分析】根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n解析:138【分析】根据表格中的数据,以及正整数6对应的位置记为()2,3,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题.【详解】解:∵正整数6对应的位置记为()2,3,即表示第2行第3列的数,∴()12,7表示第12行第7列的数,由1行1列的数字是12-0=12-(1-1)=1,2行2列的数字是22-1=22-(2-1)=3,3行3列的数字是32-2=32-(3-1)=7,…n 行n 列的数字是n 2-(n -1)=n 2-n +1,∴第12行12列的数字是122-12+1=133,∴第12行第7列的数字是138,故答案为:138.【点睛】此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n 行n 列数的特点为(n 2-n +1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度. 16.【分析】先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点的坐标是,点的坐标是,点的坐标是,点的坐标是,归纳类推得:点的坐标是,其中为正整数,因为解析:(1010,0)【分析】先分别求出点2468,,,P P P P 的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点2P 的坐标是2(1,0)P ,点4P 的坐标是4(2,0)P ,点6P 的坐标是6(3,0)P ,点8P 的坐标是8(4,0)P ,归纳类推得:点2n P 的坐标是2(,0)n P n ,其中n 为正整数,因为202021010=⨯,所以点2020P 的坐标是2020(1010,0)P ,故答案为:(1010,0).【点睛】本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键.三、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.18.(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)解析:(1)x =±4;(2)x =-1(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x 2=64,∴x 2=16,∴x =±4;(2)3(x -1)3+24=0,∴3(x -1)3=-24,∴(x -1)3=-8,∴x -1=-2,∴x =-1.【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解. 19.;两直线平行,同位角相等 ;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】解:EF ∥AD ,(已知)(两直线平行,同位角相等)解析:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】 解:EF ∥AD ,(已知)23∴∠=∠(两直线平行,同位角相等)又12∠=∠,(已知)13∠∠∴=,(等量代换)AB DG ∴∥,(内错角相等,两直线平行)180DGA BAC ∴∠+∠=︒(两直线平行,同旁内角互补)故答案为:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键.20.(1)见解析,,;(2)5;(3) 或【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可; (2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P 点解析:(1)见解析,()0,3,()4,0;(2)5;(3) ()3,0 或 ()5,0【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据111A B C △的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P 点得坐标为 (),0t ,因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,求解即可. 【详解】解:(1) 如图,111A B C △ 为所作.1A (0,3),1C (4,0);(2) 计算 111A B C △ 的面积 111442421435222=⨯-⨯⨯-⨯⨯-⨯⨯=.(3)设P 点得坐标为(t ,0), 因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,解得 3t = 或 5t =, 即 P 点坐标为 (3,0) 或(5,0).【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)2,;(2).【分析】(1)利用求解;(2)由于,则,,然后计算.【详解】解:(1)的整数部分是2,小数部分是;(2),而整数部分是,小数部分是,,,.【点睛】本题考查了解析:(1)22;(2)4.【分析】(1)利用23<求解;(2)由于12<<,则3x =,231y ==,然后计算x y -.【详解】解:(122;(2)132<<,而2x ,小数部分是y ,3x ∴=,231y ==,3(31)33143x y .【点睛】本题考查了估算无理数的大小,熟悉相关性质是解题得关键.二十二、解答题22.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a ,∵3a 表示长度,∴a >0,∴a∴这个长方形场地的周长为 2(3a +5a )=16a (m ),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)见解析;(2)10°;(3)【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E 作HE ∥CD ,设 由(1)得AB ∥CD解析:(1)见解析;(2)10°;(3)18015α︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠.【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD ,∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠∵180DEB ABE CDE ∠+∠-∠=︒,∴180,FEB ABE ∠+∠=︒∴EF ∥AB ,∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图,设,,GEF x FEB EFB y ∠=∠=∠=由(1)得AB ∥CD ,则AB ∥CD ∥HE ,∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠=∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠=∴PND CDM DMQ α∠=∠=∠=,又∵14CDM CDE ∠=∠, ∴33,MDE CDM α∠=∠=∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+=又∵PN ∥AB ,∴4,PNB NBA α∠=∠=∵14ABN ABE ∠=∠, ∴44416,ABM ABN αα∠=∠=⨯=又∵AB ∥QM ,∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC ∥DE 时,当BC ∥EF 时,当BC ∥DF 时,三种情况进行解答即可.【详解】解:(1)作EI ∥PQ ,如图,∵PQ ∥MN ,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.综上所述,∠BAM的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.25.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点P与点E、F在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可∠=∠=60°,计算∠PFD即可;以推出GEP EGP(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB 上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点P与点E、F在一直线上时,作图如下,∠=∠,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠=∠FHP=60°,∴GEP EGP∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.26.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=1BCD,2∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;;理由如下:(4)∠N:∠BCD的值不会变化,等于12∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.。

上海市西中学七年级下学期期末压轴难题数学试题题及答案

上海市西中学七年级下学期期末压轴难题数学试题题及答案

上海市西中学七年级下学期期末压轴难题数学试题题及答案一、选择题1.如图,∠1和∠2不是同位角的是()A.B.C.D.2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A.B.C.D.3.在平面直角坐标系中,在第三象限的点是()A.(-3,5)B.(1,-2)C.(-2,-3)D.(1,1)4.下列命题中,假命题是()A.对顶角相等B.两直线平行,内错角相等C.在同一平面内,垂直于同一直线的两直线平行D.过一点有且只有一条直线与已知直线平行5.如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°6.下列结论正确的是()A.64的立方根是±4B.﹣18没有立方根C.立方根等于本身的数是0D327-37.如图,小明从A处出发沿北偏东60︒方向行走至B处,又沿北偏西20︒方向行走至C 处,则ABC∠的度数是()A .100︒B .90︒C .80︒D .70︒8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-二、填空题9.计算:36的结果为_____.10.已知点()12P m -,与点()1,2Q 关于y 轴对称,那么m =________. 11.如图.已知点C 为两条相互平行的直线,AB ED 之间一动点,ABC ∠和CDE ∠的角平分线相交于F ,若3304BCD BFD ∠=∠+︒,则BCD ∠的度数为________.12.如图,AD//BC ,24,:1:2C ADB BDC ∠=∠∠=,则DBC ∠=____度.13.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图2中115AEF ∠=︒,则图3中CFE ∠的度数为_______.14.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______. 15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若a 大于0,b 不小于0,则点(),P a b --在第三象限;③过一点有且只有一条直线与已知直线平行;④若()214=--+y x ,则x y的算术平方根是12.其中,是真命题的有______.(写出所有真命题的序号)16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下、向右的方向不断地移动,每移动一个单位,得到点()10,1A 、()21,1A 、()31,0A 、()42,0A …,那么点25A 的坐标为_______.三、解答题17.(1310.0484-(2)计算:2231(3)0.125(4)64--- 18.求下列各式中的x 值: (1)(x ﹣1)2=4; (2)(2x +1)3+64=0; (3)x 3﹣3=38. 19.完成下面的证明.如图,AB ∥CD ,∠B +∠D =180°,求证:BE ∥DF . 分析:要证BE ∥DF ,只需证∠1=∠D . 证明:∵AB ∥CD (已知) ∴∠B +∠1=180°( ) ∵∠B +∠D =180°(已知) ∴∠1=∠D ( ) ∴BE ∥DF ( )20.在平面直角坐标系xOy 中,点A 的坐标为(0,4),线段MN 的位置如图所示,其中点M 的坐标为(﹣3,﹣1),点N 的坐标为(3,﹣2).(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .画出平移后的线段AB .①点M 平移到点A 的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;②点B 的坐标为 ;(2)在(1)的条件下,若点C 的坐标为(4,0),连接AC ,BC ,求△ABC 的面积.21.若整数m 的两个平方根为63a -,22a -;b 89 (1)求a 及m 的值; (2)求275m b ++的立方根.二十二、解答题22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数235)二十三、解答题23.已知AB ∥CD ,∠ABE 与∠CDE 的角分线相交于点F .(1)如图1,若BM 、DM 分别是∠ABF 和∠CDF 的角平分线,且∠BED =100°,求∠M 的度数;(2)如图2,若∠ABM =13∠ABF ,∠CDM =13∠CDF ,∠BED =α°,求∠M 的度数;(3)若∠ABM =1n ∠ABF ,∠CDM =1n∠CDF ,请直接写出∠M 与∠BED 之间的数量关系24.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________. 问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.25.模型与应用. (模型)(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)AB CD,点E为射线FG上一点.26.已知,//(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、选择题 1.D 解析:D 【分析】根据同位角的定义,“在两条被截直线的同方,截线的同侧的两个角,即为同位角”直接分析得出即可. 【详解】解:A 、∠1和∠2是同位角,故此选项不符合题意; B 、∠1和∠2是同位角,故此选项不符合题意; C 、∠1和∠2是同位角,故此选项不符合题意; D 、∠1和∠2不是同位角,故此选项符合题意; 故选:D . 【点睛】此题主要考查了同位角的定义,正确掌握同位角定义是解题关键.2.D 【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可. 【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误; B 、不能用平移变换来分析其解析:D 【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误; B 、不能用平移变换来分析其形成过程,故此选项错误; C 、不能用平移变换来分析其形成过程,故此选项正确; D 、能用平移变换来分析其形成过程,故此选项错误; 故选:D . 【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向. 3.C 【分析】根据第三象限点的特征0x <,0y <依次判断即可. 【详解】解:A :0x <,0y >,因此在第二象限,故错误; B :0x >,0y <,,因此在第四象限,故错误; C :0x <,0y <,,因此在第三象限,故正确; D :0x >,0y >,,因此在第一象限,故错误; 故答案为:C 【点睛】本题主要考查了平面直角坐标系象限的特征,熟悉掌握各象限的横纵坐标的取值范围是解题的关键. 4.D 【分析】根据对顶角的定义、平行线的性质、平行公理及其推论可直接进行排除选项. 【详解】解:A 、对顶角相等,是真命题,故不符合题意; B 、两直线平行,内错角相等,是真命题,故不符合题意;C 、在同一平面内,垂直于同一直线的两直线平行,是真命题,故不符合题意;D 、过直线外一点有且只有一条直线与已知直线平行,所以原命题是假命题,故符合题意; 故选D . 【点睛】本题主要考查命题、平行线的性质、平行公理及对顶角的定义,熟练掌握命题、平行线的性质、平行公理及对顶角的定义等相关知识点是解题的关键. 5.D 【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°. 【详解】 ∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.6.D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项.【详解】解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D、327=﹣3,原说法正确,故这个选项符合题意;故选:D.【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.7.A【分析】根据平行线性质求出∠ABF,再和∠CBF相减即可得出答案.【详解】解:由题意可得:∠A=60°,∠CBF=20°,//AE BF,∵//AE BF,∴∠A+∠ABF=180°,∴∠ABF=180°﹣∠A=180°﹣60°=120°,∴∠ABC=∠ABF﹣∠CBF=120°﹣20°=100°,故选:A.【点睛】本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补,也考查了方位角,熟练掌握平行线的性质是解决本题的关键.8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An﹣1An=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:A n﹣1A n=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.二、填空题9.6【分析】根据算术平方根的定义即可求解.【详解】解:的结果为6.故答案为6考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数解析:6【分析】根据算术平方根的定义即可求解.【详解】6.故答案为6【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数.10.0;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.【详解】解:根据对称的性质,得,解得.故答案为:0.【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点(,)P x y ,关于y 轴的对称点的坐标是(,)x y -,依此列出关于m 的方程求解即可.【详解】解:根据对称的性质,得11m -=-,解得0m =.故答案为:0.【点睛】考查了关于x 轴、y 轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.11.120°【分析】由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.解:和的角平分线相交于,,,又,,,设,,,在四边形中,,,,解析:120°【分析】由角平分线的定义可得EDA ADC ∠=∠,CBE ABE ∠=∠,又由//AB ED ,得EDF DAB ∠=∠,DFE ABF ∠=∠;设EDF DAB x ∠=∠=,DFE ABF y ∠=∠=,则DFB x y ∠=+;再根据四边形内角和定理得到3602()BCD x y ∠=︒-+,最后根据3304BCD BFD ∠=∠+︒即可求解. 【详解】解:ABC ∠和CDE ∠的角平分线相交于F ,EDA ADC ∴∠=∠,CBE ABE ∠=∠,又//AB ED ,EDF DAB ∴∠=∠,DEF ABF ∠=∠,设EDF DAB x ∠=∠=,DEF ABF y ∠=∠=,BFD EDA ADE x y ∴∠=∠+∠=+,在四边形BCDF 中,FBC x ∠=,ADC y ∠=,BFD x y ∠=+,3602()BCD x y ∴∠=︒-+,0433BCD BFD ∠=∠+︒, 120BFD x y ∴∠=+=︒,3602()120BCD x y ∴∠=︒-+=︒,故答案为:120︒.【点睛】本题考查了平行线的判定和性质,正确的识别图形是解题的关键.12.52【分析】根据AD//BC ,可知,根据三角形内角和定理以及求得,结合题意,即可求得.【详解】,,,,,.故答案为:52.【点睛】本题考查了平行线的性质,三角形内角和定理,解析:52【分析】根据AD//BC ,可知ADB DBC ∠=∠,根据三角形内角和定理以及24,C ∠=求得CBD BDC ∠+∠,结合题意:1:2ADB BDC ∠∠=,即可求得DBC ∠.【详解】//AD BC ,∴ADB DBC ∠=∠,:1:2ADB BDC ∠∠=,:1:2DBC BDC ∴∠∠=,24,C ∠=180********CBD BDC C ∴∠+∠=︒-∠=︒-︒=︒,1()523DBC CBD BDC ∴∠=∠+∠=︒. 故答案为:52.【点睛】本题考查了平行线的性质,三角形内角和定理,角度的计算,掌握以上知识是解题的关键.13.15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE ,利用折叠的性质求出∠BFC 的度数,再利用角的和差求出∠CFE .【详解】解:∵AE ∥BF ,∴∠BFE=180°-∠AEF=65°解析:15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE ,利用折叠的性质求出∠BFC 的度数,再利用角的和差求出∠CFE .【详解】解:∵AE ∥BF ,∴∠BFE =180°-∠AEF =65°,∵2∠BFE +∠BFC =180°,∴∠BFC =180°-2∠BFE =50°,∴∠CFE =∠BFE -∠BFC =15°,故答案为:15°.【点睛】本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE 的度数是解题的关键.14.【分析】由题干得到,将原式进行整理化简即可求解.【详解】∵,∴,∴.【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键. 解析:1992【分析】由题干得到()11⎛⎫+= ⎪⎝⎭f n f n ,将原式进行整理化简即可求解. 【详解】∵()1913131010f f ⎛⎫+=+= ⎪⎝⎭, ∴()()()()111,111,12f n f f f f n ⎛⎫+=+=∴= ⎪⎝⎭, ∴()()()1199100110099f f f f f ⎛⎫⎛⎫++⋅⋅⋅+++ ⎪ ⎪⎝⎭⎝⎭ 119999112=+=+. 【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.15.①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限解析:①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若a 大于0,b 不小于0,则a >0,b ≥0,点(),P a b --在第三象限或x 轴的负半轴上;故此命题是假命题;③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;④若4=y ,则x =1,y =4,则x y的算术平方根是12,正确,故此命题是真命题.故答案为:①④【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键. 16.【分析】结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解.【详解】结合图像可知,纵坐标每四个点一个循环,…解析:()12,1【分析】结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故25A 的纵坐标与()10,1A 的纵坐标相同,根据题中每一个周期第一点的坐标可推出()412,1n A n +=,即可求解.【详解】结合图像可知,纵坐标每四个点一个循环,254=6÷……1,∴25A 是第七个周期的第一个点,每一个周期第一点的坐标为:()10,1A ,()()592,1,4,1A A ,()412,1n A n +∴=,25=46+1⨯,∴25A (12,1). 故答案为:(12,1).【点睛】本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循周期是解决本题的关键.三、解答题17.(1);(2)【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解解析:(1) 2.3;(2)1【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解:(110.2(2)=+--2=-;2.3(6-(2)2113()46=---+-22=.1【点睛】本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则.18.(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1;(2)方程整理得:(2x+1)3=﹣64,开立方得:2x+1=﹣4,解得:x=﹣2.5;(3)方程整理得:x3=278,开立方得:x=1.5.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D =180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】证明:∵AB∥CD(已知)∴∠B+∠1=180°(两直线平行,同旁内角互补)∵∠B+∠D=180°(已知)∴∠1=∠D(同角的补角相等),∴BE∥DF(同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)①右,3,上,5(答案不唯一);②(6,3);(2)10【分析】(1)由点M 及其对应点的A 的坐标可得平移的方向和距离,据此可得点N 的对应点B 的坐标;(2)利用割补法,得到即可求解.【详解析:(1)①右,3,上,5(答案不唯一);②(6,3);(2)10【分析】(1)由点M 及其对应点的A 的坐标可得平移的方向和距离,据此可得点N 的对应点B 的坐标;(2)利用割补法,得到矩形ABC AOED Rt AOC Rt BCE Rt ABD SS S S S =---即可求解.【详解】解:(1)将段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对称点为B , ①点M 平移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;∵N (3,-2),∴将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3)∴②点B 的坐标为(6,3);(2)如图,过点B 作BE ⊥x 轴于点E ,过点A 作AD ⊥y 轴交EB 的延长线于点D ,则四边形AOED 是矩形,∵A (0,4),B (6, 3), C (4,0)∴E (6,0), D (6,4)∴ AO = 4, CO = 4, EO =6,∴CE =EO -CO =6-4=2, BE =3, DE = 4, AD =6, BD =DE -BE =4-3=1,∴矩形ABC AOED Rt AOC Rt BCE Rt ABD S S S S S =---1114644231610222=⨯-⨯⨯-⨯⨯-⨯⨯= 【点睛】本题主要考查作图-平移变换,熟练掌握平移变换的定义及其性质是解题的关键. 21.(1)a=4,m=36;(2)6【分析】(1)根据平方根的性质得到,求出a 值,从而得到m ;(2)估算出的范围,得到b 值,代入求出,从而得到的立方根.【详解】解:(1)∵整数的两个平方根为,解析:(1)a =4,m =36;(2)6【分析】(1)根据平方根的性质得到63220a a -+-=,求出a 值,从而得到m ;(2b 值,代入求出275m b ++,从而得到275m b ++的立方根.【详解】解:(1)∵整数m 的两个平方根为63a -,22a -,∴63220a a -+-=,解得:4a =,∴222426a -=⨯-=,∴m =36;(2)∵b ∴<∴910<,∴b =9,∴275275369216m b ++=+⨯+=,∴275m b ++的立方根为6.【点睛】本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.二十二、解答题22.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x 分米、2x 分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x 分米、2x 分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则 3x•2x=18,x 2=3, x 1=3 ,x 2=3-(舍去),3x=33>5,2x=23<5 ,即这块正方形工料不合格.二十三、解答题23.(1)65°;(2);(3)2n ∠M+∠BED=360°【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+解析:(1)65°;(2)3606α︒-︒;(3)2n ∠M +∠BED =360° 【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE +∠CDE =260°,再利用角平分线的定义得到∠ABF +∠CDF =130°,从而得到∠BFD 的度数,再根据角平分线的定义和三角形外角的性质可求∠M 的度数;(2)先由已知得到∠ABE =6∠ABM ,∠CDE =6∠CDM ,由(1)得∠ABE +∠CDE =360°-∠BED ,∠M =∠ABM +∠CDM ,等量代换即可求解;(3)由(2)的方法可得到2n ∠M +∠BED =360°.【详解】解:(1)如图1,作//EG AB ,//FH AB ,连结MF ,//AB CD ,//////EG AB FH CD ∴,ABF BFH ∴∠=∠,CDF DFH ∠=∠,180ABE BEG ∠+∠=︒,180GED CDE ∠+∠=︒, 360ABE BEG GED CDE ∴∠+∠+∠+∠=︒,100BED BEG DEG ∠=∠+∠=︒,260ABE CDE ∴∠+∠=︒,ABE ∠和CDE ∠的角平分线相交于E ,130ABF CDF ∴∠+∠=︒,130BFD BFH DFH ∴∠=∠+∠=︒,BM 、DM 分别是ABF ∠和CDF ∠的角平分线,12MBF ABF ∴∠=∠,12MDF CDF ∠=∠, 65MBF MDF ∴∠+∠=︒,1306565BMD ∴∠=︒-︒=︒;(2)如图1,13ABM ABF ∠=∠,13CDM CDF ∠=∠, 3ABF ABM ∴∠=∠,3CDF CDM ∠=∠,ABE ∠与CDE ∠两个角的角平分线相交于点F ,6ABE ABM ∴∠=∠,6CDE CDM ∠=∠,66360ABM CDM BED ∴∠+∠+∠=︒,BMD ABM CDM ∠=∠+∠,6360BMD BED ∴∠+∠=︒,3606BMD α︒-︒∴∠=; (3)由(2)结论可得,22360n ABM n CDM E ∠+∠+∠=︒,M ABM CDM ∠=∠+∠, 则2360n M BED ∠+∠=︒.【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.24.(1);(2)①,②,理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即解析:(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠ 【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【详解】解:(1)如图1,过点P 作//PG AB ,则//PG CD ,由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,又∵125PBA ︒∠=,155PCD ︒∠=,∴36012515580BPC ︒︒︒︒∠=--=,故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠;过点P 作PM ∥FD ,则PM ∥FD ∥CG ,∵PM ∥FD ,∴∠1=∠α,∵PM ∥CG ,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:APE αβ∠=∠+∠,②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由:过P 作//PQ DF ,∵//DF CG ,∴//PQ CG ,∴QPA β∠=∠,QPE α∠=∠,∴APE APQ EPQ βα∠=∠-∠=∠-∠;(3)如图,由①可知,∠N=∠3+∠4,∵EN 平分∠DEP ,AN 平分∠PAC ,∴∠3=12∠α,∠4=12∠β,∴1()2ANE αβ∠=∠+∠,∴ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.25.(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB ∥CD ,∴EF ∥AB ,∴∠1+∠MEF解析:(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB ∥CD ,∴EF ∥AB ,∴∠1+∠MEF =180°,同理∠2+∠NEF =180°∴∠1+∠2+∠MEN =360°【应用】(2)分别过E 点,F 点,G 点,H 点作L 1,L 2,L 3,L 4平行于AB ,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.26.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AED∠=︒.80EKD【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。

上海七年级数学下学期期末考试完整版

上海七年级数学下学期期末考试完整版

上海七年级数学下学期期末考试HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】精锐教育学科教师辅导讲义ABCD的对称中心为坐标原点,建立平面直角坐标系,AD=,求其他各点坐标.6、下列关于平面直角坐标系的说法中,正确的是(A.平面直角坐标系是由两条相互垂直的直线构成;B.平面直角坐标系是由两条数轴任意相交构成的;C.平面直角坐标系中的点的坐标是唯一确定的;D.平面上的一点的坐标在不同的平面直角坐标系内是相同的.x轴上方,距xC.(105)-, D.(105)-,30、下列说法中,错误的是( )A.如果一个点的横,纵坐标都为零,则这个点是原点; B.如果一个点在x 轴上,那它一定不属于任何象限; C.纵轴上的点的横坐标均相等,且都等于零; D.纵坐标相同的点,分布在平行于y 轴的某条直线上.专题:期末考试专题测试一、填空题(本大题共有14题,每题2分,满分28分)1.827-的立方根等于 .2.求值:4625= . 3.7的整数部分是 .4.截至今年3月31日,上海市共有5117000多户居民符合“世博大礼包” 的发放要求,5117000可用科学记数法表示为 (保留两位有效数字).5.如果已知数轴上的两点A 、B 所对应的数分别是10、310,那么A 与B 两点之间的距离是 .6.在△ABC 中,如果30B ∠=︒,45C ∠=︒,那么按角分类,△ABC 是 三角形. 7.点()2,53P -在第 象限.8.经过点(2,1)P 且垂直于x 轴的直线可以表示为直线 .9.如图1,将一直角三角板与两边平行的纸条如图所示放置,请任意选择两角写出一个有关的正确的结论: .10.如图2,两条直线AB 、CD 相交于点O ,OE 平分BOC ∠,如果:AOC COE ∠∠4:3=,那么BOD ∠ = 度.11.将一副三角板如图3所示放置(其中含30角的三角板的一条较短直角边与另一块三角板的斜边放置在一直线上),那么图中1∠= 度.图1 图2 图3 图4 12.如图4,已知△ABC ,ACB ∠的平分线CD 交AB 于点D ,//DE BC ,且DE =5cm ,如果点E 是边AC 的中点,那么AC 的长为 cm . 13.如果等腰三角形的一边长为2cm ,另一边长为23cm ,那么这个三角形的周长为 cm . 14.如图5,在△ABC 中,高AD 与高BE 相交于点H ,且BH =AC ,那么ABC ∠= 度.二、单项选择题(本大题共有4题,每题3分,满分12分)15.下列说法中错误的个数有( ) (1)3415用幂的形式表示的结果是435-; (2)3π是无理数;(3)实数与数轴上的点一一对应; (4)两个无理数的和、差、积、商一定是无理数;(A )1个; (B ) 2个; (C ) 3个; (D )4个. 16. 如果三角形的两边长分别为4厘米、6厘米,那么第三边的长不可能是( )(A )2厘米; (B ) 3厘米; (C )4厘米; (D )9厘OE DC B A 1EC B AD EH CBA D 图5360;角的两个直角三角形全等.直角坐标平面内,有标记为甲、乙、丙、丁的四个三角形,如图)丙和乙关于原点对称;)甲通过翻折可以与丙重合;∠;60,30CD;的长度表示点B6分,第题8分,第180,,在四边形CDEF共有多少对面积相等的三角形?请分别写出.(不需说明理由)180(已知),((已知),试说明BD =CE 的理由. 解:25.如图10,等边△ABC 中,点D 在边AC 上,CE ∥AB , 且CE =AD ,(1)△DBE 是什么特殊三角形,请说明理由.(2)如果点D 在边AC 的中点处,那么线段BC 与DE 有怎样的位置关系,请说明理由.解: (1)△DBE 是 三角形.说理如下:记1ABD ∠=∠,2CBE ∠=∠, 3DBC ∠=∠ 因为△ABC 是等边三角形(已知), 所以AB =BC (等边三角形的三边都相等), 60A ABC ∠=∠=( ).因为AB ∥CE (已知),所以ABC BCE ∠=∠(两直线平行,内错角相等). 所以A BCE ∠=∠(等量代换). (完成以下说理过程) 五、(本大题满分12分)26.如图11,在平面直角坐标系中,点A 的坐标为(2a ,-a ) ()0a >(1) 先画出点A 关于x 轴的对称的点B ,再写出点B 的坐标(用字母a 表示);(2) 将点A 向左平移2a 个单位到达点C 的位置,写出点C 的坐标(用字母a 表示); (3) y 轴上有一点D ,且3CD a =,求出点D 的坐标(用字母a 表示);(4) 如果y 轴上有一点D ,且3CD a =,且四边形ABCD 的面积为10,求a 的值并写出这个四边形的顶点D 的坐标. 解 :提高:期末考试提高练习一、选择题(本大题共6题,每题2分,满分12分) 1.下列说法中正确的是(A )无限小数都是无理数; (B )无理数都是无限小数; (C )实数可以分为正实数和负实数; (D )两个无理数的和一定是无理数.2.下列运算一定正确的是 (A )235+=; (B )2232312-=⨯=; (C )2a a =;(D )3223-=-.3.已知面积为10的正方形的边长为x ,那么x 的取值范围是 (A )13x <<; (B )23x <<; (C )34x <<; (D )45x <<.4.如图,下列说法中错误的是(A )∠GBD 和∠HCE 是同位角; (B )∠ABD 和∠ACH 是同位角; (C )∠FBC 和∠ACE 是内错角;(D )∠GBC 和∠BCE 是同旁内角. 321EC B AD图10图11(第27题图)。

上海市人教版七年级下册数学期末压轴难题试卷及答案.doc

上海市人教版七年级下册数学期末压轴难题试卷及答案.doc

上海市人教版七年级下册数学期末压轴难题试卷及答案.doc 一、选择题 1.9的值是()A .﹣3B .3C .±3D .﹣9 2.下列现象中是平移的是( ) A .翻开书中的每一页纸张 B .飞碟的快速转动C .将一张纸沿它的中线折叠D .电梯的上下移动 3.若点()3,P a -在x 轴上,则点()1,1Q a a +-所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.有下列四个命题:①对顶角相等;②同位角相等;③两点之间,直线最短;④连接直线外一点与直线上各点的所有线段中,垂线段最短.其中是真命题的个数有( ) A .0个 B .1个 C .2个. D .3个5.如图,已知//BC DE ,BF 平分ABC ∠,DC 平分ADE ∠,则下列判断:①ACB E ∠=∠;②DF 平分ADC ∠;③BFD BDF ∠=∠;④ABF BCD ∠=∠中,正确的有( )A .1个B .2个C .3个D .4个6.对于有理数a .b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b .例如:min {1,﹣2}=﹣2,已知min {30,a }=a ,min {30,b }=30,且a 和b 为两个连续正整数,则a ﹣b 的立方根为( )A .﹣1B .1C .﹣2D .27.如图,小明从A 处出发沿北偏东60︒方向行走至B 处,又沿北偏西20︒方向行走至C 处,则ABC ∠的度数是( )A .100︒B .90︒C .80︒D .70︒8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为点A 2,点A 2的友好点为点A 3,点A 3的友好点为点A 4,⋯⋯以此类推,当点A 1的坐标为(2,1)时,点A 2021的坐为( )A .(2,1)B .(0,﹣3)C .(﹣4,﹣1)D .(﹣2,3)二、填空题9.100的算术平方根是_____.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.若(,)A a b 在第一、三象限的角平分线上,a 与b 的关系是_________.12.将直角三角板与两边平行的纸条如图放置,若154∠=︒,则2∠=__________︒.13.如图,在△ABC 中,∠ACB =90°,∠A <∠B ,点D 为AB 边上一点且不与A 、B 重合,将△ACD 沿CD 翻折得到△ECD ,直线CE 与直线AB 相交于点F .若∠A =α,当△DEF 为等腰三角形时,∠ACD =__________________.(用α的代数式表示∠ACD )14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.15.如图,已知()0,A a ,(),0B b ,第四象限的点(),C c m 到x 轴的距离为3,若a ,b 满足()22222a b b c c -+++=-+-,则BC 与y 轴的交点坐标为__________.16.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).动点P 从点A 处出发,并按A ﹣B ﹣C ﹣D ﹣A ﹣B …的规律在四边形ABCD 的边上以每秒1个单位长的速度运动,运动时间为t 秒.若t =2021秒,则点P 所在位置的点的坐标是_____.三、解答题17.计算.(1)()()1278---+; (2)()202231127162⎛⎫-⨯-+- ⎪⎝⎭. 18.求满足下列各式的未知数x .(1)2(1)16x +=.(2)31(6)322x -=. 19.如图,已知∠AED =∠C ,∠DEF =∠B ,试说明∠EFG +∠BDG =180∘,请完成下列填空:∵∠AED =∠C (_________)∴ED ∥BC (_________)∴∠DEF =∠EHC (___________)∵∠DEF =∠B (已知)∴_______(等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵_________________(邻补角的意义)∴∠EFG +∠BDG =180∘(___________)20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC 的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A ,C 的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B 的坐标;(2)在(1)的条件下,将三角形ABC 先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A 'B 'C ',请在图中画出平移后的三角形A 'B 'C ',并分别写出点A ',B ',C '的坐标.21.已知:a 是93+的小数部分,b 是93-的小数部分.(1)求a b 、的值;(2)求445a b ++的平方根.二十二、解答题22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为3dm ,宽为2dm ,且两块纸片面积相等.(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号) (2)在长方形纸片上截出两个完整的正方形纸片,面积分别为22dm 和23dm ,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:2 1.414≈,3 1.732≈) 二十三、解答题23.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;(2)如图2,CD ∥AB ,点E 在PQ 上,∠ECN =∠CAB ,求证:∠MCA =∠DCE ;(3)如图3,BF 平分∠ABP ,CG 平分∠ACN ,AF ∥CG .若∠CAB =60°,求∠AFB 的度数.24.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.25.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.26.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC .(1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小;(3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .【参考答案】一、选择题1.B【分析】9的算术平方根,而9的算术平方根是3,进而得出答案.【详解】解:因为32=9,,故选:B .【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的前提.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A :翻开书中的每一页纸张,这是翻折现象;B :飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A :翻开书中的每一页纸张,这是翻折现象;B :飞碟的快速转动,这是旋转现象;C :将一张纸沿它的中线折叠,这是轴对称现象;D :电梯的上下移动这是平移现象.故选:D .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.D【分析】根据点()3,P a -在x 轴上,求得a ,从而求得Q 点的坐标,进而判断所在的象限.【详解】()3,P a -在x 轴上,0a =,11,11a a +=-=-,∴()1,1Q -在第四象限,【点睛】本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解.4.C【分析】根据对顶角的性质、线段的性质、平行线的性质、垂线段的性质进行解答即可.【详解】解:①对顶角相等,原命题是真命题;②两直线平行,同位角相等,不是真命题;③两点之间,线段最短,原命题不是真命题;④直线外一点与直线上各点连接的所有线段中,垂线段最短,原命题是真命题. 故选:C .【点睛】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.B【分析】根据平行线的性质求出ACB E ∠=∠,根据角平分线定义和平行线的性质求出ABF CBF ADC EDC ∠=∠=∠=∠,推出//BF DC ,再根据平行线的性质判断即可.【详解】∵//BC DE ,∴ACB E ∠=∠,∴①正确;∵//BC DE ,∴ABC ADE ∠=∠,∵BF 平分ABC ∠,DC 平分ADE ∠, ∴12ABF CBF ABC ∠=∠=∠,12ADC EDC ADE ∠=∠=∠, ∴ABF CBF ADC EDC ∠=∠=∠=∠,∴//BF DC ,∴BFD FDC ∠=∠,∴根据已知不能推出ADF CDF ∠=∠,∴②错误;③错误;∵ABF ADC ∠=∠,ADC EDC ∠=∠,∴ABF EDC ∠=∠,∵//DE BC ,∴BCD EDC ∠=∠,∴ABF BCD ∠=∠,∴④正确;即正确的有2个,故选:B .本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键.6.A【分析】根据a,b的范围即可求出a−b的立方根.【详解】解:根据题意得:a≤30,b≥30,∵25<30<36,∴5<30<6,∵a和b为两个连续正整数,∴a=5,b=6,∴a﹣b=﹣1,∴﹣1的立方根是﹣1,故选:A.【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.7.A【分析】根据平行线性质求出∠ABF,再和∠CBF相减即可得出答案.【详解】AE BF,解:由题意可得:∠A=60°,∠CBF=20°,//AE BF,∵//∴∠A+∠ABF=180°,∴∠ABF=180°﹣∠A=180°﹣60°=120°,∴∠ABC=∠ABF﹣∠CBF=120°﹣20°=100°,故选:A.【点睛】本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补,也考查了方位角,熟练掌握平行线的性质是解决本题的关键.8.A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).∵2021=505×4+1,∴点A2021的坐标为(2,1).故选:A.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.二、填空题9.10【分析】根据算术平方根的定义进行计算,即可得到答案.【详解】解:∵102=100,∴=10.故答案为:10.【点睛】本题考查了算术平方根的定义,解题的关键是熟练掌握定义.解析:10【分析】根据算术平方根的定义进行计算,即可得到答案.【详解】解:∵102=100,∴10.故答案为:10.【点睛】本题考查了算术平方根的定义,解题的关键是熟练掌握定义.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴解析:(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴对称,∴点P的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.a=b.【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.解析:a=b.【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.12.36【分析】先根据平角的定义求出的度数,再根据平行线的性质即可得求解.【详解】∵,∴,∵,故答案为:.【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键. 解析:36【分析】先根据平角的定义求出3∠的度数,再根据平行线的性质即可得求解.【详解】∵154∠=︒,∴3180190180549036∠=︒-∠-︒=︒-︒-︒=︒,∵12//l l ,2336∴∠=∠=︒故答案为:36.【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.13.或或【分析】若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果.【详解】解:由翻折的性质可知,,如图1,当时,则,,,,,当时,为等腰三角形,故答案 解析:3902α︒-或3454α︒-或3904α︒- 【分析】若DEF ∆为等腰三角形,则EDF E α∠=∠=,根据三角形外角的性质以及三角形内角和定理即可求得结果.【详解】解:由翻折的性质可知E A α∠=∠=,CDE ADC ∠=∠,如图1,当EF DF =时,则EDF E α∠=∠=,EDF CDE CDB ∠=∠-∠,CDB A ACD ∠=∠+∠,()ADC A ACD α∴=∠-∠+∠1802()A ACD =︒-∠+∠1802()ACD α=︒-+∠, 3902ACD α∴∠=︒-, ∴当3902ACD α∠=︒-时,DEF ∆为等腰三角形, 故答案为3902α︒-. 当ED EF =时,18019022DEF EDF EFD α︒-∠∠=∠==︒-; 121802702ADC EDF α∴∠=︒+∠=︒-, 11354ADC α∴∠=︒-, 11801801354ACD A ADC a α∴∠=︒-∠-∠=︒--︒+,3454α=︒-; DFE A ACF ∠=∠+∠,DFE DEF ∴∠≠∠,如图2,当DE EF =时,12EDF EFD α∠=∠=;11801802ACF A EFD αα∴∠=︒-∠-∠=︒--,31802α=︒-, 139024ACD ACF α∴∠=∠=︒-; ∴当3902ACD α∠=︒-或3454α︒-或3904α︒-时,DEF ∆为等腰三角形,故答案为:3902α︒-或3454α︒-或3904α︒-. 【点睛】本题考查翻折变换、等腰三角形的性质、三角形外角的性质以及三角形内角和定理等知识,解题的关键是熟练掌握三角形外角的性质以及三角形内角和定理.14.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011 x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.15.【分析】根据二次根式的非负性、绝对值的非负性求出a ,b ,再求出直线BC 的解析式即可得解;【详解】∵、都有意义,∴,∴,∴,∴,∵第四象限的点到轴的距离为3,∴C 点的坐标为,设直 解析:30,2⎛⎫- ⎪⎝⎭ 【分析】根据二次根式的非负性、绝对值的非负性求出a ,b ,再求出直线BC 的解析式即可得解;【详解】 ∵都有意义,∴2c =, ∴()2220a b b -+++=, ∴2020a b b -+=⎧⎨+=⎩, ∴42a b =-⎧⎨=-⎩, ∵第四象限的点(),C c m 到x 轴的距离为3,∴C 点的坐标为()2,3-,设直线BC 的解析式为y kx d =+,把()2,0-,()2,3-代入得:2320k d k d +=-⎧⎨-+=⎩, 解得:3432k d ⎧=-⎪⎪⎨⎪=-⎪⎩, 故BC 的解析式为3342y x =--, 当0x =时,32y =-, 故BC 与y 轴的交点坐标为302⎛⎫ ⎪⎝⎭,-; 故答案是302⎛⎫ ⎪⎝⎭,-. 【点睛】本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键.16.(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P 点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P 点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1),B(-1,1),C(-1,-2), D(1,-2)∴AB= CD= 2,AD= BC= 3,∴四边形ABCD 的周长= AB+ AD+BC+CD= 10∵P点的运动是绕矩形ABCD的周长的循环运动,且速度为每秒一个单位长度∴P点运动一周需要的时间为10秒∵2021=202×10+1∴当t=2021秒时P的位置相当于t=1秒时P的位置∵t=1秒时P的位置是从A点向B移动一个单位∴此时P点的坐标为(0,1)∴t=2021秒时P点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P点一个循环运动需要花费的时间.三、解答题17.(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.【详解】解:(1)原式(2)原式【点睛】本题考查有理数解析:(1)3;(2)3 2 -【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.【详解】解:(1)原式12783=-++=(2)原式11342⎛⎫=-⨯+- ⎪⎝⎭1342=-+-542=-32=-【点睛】本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键.18.(1)或;(2)【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.【详解】解:(1),即或,解得或.(2),,解得.解析:(1)3x =或5x =-;(2)10x =【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以12,再根据立方根的定义直接开立方即可求解.【详解】解:(1)14x +=±,即14x +=或14x +=-,解得3x =或5x =-.(2)3(6)64x -=, 64x -=,解得10x =.【点睛】本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B ;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED ∥BC ,通过两直线平行,内错角相等推出∠解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B ;∠DFE +∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠DEF=∠EHC,再运用等量代换得到∠EHC =∠B,最后推出BD∥EH,∠BDG=∠DFE,再利用邻补角的意义推出结论,据此回答问题.【详解】解:∵∠AED=∠C (已知)∴ED∥BC(同位角相等,两直线平行)∴∠DEF=∠EHC (两直线平行,内错角相等)∵∠DEF=∠B(已知)∴∠EHC =∠B (等量代换)∴BD∥EH(同位角相等,两直线平行)∴∠BDG=∠DFE(两直线平行,内错角相等)∵∠DFE+∠EFG =180∘(邻补角的意义)∴∠EFG+∠BDG=180∘(等量代换).【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键.20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(2)分别作出A′,B′,C′即可解决问题.【详解】解:(1)平面直角坐标系如图所示:B(0,1).(2)△A ′B ′C ′如图所示.A ′(2,1),B ′(4,3),C ′(5,1).【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1),;(2)±3.【分析】(1)首先得出1<<2,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】(1)∵1<<2∴10<<11,7<<8∴的整数部分为10,的整数部分为7,解析:(1)31a ,2b =2)±3.【分析】(1)首先得出12,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】(1)∵12∴10<911,7<98∴910,97,910,97a b ∴=+=+,1a ∴=,2b = (2)原式()45a b =++415=⨯+9=9∴的平方根为:3±.【点睛】此题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.二十二、解答题22.(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1;(2)不同意,理由见解析【分析】(1)设正方形边长为dm x ,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.【详解】解:(1)设正方形边长为dm x ,则223x =⨯,由算术平方根的意义可知6x =, 所以正方形的边长是6dm .(2)不同意.因为:两个小正方形的面积分别为22dm 和23dm ,则它们的边长分别为2dm 和3dm .23 3.1+≈,即两个正方形边长的和约为3.1dm ,所以3.13>,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为22dm 和23dm 的正方形纸片.【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念. 二十三、解答题23.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB +∠ACD =180°,由邻补角定义得到∠ECM +∠ECN =180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB =120°﹣∠GCA ,再由角平分线的定义及平行线的性质得到∠GCA ﹣∠ABF =60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A 作AD ∥MN ,∵MN ∥PQ ,AD ∥MN ,∴AD ∥MN ∥PQ ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.24.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A (−2,0),B(2,0),C(2,2),即可计算出解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED =∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC 的解析式为y =12x +1,则G 点坐标为(0,1),然后利用S △PAC =S △APG +S △CPG 进行计算.【详解】解:(1)由题意知:a =−b ,a−b +4=0,解得:a =−2,b =2,∴ A (−2,0),B (2,0),C (2,2),∴S △ABC =1AB BC=42⋅; (2)∵CB ∥y 轴,BD ∥AC ,∴∠CAB =∠ABD ,∴∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED =∠1+∠2=12×90°=45°;(3)存在.理由如下:设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,把A (−2,0)、C (2,2)代入得: -2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =12x +1,∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1,∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.25.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点P与点E、F在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可∠=∠=60°,计算∠PFD即可;以推出GEP EGP(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB 上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点P与点E、F在一直线上时,作图如下,∠=∠,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠=∠FHP=60°,∴GEP EGP∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.26.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.。

上海七年级数学下学期期末考试完整版

上海七年级数学下学期期末考试完整版

上海七年级数学下学期期末考试HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】精锐教育学科教师辅导讲义ABCD的对称中心为坐标原点,建立平面直角坐标系,AD=,求其他各点坐标.6、下列关于平面直角坐标系的说法中,正确的是(A.平面直角坐标系是由两条相互垂直的直线构成;B.平面直角坐标系是由两条数轴任意相交构成的;C.平面直角坐标系中的点的坐标是唯一确定的;D.平面上的一点的坐标在不同的平面直角坐标系内是相同的.x轴上方,距xC.(105)-, D.(105)-,30、下列说法中,错误的是( )A.如果一个点的横,纵坐标都为零,则这个点是原点; B.如果一个点在x 轴上,那它一定不属于任何象限; C.纵轴上的点的横坐标均相等,且都等于零; D.纵坐标相同的点,分布在平行于y 轴的某条直线上.专题:期末考试专题测试一、填空题(本大题共有14题,每题2分,满分28分)1.827-的立方根等于 .2.求值:4625= . 3.7的整数部分是 .4.截至今年3月31日,上海市共有5117000多户居民符合“世博大礼包” 的发放要求,5117000可用科学记数法表示为 (保留两位有效数字).5.如果已知数轴上的两点A 、B 所对应的数分别是10、310,那么A 与B 两点之间的距离是 .6.在△ABC 中,如果30B ∠=︒,45C ∠=︒,那么按角分类,△ABC 是 三角形. 7.点()2,53P -在第 象限.8.经过点(2,1)P 且垂直于x 轴的直线可以表示为直线 .9.如图1,将一直角三角板与两边平行的纸条如图所示放置,请任意选择两角写出一个有关的正确的结论: .10.如图2,两条直线AB 、CD 相交于点O ,OE 平分BOC ∠,如果:AOC COE ∠∠4:3=,那么BOD ∠ = 度.11.将一副三角板如图3所示放置(其中含30角的三角板的一条较短直角边与另一块三角板的斜边放置在一直线上),那么图中1∠= 度.图1 图2 图3 图4 12.如图4,已知△ABC ,ACB ∠的平分线CD 交AB 于点D ,//DE BC ,且DE =5cm ,如果点E 是边AC 的中点,那么AC 的长为 cm . 13.如果等腰三角形的一边长为2cm ,另一边长为23cm ,那么这个三角形的周长为 cm . 14.如图5,在△ABC 中,高AD 与高BE 相交于点H ,且BH =AC ,那么ABC ∠= 度.二、单项选择题(本大题共有4题,每题3分,满分12分)15.下列说法中错误的个数有( ) (1)3415用幂的形式表示的结果是435-; (2)3π是无理数;(3)实数与数轴上的点一一对应; (4)两个无理数的和、差、积、商一定是无理数;(A )1个; (B ) 2个; (C ) 3个; (D )4个. 16. 如果三角形的两边长分别为4厘米、6厘米,那么第三边的长不可能是( )(A )2厘米; (B ) 3厘米; (C )4厘米; (D )9厘OE DC B A 1EC B AD EH CBA D 图5360;角的两个直角三角形全等.直角坐标平面内,有标记为甲、乙、丙、丁的四个三角形,如图)丙和乙关于原点对称;)甲通过翻折可以与丙重合;∠;60,30CD;的长度表示点B6分,第题8分,第180,,在四边形CDEF共有多少对面积相等的三角形?请分别写出.(不需说明理由)180(已知),((已知),试说明BD =CE 的理由. 解:25.如图10,等边△ABC 中,点D 在边AC 上,CE ∥AB , 且CE =AD ,(1)△DBE 是什么特殊三角形,请说明理由.(2)如果点D 在边AC 的中点处,那么线段BC 与DE 有怎样的位置关系,请说明理由.解: (1)△DBE 是 三角形.说理如下:记1ABD ∠=∠,2CBE ∠=∠, 3DBC ∠=∠ 因为△ABC 是等边三角形(已知), 所以AB =BC (等边三角形的三边都相等), 60A ABC ∠=∠=( ).因为AB ∥CE (已知),所以ABC BCE ∠=∠(两直线平行,内错角相等). 所以A BCE ∠=∠(等量代换). (完成以下说理过程) 五、(本大题满分12分)26.如图11,在平面直角坐标系中,点A 的坐标为(2a ,-a ) ()0a >(1) 先画出点A 关于x 轴的对称的点B ,再写出点B 的坐标(用字母a 表示);(2) 将点A 向左平移2a 个单位到达点C 的位置,写出点C 的坐标(用字母a 表示); (3) y 轴上有一点D ,且3CD a =,求出点D 的坐标(用字母a 表示);(4) 如果y 轴上有一点D ,且3CD a =,且四边形ABCD 的面积为10,求a 的值并写出这个四边形的顶点D 的坐标. 解 :提高:期末考试提高练习一、选择题(本大题共6题,每题2分,满分12分) 1.下列说法中正确的是(A )无限小数都是无理数; (B )无理数都是无限小数; (C )实数可以分为正实数和负实数; (D )两个无理数的和一定是无理数.2.下列运算一定正确的是 (A )235+=; (B )2232312-=⨯=; (C )2a a =;(D )3223-=-.3.已知面积为10的正方形的边长为x ,那么x 的取值范围是 (A )13x <<; (B )23x <<; (C )34x <<; (D )45x <<.4.如图,下列说法中错误的是(A )∠GBD 和∠HCE 是同位角; (B )∠ABD 和∠ACH 是同位角; (C )∠FBC 和∠ACE 是内错角;(D )∠GBC 和∠BCE 是同旁内角. 321EC B AD图10图11(第27题图)。

上海松江二中(集团)初级中学人教版七年级下册数学期末压轴难题综合测试题

上海松江二中(集团)初级中学人教版七年级下册数学期末压轴难题综合测试题

上海松江二中(集团)初级中学人教版七年级下册数学期末压轴难题综合测试题一、选择题1.下列各式中,正确的是()A .4=±2B .±16=4C .2(4)-=-4D .38-=-22.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( ) A .B .C .D .3.平面直角坐标系中,点()2,3P -所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.下列命题是假命题的是( )A .对顶角相等B .两直线平行,同旁内角相等C .过直线外一点有且只有一条直线与已知直线平行D .同位角相等,两直线平行5.如图,AB ∥CD ,∠EBF =∠FBA ,∠EDG =∠GDC ,∠E =45°,则∠H 为( )A .22°B .22.5°C .30°D .45°6.下列说法正确的是( ) A .64的平方根是8B .-16的立方根是-4C .只有非负数才有立方根D .-3的立方根是33-7.如图,已知////AB CD EF ,FC 平分AFE ∠,26C ∠=︒,则A ∠的度数是( )A .35︒B .45︒C .50︒D .52︒8.如图,在平面直角坐标系xOy 中,一只蚂蚁从原点O 出发向右移动1个单位长度到达点P 1;然后逆时针转向90°移动2个单位长度到达点P 2;然后逆时针转向90°,移动3个单位长度到达点P 3;然后逆时针转向90°,移动4个单位长度到达点P 4;…,如此继续转向移动下去.设点P n (x n ,y n ),n =1,2,3,…,则x 1+x 2+x 3+…+x 2021=( )A .1B .﹣1010C .1011D .2021二、填空题9.算术平方根是5的实数是___________. 10.点()2,1M -关于y 轴的对称点的坐标为______.11.如图,BE 是△ABC 的角平分线,AD 是△ABC 的高,∠ABC=60°,则 ∠AOE=_____.12.如图,∠B =∠C ,∠A =∠D ,有下列结论:①AB //CD ;②AE //DF ;③AE ⊥BC ;④∠AMC =∠BND .其中正确的有_____.(只填序号)13.如图所示是一张长方形形状的纸条,1105∠=︒,则2∠的度数为__________.14.若40a b <<,且a ,b 是两个连续的整数,则a+b 的值为_______15.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.16.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为_______.三、解答题17.计算:(1)239(6)27----. (2)﹣12+(﹣2)3×31127()89--⨯- .18.求下列各式中x 的值. (1)x 2﹣81=0; (2)2x 2﹣16=0; (3)(x ﹣2)3=﹣27.19.如图//EF AD ,12∠=∠,110AGD ∠=︒,求BAC ∠度数.完成说理过程并注明理由. 解:∵//EF AD , ∴2∠=________( ) 又∵12∠=∠, ∴13∠=∠,∴//AB __________( ) ∴______180AGD ∠+=︒( ) ∵110AGD ∠=︒, ∴BAC ∠=______度.20.在平面直角坐标系中有三个点(3,2)A -、B (-5,1)、(2,0)C -,(,)P a b 是ABC 的边AC 上任意一点,ABC 经平移后得到111A B C △,点P 的对应点...为1(6,2)P a b ++,(1)点A 到x 轴的距离是 个单位长度; (2)画出ABC 和111A B C △; (3)求111A B C △的面积.21.数学张老师在课堂上提出一个问题:“通过探究知道:2 1.414≈,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用2-1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答: (1)3的小数部分是多少,请表示出来.(2)a 为3的小数部分,b 为5的整数部分,求-3a b +的值. (3)已知8+3=x+y ,其中x 是一个正整数,0<y <1,求()20202-3x y +的值.二十二、解答题22.如图,用两个面积为28cm 的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm ;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm 的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.二十三、解答题23.如图,已知//AB CD ,CN 是BCE ∠的平分线. (1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.24.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论. 25.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.26.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN 沿BA 的方向平移至图②的位置,MN 与CD 相交于点E ,求∠CEN 的度数;(2)将图①中的三角板OMN 绕点O 按逆时针方向旋转,使∠BON =30°,如图③,MN 与CD 相交于点E ,求∠CEN 的度数;(3)将图①中的三角板OMN 绕点O 按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN 恰好与直线CD 垂直.(直接写出结果)【参考答案】一、选择题 1.D 解析:D 【分析】依据算术平方根、平方根、立方根的性质求解即可. 【详解】解:A 2=,故选项错误; B 、4±,故选项错误;C 4=,故选项错误;D 2=-,故选项正确; 故选D . 【点睛】本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键.2.C 【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】解:根据平移的概念,观察图形可知图案B 通过平移后可以得到解析:C 【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】解:根据平移的概念,观察图形可知图案B 通过平移后可以得到. 故选C . 【点睛】本题考查生活中的平移现象,仔细观察各选项图形是解题的关键. 3.D 【分析】根据点在各象限的坐标特点即可得答案. 【详解】∵点的横坐标2>0,纵坐标-3<0, ∴点()2,3P -所在的象限是第四象限,故选:D . 【点睛】本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题. 【详解】解:A. 对顶角相等是真命题,故A 不符合题意;B. 两直线平行,同旁内角互补,故B 是假命题,符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C 不符合题意;D. 同位角相等,两直线平行,是真命题,故D 不符合题意, 故选:B . 【点睛】本题考查真假命题,是基础考点,掌握相关知识是解题关键. 5.B 【分析】过E 作//EQ AB ,过H 作//HI AB ,利用平行线的性质解答即可. 【详解】解:过E 作//EQ AB ,过H 作//HI AB ,//AB CD ,//////EQ AB CD HI ∴,180QEB ABE ∴∠+∠=︒,180QED EDC ∠+∠=︒, 180IHD CDH ∠+∠=︒,180IHB ABH ∠+∠=︒,EBF FBA ∠=∠,EDG GDC ∠=∠,45BED ∠=︒,2245FBA GDC BED ∴∠-∠=∠=︒,1180(180)22.52BHD CDH ABH GDC FBA FBA GDC BED ∴∠=∠-∠=︒-∠-︒-∠=∠-∠=∠=︒.故选:B .【点睛】此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答.6.D 【分析】根据平方根和立方根的定义逐项判断即可得. 【详解】A 、64的平方根是8±,则此项说法错误,不符题意;B 、因为()346416-=-≠- ,所以16-的立方根不是4-,此项说法错误,不符题意; C 、任何实数都有立方根,则此项说法错误,不符题意;D =3-的立方根是 故选:D . 【点睛】本题考查了平方根和立方根,熟练掌握定义是解题关键. 7.D 【分析】由题意易得26EFC C ∠=∠=︒,则有52EFA ∠=︒,然后根据平行线的性质可求解. 【详解】解:∵//CD EF ,26C ∠=︒, ∴26EFC C ∠=∠=︒, ∵FC 平分AFE ∠, ∴26EFC CFA ∠=∠=︒, ∴52EFA ∠=︒, ∵//AB CD , ∴52A EFA ∠=∠=︒; 故选D . 【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.8.A 【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:、、、、、、解析:A 【分析】根据各点横坐标数据得出规律,进而得出128x x x ++⋯+;经过观察分析可得每4个数的和为2-,把2020个数分为505组,求出20211011x =,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 的值分别为:1,1,2-,2-,3,3,4-,4-;1284x x x∴++⋯+=-,123411222x x x x+++=+--=-,567833442x x x x+++=+--=-,⋯,9798991002x x x x+++=-,⋯,1220202(20204)1010x x x∴++⋯+=-⨯÷=-,20211011x=,12320211x x x x∴+++⋯+=,故选:A.【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.二、填空题9.5【分析】根据算术平方根的定义解答即可.【详解】解:算术平方根是的实数是5.故答案为:5.【点睛】本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个解析:5【分析】根据算术平方根的定义解答即可.【详解】5.故答案为:5.【点睛】本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个,算术平方根有1个是解题关键.10.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点解析:()2,1【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M-关于y轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.11.60°【分析】先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD 的度数,由对顶角相等即可得出结论.【详解】∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A解析:60°【分析】先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论.【详解】∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=12∠ABC=12×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°.【点睛】本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和. 12.①②④【分析】根据平行线的判定与性质分析判断各项正确与否即可.【详解】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC解析:①②④【分析】根据平行线的判定与性质分析判断各项正确与否即可.【详解】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故答案为:①②④.【点睛】本题考查了对顶角的性质及平行线的判定与性质,难度一般.13.5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,∴∠3=解析:5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,∴∠3=180°-105°=75°,∴∠2=(180°-75°)÷2=52.5°,故答案为:52.5°.【点睛】此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的.14.13【解析】分析:先估算出的范围,求出a、b的值,再代入求出即可.详解:∵6<<7,∴a=6,b=7,∴a+b=13.故答案为13.点睛:本题考查了估算无理数的大小,能估算出的范围是解答此解析:13【解析】40a、b的值,再代入求出即可.详解:∵6407,∴a=6,b=7,∴a+b=13.故答案为13.4015.(0,2)、(﹣4,﹣2).【分析】由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.【详解】解:∵点A(a﹣2,a),A解析:(0,2)、(﹣4,﹣2).【分析】由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.【详解】解:∵点A(a﹣2,a),AB⊥x轴,AB=2,∴|a|=2,∴a=±2,∴当a=2时,a﹣2=0;当a=﹣2时,a﹣2=﹣4.∴点A的坐标是(0,2)、(﹣4,﹣2).故答案为:(0,2)、(﹣4,﹣2).【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键.16.(0,-2)【分析】根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根解析:(0,-2)【分析】根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根据此规律即可解决问题.【详解】解:观察,发现规律:A1(3,1),A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),…,∴A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数).∵2020=4×504+4,∴点A2020的坐标为(0,-2).故答案为:(0,-2).【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”.三、解答题17.(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-解析:(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-(-3)=3-6+3=0;(2)原式= -1+(-8)×18-(-3)×(-13)=-1-1-1=-3.故答案为(1)0;(2)-3.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键.18.(1)x=±9;(2);(3)x=﹣1.【分析】(1)式子整理后,利用平方根的定义求解即可;(2)式子整理后,利用平方根的定义求解即可;(3)利用立方根的定义求解即可.【详解】解:(1)解析:(1)x=±9;(2)x=±3)x=﹣1.【分析】(1)式子整理后,利用平方根的定义求解即可;(2)式子整理后,利用平方根的定义求解即可;(3)利用立方根的定义求解即可.【详解】解:(1)x2﹣81=0,x2=81,x=±9;(2)2x2﹣16=0,2x2=16,x2=8,x=±(3)(x﹣2)3=﹣27,x﹣2=﹣3,x=2﹣3,x=﹣1.【点睛】本题主要考查了平方根与立方根的定义:求a的立方根,实际上就是求哪个数的立方等于a,熟记相关定义是解答本题的关键.19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等解析:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB ∥DG ,然后根据两直线平行,同旁内角互补解答即可.【详解】解:∵EF ∥AD ,∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB ∥DG (内错角相等,两直线平行).∴∠AGD +∠BAC =180°(两直线平行,同旁内角互补).∵∠AGD =110°,∴∠BAC =70度.故答案为:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70.【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB ∥DG 是解题的关键.20.(1)2;(2)见解析;(3)2.5【分析】(1)根据A 点的纵坐标即可求解;(2)根据网格结构找出点A 、B 、C 的位置,然后顺次连接即可,再根据点P 、P1的坐标确定出变化规律,然后找出点A1、B解析:(1)2;(2)见解析;(3)2.5【分析】(1)根据A 点的纵坐标即可求解;(2)根据网格结构找出点A 、B 、C 的位置,然后顺次连接即可,再根据点P 、P 1的坐标确定出变化规律,然后找出点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1)∵(3,2)A -∴点A 到x 轴的距离是2个单位长度故答案为:2;(2)如图,ABC ∆和111A B C ∆为所求作(3)S=111 32121213 222⨯-⨯⨯-⨯⨯-⨯⨯=6-1-1-1.5=2.5【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.(1)-1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入解析:(131;(2)1;(3)19【分析】(13(235a和b的值,从而求出结论;(33y,从而求出x的值,代入求值即可.【详解】解:(1)∵132∴31∴331;(2)∵132,253∴3152∴331;∴31,b=2∴3a b+-3123+-=1(3)∵1∴1∴1)=9∴(20202x y +-=2020291⨯+-=181+=19 【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键.二十二、解答题22.(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm 2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.【详解】解:(1)两个正方形面积之和为:2×8=16(cm 2),∴拼成的大正方形的面积=16(cm 2),∴大正方形的边长是4cm ;故答案为:4;(2)设长方形纸片的长为2xcm ,宽为xcm ,则2x •x =14,解得:x =2x ,∴不存在长宽之比为2:1且面积为214cm 的长方形纸片.【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键.二十三、解答题23.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据解析:(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠, 12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠,⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,∴∠+∠+∠+∠=︒,ABQ FBP ECQ DCP180∴∠+∠=∠+∠+∠+∠BPC BQC BPH CPH BQG CQG=∠+∠+∠+∠=︒,ABQ FBP ECQ DCP180∴∠+∠=︒不变.180BPC BQC【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.24.(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.25.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点P与点E、F在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可∠=∠=60°,计算∠PFD即可;以推出GEP EGP(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB 上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点P与点E、F在一直线上时,作图如下,∠=∠,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠=∠FHP=60°,∴GEP EGP∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.26.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数.。

上海第二初级中学人教版七年级下册数学期末压轴难题考试试卷及答案

上海第二初级中学人教版七年级下册数学期末压轴难题考试试卷及答案

上海第二初级中学人教版七年级下册数学期末压轴难题考试试卷及答案 一、选择题1.4的平方根是()A .2B .2±C .2D .2±2.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .3.已知 A(−1,2)为平面直角坐标系中一点,下列说法正确的是( ) A .点A 在第一象限 B .点A 的横坐标是2 C .点A 到y 轴的距离是1D .以上都不对4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( ) A .②③B .②④C .③④D .②③④5.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒6.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>7.如图,在ABC 中,//DF AB 交AC 于点E ,交BC 于点F ,连接DC ,70A ∠=︒,38D ∠=︒,则DCA ∠的度数是( )A .42°B .38°C .40°D .32°8.已知点0(E x ,)o y ,点2(F x ,2)y ,点1(M x ,1)y 是线段EF 的中点,则0212x x x +=,0212y y y +=.在平面直角坐标系中有三个点A (1,1-),B (1-,1-),C (0,1),点P (0,2)关于点A 的对称点1P (即P ,A ,1P 三点共线,且1)PA P A =,1P 关于点B 的对称点2P ,2P 关于点C 的对称点3P ,⋯按此规律继续以A ,B ,C 三点为对称点重复前面的操作.依次得到点4P ,5P ,6P ⋯,则点2015P 的坐标是( ) A .(0,0)B .(0,2)C .(2,4-)D .(4-,2)二、填空题9.若2(23)20a b ++-=则b =a ________.10.若点P(a,b)关于y 轴的对称点是P 1 ,而点P 1关于x 轴的对称点是P 2 ,若点P 2的坐标为(-3,4),则a=_____,b=______11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.12.如图,直线m 与∠AOB 的一边射线OB 相交,∠3=120°,向上平移直线m 得到直线n ,与∠AOB 的另一边射线OA 相交,则∠2-∠1=_______º.13.如图,沿折痕EF 折叠长方形ABCD ,使C ,D 分别落在同一平面内的C ',D 处,若155∠=︒,则2∠的大小是_______︒.14.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______15.点31,25()P m m +-到两坐标轴的距离相等,则m =________.16.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.三、解答题17.计算: (1)3-(-5)+(-6) (2)()211162--⨯18.求下列各式中x 的值: (1)23126x -= (2)()3180x --=19.阅读并完成下列的推理过程.如图,在四边形ABCD 中,E 、F 分别在线段AB 、AD 上,连结ED 、EF ,已知∠AFE =∠CDF ,∠BCD +∠DEF =180°.证明BC ∥DE ; 证明:∵∠AFE =∠CDF (已知) ∴EF ∥CD ( ) ∴∠DEF =∠CDE ( ) ∵∠BCD +∠DEF =180°( ) ∴ ( ) ∴BC ∥DE ( )20.如图,在平面直角坐标系中,A (﹣1,﹣2),B (﹣2,﹣4),C (﹣4,﹣1).△ABC 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+2,y 0+4),将△ABC 作同样的平移得到△A 1B 1C 1.(1)请画出△A 1B 1C 1并写出点A 1,B 1,C 1的坐标; (2)求△A 1B 1C 1的面积;21.已知a 是172-的整数部分,b 是173-的小数部分. (1)求a ,b 的值;(2)求()()324a b -++的平方根.二十二、解答题22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.二十三、解答题23.已知:AB ∥CD ,截线MN 分别交AB 、CD 于点M 、N .(1)如图①,点B 在线段MN 上,设∠EBM =α°,∠DNM =β°,且满足30-a +(β﹣60)2=0,求∠BEM 的度数;(2)如图②,在(1)的条件下,射线DF 平分∠CDE ,且交线段BE 的延长线于点F ;请写出∠DEF 与∠CDF 之间的数量关系,并说明理由;(3)如图③,当点P 在射线NT 上运动时,∠DCP 与∠BMT 的平分线交于点Q ,则∠Q 与∠CPM 的比值为 (直接写出答案).24.如图,已知//AB CD P ,是直线AB CD ,间的一点,PF CD ⊥于点F PE ,交AB 于点120E FPE ∠=︒,.(1)求AEP ∠的度数;(2)如图2,射线PN 从PF 出发,以每秒40︒的速度绕P 点按逆时针方向旋转,当PN 垂直AB 时,立刻按原速返回至PF 后停止运动:射线EM 从EA 出发,以每秒15︒的速度绕E 点按逆时针方向旋转至EB 后停止运动,若射线PN ,射线EM 同时开始运动,设运动间为t 秒.①当20MEP ∠=︒时,求EPN ∠的度数; ②当 //EM PN 时,求t 的值.25.Rt △ABC 中,∠C=90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P 在边AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ;(3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间的关系为: . 26.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程: ∵180BDC DBC BCD ∠+∠+∠=︒,(______) ∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质) ∵12180A DBC BCD ∠+∠+∠+∠+∠=︒, ∴12180A DBC BCD ∠+∠+∠=︒-∠-∠, ∴12BDC A ∠=∠+∠+∠.(______) (2)请你按照小丽的思路完成探究过程; (3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.【参考答案】一、选择题 1.D 解析:D 【分析】依据平方根的定义、算术平方根的定义进行解答即可. 【详解】 解:∵42=, ∴42故选D. 【点睛】本题主要考查的是算术平方根、平方根的定义,熟练掌握相关概念是解题的关键.2.B 【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可. 【详解】A ,C ,D 选项中的图案不能通过平移得到,B 选项中的图案通过平移后可以得到. 故选B.解析:B 【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可. 【详解】A ,C ,D 选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.【点睛】本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键. 3.C【分析】根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可.【详解】解:A、−1<0,2>0,点A在第二象限,原说法错误,该选项不符合题意;B、点A的横坐标是−1,原说法错误,该选项不符合题意;C、点A到y轴的距离是1,该选项正确,符合题意;D、以上都不对,说法错误,该选项不符合题意;故选:C.【点睛】本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键.4.D【分析】根据对顶角的定义对①③进行判断;根据过直线外一点有且只有一条直线与已知直线平行对②进行判断;根据平行线的性质对④进行判断.【详解】对顶角相等,所以①正确,不符合题意;过直线外一点有且只有一条直线与已知直线平行,所以②不正确,符合题意;相等的角不一定为对顶角,所以③不正确,符合题意;两直线平行,同位角相等,所以④不正确,符合题意,故选:D.【点睛】本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题的关键.5.A【分析】过P点作PM//AB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P点作PM//AB交AC于点M.∵CP平分∠ACD,∠ACD=68°,∴∠4=12∠ACD =34°. ∵AB //CD ,PM //AB , ∴PM //CD , ∴∠3=∠4=34°, ∵AP ⊥CP , ∴∠APC =90°,∴∠2=∠APC -∠3=56°, ∵PM //AB , ∴∠1=∠2=56°, 即:∠BAP 的度数为56°, 故选:A . 【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键. 6.D 【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案. 【详解】解:∵3a =-,b =()22c ==--=, ∴c b a >>, 故选:D . 【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简. 7.D 【分析】由//DF AB 可得到A ∠与FEC ∠的关系,利用三角形的外角与内角的关系可得结论. 【详解】解://DF AB ,70A ∠=︒,70A FEC ∴∠=∠=︒.FEC D DCA ∠=∠+∠,38D ∠=︒, DCA FEC D ∴∠=∠-∠ 7038=︒-︒ 32=︒.故选:D .【点睛】本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键.8.A 【分析】首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标 【详解】 解:设, ∵,解析:A 【分析】首先利用题目所给公式求出1P 的坐标,然后利用公式求出对称点2P 的坐标,依此类推即可求出7P 的坐标;由7P 的坐标和1P 的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点2015P 的坐标 【详解】解:设()1P xy ,, ∵()1,1A -,()0,2P ,且A 是1PP 的中点, ∴021122x y ++==-,,解得:2y 4x ==-,, ∴()124P -, 同理可得:()()()()()()234567424022000224P P P P P P ----,,,,,,,,,,,, ∴每6个点一个循环, ∵201533656=∴点2015P 的坐标是()500P , 故选A 【点睛】此题考查了平面直角坐标系中坐标规律的探索,读懂题目,利用题目所给公式是解题的关键,利用公式求出几个点的坐标,找到循环规律,利用这个规律即可求出.二、填空题9.【分析】根据平方与二次根式的非负性即可求解.【详解】依题意得2a+3=0.b-2=0,解得a=-,b=2,∴==【点睛】此题主要考查实数的性质,解题的关键是熟知实数的性质.解析:3 2【分析】根据平方与二次根式的非负性即可求解.【详解】依题意得2a+3=0.b-2=0,解得a=-32,b=2,∴3 2【点睛】此题主要考查实数的性质,解题的关键是熟知实数的性质.10.a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P2,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大11.135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°解析:135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.【详解】解:连接BD,∵∠C+∠CBD+∠CDB=180°,BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=90°.∵AB∥DE,∴∠ABD+∠BDE=180°,∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.∵∠ABC和∠CDE的平分线交于点F,∴∠CBF+∠CDF=1×270°=135°,2∴∠BFD=360°-90°-135°=135°.故答案为135.【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.12.60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直解析:60延长BO 交直线n 于点C ,由平行线的性质得∠ACB =∠1,由邻补角得∠AOC =60°,再由三角形外角的性质可得结论.【详解】解:延长BO 交直线n 于点C ,如图,∵直线m 向上平移直线m 得到直线n ,∴m ∥n ,∴∠ACB =∠1,∵∠3=120°,∴∠AOC =60°∵∠2=∠ACO +∠AOC =∠1+60°,∴∠2-∠1=60°.故答案为60.【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键.13.70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解.【详解】解:由长方形可得:,∵,∴,由折叠可得,∴;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易图可得155EFC ∠=∠=︒,由折叠的性质可得55EFC EFC '∠=∠=︒,然后问题可求解.解:由长方形ABCD 可得://AD BC ,∵155∠=︒,∴155EFC ∠=∠=︒,由折叠可得55EFC EFC '∠=∠=︒,∴218070EFC EFC '∠=︒-∠-∠=︒;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.14..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.【点睛】此题主要考查规律的探索, 解析:43. 【分析】先根据题意求得2a 、3a 、4a 、5a ,发现规律即可求解.【详解】解:∵a 1=3 ∴22223a ==--,()321222a ==--,4241322a ==-,523423a ==-, ∴该数列为每4个数为一周期循环,∵20204505÷=∴a 2020=443a =. 故答案为:43. 【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.15.或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距解析:6-或45. 【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点31,25()P m m +-到两坐标轴的距离相等, ∴31=25m m +-,31=25m m +-或31=(25)m m +--,解得,=6m -或4=5m , 故答案为:6-或45. 【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值. 16.(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐解析:(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形1y =直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于1y =直线上最右边的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=,右下角的点的横坐标为2时,如下图点(2,1)A ,共有4个,242=,右下角的点的横坐标为3时,共有9个,293=,右下角的点的横坐标为4时,如下图点(4,1)B ,共有16个,2164=,⋯右下角的点的横坐标为n 时,共有2n 个, 2452025=,45是奇数,∴第2025个点是(45,1),202520214-=,点是(45,1)向上平移4个单位,∴第2021个点是(45,5).故答案为:(45,5).【点睛】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.三、解答题17.(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.【详解】(1)解:3-(-5)+(-6)=3+5-6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.【详解】(1)解:3-(-5)+(-6)=3+5-6=2(2)解:(-1)212=1-4× 12=1-2=-1【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵∴∴∴;(2)解:∵∴∴∴.解析:(1)3x =±;(2)3x =【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵23126x -=∴2327x =∴29x =∴3x =±;(2)解:∵()3180x --=∴()318x -= ∴12x -=∴3x =.【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.19.同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE=∠CD解析:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE=∠CDF(已知)∴EF∥CD(同位角相等,两直线平行)∴∠DEF=∠CDE(两直线平行,内错角相等)∵∠BCD+∠DEF=180°(已知)∴∠BCD+∠CDE=180°(等量代换)∴BC∥DE(同旁内角互补,两直线平行)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.(2)利用分割法求解即可.【详解】解:(1解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)7 2【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.(2)利用分割法求解即可.【详解】解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3).(2)△A 1B 1C 1的面积=3×3-12×3×2-12×1×2-12×1×3=72. 【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(1)a=2,b=;(2)±3【分析】(1)首先估算出的范围,从而得到和的范围,可得a ,b 值;(2)将a ,b 的值代入计算,再求平方根即可.【详解】解:(1)∵,∴,∴,,∴a=2,b解析:(1)a =2,b 174;(2)±3【分析】(117172173的范围,可得a ,b 值; (2)将a ,b 的值代入计算,再求平方根即可.【详解】解:(1)∵161725< ∴4175<, ∴21723<,11732<<,∴a =2,b 1731174-;(2)()()324a b -++=())2317424++- =9∴()()324a b -++的平方根为±3.【点睛】此题主要考查了估算无理数的大小,平方根的定义,正确得出a,b的值是解题关键.二十二、解答题22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.二十三、解答题23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)12【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【详解】解:(1)∵30α-+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:过点E作直线EH∥AB,∵DF平分∠CDE,∴设∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如图3,设MQ与CD交于点E,∵MQ 平分∠BMT ,QC 平分∠DCP ,∴∠BMT =2∠PMQ ,∠DCP =2∠DCQ ,∵AB ∥CD ,∴∠BME =∠MEC ,∠BMP =∠PND ,∵∠MEC =∠Q +∠DCQ ,∴2∠MEC =2∠Q +2∠DCQ ,∴∠PMB =2∠Q +∠PCD ,∵∠PND =∠PCD +∠CPM =∠PMB ,∴∠CPM =2∠Q ,∴∠Q 与∠CPM 的比值为12, 故答案为:12.【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键. 24.(1);(2)①或;②秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间解析:(1)30;(2)①2803︒或403︒;②185秒或5411或9011秒 【分析】(1)通过延长PG 作辅助线,根据平行线的性质,得到90∠=︒PGE ,再根据外角的性质可计算得到结果;(2)①当20MEP ∠=︒时,分两种情况,Ⅰ当ME 在AE 和EP 之间,Ⅱ当ME 在EP 和EB 之间,由20MEP ∠=︒,计算出EM 的运动时间t ,根据运动时间可计算出FPN ∠,由已知120FPE ∠=︒可计算出EPN ∠的度数; ②根据题意可知,当//EM PN 时,分三种情况,Ⅰ射线PN 由PF 逆时针转动,//EM PN ,根据题意可知15AEM t ∠=︒,40FPN t ∠=︒,再平行线的性质可得AEM AHP ∠=∠,再根据三角形外角和定理可列等量关系,求解即可得出结论;Ⅱ射线PN 垂直AB 时,再顺时针向PF 运动时,//EM PN ,根据题意可知,15AEM t ∠=︒,//ME PN ,15GHP t ∠=︒,可计算射线PN 的转动度数1809015t ︒+︒-︒,再根据PN 转动可列等量关系,即可求出答案;Ⅲ射线PN 垂直AB 时,再顺时针向PF 运动时,//EM PN ,根据题意可知,15AEM t ∠=︒,940()2GPN t ∠=-︒,根据(1)中结论,30PEG ∠=︒,60PGE ∠=,可计算出PEM ∠与EPN ∠代数式,再根据平行线的性质,可列等量关系,求解可得出结论.【详解】解:(1)延长FP 与AB 相交于点G ,如图1,PF CD ⊥,90PFD PGE ∴∠=∠=︒,EPF PGE AEP ∠=∠+∠,1209030AEP EPF PGE ∴∠=∠-∠=︒-︒=︒;(2)①Ⅰ如图2,30AEP ∠=︒,20MEP ∠=︒,10AEM ∴∠=︒,∴射线ME 运动的时间102153t ==(秒), ∴射线PN 旋转的角度2804033FPN ︒∠=⨯︒=, 又120EPF ∠=︒,8028012033EPN EPF EPN ︒︒∴∠=∠-∠=︒-=;Ⅱ如图3所示,30AEP ∠=︒,20MEP ∠=︒,50AEM ∴∠=︒,∴射线ME 运动的时间5010153t ==(秒),∴射线PN 旋转的角度104004033FPN ︒∠=⨯︒=, 又120EPF ∠=︒,4004012033EPN FPN EPF ︒︒∴∠=∠-∠=-︒=; EPN ∴∠的度数为2803︒或403︒;②Ⅰ当PN 由PF 运动如图4时//EM PN ,PN 与AB 相交于点H ,根据题意可知,经过t 秒,15AEM t ∠=︒,40FPN t ∠=︒,//EM PN ,15AEM AHP t ∴∠=∠=︒,又=FPN PGH PHA ∠∠+∠,409015t t ∴︒=︒+︒,解得185t =(秒);Ⅱ当PN 运动到PG ,再由PG 运动到如图5时//EM PN ,PN 与AB 相交于点H ,根据题意可知,经过t 秒,15AEM t ∠=︒,//EM PN ,15GHP t ∴∠=︒,9015GPH t ∠=︒-︒,PN ∴运动的度数可得,18040GPH t ︒+∠=︒,解得5411t =;Ⅲ当PN 由PG 运动如图6时,//EM PN ,根据题意可知,经过t 秒,15AEM t ∠=︒,40180GPN t ∠=-︒,30AEP ∠=︒,60EPG ∠=︒,1530PEM t ∴∠=︒-︒,24040EPN t ∠=︒-,又//EM PN ,180PEM EPN ∴∠+∠=︒,153040240180t t ∴︒-︒+-︒=︒, 解得9011t =(秒), 当t 的值为185秒或5411或9011秒时,//EM PN .【点睛】本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键.25.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2 解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.26.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85∠=︒;A②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒,∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠, ∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒,∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F , ∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠, ∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠, ∵333180CBF BCF BF C +∠=︒∠+∠,∴333180=116CBF BC F F B C =︒-∠︒∠+∠,∴80ABD ACD ︒∠+∠=,∴()1208040A BDC ABD ACD ∠=∠-∠+∠=︒-︒=︒,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O ,∵AE 平分BAC ∠,BD 平分BDC ∠, ∴12BAE BAC ∠=∠,12BDE BDC ∠=∠, ∵BOE BAE ABD ∠=∠+∠,BOE E BDE ∠=∠+∠,∴BAE ABD E BDE ∠+∠=∠+∠, ∴()11+22BAC ABD E BAC ABD ACD ∠+∠=∠+∠+∠∠, ∴()1111+2222E BAC ABD ACD BAC ABD ABD ACD ∠=∠+∠∠-∠-∠=∠-∠,即2B C E ∠-∠=∠;⑤∵ABD ∠,BAC ∠的角平分线交于点E , ∴()1502BAE ABE BAC ABD ∠+∠=∠+∠=︒, ∴()180********AEB BAE ABE ∠=︒-∠+∠=︒-︒=︒.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.。

2023-2024学年上海市普陀区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市普陀区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市普陀区七年级(下)期末数学试卷一、单项选择题(本大题共有6题,满分12分)1.(2分)下列实数中,无理数是()A.B.3.1415C.D.﹣12.(2分)下列运算一定正确的是()A.=±7B.(﹣)2=7C.﹣=7D.=73.(2分)如图,与∠A位置关系为同旁内角的角是()A.∠1B.∠2C.∠3D.∠C4.(2分)在直角坐标平面内,如果点P(m,n)在第四象限,那么点Q(n,m)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(2分)如图,在△ABC中,已知AB=AC,AD是△ABC的中线,如果∠B=70°,那么以下结论中,错误的是()A.∠CAD=20°B.AD⊥BCC.△ABD的面积是△ABC面积的一半D.△ABD的周长是△ABC周长的一半6.(2分)如图,已知AB∥DE,AD∥EC,那么与△BDE的面积一定相等的三角形是()A.△ADE,△ADC B.△CDE,△ADC C.△AEC,△ADC D.△ADE,△CDE二、填空题(本大题共有12题,满分36分)7.(3分)81的平方根是.8.(3分)把方根化为幂的形式:=.9.(3分)比较大小:﹣3﹣7.(填“>”,“=”或“<”)10.(3分)用科学记数法表示0.00369,结果保留两个有效数字约为.11.(3分)直角坐标系内点P(﹣2,3)关于x轴的对称点Q的坐标为.12.(3分)请写出一个在直角坐标平面内不属于任何象限的点的坐标:.13.(3分)在直角坐标平面内,点向平移m(m>0)个单位后,落在第三象限.(填“上”,“下”,“左”,“右”)14.(3分)在直角坐标平面内,经过点M(5,﹣6)且垂直于y轴的直线可以表示为直线.15.(3分)如图,把一直尺放置在一个三角形纸片上,如果∠1=70°,那么∠2=°.16.(3分)如果等腰三角形的周长等于16厘米,一条边长等于6厘米,那么这个等腰三角形的底边与其一腰的长度的比值等于.17.(3分)如图,已知点P在∠AOB的内部,点P关于OA、OB的对称点分别为P1、P2,如果∠AOB=30°,OP=6厘米,那么△P1OP2的周长等于厘米.18.(3分)如图,在直角坐标平面内,点A的坐标为(3,0),点B的坐标为(0,3),点C的坐标为(c,0)(c<0),在坐标平面内存在点D,使以点A、B、D为顶点的三角形与△ABC全等,且∠BAD与∠ABC是对应角,那么点D的坐标为.(用含c的代数式表示)三、筒答题(本大题共有5题,满分25分)19.(5分)计算:.20.(5分)计算:.21.(5分)如图,在△ABC中,已知点G、F分别在边BC、AC上,AE∥BC交GF的延长线于点E,且∠B=∠E.试说明∠B+∠BGF=180°的理由.解:因为AE∥BC(已知),所以∠E=∠EGC().因为∠B=∠E(已知),所以∠B=(等量代换).所以∥().所以∠B+∠BGF=180°().22.(5分)如图,已知AB⊥BD,AC⊥CD,∠1=∠2.试说明AD⊥BC的理由.解:因为AB⊥BD(已知),所以∠ABD=90°(垂直的意义).同理.所以∠ABD=∠ACD(等量代换).在△ABD和△ACD中,,所以△ABD≌△ACD().得(全等三角形的对应边相等).又因为∠1=∠2(已知),所以AD⊥BC().23.(5分)根据下列要求作图并回答问题:(1)用直尺和圆规作图(保留作图痕迹,不要求写作法和结论):①作△ABC,使AB=AC=a,BC=b;②作边AB的垂直平分线,分别交AB、BC于点M、N;(2)在(1)的图形中,联结AN,那么△ACN的周长等于.(用含a、b的代数式表示)四、解答题(本大题共有4题,满分27分)24.(6分)如图,在直角坐标平面内,已知点A(3,﹣1),点B在y轴的正半轴上且到x轴的距离为1个单位,将点B向右平移2个单位,再向上平移3个单位到达点C,点D与点A关于原点对称.(1)在直角坐标平面内分别描出点B、C、D;(2)写出图中点B、C、D的坐标是:B,C,D;(3)按A﹣B﹣C﹣D﹣A顺次联结起来所得的图形的面积是.25.(7分)如图,在△ABC中,已知∠BAC=90°,AB=AC,点D在边AB上,联结CD,过点B作BE ⊥CD交CD的延长线于点E,联结AE,过点A作AF⊥AE交CD于点F.试说明AE=AF的理由.解:因为∠DBE+∠BEC+∠EDB=180°().同理:∠DCA+∠BAC+∠ADC=180°.因为BE⊥CD,所以∠BEC=90°.又因为∠BAC=90°,所以∠BEC=∠BAC.因为∠EDB=∠ADC(),所以∠=∠.(完成以下说理过程)26.(7分)如图,在等边三角形ABC的边AC上任取一点D,以CD为边向外作等边三角形CDE,联结BD、AE.(1)试说明△BCD与△ACE全等的理由;(2)试说明∠ABD和∠AED相等理由.27.(7分)小普同学在课外阅读时,读到了三角形内有一个特殊点“布洛卡点”,关于“布洛卡点”有很多重要的结论.小普同学对“布洛卡点”也很感兴趣,决定利用学过的知识和方法研究“布洛卡点”在一些特殊三角形中的性质.让我们尝试与小普同学一起来研究,完成以下问题的解答或有关的填空.【阅读定义】如图1,△ABC内有一点P,满足∠PAB=∠PBC=∠PCA,那么点P称为△ABC的“布洛卡点”,其中∠PAB、∠PBC、∠PCA被称为“布洛卡角”.如图2,当∠QAC=∠QCB=∠QBA时,点Q也是△ABC的“布洛卡点”.一般情况下,任意三角形会有两个“布洛卡点”.【解决问题】(说明:说理过程可以不写理由)问题1:等边三角形的“布洛卡点”有个,“布洛卡角”的度数为度;问题2:在等腰三角形ABC中,已知AB=AC,点M是△ABC的一个“布洛卡点”,∠MAC是“布洛卡角”.(1)∠AMB与△ABC的底角有怎样的数量关系?请在图3中,画出必要的点和线段,完成示意图后进行说理.(2)当∠BAC=90°(如图4所示),BM=5时,求点C到直线AM的距离.2023-2024学年上海市普陀区七年级(下)期末数学试卷参考答案与试题解析一、单项选择题(本大题共有6题,满分12分)1.【分析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【解答】解:A、,是整数,属于有理数,不符合题意;B、3.1415是有限小数,属于有理数,不符合题意;C、是无理数,符合题意;D、﹣1是整数,属于有理数,不符合题意;故选:C.【点评】此题主要考查了无理数的定义,熟知其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解题的关键.2.【分析】根据平方根、立方根的定义判断即可.【解答】解:A.=7,此选项错误,不符合题意;B.(﹣)2=7,此选项正确,符合题意;C.﹣=﹣7,此选项错误,不符合题意;D.=﹣7,此选项错误,不符合题意;故选:B.【点评】本题考查算术平方根、立方根的定义,解题的关键是熟练掌握基本概念,属于中考基础题.3.【分析】根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.【解答】解:A、∠1和∠A是同位角,不是同旁内角,故本选项错误,不符合题意;B、∠2和∠A都是四边形ABED的内角,不是同旁内角,故本选项错误,不符合题意;C、∠3和∠A是同位角,不是同旁内角,故本选项错误,不符合题意;D、∠C和∠A是同旁内角,故本选项正确,符合题意;故选:D.【点评】本题考查了同位角、内错角、同旁内角、对顶角的定义的应用,能熟记同位角、内错角、同旁内角、对顶角的定义是解此题的关键,注意:数形结合思想的应用.4.【分析】根据第四象限点的坐标特征可得m>0,n<0,然后根据第二象限点的坐标特征,即可解答.【解答】解:∵点P(m,n)在第四象限,∴m>0,n<0,∴点Q(n,m)所在的象限是第二象限,故选:B.【点评】本题考查了点的坐标,熟练掌握平面直角坐标系中每一象限点的坐标特征是解题的关键.5.【分析】由三角形内角和定理求出∠BAC=180°=70°﹣70°=40°,由等腰三角形三线合一的性质得到∠CAD=∠BAC=20°,AD⊥BC,由三角形面积公式得到△ABD的面积是△ABC面积的一半,△ABC周长的一半=AB+BD,△ABD的周长=AB+BD+AD,得到△ABD的周长不是△ABC周长的一半,【解答】解:∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°=70°﹣70°=40°,∵AD是△ABC的中线,∴AD平分∠BAC,∴∠CAD=∠BAC=20°,故A不符合题意;∵AB=AC,AD是△ABC的中线,∴AD⊥BC,故B不符合题意;∵AD是△ABC的中线,∴BD=CD,∴△ABD的面积是△ABC面积的一半,故C不符合题意;∵AB=AC,BD=CD,∴AB+BD=AC+CD=△ABC周长的一半,∵△ABD的周长=AB+BD+AD,∴△ABD的周长不是△ABC周长的一半,故D符合题意.故选:D.【点评】本题考查等腰三角形的性质,关键是掌握等腰三角形的性质:等腰三角形的两个底角相等,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.6.【分析】两条直线平行,则两直线之间的距离处处相等,从而根据三角形面积公式,找出同底等高的三角形,本题即可得求.【解答】解:本题可通过三角形面积公式求解,观察三角形BDE和三角形ADE,两个三角形共用一个底DE,因为AB∥DE,所以三角形BDE和三角形ADE的高相等,即AB与DE的距离d1.=S△ADE=DE×d1.故S△BDE观察三角形EDA和三角形CDA,两个三角形共用一个底DA,因为AD∥EC,所以三角形EDA和三角形CDA的高相等,即AD与EC的距离d2.=S△ADE=AD×d2.故S△ADC=S△ADC=S△ADE.所以S△BDE故选:A.【点评】本题巧妙地将三角形的面积和平行线的性质相结合,创新性地考查了学生对三角形面积的理解.二、填空题(本大题共有12题,满分36分)7.【分析】直接根据平方根的定义填空即可.【解答】解:∵(±9)2=81,∴81的平方根是±9.故答案为:±9;【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.【分析】根据分数指数幂,可化成分数指数形式,根据负分数幂的性质,可得负分数指数幂.【解答】解:原式==.【点评】本题考查了分数指数幂,先求分数指数幂,再求负分数指数幂.9.【分析】两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣3|=3=,|﹣7|=7,∵45<49,∴<7,∴﹣>﹣7,即﹣3>﹣7.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:用科学记数法表示0.00369,结果保留两个有效数字约为:3.7×10﹣3,故答案为:3.7×10﹣3.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【分析】关于x轴对称的点横坐标不变,纵坐标互为相反数,据此即可解答.【解答】解:点P(﹣2,3)关于x轴的对称点Q的坐标为(﹣2,﹣3).故答案为:(﹣2,﹣3).【点评】本题考查了关于x轴、y轴的对称点的坐标,关于x轴对称的两个点横坐标相同,纵坐标互为相反数.12.【分析】根据x轴或y轴上的点不属于任何象限解答即可.【解答】解:在直角坐标平面内不属于任何象限的点的坐标可以是(0,﹣1)等.故答案为:(0,﹣1)(答案不唯一).【点评】本题考查了点的坐标:平面直角坐标系中,点与有序实数对一一对应.也考查了各象限内的点的坐标特点.13.【分析】根据点P的位置判断即可.【解答】解:∵P(﹣,0)在x轴的负半轴上,∴点P向下平移落在第三象限,故答案为:下.【点评】本题考查坐标与图形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.【分析】垂直于y轴的直线,纵坐标相等,都为﹣6,所以为直线:y=﹣6.【解答】解:由题意得:经过点A(5,﹣6)且垂直于y轴的直线可以表示为直线为:y=﹣6,故答案为:y=﹣6.【点评】此题考查了坐标与图形的性质,解题的关键是抓住过某点的坐标且垂直于y轴的直线的特点:纵坐标相等.15.【分析】由邻补角的性质得到∠3=180°﹣70°=110°,由平行线的性质推出∠2=∠3=110°.【解答】解:∵∠1=70°,∴∠3=180°﹣70°=110°,∵AB∥CD,∴∠2=∠3=110°.故答案为:110.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠2=∠3.16.【分析】分两种情况:当等腰三角形的腰长为6厘米时;当等腰三角形的底边长为6厘米时;然后分别进行计算即可解答.【解答】解:分两种情况:当等腰三角形的腰长为6厘米时,∵等腰三角形的周长等于16厘米,∴底边长=16﹣2×6=4(厘米),此时等腰三角形的底边与其一腰的长度的比值==;当等腰三角形的底边长为6厘米时,∵等腰三角形的周长等于16厘米,∴腰长==5(厘米),此时等腰三角形的底边与其一腰的长度的比值=;综上所述:这个等腰三角形的底边与其一腰的长度的比值等于或,故答案为:或.【点评】本题考查了等腰三角形的性质,三角形的三边关系,分两种情况讨论是解题的关键.17.【分析】根据轴对称的性质,∠AOB=30°,P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∠AOP=∠AOP1,∠BOP=∠BOP2,可求出∠P1OP2的度数,确定三角形的形状,再由等边三角形的性质即可得出结论.【解答】解:连接OP,∵P1与P关于OA对称,∴OP=OP1,∵P2与P关于OB对称,∴OP=OP2,∴OP1=OP2,∵P1与P关于OA对称,∴∠POA=∠AOP1,∵P2与P关于OB对称,∴∠BOP=∠BOP2,又∵∠P1OP2=∠AOP1+∠AOP+∠BOP+∠BOP2,∵∠P1OP2=∠BOP+∠BOP+∠AOP+∠AOP,=2(∠BOP+∠APO),=2∠AOB,∵∠AOB=30°,∵∠P1OP2=2×30°=60°,∴△OP1P2为等边三角形,∴△P1OP2的周长=3OP=18(厘米).故答案为:18.【点评】本题考查轴对称的性质,等边三角形的判定与性质,熟知关于轴对称的两个图形对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等是解题的关键.18.【分析】依题意有以下两种情况:①当点D在AB的上方时,过点B作BD//AC,过点A作AD//BC交BD于点D,则点D即为所求的点,由BD∥AC,AD∥BC得∠BAD=∠ABC,∠ABD=∠BAC,则△BAD和△ABC全等,且∠BAD与∠ABC是对应角,然后根据BD=AC,BD//AC可得点D的坐标;②当点D在AB的下方时,在y轴的负半轴上截取OD=OC,连接AD,则点D即为所求的点,先证明△OAD和△OBC全等得AD=BC,∠OAD=∠OBA,再根据OA=OB=3得∠OAB=∠OBA,进而得∠BAD =∠ABC,由此可证明△BAD和△ABC全等,且∠BAD与∠ABC是对应角,然后根据OD=OC,点D 在y轴上可得点D的坐标,综上所述即可得出答案.【解答】解:∵以点A、B、D为顶点的三角形与△ABC全等,且∠BAD与∠ABC是对应角,∴有以下两种情况:①当点D在AB的上方时,过点B作BD//AC,过点A作AD//BC交BD于点D,如图1所示:则点D即为所求的点,理由如下:∵BD∥AC,AD∥BC,∴∠BAD=∠ABC,∠ABD=∠BAC,在△BAD和△ABC中,,∴△BAD≌△ABC(ASA),且∠BAD与∠ABC是对应角,∴BD=AC,∵BD//AC,∴点D的纵坐标与点B的纵坐标相等,∵点A(3,0),点B(0,3),点C(c,0)(c<0),∴BD=AC=3﹣c,∴点D的坐标为(3﹣c,3);②当点D在AB的下方时,在y轴的负半轴上截取OD=OC,连接AD,如图2所示:∵点A(3,0),点B(0,3),点C(c,0)(c<0),∴OA=OB=3,则点D即为所求的点,理由如下:在△OAD和△OBC中,,∴△OAD≌△OBC(SAS),∴AD=BC,∠OAD=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠OAB+∠OAD=∠OBA+∠OBC即∠BAD=∠ABC,在△BAD和△ABC中,,∴△BAD≌△ABC,且∠BAD与∠ABC是对应角,∵OD=OC,点D在y轴上,∴点D的坐标为(0,c),综上所述:点D的坐标为(3﹣c,3)或(0,c).故答案为:(3﹣c,3)或(0,c).【点评】此题主要考查了全等三角形的判定,坐标与图形性质,熟练掌握全等三角形的判定,坐标与图形性质是解决问题的关键,分类讨论是解决问题的难点,也是易错点.三、筒答题(本大题共有5题,满分25分)19.【分析】根据实数的运算法则及零指数幂进行计算即可得出答案.【解答】解:原式=﹣5++1﹣9=﹣13+=﹣12.【点评】本题主要考查实数的运算,熟练掌握实数的运算法则是解题的关键.20.【分析】根据分数指数幂和实数的运算法则计算即可.【解答】解:原式=×===2.【点评】本题考查的是分数指数幂和实数的运算,熟练掌握其运算法则是解题的关键.21.【分析】根据平行线的性质可得∠E=∠EGC,再利用等量代换可得∠B=∠EGC,然后利用同位角相等,两直线平行可得AB∥EG,从而利用平行线的性质可得∠B+∠BGF=180°,即可解答.【解答】解:因为AE∥BC(已知),所以∠E=∠EGC(两直线平行,内错角相等).因为∠B=∠E(已知),所以∠B=∠EGC(等量代换).所以AB∥EG(同位角相等,两直线平行).所以∠B+∠BGF=180°(两直线平行,同旁内角互补),故答案为:两直线平行,内错角相等;∠EGC;AB;EG;同位角相等,两直线平行;两直线平行,同旁内角互补.【点评】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形进行分析是解题的关键.22.【分析】根据题意和题目中的解答过程,将空缺部分补充完整即可.【解答】解:因为AB⊥BD(已知),所以∠ABD=90°(垂直的意义).同理∠ACD=90°.所以∠ABD=∠ACD(等量代换).在△ABD和△ACD中,,所以△ABD≌△ACD(AAS).得AB=AC(全等三角形的对应边相等).又因为∠1=∠2(已知),所以AD⊥BC(三线合一).故答案为:∠ACD=90°;AAS;AB=AC;三线合一.【点评】本题考查全等三角形的判定与性质、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.23.【分析】(1)①任意作射线BM,以点B为圆心,线段b的长为半径画弧,交射线BM于点C,再分别以点B,C为圆心,线段a的长为半径画弧,两弧相交于点A,连接AB,AC即可.②根据线段垂直平分线的作图方法作图即可.(2)根据线段垂直平分线的可得AN=BN,则△ACN的周长为AC+AN+CN=AC+BN+CN=AC+BC=a+b.【解答】解:(1)①如图,任意作射线BM,以点B为圆心,线段b的长为半径画弧,交射线BM于点C,再分别以点B,C为圆心,线段a的长为半径画弧,两弧相交于点A,连接AB,AC,则△ABC即为所求.②如图,直线MN即为所求.(2)∵直线MN为线段AB的垂直平分线,∴AN=BN,∵AC=a,BC=b,∴△ACN的周长为AC+AN+CN=AC+BN+CN=AC+BC=a+b.故答案为:a+b.【点评】本题考查作图—复杂作图、线段垂直平分线的性质,熟练掌握基本尺规作图的方法、线段垂直平分线的性质是解答本题的关键.四、解答题(本大题共有4题,满分27分)24.【分析】(1)根据题意在平面直角坐标系中描出点B、C、D三点即可;(2)根据图中点B、C、D的位置写出点B,C,D的坐标;(3)根据【解答】解:(1)如图所示;(2)B(0,1),C(2,4),D(﹣3,1);故答案为:(0,1),(2,4),(﹣3,1);(3)图形的面积=△BCD的面积+△BDA的面积=×3×3+×3×2=,故答案为:.【点评】本题考查了作图﹣平移变换,正确地作出图形是解题的关键.25.【分析】由三角形内角和定理得∠DBE+∠BEC+∠EDB=180°,∠DCA+∠BAC+∠ADC=180°,∠BEC=∠BAC=90°,因为∠EDB与∠ADC是对顶角,所以∠EDB=∠ADC,可推导出∠DBE=∠DCA,而AB=AC,∠BAE=∠CAF=90°﹣∠BAF,即可证明△BAE≌△CAF,得AE=AF,于是得到问题的答案.【解答】解:因为∠DBE+∠BEC+∠EDB=180°(三角形的内角和等于180°),同理:∠DCA+∠BAC+∠ADC=180°,因为BE⊥CD,所以∠BEC=90°,又因为∠BAC=90°,所以∠BEC=∠BAC,因为∠EDB=∠ADC(对顶角相等),所以∠DBE=∠DCA,因为AF⊥AE,所以∠EAF=90°,所以∠BAE=∠CAF=90°﹣∠BAF,在△BAE和△CAF中,,所以△BAE≌△CAF(ASA),所以AE=AF.故答案为:三角形的内角和等于180°,对顶角相等,DBE,DCA.【点评】此题重点考查三角形内角和定理、对顶角相等、同角的余角相等、全等三角形的判定与性质等知识,证明△BAE≌△CAF是解题的关键.26.【分析】(1)根据等边三角形的性质和全等三角形的判定方法可以证明结论成立;(2)根据(1)中的结论、外角和内角的关系可以得到∠ABD和∠AED相等.【解答】解:(1)∵△ABC是等边三角形,∴BC=AC,∠BCD=60°,∵△CDE是等边三角形,∴CD=CE,∠ACE=60°,在△BCD与△ACE中,,∴△BCD≌△ACE(SAS);(2)由(1)知,△BCD≌△ACE,∴∠CBD=∠CAE,∵∠CBD+∠ABD=∠ABC=60°,∠AED+∠CAE=∠CDE=60°,∴∠ABD=∠AED.【点评】本题考查全等三角形的判定与性质、等边三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件.27.【分析】问题1:根据等边三角形的性质证明△ACP≌△BAP(ASA),得PA=PB=PC,进而可以解决问题;问题2:(1)根据题意画出图形,利用等腰三角形的性质和“布洛卡点”定义,即可解决问题;(2)由△ABC是等腰直角三角形,证明△ABM≌△ACN(AAS),即可解决问题.【解答】解:问题1:如图1﹣1:∵△ABC是等边三角形,∴AB=BC=AC,∠CAB=∠ABC=∠ACB=60°,∵∠PAB=∠PBC=∠PCA,∴∠PAC=∠PBA=∠PCB,∴△ACP≌△BAP(ASA),∴CP=AP,同法可证CP=BP,∴PA=PB=PC,∴∠PAB=∠PBA=∠PBC=∠PCB=∠PCA=∠PAC=30°,∴等边三角形的“布洛卡点”有1个,“布洛卡角”的度数为30度;故答案为:1,30°;问题2:(1)∠AMB=2△ABC,如图3即为所求,∵AB=AC,∴∠ABC=∠ACB,∵点M是△ABC的一个“布洛卡点”,∠MAC是“布洛卡角”,∴∠MAC=∠MCB=∠MBA,∴∠MBC=∠MCA,设∠MAC=∠MCB=∠MBA=α,∠MBC=∠MCA=β,∴∠MAB=180°﹣3α﹣2β,∴∠AMB=180°﹣(180°﹣3α﹣2β)﹣α=2(α+β)=∠ABC,∴∠AMB=2∠ABC;(2)如图4,过点C作CN⊥AM的延长线于点N,∵△ABC是等腰直角三角形,∴AC=AB,∠CAB=90°,∴∠ABC=∠ACB=45°,由(1)知:∠AMB=2∠ABC=90°,∵点M是△ABC的一个“布洛卡点”,∠MAC是“布洛卡角”,∴∠MAC=∠MBA=∠BCM,∴△ABM≌△ACN(AAS),∴BM=AN=5,AM=CN,∵∠AMB=∠CNM=90°,∴BM∥CN,∴∠MBC=∠NCB,∵∠MBA=∠BCM,∴∠MCN=∠ABC=45°,∴CN=MN,∴AM=CN=MN=AN=2.5,∴点C到直线AM的距离为2.5.【点评】本题是三角形综合题,考查全等三角形的判定与性质、等边三角形的性质、等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是准确寻找相似三角形。

上海市人教版七年级下册数学期末压轴难题试卷及答案

上海市人教版七年级下册数学期末压轴难题试卷及答案

上海市人教版七年级下册数学期末压轴难题试卷及答案一、选择题1.2的平方根是()A .﹣1.414B .±1.414C .2D .2±2.下列各组图形可以通过平移互相得到的是( ) A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( ) A .1B .2C .3D .45.如图,直线//EF MN ,点A ,B 分别是EF ,MN 上的动点,点G 在MN 上,ACB m ∠=︒,AGB ∠和CBN ∠的角平分线交于点D ,若52D ∠=︒,则m 的值为( ).A .70B .74C .76D .806.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>7.如图,//a b ,160∠=︒,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()3,2,()3,1,()3,0,()4,0.根据这个规律探索可得,第2021个点的坐标为( )A .()64,4B .()64,59C .()2021,4D .()2021,2016二、填空题9.2(4)-的算术平方根为__________10.在平面直角坐标系中,点A (2,1)关于x 轴对称的点的坐标是_____. 11.如图,C 在直线BE 上,∠ABC 与∠ACE 的角平分线交于点1A ,∠A=m,若再作∠1A BE 、∠1A CE 的平分线,交于点2A ;再作∠2A BE 、∠2A CE 的平分线,交于点3A ;……;依次类推,则A n ∠为_______.12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .13.如图,将ABC 沿着AC 边翻折得到AB 1C ,连接BB 1交AC 于点E ,过点B 1作B 1D //AC 交BC 延长线于点D ,交BA 延长线于点F ,连接DA ,若∠CBE =45°,BD =6cm ,则ADB 1的面积为_________.14.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______. 15.在平面直角坐标系中,点A (1,4),C (1,﹣2),E (a ,a ),D (4﹣b ,2﹣b ),其中a +b =2,若DE =BC ,∠ACB =90°,则点B 的坐标是___.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.三、解答题17.(1)-+; (2)245x -=,求x .18.求下列各式中x 的值: (1)23126x -= (2)()3180x --=19.已知,如图所示,BCE ,AFE 是直线,AB //CD ,∠1=∠2,∠3=∠4.求证:AD //BE证明:∵AB //CD (已知) ∴∠4=∠ ( ) ∵∠3=∠4(已知)∴∠3=∠ ( ) ∵∠1=∠2(已知)∴∠1+∠CAF =∠2+∠CAF ( ) 即:∠ =∠ . ∴∠3=∠ .∴AD //BE ( )20.三角形ABC 在平面直角坐标系中的位置如图所示,点O 为坐标原点,()2,3-A ,()3,1B -,()1,2C -.(1)将ABC 向右平移4个单位长度得到111A B C △,画出平移后的111A B C △; (2)将ABC 向下平移5个单位长度得到222A B C △,画出平移后的222A B C △; (3)直接写出三角形ABC 的面积为______平方单位.(直接写出结果)21.一个正数的两个平方根为21n 和4n -,2n 是24m +的立方根,39的小数部分是k ,求39m n k +-+的平方根.二十二、解答题22.如图,用两个边长为103的小正方形拼成一个大的正方形. (1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm 2?二十三、解答题23.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数.24.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系.25.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 . 拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .26.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、选择题 1.D 解析:D 【分析】根据平方根的定义求解即可. 【详解】解:2的平方根是2 故选:D . 【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.C 【分析】根据平移不改变图形的形状和大小,进而得出答案. 【详解】解:观察图形可知选项C 中的图案通过平移后可以得到. 故选:C . 【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.解析:C 【分析】根据平移不改变图形的形状和大小,进而得出答案. 【详解】解:观察图形可知选项C 中的图案通过平移后可以得到.故选:C . 【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键. 3.B 【分析】根据坐标的特点即可求解. 【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限 故选B . 【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点. 4.B 【分析】①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可. 【详解】解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,; ②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误; ④平行于同一直线的两条直线平行,正确. 故选:B . 【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例. 5.C 【分析】先由平行线的性质得到∠ACB =∠5+∠1+∠2,再由三角形内角和定理和角平分线的定义求出m 即可. 【详解】解:过C 作CH ∥MN ,∴∠6=∠5,∠7=∠1+∠2, ∵∠ACB =∠6+∠7, ∴∠ACB =∠5+∠1+∠2, ∵∠D =52°,∴∠1+∠5+∠3=180°−52°=128°,由题意可得GD 为∠AGB 的角平分线,BD 为∠CBN 的角平分线, ∴∠1=∠2,∠3=∠4,∴m °=∠1+∠2+∠5=2∠1+∠5,∠4=∠1+∠D =∠1+52°, ∴∠3=∠4=∠1+52°,∴∠1+∠5+∠3=∠1+∠5+∠1+52°=2∠1+∠5+52°=m °+52°, ∴m °+52°=128°, ∴m °=76°. 故选:C . 【点睛】本题主要考查平行线的性质和角平分线的定义,关键是对知识的掌握和灵活运用. 6.D 【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案. 【详解】解:∵233a =-=-,2b =-,()()33222c =--=--=, ∴c b a >>, 故选:D . 【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简. 7.D 【分析】根据同位角相等,两直线平行即可求解. 【详解】 解:如图:因为//a b ,∠1=60°, 所以∠3=∠1=60°. 因为∠2+∠3=180°,所以∠2=180°-60°=120°.故选:D.【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.8.A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解析:A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2⋯横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有(1)2n n+个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为123632016+++⋯+=,则第2021个数一定在第64列,由下到上是第5个数.因而第2021个点的坐标是(64,4).故选:A.【点睛】本题考查了坐标与图形,数字类的规律,根据图形得出规律是解此题的关键.二、填空题9.4【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与解析:4【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】2(4)=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与平方根的区别. 10.(2,﹣1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标解析:(2,﹣1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数.【详解】解:点(2,1)关于x轴对称的点的坐标是(2,﹣1),故答案为(2,﹣1).【点睛】熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数.关于y轴的对称点,纵坐标不变,横坐标变成相反数.11.【分析】根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可【详解】当∠A=m时,∠=,以此类推,∠=,∠=,∠=故答案为【点睛】本题主要考查了角平分线性质解析:2nm【分析】根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可【详解】当∠A=m时,∠1A=12m,以此类推,∠2A=14m,∠3A=18m,∠nA=12nm故答案为2nm 【点睛】本题主要考查了角平分线性质与三角形外角和定理,根据题意以及相关性质找到规律解题是关键12.48° 【分析】先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数. 【详解】 解:若AB//CD , 则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,解析:48° 【分析】先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数. 【详解】 解:若AB //CD , 则∠3=∠4,又∵∠1+∠3=180°,∠1=138°, ∴∠3=∠4=42°; ∵EF ⊥MN , ∴∠2+∠4=90°, ∴∠2=48°; 故答案为:48°.【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.13.cm² 【分析】根据翻折变换的性质可知AC 垂直平分BB1,且B1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解. 【详解】解:根据翻折变换的性质可知AC 垂直平分BB1, ∵B1D ∥AC , ∴解析:92cm ²【分析】根据翻折变换的性质可知AC 垂直平分BB 1,且B 1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解. 【详解】解:根据翻折变换的性质可知AC 垂直平分BB 1, ∵B 1D ∥AC ,∴AC 为三角形ADB 中位线, ∴BC =CD =12BD =3cm ,在Rt △BCE 中,∠CBE =45°,BC =3cm , ∴CE 2+BE 2=BC 2,解得BE =CE .∴EB 1=BE ∵CE 为△BDB 1中位线, ∴DB1=2CE , △ADB 1的高与EB 1相等,∴S△ADB 1=12×DB 1×EB 1=1292cm ², 故答案为:92cm ².【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC 为△ADB 的中位线从而得出答案.14.. 【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值. 【详解】 ∵, ∴,,,,……∴,每三个数一个循环, ∵, ∴, 则 +--3 -3-++解析:1312. 【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值. 【详解】 ∵13a =-, ∴()211134a ==--,3441131a ,443131a ,()511134a ==--, ……∴1a ,2n a a ⋅⋅⋅每三个数一个循环, ∵202036731÷=⋅⋅⋅, ∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+- 143343=--+++14-43-3-3-14+43+3 =-3-14+43+31312=. 故答案为:1312. 【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.15.或 【分析】根据,求得的坐标,进而求得的长,根据DE =BC ,∠ACB =90°,分类讨论即可确定的坐标. 【详解】 ,的纵坐标相等,则到轴的距离相等,即轴 则 DE =BC , A (1,4解析:(1,2)--或(3,2)- 【分析】根据2a b +=,求得,E D 的坐标,进而求得DE 的长,根据DE =BC ,∠ACB =90°,分类讨论即可确定B 的坐标. 【详解】2a b +=2a b ∴=-(2,2)E b b ∴--,D (4,2)b b --,E D 的纵坐标相等,则,E D 到x 轴的距离相等,即//ED x 轴 则(4)(2)2ED b b =---= DE =BC ,2BC ∴=A (1,4),C (1,﹣2),,A C 的横坐标相等,则,A C 到y 轴的距离相等,即//AC y 轴90ACB ∠=︒则//BC x 轴,当B 在C 的左侧时,(1,2)B --, 当B 在C 的右侧时,(3,2)B -,B ∴的坐标为(1,2)--或(3,2)-.故答案为:(1,2)--或(3,2)-. 【点睛】本题考查了坐标与图形,点的平移,平行线的性质与判定,点到坐标轴的距离,根据题意求得DE 的长是解题的关键.16.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果. 【详解】 ∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,, 解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果. 【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1 即2021(1010,1)A 故答案为:()1010,1 【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.三、解答题17.(1) - (2)±3 【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可; 试题解析: (1)原式= ; (2)x2-4=5 x2=9x=3或x=-3解析:(1) -13(2)±3【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可; 试题解析:(1)原式=112233--=- ;(2)x 2-4=5 x 2=9 x=3或x=-318.(1);(2) 【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解; (2)先移项,再根据立方根的性质,即可求解. 【详解】 (1)解:∵ ∴ ∴ ∴; (2)解:∵ ∴ ∴ ∴.解析:(1)3x =±;(2)3x = 【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解; (2)先移项,再根据立方根的性质,即可求解. 【详解】(1)解:∵23126x -= ∴2327x = ∴29x = ∴3x =±;(2)解:∵()3180x --= ∴()318x -=∴12x -= ∴3x =.【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.19.FAB ;两直线平行,同位角相等;FAB ;等量代换;等式的性质;FAB ;CAD ; CAD ;内错角相等,两直线平行 【分析】根据平行线的性质求出∠4=∠BAF =∠3,求出∠DAC =∠BAF ,推出∠3=解析:FAB ;两直线平行,同位角相等;FAB ;等量代换;等式的性质;FAB ;CAD ; CAD ;内错角相等,两直线平行 【分析】根据平行线的性质求出∠4=∠BAF =∠3,求出∠DAC =∠BAF ,推出∠3=∠BAF ,根据平行线的判定推出即可. 【详解】证明:∵AB //CD (已知)∴∠4=∠FAB (两直线平行,同位角相等) ∵∠3=∠4(已知) ∴∠3=∠FAB (等量代换) ∵∠1=∠2(已知)∴∠1+∠CAF =∠2+∠CAF (等式的性质) 即:∠FAB =∠CAD ∴∠3=∠CAD∴AD //BE (内错角相等,两直线平行)故填:BAF ,两直线平行,同位角相等,BAF ,等量代换,DAC ,DAC ,内错角相等,两直线平行. 【点睛】本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.20.(1)见解析;(2)见解析;(3) 【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、、的对应解析:(1)见解析;(2)见解析;(3)32【分析】(1)把三角形ABC 的各顶点向右平移4个单位长度,得到A 、B 、C 的对应点1A 、1B 、1C ,再顺次连接即可得到三角形111A B C ;(2)把三角形ABC 的各顶点向下平移5个单位长度,得到A 、B 、C 的对应点2A 、2B 、2C ,再顺次连接即可得到三角形222A B C ;(3)三角形ABC的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积.【详解】A B C如下图所示;解:(1)平移后的三角形111A B C如下图所示;(2)平移后的三角形222(3)三角形ABC的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积, ∴S △ABC 11122212111222=⨯-⨯⨯-⨯⨯-⨯⨯14112=---32=. 【点睛】本题考查了作图-平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.21.【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案. 【详解】∵一个正数的两个平方根为和, ∴, 解得:, ∵是的立方根, ∴, 解得:, ∵, 解析:3±【分析】根据平方根的性质即可求出n 的值,根据立方根的定义求得m 的值,根据67<求得k ,即可求得答案.【详解】∵一个正数的两个平方根为21n 和4n -, ∴()2140n n ++-=, 解得:1n =,∵2n 是24m +的立方根, ∴()3224n m =+,解得:2m =, ∵67<,∴6,则小数部分是:6k =,∴m n k +-)2169=+-,∴m n k +-3=±.【点睛】本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用.二十二、解答题22.(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm,宽为2xcm,则3x•2x=480,解得:因为片的长宽之比为2:3,且面积为480cm2.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.二十三、解答题23.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.24.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如图所示,210-∠A=(180°-∠D CM)+α,即∠A-∠DCM=30°-α.综上所述,∠A-∠DCM=30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.25.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.26.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。

上海62中学七年级下册数学期末压轴难题试题及答案解答

上海62中学七年级下册数学期末压轴难题试题及答案解答

上海62中学七年级下册数学期末压轴难题试题及答案解答一、选择题1.一个有理数的平方等于36,则这个数是() A .6 B .6或6- C .36 D .6- 2.下列图形中,哪个可以通过图1平移得到( )A .B .C .D .3.下列各点中,位于第三象限的是( ) A .()1.5, 3.5- B .()2,4C .()3,2--D .()2.5,3-4.下列命题是假命题的是( )A .对顶角相等B .两条直线被第三条直线所截,同位角相等C .在同一平面内,垂直于同一条直线的两条直线互相平行D .在同一平面内,过直线外一一点有且只有一条直线与已知直线平行5.如图,从①12∠=∠,②C D ∠=∠,③//DF AC 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A .0B .1C .2D .36.小雪在作业本上做了四道题目:327-3;164;3819;2(6)--6,她做对了的题目有( ) A .1道B .2道C .3道D .4道7.如图,将木条a ,b 与c 钉在一起,1110∠=︒,250∠=︒,要使木条a 与b 平行,木条a 顺时针旋转的度数至少是( )A .10︒B .20︒C .30D .40︒8.如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到()10,1A ,()21,1A ,()31,0A ,()42,0A ,…那么点2021A 的坐标为( )A .()505,0B .()505,1C .()1010,0D .()1010,1二、填空题9.算术平方根等于本身的实数是__________.10.平面直角坐标系中,点(3,1)--关于y 轴的对称点的坐标为________.11.如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,且∠BAD 、∠ADC 的角平分线AE 、DF 分别交BC 于点E 、F .若EF =2,AB =5,则AD 的长为_______.12.将一条长方形纸带按如图方式折叠,若1108∠=︒,则2∠的度数为________°.13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.15.在平面直角坐标系中,第二象限内的点M 到横轴的距离为2,到纵轴的距离为3,则点M 的坐标是________.16.如图,在平面直角坐标系中,动点P 按图中箭头所示方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()3,1,…按这样的运动规律,经过第2021次运动后,动点P 的坐标是__________.三、解答题17.计算:239(6)27-- (2)﹣12+(﹣2)3×31127()89--- .18.求下列各式中的x : (1)30.0270-=x ;(2)24925=x ; (3)2(2)9x -=. 19.填充证明过程和理由.如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE . 证明:∵∠B +∠BCD =180°(已知), ∴AB ∥CD ( ). ∴∠B = ( ). 又∵∠B =∠D (已知), ∴∠D =∠ . ∴AD ∥BE ( ). ∴∠E =∠DFE ( ).20.如图,已知ABC 在平面直角坐标系中的位置如图所示.(1)写出ABC 三个顶点的坐标; (2)求出ABC 的面积;(3)在图中画出把ABC 先向左平移5个单位,再向上平移2个单位后所得的A B C '''. 21.数学活动课上,王老师说:22”大家议论纷纷,小明同学说:“要把它的小数部分全部21表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:3的整数部分是 ;小数部分是(2)已知8+3=x+y ,其中x 是一个整数,且0<y <1,求出2x+(y-3)2012的值.二十二、解答题22.(1)若一圆的面积与这个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆______C 正.(填“=”或“<”或“>”号)(2)如图,若正方形的面积为216cm ,李明同学想沿这块正方形边的方向裁出一块面积为212cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由.二十三、解答题23.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB .(1)如图1,若∠OPQ =82°,求∠OPA 的度数;(2)如图2,若∠AOP =43°,∠BQP =49°,求∠OPA 的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由.24.如图所示,已知//AM BN ,点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C 、D ,且60CBD ∠=︒ (1)求A ∠的度数.(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P 运动到使ACB ABD =∠∠时,求ABC ∠的度数.25.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON =60°,在射线OM 上取一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点C 不与O 、B 重合),若∠ACB =80°.判定△AOB 、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取一点F ,使得∠EFC +∠BDC =180°,∠DEF =∠B .若△BCD 是“梦想三角形”,求∠B 的度数.26.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒; ③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题 1.B 解析:B 【分析】根据一个数a ,如果2a b =,那么a 就叫做b 的平方根求解即可. 【详解】 解:∵()2636±=, ∴36的平方根为6或-6, 故选B . 【点睛】本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义.2.A 【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A ,故选A . 考点:平移的性质.解析:A 【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A ,故选A . 考点:平移的性质. 3.C 【分析】根据各象限的点的特征即可判断,第三象限的点的特征是:横纵坐标都是负数. 【详解】位于第三象限的点的横坐标和纵坐标都是负数,∴C ()3,2--符合题意,故选C . 【点睛】本题考查了平面直角坐标系的定义,掌握各象限的点坐标的符号是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.4.B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.【详解】A、对顶角相等;真命题;B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.5.D【分析】分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.【详解】解:如图所示:(1)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4;当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即①②可证得③;(2)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即①③可证得②;(3)当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即②③可证得①.故正确的有3个.故选:D.【点睛】本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.6.A【分析】依据立方根、平方根算术平方根的定义求解即可【详解】=-3,故①正确故②错误;③错误故④错误.故选:A.【点睛】此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键7.B【分析】根据两直线平行同旁内角互补和对顶角相等,求出旋转后∠2的同旁内角的度数,然后利用对顶角相等旋转后∠1的度数,继而用旋转后∠1减去110°即可得到木条a旋转的度数.【详解】解:要使木条a与b平行,∴旋转后∠1+∠2=180°,∵∠2=50°,∴旋转后∠1=180°﹣50°=130°,∴当∠1需变为130 º,∴木条a至少旋转:130º﹣110º=20º,故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等,在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.8.D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,∵,∴的坐标是;故答案选D.【点睛】本题主要考查了点的坐标规律题,准确计算解析:D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,÷=,∵202145051∴2021A的坐标是()()⨯=;5052,11010,1故答案选D.【点睛】本题主要考查了点的坐标规律题,准确计算是解题的关键.二、填空题9.0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知解析:0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.10.(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.11.8【分析】根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是解析:8【分析】根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【详解】解:∵AD∥BC,∴∠ADF=∠DFC,∵DF平分∠ADC,∴∠ADF=∠CDF,∴∠DFC=∠CDF,∴CF=CD,同理BE=AB,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴AB=BE=CF=CD=5,∴BC =BE +CF ﹣EF =5+5﹣2=8,∴AD =BC =8,故答案为:8.【点睛】本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质.12.36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB ∥CD ,如图∴∠GEC=∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED+∠GEC=180゜∴∠2=解析:36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB ∥CD ,如图∴∠GEC =∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED +∠GEC =180゜∴∠2=11(180)(180108)3622GEC ︒-∠=⨯︒-︒=︒ 故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 13.32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32° 故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.15.(-3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点到横轴的距离为,到纵轴的距离为,解析:(-3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点M到横轴的距离为2,到纵轴的距离为3,∴|y|=2,|x|=3,由M是第二象限的点,得:x=−3,y=2.即点M的坐标是(−3,2),故答案为:(−3,2).【点睛】此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零.16.【分析】根据图象结合动点P第一次、第二次、第三次、第四次运动后的坐标特点可发现各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解.【详解】解:由图象可得:动点按图中箭头解析:()2021,2【分析】根据图象结合动点P 第一次、第二次、第三次、第四次运动后的坐标特点可发现各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解.【详解】解:由图象可得:动点P 按图中箭头所示方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()3,1,第4次接着运动到()4,0,……可知各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,∵202145051÷=⋅⋅⋅⋅,∴经过第2021次运动后,动点P 的坐标为()2021,2;故答案为()2021,2.【点睛】本题主要考查点的坐标规律,解题的关键是根据题意得到点的坐标基本规律.三、解答题17.(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-解析:(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-(-3)=3-6+3=0;(2)原式= -1+(-8)×18-(-3)×(-13 )=-1-1-1=-3. 故答案为(1)0;(2)-3.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键. 18.(1)0.3;(2);(3)或【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.【详解】解:(1解析:(1)0.3;(2)57x =±;(3)5x =或1x =- 【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.【详解】解:(1)∵30.0270-=x ,∴30.027x =,∴0.3x =;(2)∵24925=x , ∴22549x =, ∴57x =±; (3)∵2(2)9x -=,∴23x -=或23x -=-,解得:5x =或1x =-.【点睛】本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键.19.同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出 解析:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出∠DCE =∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.【详解】证明:∵∠B +∠BCD =180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B =∠DCE (两直线平行,同位角相等),又∵∠B =∠D (已知 ),∴∠D =∠DCE (等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠E =∠DFE (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查平行线的判定和性质,掌握同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等是解题的关键.20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.21.(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答.【详解】解:(1)∵1<<2,∴的整数部分是1;小解析:(1)13(2)19【分析】(1)根据已知的条件就可以求出;(233x,y的值,即可解答.【详解】解:(1)∵132,∴313;(2)解:∵132,∴9<310,∵3x+y,且x是一个整数,0<y<1,∴x=9,y=3931,∴2x+(32012=2×9+332012=18+1=19.【点睛】二十二、解答题22.(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得关于a 的方程,解得a 的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案.【详解】解:(1)圆的面积与正方形的面积都是22cm π,∴)cm )cm ,)C cm ∴=圆,)C cm =正,32848ππππ=⨯>⨯, ∴C C ∴<正圆.(2)不能裁出长和宽之比为3:2的长方形,理由如下:设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得:3212a a ⨯=,解得a =a =∴长为,宽为,正方形的面积为216cm ,∴正方形的边长为4cm , 324>,∴不能裁出长和宽之比为3:2的长方形.【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键.二十三、解答题23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB .可求出∠OPA 的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.24.(1);(2)不变化,,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解解析:(1)60A ∠=;(2)不变化,2APB ADB ∠=∠,理由见解析;(3)30ABC ∠=【分析】(1)结合题意,根据角平分线的性质,得ABN ∠;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得APB PBN ∠=∠,ADB DBN ∠=∠;结合角平分线性质,得2APB ADB ∠=∠,即可完成求解;(3)根据平行线的性质,得ACB CBN ∠=∠;结合ACB ABD =∠∠,推导得ABC DBN ∠=∠;再结合(1)的结论计算,即可得到答案.【详解】(1)∵BC ,BD 分别评分ABP ∠和PBN ∠, ∴1122CBP ABP DBP PBN ∠=∠∠=∠,, ∴2ABN CBD ∠=∠又∵60CBD ∠=,∴120ABN ∠=∵//AM BN ,∴180A ABN ∠+∠=∴60A ∠=;(2)∵//AM BN ,∴APB PBN ∠=∠,ADB DBN ∠=∠又∵BD 平分PBN ∠∴2PBN DBN ∠=∠,∴2APB ADB ∠=∠;∴APB ∠与ADB ∠之间的数量关系保持不变;(3)∵//AD BN ,∴ACB CBN ∠=∠又∵ACB ABD =∠∠,∴CBN ABD ∠=∠,∵ABC CBN ABD DBN ∠+∠=∠+∠∴ABC DBN ∠=∠由(1)可得60CBD ∠=,120ABN ∠= ∴()112060302ABC ∠=⨯-=. 【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.25.(1)36°或18°;(2)△AOB 、△AOC 都是“梦想三角形”,证明详见解析;(3)∠B =36°或∠B =.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=5407().【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”证明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB为“梦想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“梦想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE =∠CDE ,∴∠B =∠BCD ,∵△BCD 是“梦想三角形”,∴∠BDC =3∠B ,或∠B =3∠BDC ,∵∠BDC +∠BCD +∠B =180°,∴∠B =36°或∠B =5407︒(). 【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.26.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A +∠APB =50°,∴∠APB =40°;如图③,当2∠APB +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠APB =20°;如图④,当2∠A +∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海七年级第二学期数学各区期末考试压轴集合HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】2014松江区期末考试26.如图,△ABC 是等边三角形,P 是AB 上一点,Q 是BC 延长线上一点,AP =CQ . 联结PQ 交AC 于D 点.过P 作PE ∥BC ,交AC 于E 点. (1)说明DE =DC 的理由;(2)过点P 作PF ⊥AC 于F ,说明12DF AC =的理由. 解:27.在△ABC 中,∠ACB =2∠B ,∠BAC 的平分线AD 交BC于点D .(1)如图1,过点C 作 CF ⊥AD 于F ,延长CF 交AB 于点E .联结DE . ① 说明AE =AC 的理由; ② 说明BE =DE 的理由;(2)如图2,过点B 作直线BM ⊥AD 交AD 延长线于M ,交AC 延长线于点N .说明CD =CN 的理由.解:2014浦东期末考试 25.如图,在⊿ABC 中,已知D 是BC 边的中点,过点D 的直线GF 交AC 于F ,交AC的平行线BG 于点G ,DE ⊥GF ,交AC 的延长线于点E ,联结EG . (1)说明BG 与CF相等的理由. (2)说明∠BGD 与∠DGE 相等的理由.26. 如图,已知线段AB ,其中点A (2,0),点B (-1,2).(1)如果存在点C ,使⊿ABC 为等腰直角三角形,且以AB 为直角边,写出点C 的坐标; (2)若有D (-4,-2)、E (1,-4),求四边形ABDE 的面积. 2013金山期末考试26.已知:四边形ABCD 中,AB=AD=BC=CD ,∠B =∠D=60°,点E 、F 分别在边BC 、CD 上,(1)如图8,如果点E 、F 分别是边BC 、CD 的中点,试试说明AE=AF 的理由; (2)如图9,如果BE=CF ,试说明AE=AF 理由. 2014闸北期末考试 25.如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-2),且02=+a ,92=b (b 是正数).1,(1)求a ,b 的值;(第26题ED ACBQ PAF (第27题图ED A C B AF N M D A CB A(第27题图第25题图GF ED C B A ABCEFD B AC DE F(2)①在y 轴的正半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M ,使△COM 的面积=12△ABC 的面积仍然成立,若存在,请直接写出符合条件的点M 的坐标.2014普陀期末考试27.如图11,在直角坐标平面内有两点()0,2A 、()2,0B -,且A 、B 两点 之间的距离等于a (a 为大于0的已知数),在不计算a 的数值条件下,完成下 列两题:(1)以学过的知识用一句话说出a >2的理由;(2)在x 轴上是否存在点P ,使△PAB 是等腰三角形,如果存在,请写出点P 的坐标,并求△PAB解:2013闸北期末考试27.如图,在△ABC 中,AB =AC ,点D 、E ∠CDE =30o .求:∠BAD 的度数. 2014上海培华学校期末考试29、如图,已知点C 是线段AB (1) 说明△ACD 与△BCE 全等的理由;(2) 判断线段AB 、AD 、BE 理由. 2013浦东期末考试26.置:“在同一平面内将直角顶点叠合”.(1)图1是一种放置位置及由它抽象出的几何图形,B 、C 、D在同一条直线上,联结EC .请找出图中的全等三角形(结论中不含未标识的字母),并说明理由;(2)图2也是一种放置位置及由它抽象出的几何图形,A 、C 、D 在同一条直线上,联结BD 、联结EC 并延长与BD 交于点F .请找出线段BD 和EC 的位置关系,并说明理由;(3)请你:①画出一个符合放置规则且不同于图1和图2所放位置的几何图形;第29题E D C B A FabO6 5 4 3 2 1 6 75 4 3 72 1-3-2 -1-3 -2 -1Pab OMNP图1②写出你所画几何图形中线段BD 和EC 的位置和数量关系; ③上面第②题中的结论在按照规则放置所抽象出的几何图形中都存在吗?2014黄浦期末考试26、如图,在ABC ∆中,AB =AC ,D 、E 、F 分别为边BC 、AB 、AC 上的点,且BE =CD ,CF =BD . (1)试说明:BDE ∆与CFD ∆全等的理由;(2)若︒=∠40A ,试求EDF ∠的度数.27、如图1,在平面内取一点O ,过点O 作两条夹角为︒60的数轴,使它们以点O 为公共原点且具有相同的单位长度,这样在平面内建立的坐标系称为斜坐标系,我们把水平放置的数轴称为横轴(记作a 轴),将斜向放置的数轴称为斜轴(记作b 轴).类似于直角坐标系,对于斜坐标平面内的任意一点P ,过点P 分别作b 轴、a 轴的平行线交a 轴、b 轴于点M 、N ,若点M 、N 分别在a 轴、b 轴上所对应的实数为m 与n ,则称有序实数对(m ,n )为点P 的坐标.可知建立了斜坐标系的平面内任意一个点P 与有序实数对(m ,n )之间是相互唯一确定的.(图2)(1)请写出图2(其中虚线均平行于a 轴或b 轴)中点P 的坐标,并在图中标出点Q ()3,2-;第26题 图1第26题 图2(2)如图3(其中虚线均平行于a 轴或b 轴),在斜坐标系中点()4,1A 、()1,1-B 、()1,6-C .(图3) ①试判断ABC ∆的形状,并简述理由;②如果点D 在边BC 上,且其坐标为()1,5.2-,试问:在边BC 上是否存在点E 使ACE ∆与ABD ∆相全等?如有,请写出点E 的坐标,并说明它们全等的理由;如没有,请说明理由.2010静安期末考试28.如图,△ABC 是等腰直角三角形,∠BAC =90°,点D 是边BC 上一点,△EAD 是等腰直角三角形,∠EAD =90°,ED 与AC 相交于点F , 联结CE . (1)说明∠B =∠ACE 的理由;(2)若△CFE 是等腰三角形,请求出∠BAD 的度数. 2012闸北期末考试26.如图,等腰△ABC 中,AB =AC ,∠A =36°,△ABC 绕点B 逆时针方向旋转一定角度后到△BDE 的位置,点D 落在边AC 上,问:(1)旋转角是几度?为什么? (2)将AB 与DE 的交点记为F ,除△ABC 和△BDE 外,图中还有几个等腰三角形?请全部找出来. (3)请选择题(2)中找到的一个等腰三角形说明理由.27.已知点A 的坐标是(3,0),点B 的坐标是(-1,0),△ABC 是等腰三角形,且一边上的高为4,写出所有满足条件的点C 的坐标. 2012崇明期末考试28.如图,已知BC AD //。

(1)找出图中面积相等的三角形,并选择其中一对说明理由;(2)如果AC BE ⊥,BD CF ⊥,垂足分别为点E 、F ,54=BD AC ,求CF BE的值。

2014嘉定期末考试(第28题图)AB CD E FFE D C BA26.如图1,直线AC ∥BD ,直线AC 、BD 及直线AB 把平面分成①、②、③、④、⑤、⑥六个部分.点P 是其中的一个动点,连结PB PA 、,观察PBD PAC APB ∠∠∠、、三个角.规定:直线AC 、BD 、AB 上的各点不属于①、②、③、④、⑤、⑥六个部分中的任何一个部分.(1)当动点P 落在第①部分时,可得:PBD PAC APB ∠+∠=∠.请阅读下面的解答过程,并在相应的括号内填注理由. 解:过点P 作EF ∥AC ,如图2. 因为AC ∥BD (已知),EF ∥AC (所作),所以EF ∥BD ( ). 因为EF ∥BD所以PBD BPE ∠=∠( ). 同理PAC APE ∠=∠.因此PBD PAC BPE APE ∠+∠=∠+∠( ). 即PBD PAC APB ∠+∠=∠.(2)当动点P 落在第②部分时,PBD PAC APB ∠∠∠、、之间的关系是怎样的?请直接写出PBD PAC APB ∠∠∠、、之间满足的关系式,说明理由. 解:(3)当动点P 在第③部分时,PBD PAC APB ∠∠∠、、之间的关系,又是怎样的?请直接写出相应的结论. 解:(4)当动点P 在第④部分时,PBD PAC APB ∠∠∠、、之间的关系,又是怎样的?请直接写出相应的结论.解:2013崇明期末考试29.如图,已知△ABC 中,AB <AC ,AD 平分BAC ∠,E 为DC 上的动点,过E 作EF ∥AD ,交BA 的延长线于F ,交AC 于G .(1)试探索当E 在线段DC 上移动时,线段AF 与AG 是否始终相等?并说明理由; (2)当E 为BC 中点时,找出与线段BF 相等的线段,并说明理由.2014崇明期末考试28、如图,已知在ABC ∆中,BE CD =,DE BC ⊥,DF AC ⊥,垂足分别为D 、F ,且B EDF ∠=∠.(1)DEF ∆是等腰三角形吗?为什么? 第26题第26题图2 第26题图3第26题备用第26题备用F AGAE(2)如果40A ∠=︒,求FDC ∠的度数.29、如图,在等腰直角三角形ABC 中,90,B AB BC ∠=︒=,O 是斜边AC 的中点,P 是斜边AC 上的一个动点,D 为射线BC 上的一点,且PB PD =,过D 点作射线AC 上的垂线DE ,垂足为E .(1)当点P 在线段AO 上时,PE BO =吗?为什么?(2)当点P 在线段OC 上时,PE BO =吗?为什么? 2013普陀期末考试26.如图11,在平面直角坐标系中,点A 的坐标为(2a ,-a) ()0a > 先画出点A 关于x 轴的对称的点B ,再写出点B 的坐标(用字母a 表示);将点A 向左平移2a 个单位到达点C 的位置,写出点C 的坐标(用字母a 表示);y 轴上有一点D ,且3CD a =,求出点D 的坐标(用字母a 表示); 如果y 轴上有一点D ,且3CD a =,且四边形ABCD 的面积为10,求a 的值并写出这个四边形的顶点D 的坐标. 解 :2013松江期末考试28.(本题共3个小题,每小题3分,满分9分)如图(1)已知ABC ∆是等边三角形,点D 、E 、F 分别在边AB 、BC 、CA 上,且321∠=∠=∠.(1)试说明DEF ∆是等边三角形的理由.(2)分别联接BF ,DC ,BF 与DC 相交于O 点(如图(2)),求BOD ∠的大小.(3)将DEF ∆绕F 点顺时针方向旋转 60得到图(3),AP 与BC 平行吗?说明理由.2014虹口期末考试 23. 在△ABC 中,AB =BC ,将△ABC 绕点A 旋转得△AB 1C 1,使点C 1落在直线BC 上(点C 1与点C 不重合). (1)如图1,当∠B <60°时,写出边AB 1与边BC 的位置关系; (2)当∠ABC >60°时,请你在图2中画出△AB 1C 1,再猜想你在(1)中得出的结论是否还成立?并说明理由. 2013虹口期末考试AP OEC B DA B OC (备用图) 图1128题图(1)ADB EC F 13 228题图(2) OADB EC F 1 2 3 B 1A27.在ABC △中,C B ∠=∠,点D 在BC 边上,︒=∠50BAD (如图1). (1)若E 在ABC △的AC 边上,且B ADE ∠=∠,求EDC ∠的度数;(2)若︒=∠30B ,E 在ABC △的AC 边上,△ADE 是等腰三角形,求EDC ∠的度数;(简写主要解答过程即可).(3)若AD 将ABC △分割成的两个三角形中有一个是等腰三角形,求B ∠的度数.(简写主要解答过程即可). 2011闸北期末考试27.如图,在△ABC 中,∠C = 90°,CA = CB ,AD 平分∠BAC ,BE⊥AD 于点E 。

相关文档
最新文档