2012中考数学押题专题(十个讲义)

合集下载

2012中考数学深度复习讲义

2012中考数学深度复习讲义

(备战中考)2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试) 阅读理解例1它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图1所示): 第一步:作一个正方形ABCD ;第二步:分别取AD ,BC 的中点M ,N ,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E; 第四步:过E 作EF ⊥AD ,交AD 的延长线于F . 请你根据以上作法,证明矩形DCEF 为黄金矩形.证明:在正方形ABCD 中,取2AB a =, ∵N 为BC 的中点, ∴12NC BC a ==. 在Rt DNC △中,ND ===.又∵NE ND =,∴1)CE NE NC a =-=.∴CE CD ==. 故矩形DCEF 为黄金矩形. 同步测试:1、对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ). 若(1,2)⊗(p ,q )=(5,0),则p =,q =.(答案:1,–2)2、先阅读下列材料,然后解答问题:ABC D EFM N图1从A B C ,,三X 卡片中选两X ,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例3:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有种.(答案:120) 例2、某饮料厂为了开发新产品,用A 种果汁原料和B 种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x 千克,两种饮料的成本总额为y 元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y 与x 之间的函数关系式.(2)若用19千克A 种果汁原料和千克B 种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少?解:(1)依题意得:43(50)150y x x x =+-=+(2)依题意得:0.50.2(50)19(1)0.30.4(50)17.2(2)x x x x +-⎧⎨+-⎩≤…………≤………解不等式(1)得:30x ≤ 解不等式(2)得:28x ≥∴不等式组的解集为2830x ≤≤150y x =+,y 是随x 的增大而增大,且2830x ≤≤∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y 最小,28150178y =+=最小(元)(2011某某凉山州,28,12分)如图,抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()0,4C -,其中12x x ,是方程24120x x --=的两个根。

江苏省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试

江苏省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试

(备战中考)江苏省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)二次根式◆知识讲解1.二次根式a≥0)叫做二次根式.2.最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.3.同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.4.二次根式的性质2=a(a≥0);│a│=(0)0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩;a≥0,b≥0);=b≥0,a>0).5.分母有理化及有理化因式把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,•若它们的积不含二次根式,则称这两个代数式互为有理化因式.6.二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. ◆例题解析例1 (2011江苏泰州,20,8分)解方程组⎩⎨⎧=+=+8361063y x y x ,并求xy 的值.【答案】解:⎩⎨⎧=+=+②①8361063y x y x②×2-①,得9x=6,解得x=23.将x=23代入①,得2+6y=10,解得y=43.所以方程组的解为⎪⎪⎩⎪⎪⎨⎧==3432y x ,于是xy =3432⨯=232。

2012年全国各地中考数学压轴题精选讲座(共8份)

2012年全国各地中考数学压轴题精选讲座(共8份)

2012年全国各地中考数学压轴题精选讲座七阅读理解型【知识纵横】阅读理解问题是近年中考的热点题型之一。

重在考查阅读理解能力、分析能力、辨别判断能力以及生活经验是否丰富等,所给定的阅读材料,可能是新定义的概念、公式等,要求理解应用;或者是图象表格,从中提取有用的解题信息;或者是范例式呈现,去模仿解答新问题;或者是根据一些特殊信息探求规律等.常见的类型有猜想型、概括型、探索型、应用型等。

阅读理解的整体模式是:阅读—理解—应用。

重点是阅读,难点是理解,关键是应用,通过阅读,对所提供的文字、符号、图形等进行分析和综合,在理解的基础上制定解题策略。

【选择填空】1. (浙江台州)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a ⊕b = (用a ,b 的一个代数式表示).2. (山东省临沂市)读一读:式子“1+2+3+4+……+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为∑=1001n n ,这里“∑”是求和符号,通过以上材料的阅读,计算∑=+20121n 1)(n 1n = .【典型试题】 1. (江苏盐城)知识迁移: 当0a >且0x >时,因为2≥0,所以ax x -+≥0,从而a x x +≥(当x =时取等号).记函数(0,0)ay x a x x=+>>,由上述结论可知:当x =,该函数有最小值为直接应用:已知函数1(0)y x x =>与函数21(0)y x x=>, 则当x =_________时,12y y +取得最小值为_________.变形应用:已知函数11(1)y x x =+>-与函数22(1)4(1)y x x =++>-,求21y y 的最小值,并指出取得该最小值时相应的x 的值.实际应用:已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x 千米,求当x 为多少时,该汽车平均每千米的运输成本..........最低?最低是多少元?【考点】二次函数的应用,几何不等式。

广东省2012年中考数学试题分类解析汇编 专题12 押轴题

广东省2012年中考数学试题分类解析汇编 专题12 押轴题

某某2012年中考数学试题分类解析汇编专题12:押轴题一、选择题1.(2012某某省3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【】A. 5 B.6 C.11 D.16【答案】C。

【考点】三角形三边关系。

【分析】设此三角形第三边的长为x,则根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,得10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件。

故选C。

2. (2012某某某某3分)如图,把一个斜边长为2且含有300角的直角三角板ABC绕直角顶点C顺时针旋转900到△A1B1C,则在旋转过程中这个三角板扫过的图形的面积是【】A3 C.334πD.11312π【答案】D。

【考点】旋转的性质,勾股定理,等边三角形的性质,扇形面积。

【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA1、 BCD和△ACD 计算即可:在△ABC中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。

∴22AC AB BC3-∴ABC 13S BC AC 22∆=⨯⨯=。

设点B 扫过的路线与AB 的交点为D ,连接CD ,∵BC=DC ,∴△BCD 是等边三角形。

∴BD=CD=1。

∴点D 是AB 的中点。

∴ACD ABC 1133S S 2224∆∆==⨯=S 。

∴1ACD ACA BCD ABC S S S ∆∆=++扇形扇形的面扫过积22903 601333113 3603604464124πππππ⨯⨯⨯⨯=++=++=+() 故选D 。

3. (2012某某某某3分)如图,正比例函数y 1=k 1x 和反比例函数22k y =x的图象交于A (﹣1,2)、B (1,﹣2)两点,若y 1<y 2,则x 的取值X 围是【 】A .x <﹣1或x >1B .x <﹣1或0<x <1C .﹣1<x <0或0<x <1D .﹣1<x <0或x >1【答案】D 。

2012年中考数学压轴题及解析分类汇编

2012年中考数学压轴题及解析分类汇编

中考数学压轴题:函数相似三角形问题(一)例1直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.例2 Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)ky k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系; (2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图12012中考数学压轴题函数相似三角形问题(二)例3 如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2例4 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22=++上.y mx mx n (1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.图12012中考数学压轴题函数相似三角形问题(三) 例5 如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1例6 如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图例 7 如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.图12012中考数学压轴题函数等腰三角形问题(一)例1 如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2例2 如图1,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.图12012中考数学压轴题函数等腰三角形问题(二)例3 如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N 分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1例4 如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少? (3)若12y m,要使△DEF 为等腰三角形,m 的值应为多少?图12012中考数学压轴题函数相似三角形问题(三)例5 已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1例6 在平面直角坐标系内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM//x轴(如图1所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,联结OD.(1)求b的值和点D的坐标;(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;(3)在(2)的条件下,如果以PD为半径的圆与圆O外切,求圆O的半径.图12012中考数学压轴题函数直角三角形问题(一)例1 如图1,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B 左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段34PQ AB =时,求tan ∠CED 的值;②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.图1例2 设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.图12012中考数学压轴题函数直角三角形问题(三)例 5 如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图1例6 已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图1,求证:222BN AM MN +=;思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了.请你完成证明过程.(2)当扇形CEF 绕点C 旋转至图2的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.图1 图2图5 图6 图72012中考数学压轴题函数平行四边形问题(一)例 1 已知平面直角坐标系xOy (如图1),一次函数334y x =+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.图1例2将抛物线c 1:2y =x 轴翻折,得到抛物线c 2,如图1所示.(1)请直接写出抛物线c 2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.图12012中考数学压轴题函数平行四边形问题(二)例3 如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.图1 图2例4在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.图1 图22012中考数学压轴题函数平行四边形问题(三)例 5 如图1,等边△ABC的边长为4,E是边BC上的动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ 的面积(用含x的代数式表示);(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.图1例6 如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?②设△BCF 的面积为S ,求S 与m 的函数关系.图1例 7 如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点.(1)求点A 、B 、C 的坐标.(2)当△CBD 为等腰三角形时,求点D 的坐标.(3)在直线AB上是否存在点E,使得以点E、D、O、A为顶点的四边形是平行四边形?如果存在,直接写出BECD的值;如果不存在,请说明理由.图12012中考数学压轴题函数梯形问题(一)例1 已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.备用图图1 图2例 2 已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B .(1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN //x 轴,交PB 于点N . 将△PMN 沿直线MN 对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.图1 图22012中考数学压轴题函数梯形问题(二)例3 如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x ,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时.① 求t 关于x 的函数解析式和自变量x 的取值范围;② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图1例 4 已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 32-=与边BC 相交于点D . (1)求点D 的坐标;(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.图12012中考数学压轴题函数平行四边形问题(三)例 5 如图1,等边△ABC 的边长为4,E 是边BC 上的动点,EH ⊥AC 于H ,过E 作EF ∥AC ,交线段AB 于点F ,在线段AC 上取点P ,使PE =EB .设EC =x (0<x ≤2).(1)请直接写出图中与线段EF 相等的两条线段(不再另外添加辅助线);(2)Q 是线段AC 上的动点,当四边形EFPQ 是平行四边形时,求平行四边形EFPQ 的面积(用含x 的代数式表示);(3)当(2)中 的平行四边形EFPQ 面积最大值时,以E 为圆心,r 为半径作圆,根据⊙E 与此时平行四边形EFPQ 四条边交点的总个数,求相应的r 的取值范围.图1例6 如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?②设△BCF 的面积为S ,求S 与m 的函数关系.图1例 7 如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点.(1)求点A 、B 、C 的坐标.(2)当△CBD 为等腰三角形时,求点D 的坐标.(3)在直线AB 上是否存在点E ,使得以点E 、D 、O 、A 为顶点的四边形是平行四边形?如果存在,直接写出BE CD的值;如果不存在,请说明理由.图12012中考数学压轴题函数面积问题(一)例 1 如图1,直线l 经过点A (1,0),且与双曲线m y x=(x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平行线分别交曲线m y x =(x >0)和m y x=-(x <0)于M 、N 两点.(1)求m 的值及直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满足条件的p 的值;若不存在,请说明理由.图1例2 如图1,在平面直角坐标系xOy 中,直角梯形OABC 的顶点O 为坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,CB ∥OA ,OC =4,BC =3,OA =5,点D 在边OC 上,CD =3,过点D 作DB 的垂线DE ,交x 轴于点E .(1)求点E的坐标;(2)二次函数y=-x2+bx+c的图像经过点B和点E.①求二次函数的解析式和它的对称轴;②如果点M在它的对称轴上且位于x轴上方,满足S△CEM=2S△ABM,求点M的坐标.图12012中考数学压轴题函数面积问题(二)例3 如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.例 4 如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.图1 备用图2012中考数学压轴题函数面积问题(三)例5 如图1,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图2所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.(4)如果点P、Q保持原速度速度不变,当点P沿A→B→C→D匀速运动时,OP 与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.图1 图2例6 在直角坐标系中,抛物线c=2经过点(0,10)和点(4,2).+y+xbx(1)求这条抛物线的解析式.(2)如图1,在边长一定的矩形ABCD中,CD=1,点C在y轴右侧沿抛物线=2滑动,在滑动过程中CD∥x轴,AB在CD的下方.当点D在y轴上时,y++cbxxAB落在x轴上.①求边BC的长.②当矩形ABCD在滑动过程中被x轴分成两部分的面积比为1:4时,求点C的坐标.。

(备战中考)2012年中考数学深度复习讲义全等三角形专题复习

(备战中考)2012年中考数学深度复习讲义全等三角形专题复习

(备战中考)2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)全等三角形◆考点聚焦1.探索并掌握两个三角形全等的特征和识别.2.了解定义、命题、逆命题和定理的含义,会区分命题的条件和结论.3.完成基本作图(等线段、等角、角的平分线、线段的垂直平分线);•会利基本作图作三角形及过不在同一直线上的三点作圆.◆备考兵法1.证边角相等可转化为证三角形全等,即“要证边相等,转化证全等.•”全等三角形是证明线段、角的数量关系的有力工具,若它们所在的三角形不全等,可找中间量或作辅助线构造全等三角形证明.在选用ASA 或SAS 时,一定要看清是否有夹角和夹边;要结合图形挖掘其中相等的边和角(如公共边、公共角和对顶角等),若题目中出现线段的和差问题,往往选择截长或补短法.2.本节内容的试题一改以往“由已知条件寻求结论”的模式,•而是在运动变化中(如平移、旋转、折叠等)寻求全等.对全等三角形的考查一般不单纯证明两个三角形全等,命题时往往把需要证明的全等三角形置于其他图形(如特殊平行四边形)中,或与其他图形变换相结合,有时也还与作图题相结合;解题时要善于从复杂的图形中分离出基本图形,寻找全等的条件.◆识记巩固1.三角形全等的识别方法:注意:要证全等必须满足至少一组边对应相等.2.三角形全等的证题思路: SAS HL SSS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→⎧⎪⎪→⎨⎨⎪⎪→⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边找夹角的另一边已知一边和一角找夹边的另一角找边的对角找夹边已知两角找任一边3.全等三角形的特征:全等三角形的对应边_______,•对应角______;•图形经过_______,_______,_______等几何变换后与原图形全等.•4.•________________•叫做命题.•正确的命题称为_______,•错误的命题称为_______.两个三角形中对应相等的边或角 全等识别法 一般三角形 三条边 两边及其夹角 两角及其夹边两角及一角的对边直角三角形 斜边及一条直角边5.在几何中,限定用________和_______来画图,称为尺规作图,新课标要求掌握四种基本作图(画线段、画角、画角平分线、画垂直平分线).6.全等三角形中常见的基本图形:识记巩固参考答案:1.SSS SAS ASA AAS HL3.相等相等对称平移旋转4.可以判断正确与错误的语句真命题假命题5.直尺圆规◆典例解析例1(2011重庆江津,22,10分)在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30º,求∠ACF度数.【答案】(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°.在Rt△ABE和Rt△CBF中,∵AE=CF,AB=BC,∴Rt△ABE≌Rt△CBF(HL)(2)∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB-∠CAE=45°-30°=15°.由(1)知Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°, ∴∠ACF=∠BCF+∠ACB=45°+15°=60°.例2在一次数学课上,王老师在黑板上画出下图,并写下了四个等式:①AB=DC;②BE=CE;③∠B=∠C;④∠BAE=∠CDE.•要求同学从这四个等式中选出两个作为条件,推出△AED是等腰三角形.请你试着完成王老师提出的要求,并说明理由.(写出一种即可)已知:求证:△AED是等腰三角形.证明:解析本例是一道开放性问题,考查全等三角形的识别,填法多样,•一般先看从题中已知的四个条件中取出两个共有六种取法,再看有几种正确.正确的填法可以是已知:①③(或①④,或②③,或②④)(任选一个即可).若选①③,证明如下:证明:在△ABE和△DCE中,∵,,,B CAEB DECAB DC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△DCE,∴AE=DE,即△AED是等腰三角形.点评几何演绎推理论证该如何考?一直是大家所关注的.本题颇有新意,提供了一种较新的考查方式,让学生自主构造问题,自行设计命题并加以论证,给学生创造了一个自主探究的机会,具有一定的挑战性.这种考查的形式在近几种的中考试题中频繁出现,复习时值得重视.例3已知Rt△ABC中,∠C=90°.(1)根据要求作图(尺规作图,保留作图痕迹,不写画法).①作∠BAC的平分线AD交BC于点D;②作线段AD的垂直平分线交AB于点E,交AC于点F,垂足为H;③连结ED.(2)在(1)的基础上写出一对全等三角形:△_____≌△______,并加以证明.解析(1)按照要求用尺规作∠BAC的平分线AD,作线段AD的垂直平分线,并连结相关线段.(2)由AD平分∠BAC,可以得到∠BAD=∠DAC.由EF垂直平分线段AD,可以得到∠EHA=∠FHA=∠EHD=90°,EA=ED,从而有∠EAD=∠EDA=∠FAH,再加上公共边,从而有△AEH≌△AFH≌△DEH.以上三组中任选一组即可.点拨本题的最大特点是将基本作图与证明结合起来,就目前的情况来看,“作图→证明”“作图→计算”“作图→变换”是考查基本作图的常见命题模式.作角平分线和线段的垂直平分线是新课标中明确提出的基本作图之一,作图的图形中含有很多相等的线段和角,蕴含着全等三角形.例4在△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图1,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)如图2,若E,F分别是AB,CA延长线上的点,仍有BE=AF,其他条件不变,•那么△DEF是否仍为等腰直角三角形?证明你的结论.解析(1)连结AD.∵AB=AC,∠BAC=90°,D为BC的中点,∴AD⊥BC,BD=AD,∴∠B=∠DAC=45°.又BE=AF,图1 图2∴△BDE≌△ADF(SAS),∴ED=FD,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.∴△DEF为等腰直角三角形.(2)连结AD.∵AB=AC,∠BAC=90°,D为BC的中点,∴AD=BD,AD⊥BC.∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°.又AF=BE,∴△DAF≌△DBE(SAS),∴FD=ED,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF仍为等腰直角三角形.例5在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G,•一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,•另一条直角边恰好经过点B.(1)在图中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到如图2所示的位置时,一条直角边仍与AC•边在同一直线上,另一条直角边交BC 边于点D,过点D作DE⊥BA于点E.此时请你通过观察,•测量DE,DF与CG的长度,猜想并写出DE+DF与CG 之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)在基础上沿AC方向继续平移到如图3所示的位置(点F•在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)图1 图2 图3解析(1)BF=CG .证明:在△ABF 和△ACG 中,∵∠F=∠G=90°,∠FAB=∠GAC ,AB=AC , ∴△ABF ≌△ACG (AAS ), ∴BF=CG .(2)DE+DF=CG .证明:过点D 作DH ⊥CG 于点H (如图2).∵DE ⊥BA 于点E ,∠G=90°,DH ⊥CG . ∴四边形EDHG 为矩形, ∴DE=HG ,DH ∥BG , ∴∠GBC=∠HDC . ∵AB=AC , ∴∠FCD=∠GBC=∠HDC . 又∵∠F=∠DHC=90°,CD=DC , ∴△FDC ≌△HCD (AAS ),∴DF=CH . ∴GH+CH=DE+DF=CG ,即DE+DF=CG .(3)仍然成立.点评本题从直接证明三角形全等,到探究新的情况下如何构建新的全等三角形证明待定的数量关系,再到不同位置关系下的归纳猜想,三个问题由浅入深考查学生的不同层次的数学能力.本题还可以利用面积来进行证明,比如(2)中连结AD .全等三角形练习题一、选择题1.(2011安徽芜湖,6,4分)如图1,已知ABC △中,45ABC ∠=,F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为( ). A .22B .4C .32D .42 【答案】B图1 图2 图3 图42.(2011山东威海,6,3分)图2在△ABC 中,AB >AC ,点D 、E 分别是边AB 、AC 的中点,点F 在BC 边上,连接DE,DF,EF.则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等( ).A .EF ∥AB B .BF=CFC .∠A=∠DFED .∠B=∠DFE 【答案】C 3.(2011浙江衢州,1,3分)如图3,OP 平分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( ) A.1 B.2 C.3 D.4 【答案】B4.(2011江西,7,3分)如图下列条件中,不能..证明△ABD≌△ACD 的是( ).A.BD=DC ,AB=ACB.∠ADB=∠ADCC.∠B=∠C,∠BA D=∠CADD.∠B=∠C,BD=DC 【答案】D5.(2011江苏宿迁,7,3分)如图5,已知∠1=∠2,则不一定...能使△ABD ≌△ACD 的条件是( ) A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA 【答案】B图5 图6 图86.(2011江西南昌,7,3分)如图6下列条件中,不能..证明△ABD≌△ACD 的是( ). A.BD=DC ,AB=AC B.∠ADB=∠ADC C.∠B=∠C,∠BA D=∠CADD.∠B=∠C,BD=DC 【答案】D7.(2011上海,5,4分)下列命题中,真命题是( ).A 周长相等的锐角三角形都全等;B 周长相等的直角三角形都全等;C 周长相等的钝角三角形都全等;D 周长相等的等腰直角三角形都全等. 【答案】D8.(2011安徽芜湖,6,4分)如图8,已知ABC △中,45ABC ∠=,F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为( ). A .22B .4C .32D .42【答案】B二、填空题1.(2011江西,16,3分)如图1所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。

2012年中考数学压轴题复习讲义

2012年中考数学压轴题复习讲义

2011年中考数学压轴题复习讲义(动点问题详细分层解析,尖子生首选资料 )所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1 )如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==.在Rt △MPH 中,.2222233621419x x x MH PH MP +=-+=+=HM NG POAB图1x y∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意. ③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2 如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11xy =, ∴x y 1=.(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年²上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.AEDCB 图2A3(2)3(1)(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4 如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. ABCO 图8HC动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

(备战中考)2012年中考数学深度复习讲义:等腰三角形

(备战中考)2012年中考数学深度复习讲义:等腰三角形

(备战中考)江苏省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)等腰三角形◆考点聚焦1.等腰三角形的判定与性质. 2.等边三角形的判定与性质.3.运用等腰三角形、等边三角形的判定与性质解决有关计算与证明问题. ◆备考后法1.运用三角形不等关系,•结合等腰三角形的判定与性质解决等腰三角形中高、边、角的计算问题,并要注意分类讨论.2.要正确辨析等腰三角形的判定与性质.3.能熟练运用等腰三角形、方程(组)、函数等知识综合解决实际问题. ◆识记巩固1.等腰三角形的性质定理及推论:____________________.2.等腰三角形的判定定理及推论:_______________________. 识记巩固参考答案:1.等腰三角形的两个底角相等(等边对等角);•等腰三角形的顶角平分线平分底边并且垂直于底边(三线合一);等边三角形的各有都相等,且每个角都等于60°.2.如果一个三角形的两角相等,那么这两个角所对的边也相等(等角对等边).•三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. ◆典例解析例1 (2011浙江衢州,23,10分)ABC ∆是一张等腰直角三角形纸板,Rt 2C AC BC ∠=∠==,. 要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.图1中甲种剪法称为第1次剪取,记所得的正方形面积为1S ;按照甲种剪法,在余下的ADE BDF ∆∆和中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为2S (如图2),则2=S ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为3S (如图3);继续操作下去…则第10次剪取时,10S = . 求第10次剪取后,余下的所有小三角形的面积和.【答案】(1)解法1:如图甲,由题意得,1,1CFDE AE DE EC EC S ====正方形即.如图乙,设MN x =,则由题意,得,AM MQ PN NB MN x ===== 又819>∴甲种剪法所得的正方形的面积更大 说明:图甲可另解为:由题意得点D 、E 、F 分别为AB AC BC 、、的中点,112ABC CFDE S S == 正方形 解法2:如图甲,由题意得AE DE EC ==,即EC=1如图乙,设,MN x AM MQ QP PN NB MN x =======则由题意得∴甲种剪法所得的正方形的面积更大(2)212S =(3)10912S = (3)解法1:探索规律可知:112n n S -=‘ 剩余三角形的面积和为:()12109911112212422S S S ⎛⎫-+++=-++++= ⎪⎝⎭ 解法2:由题意可知, 第一次剪取后剩余三角形面积和为112=1=S S -第二次剪取后剩余三角形面积和为12211122S S S -=-== 第三次剪取后剩余三角形面积和为233111244S S S -=-==……第十次剪取后剩余三角形面积和为9101091=2S S S -= 例2 如图,△ABC 中,E ,F 分别是AB ,AC 上的点.①AD 平分∠BAC ;②DE ⊥AB ,•DF•⊥AC ;③AD ⊥EF .以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①②③;①③②;②③①. (1)试判断上述三个命题是否正确(直接作答);(2)请证明你认为正确的命题.解析 (1)①②⇒③正确;①③⇒②错误;②③⇒①正确. (2)先证①②⇒③,如图1. ∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC , ∴DE=DF ,∠AED=∠AFD=90°.在Rt △AED 和Rt △AFD 中,,,DE DF AD AD =⎧⎨=⎩ ∴△AED ≌△AFD (HL ). ∴AE=AF .∴△AEF 是等腰三角形,∴AD ⊥EF .再证②③⇒①.图1 图2 图3 方法一:如图2,DE ⊥AB ,EF ⊥AD ,DF ⊥AC . 易证△DEH ∽△DAE ,△DFH ∽△DAF . ∴,DE DH DH DFAD DE DF AD==, ∴DE 2=AD·DH,DF 2=DH·AD.∴DE 2=DF 2,∴DE=DF,∴AD 平分∠BAC. 方法二:如图3,取AD 的中点O ,连结EO ,FO . ∵DE ⊥AB ,DF ⊥AC ,∴OE ,OF 分别是Rt △ADE ,Rt △ADF 斜边上的中线. ∴OE=12AD ,OF=12AD . 即O 点到A ,E ,D ,F 的距离相等.∴A ,E ,D ,F 四点在以O 为圆心,12AD 为半径的圆上,AD 是直径,EF 是⊙O 的弦,而EF•⊥AD ,∴AD 平分 EDF,即 ED DF =. ∴∠DAE=∠DAF ,即AD 平分∠BAC .MED CBA2011年真题一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) A 32B 33C 34D 36 【答案】B2. (2011四川南充市,10,3分)如图2,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM⊥DM;④BM=DM.正确结论的个数是( ) A 1个 B 2个 C 3个 D 4个 【答案】D图2 图3 图43. (2011浙江义乌,10,3分)如图3,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形;③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ;一定正确的结论有( )A .1个B .2个C .3个D .4个 【答案】D4. (2011台湾全区,30)如图(十三),ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB 于D 、E 两点,并连接BD 、DE .若∠A=30∘,AB =AC ,则∠BDE 的度数为何?A . 45B . 52.5C . 67.5D . 75 【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC 、DEF ,且D 、A 分别为△ABC 、△DEF 的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在DE 上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A .2:1B . 3:2C . 4:3D . 5:4【答案】C图76. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是 A .15cm B .16cm C .17cm D .16cm 或17cm 【答案】D7. (2011四川凉山州,8,4分)如图7,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( )A .1013 B .1513 C .6013 D .7513【答案】C (第1题)ABCD E二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 . 4. (2011浙江台州,14,5分)如图4已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为 【答案】80º图4 图5 图75. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。

2012年中考数学压轴题分类解析汇编(十专题)专题09 几何综合问题

2012年中考数学压轴题分类解析汇编(十专题)专题09 几何综合问题

专题9:几何综合问题1. (2012宁夏区10分)在矩形ABCD 中,AB=2,AD=3,P 是BC 上的任意一点(P 与B 、C 不重合),过点P 作AP⊥PE,垂足为P ,PE 交CD 于点E.(1)连接AE ,当△APE 与△ADE 全等时,求BP 的长;(2)若设BP 为x ,CE 为y ,试确定y 与x 的函数关系式。

当x 取何值时,y 的值最大?最大值是多少?(3)若PE∥BD,试求出此时BP 的长.【答案】解:(1)∵△APE≌△ADE,∴AP=AD=3。

在Rt△ABP 中,AB=2,∴BP=2222AP AB 325-=-=。

(2)∵AP⊥PE,∴Rt△ABP∽Rt△PCE。

∴AB BP PC CE= ,即2x 3x y =-。

∴213y x x 22=-+。

∵2213139y x x (x )22228=-+=--+ ∴当3x 2=时,y 的值最大,最大值是98。

(2)设BP=x, 由(2)得213CE x x 22=-+。

∵PE∥BD,∴△CPE∽△CBD。

∴CP CE CB CD=, 即213x x 3x 2232-+-=, 化简得23x 13x 120-+=。

解得14x 3=或2x 3=(不合题意,舍去)。

∴当BP=43 时, PE∥BD。

【考点】矩形的性质,全等三角形的性质,勾股定理,相似三角形的判定和性质,二次函数的最值,平行的性质,解一元二次方程。

【分析】(1)由△APE≌△ADE可得AP=AD=3,在Rt△ABP中,应用勾股定理即可求得BP的长。

(2)由AP⊥PE,得Rt△ABP∽Rt△PCE,根据相似三角形的对应边成比例可列式得y与x的函数关系式。

化为顶点式即可求得当3x2时,y的值最大,最大值是98。

(3)由PE∥BD,得△CPE∽△CBD,根据相似三角形的对应边成比例可列式可求得BP的长。

2. (2012山西省12分)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC 于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:依据2:(2)你有与小宇不同的思考方法吗?请写出你的证明过程.拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.【答案】(1)解:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合);角平分线上的点到角的两边距离相等。

2012年全国各地中考数学压轴题精选讲座(共8份)-2

2012年全国各地中考数学压轴题精选讲座(共8份)-2

2012年全国各地中考数学压轴题精选讲座四函数与方程、不等式【知识纵横】函数与方程、不等式在初中数学中具有重要地位,是近年来中考的热点之一。

函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。

也体现了函数图像与方程、不等式的内在联系,例求两个函数的交点坐标,一般通过函数解析式组成的方程组来解决。

这类问题主要采用以函数为主线,将函数图像、性质,方程及不等式的相关知识的综合运用,利用数形结合的思想解决相应的实际问题。

函数综合题从题设到结论、从题型到内容,条件隐蔽,变化多样,因此就决定了审题过程的复杂性和解题设计的多样性。

在审题过程中,要明确解题结果正确的终极目标和每一步骤分项目标,注意题设条件的隐蔽性。

并对所得的函数要结合自变量的取值范围来考虑最值,这就需要结合图像来解决。

【填空、选择题】1.(浙江杭州)已知关于x ,y 的方程组x y=4ax y=3a-⎧⎨-⎩+3,其中﹣3≤a ≤1,给出下列结论:①x=5y=1⎧⎨-⎩是方程组的解; ②当a =﹣2时,x ,y 的值互为相反数;③当a =1时,方程组的解也是方程x +y =4﹣a 的解;④若x ≤1,则1≤y ≤4.其中正确的是【 】 A .①② B .②③ C .②③④ D .①③④2.(山东潍坊)已知一元二次方程20ax bx c ++=的两个实数根1x 、2x 满足x 1+x 2=4和x 1•x 2=3,那么二次函数()20y ax bx c a >=++的图象可能是.A. B. C. D3.(内蒙古呼和浩特)已知一元二次方程230x bx +-=的一根为3-,在二次函数23y x bx =+-的图象上有三点14 5,y ⎛⎫- ⎪⎝⎭、25 4,y ⎛⎫- ⎪⎝⎭、31 6,y ⎛⎫ ⎪⎝⎭,1y 、2y 、3y 的大小关系是A. 123y y y <<B. 213y y y <<C. 312y y y <<D. 132y y y <<4. (浙江义乌)如图,已知抛物线y 1=﹣2x 2+2,直线y 2=2x +2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M =y 1=y 2.例如:当x =1时,y 1=0,y 2=4,y 1<y 2,此时M =0.下列判断: ①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小; ③使得M 大于2的x 值不存在; ④使得M =1的x 值是或.其中正确的是【 】A .①②B .①④C .②③D .③④5.(四川绵阳)若是方程(x -a )(x -b )= 1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 26.(湖北黄冈)已知函数()()()()221 1 35 1 3x x y x x >⎧--≤⎪=⎨--⎪⎩,若使y k =成立的x 值恰好有三个,则k 的值为 A 、0B 、1C 、2D 、3【典型试题】1.(江苏南京)已知函数261y mx x =-+(m 是常数).⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; ⑵若该函数的图象与x 轴只有一个交点,求m 的值.【考点】函数图象上点的坐标与方程的关系, 二次函数与一元二次方程的关系。

2012年全国各地中考数学压轴题精选讲座(共8份)-5

2012年全国各地中考数学压轴题精选讲座(共8份)-5

2012年全国各地中考数学压轴题精选讲座八操作与探究【知识纵横】操作型探究题作为考查学生分析、解决问题以及创新意识的良好载体,是近年中考的热点题型之一。

操作型探究题以几何图形为背景,通过平移、旋转构造出新图形,从图形的形状和位置的变化中去探求函数、方程、全等、相似、解直角三角形等知识间的关系。

探究性问题一般没有明确的条件或结论,没有固定的形式和方法,要求我们认真收集和处理问题的信息,通过观察、分析、综合、归纳、概括、猜想和论证等深层次的探索活动。

探索研究是通过对题意的理解,解题过程由简单到难,在承上启下的作用下,引导学生思考新的问题,大胆进行分析、推理和归纳,即从特殊到一般去探究,以特殊去探求一般从而获得结论,有时还要用已学的知识加以论证探求所得结论。

操作性问题是让学生按题目要求进行操作,考察学生的动手能力、想象能力和概括能力。

【选择填空】1. (浙江丽水、金华)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【】A.2010 B.2012 C.2014 D.20162. (浙江绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为【】A.512532⨯B.69352⨯C.614532⨯D.711352⨯【典型试题】1. (浙江宁波)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,ABCD中,若AB=1,BC=2,则ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出ABCD是几阶准菱形.【考点】新定义理解,图形的剪拼,平行四边形、菱形的判定和性质,归纳(图形的变化类)。

2012年全国各地中考数学压轴题精选讲座(共8份)-3

2012年全国各地中考数学压轴题精选讲座(共8份)-3

2012年全国各地中考数学压轴题精选讲座三列函数解析式【知识纵横】客观世界中事物总是相互关联、相互制约的。

代数、几何中列函数解析式问题是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。

列函数解析式问题是近年中考的热点题型之一。

这类题目的类型有:1、通过代数或几何图形的两个变量之间的关系建立函数关系式,进一步解决实际问题或研究几何的性质。

2、在以平面直角坐标系为背景,通过几何图形运动变化中两个变量之间的关系建立函数关系式,进一步研究几何图形的性质,体现了数形结合的思想方法。

但在坐标系中,每一个坐标由一对的序实数对应,实数的正负之分,而线段长度值均为正的,应注意这一点。

一般思考方法分四步:坐标、线段、函数、几何。

所列函数式有:一次函数、反比例函数、二次函数。

【选择填空】1. (贵州六盘水)为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费.小兰家4、5月份的用水量及收费情况如下表:月份用水量(吨)水费(元)4 22 515 20 45设每月用水量为n吨,应缴水费为m元,则m与n之间的函数关系式是.2. (浙江嘉兴、舟山)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A 的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x 的函数图象大致是【】A.B.C.D.3.(北京)小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的【 】A .点MB .点NC .点PD .点Q【典型试题】1. (浙江台州)某汽车在刹车后行驶的距离s (单位:米)与时间t (单位:秒)之间的关系得部分数据如下表: 时间t (秒) 0 0.2 0.4 0.6 0.8 1.0 1.2 … 行驶距离s (米)2.85.27.28.81010.8…(1)根据这些数据在给出的坐标系中画出相应的点;(2)选择适当的函数表示s 与t 之间的关系,求出相应的函数解析式;(3)①刹车后汽车行驶了多长距离才停止?②当t 分别为t 1,t 2(t 1<t 2)时,对应s 的值分别为s 1,s 2,请比较11s t 与22st 的大小,并解释比较结果的实际意义.【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质和应用,不等式的应用。

2012年全国各地中考数学压轴题精选讲座(共8份)-6

2012年全国各地中考数学压轴题精选讲座(共8份)-6

2012年全国各地中考数学压轴题精选讲座五一次函数、反比例函数的图象与几何【知识纵横】一次函数、反比例函数与几何问题,往往以计算为主线,侧重决策问题,或综合各种几何知识命题,近年全国各地中考试卷中占有相当的分量。

这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。

考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想。

解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。

解函数图象与几何的综合题,应善于运用坐标,线段长度,函数解析式三者关系,要充分发挥形的因素,数形互动,把证明与计算相结合是解题的关键。

【选择填空】1. (浙江义乌)如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;(2)当AB为梯形的腰时,点P的横坐标是2. (浙江衢州)如图,已知函数y=2x和函数ky=x的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则满足条件的P点坐标是.3. (浙江温州)如图,已知动点A在函数4y=x(x>o)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴,y轴于点P,Q.当QE:DP=4:9时,图中的阴影部分的面积等于 _.4. (浙江绍兴)如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为(用含n的代数式表示)【典型试题】1. (浙江金华)在△ABC中,∠ABC=45°,tan∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E.2(1)求AC所在直线的函数解析式;(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【考点】一次函数综合题,待定系数法,直线上点的坐标与方程的关系,勾股定理,锐角三角函数定义,全等三角形的判定和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 数与式命题分析:数与式是整个初中阶段很重要的知识,主要包括有理数、实数、代数式、整式与分式等.实数是初中数学的基础,也是每年各地中考的必考知识点.考试题型既有灵巧的填空题和选择题,也有独立的计算题.运用实数知识解决社会生活中的实际问题,是近年中考的热点. 二次根式是初中数学的重要知识点之一,也是中考的重要考点,考试题型以填空题和选择题为主,也有和实数结合的化简、计算题.近年来以贴近学生生活的背景为材料,对二次根式的性质与运算的考查,已经成为中考的一个热点. 用字母表示数,是从算术过渡到代数的重要标志,代数式是进一步学习方程及不等式等知识的基础,也是每年各地中考必考知识点.考试题型多以填空题和选择题为主,也有独立的化简求值题.运用代数式知识表示社会生活中的某些数量,及利用整体思想求解代数式的值是近年中考的热点.整式的运算包括整式的加、减、乘、除及和乘方的混合运算,是每年各地中考常常考核的知识点.考试题型多以填空题和选择题为主,也会以化简求值题的形式出现.利用公式法化简求值题型是近年中考的热点.中考中对于分式的要求是了解分式的概念,会利用分式基本性质约分和通分,会进行简单的分式运算.中考的考查多以填空、选择、计算等形式出现,在解决相关问题时,还要求能结合类比转化等数学思想方法. 押题成果:押题1. 实数2-,0.3,17,2,π-中,无理数的个数是( )A .2B .3C .4D .5解析:本题主要考查无理数的概念.无理数是指无限不循环小数,2,π-都是无限不循环小数,故共有2个无理数. 答案:A方法技巧:无理数通常有三类:①开方开不尽的数;②含π的数;③似循环但实际不循环的小数.抓住这三类无理数特征,则可以轻松解决有关无理数的相关试题. 押题2. 已知33-=-y x ,则y x 35+-的值是( )A .0B .2C .5D .8解析:由题干知x -3y =-3,仅通过这个二元一次方程想求出x ,y 的值,再代入求值显然无法实现.但若我们把x -3y 作为一个整体代入计算,则问题可以迎刃而解.因x -3y =-3,所以y x 35+-=5-(x -3y )=5+3=8. 答案:D方法技巧:一般代数式求值,需要先化简再求值;对于那些在已知式和待求值式中都出现相同的代数式的求值题,可以运用整体代入思想,简化计算.押题3.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.解析:本题考查的相关知识有整式的乘法,乘法公式,数形结合思想.解答思路:可由面积相等入手,图形拼合前后面积不变,所以(a +2b) (a +b)=a 2+3ab+2b 2 答案:3张方法技巧:熟悉常考的乘法公式,树立数形结合思想. 押题4.已知两个分式:A =442-x ,B =xx -++2121,其中x ≠±2.下面有三个结论:①A =B ; ②A 、B 互为倒数; ③A 、B 互为相反数.请问哪个正确?为什么?解析:本题考察的知识点是分式的运算,涉及到分式的通分、加减法则.解题思路1:先对B进行通分,再比较与A的关系.(如下)解题思路2:对于本题可以先取一个符合条件的数值判断分式之间的关系,然后再有目的进行变形.比如取x =0代入,A =-1,B =1,故互为相反数. 答案:A 、B 互为相反数 因为:B=x x -++2121=424222-+---x x x x =442--x=-A 故选③.方法技巧:掌握分式通分的基本运算,灵活运用加减法则. 押题5.在实数范围内因式分解44-x = __________.解析:观察多项式44-x ,发现其有平方差公式特点,所以可以使用平方差公式进行因式分解. 需要注意要将因式分解在实数范围内进行到底,且不可半途而废. 答案:)2)(2)(2(2-++x x x方法技巧:掌握平方差公式和完全平方公式特点,是解答此类问题的关键. 押题6.在实数范围内分解因式2(x y)4(x y 1).+-+-解析:此题如果按一般方法去分解,须将2(x y)+展开,结果将问题复杂化了,其实原式可化为2(x y)4(x y)4+-++,将x y +看成一个整体,再用公式法分解因式.需要注意要将因式分解在实数范围内进行到底,且不可半途而废. 答案:2(x y)4(x y 1).+-+-22(x y)4(x y)4(x y 2)=+-++=+-方法技巧:因式分解是中考中的热点内容,解答时应首先仔细观察给出公式的特点,然后按照分解因式的步骤寻求简单方法求解。

整体代换思想是初中数学解题的一种重要方法,本题分解因式时利用了整体代换思想,巧妙地将给出因式进行了分解.押题7.已知|1|80a b ++-=,则a b -= .解析:本题考查绝对值与算数平方根的非负性,两个非负数的和为0,所以这两数都为0.因为|1|80a b ++-=所以a =-1,b =8.答案:﹣9方法技巧:明确在初中阶段:绝对值、偶次幂及二次根式都具有非负性.专题二 方程(组)与不等式(组)命题分析:方程(组)与不等式(组)是数与代数的第二大部分,主要包含一次方程(组)、不等式与不等式组、一元二次方程、分式方程等.一次方程(组)是方程的基础,也是中考的必考内容之一,题型多样,多为基础题.近年来联系实际的一次方程(组)应用的考查一直是个热点.不等式与不等式组主要包括求不等式(组)的解集并在数轴上表示出来和不等式(组)的应用,是中考必考的内容.求不等式的解集多以填空或选择题形式出现,也常常出现和其它知识综合在一起的解答题.近年来利用题中的不等量关系列不等式(组)解决实际问题,一直是中考的热点.一元二次方程是初中代数部分的重要内容,是历年来各地中考的必考内容,通常单独命题,试题形式以选择题、填空题、解答题等多种形式出现,一元二次方程的应用仍是中考的重点,从表现为方程有关的知识间的简单应用,向与几何、函数等知识的综合方向发展.用方程思想解决日常生产、生活中的实际问题将持续成为中考热点.解分式方程和列分式方程解应用题都是中考重要考点,有时单独命题,有时会与函数等其它知识综合考查,常常以解答题形式出现,有时会以选择题和填空题形式出现.可化为一元二次方程的分式方程的应用问题是中考考核的一个重点. 押题成果:押题1.已知关于x 的方程432x m -=的解是x m =,则m 的值是____________.解析:本题考查了一元一次方程解的意义.因x m =是该方程的解,所以代入后方程仍然成立,即:432m m -=,解这个关于m 的方程得m =2.答案:m=2方法技巧:方程的解代入原方程,等式仍然成立,利用这一个原理可以求解出方程中的字母的数值. 押题2.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的鸦为 _________只、树为 棵. 解析:本题考查了二元一次方程组的实际应用知识.设有鸦x 只,有树y 棵,则根据题意可得:355(1)y x y x+=⎧⎨-=⎩,解得20,5x y =⎧⎨=⎩即诗句中谈到的鸦为20只,树为5棵.本题也可以用一元一次方程解题答案:20 5方法技巧:认真阅读题干,找出已知量和未知量之间的等量关系,建立方程组是解题关键. 押题3.不等式组23732x x +>⎧⎨->-⎩,的解集是 .解析:解不等式237x +>得2x >,解不等式32x ->-得5x <,所以个该不等式的解集为25x << 答案:25x <<方法技巧:正确解出不等式组中每个不等式的解集,再根据“大大取大,小小取小,大小、小大中间找,大大、小小无法找”的口诀(或借助数轴)确定解集.押题4.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .解析:本题考查了不等式组的解法.解x ﹣a ≧0得,x ≧a ① 解2125<>-x x 得,②,因为该不等式组有解,由①、②得该不等式组解集为2<≤x a ,用数轴表示为由图可得实数a 的取值范围是23-≤<-a .答案:23-≤<-a方法技巧:根据不等式组解出含有字母的解集,再与题干的其它条件想结合,确定字母的数值是解决此类问题的一般方法.押题5.下列方程中,有两个不相等实数根的是( ).A .x 2﹣2x ﹣1=0B .x 2﹣2x +3=0C .x 2=23x ﹣3D .x 2﹣4x +4=0解析:本题考查相关知识点为一元二次方程的根的判定:判别式大于0时,有两个不相等的实数根;判别式等于0时,有两个相等的实数根,当判别式小于0时,没有实数根. 答案:A.方法技巧:判别式24b ac ∆=-,计算每个方程的判别式,可得它们根的情况.押题6:解方程:224111xx x x -=-+-.解析:本题考查了分式方程的解法,去分母将分式方程转化为整式方程是解分式方程的基本方法,验根只需将结果代入最简公分母即可.原方程变形为)1)(1(4121-+=+--x x x x x 方程两边都乘以)1)(1(-+x x ,去分母并整理得022=--x x ,解这个方程得1,221-==x x .经检验,2=x 是原方程的根,1-=x 是原方程的增根.∴原方程的根是2=x .答案:x=2方法技巧:部分学生在解分式方程时,往往不能拿到全部分数,其中很多人是因为忘记检验.突破方法:牢牢记住分式方程必须验根,检验这一步不可缺少..专题三 函数命题分析:函数部分的内容主要包括函数的初步、一次函数、反比例函数、二次函数等.函数的初步这一知识点要求我们理解函数的概念,了解常量、变量和函数的关系,确定自变量的取值32 0 1 -1 -2 -3范围.这一知识点的考查角度比较多,考试的形式多样,选择、填空题,并且近几年将知识综合出现比较多. 一次函数的概念、图象及其性质是中考的必考内容,而待定系数法求函数解析式、已知图象求参数的值或取值范围以及与其它函数结合的综合型问题是中考常考题型.一次函数的应用是初中数学中的重点内容之一,这类题目不但格调清新、设计独特,而且紧密结合社会实践和市场经济实际,它在考查同学们对基础知识掌握程度的同时,更能突出对应用数学意识的考查力度.反比例函数的概念、图象及其性质是中考的必考内容,而待定系数法求函数解析式、已知图象求参数的值或取值范围以及与其它函数结合的综合型问题是中考常考题型.二次函数的概念、图象及其性质是中考的必考内容,而待定系数法求函数解析式、已知图象求参数的值或取值范围以及与其它函数结合的综合型问题是中考常考题型.通过开口方向、对称轴方程、顶点,并能应用这一知识点解决一些实际问题.二次函数的应用重点考查二次函数与学科内知识的整合,如勾股定理、一次函数、反比例函数、平面几何知识、图形的变化等,这是一种类型;另一种类型是考查二次函数的极值问题,需要学生建立二次函数模型来解决问题.以压轴题的形式出现比较多. 押题成果:押题1.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .31-=x y B .31-=x y C .3-=x y D .3-=x y解析:根据函数的定义,A 中是一个分式,考虑的是分母不等于0,即03≠-x ,所以x ≠3;B 是一个分式且分母中含有根号,所以应该满足的条件是:x -3﹥0,即x>3;C 是一个整式,自变量的取值范围是全体实数;所以正确答应选D. 答案:D方法技巧:函数自变量的取值范围是使函数解析式有意义的自变量的所有可能取值,它是一个函数被确定的重要因素.求函数自变量的取值范围通常有以下六种方法:1、当函数解析是整式时,自变量的取值范围是一切实数.2、当函数解析式是分式时,自变量的取值范围是使分母不为零的一切实数.3、当函数解析式是二次根式时,被开方数为一切非负实数.4、当零次幂或负整数次幂的底数中含有自变量时,该底数不为零.5、由函数值的变化范围确定自变量的取值范围.6、在实际问题中,自变量的取值范围应使该问题有实际意义.押题2.已知y 是x 的一次函数,右表列出了部分对应值,则m = . 解析:本题是一个图表信息题,要求学生能够通过观察图表得到两个变量之间的函数关系.答案:设y=kx+b ,将(1,3),(2,5)代入,可得y=2x+1,所以当x=0时,m的值为1.方法技巧:准确的根据一次函数的定义进行判断是解本类试题的关键.如果y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.如果y =kx (k 是常数,k ≠0),那么y 叫做x 的正比例函数.由此可见,一次函数y =kx +b (k ,b 是常数,k ≠0)中,当b =0时,就成了正比例函数,所以正比例函数是一次函数的特例.一次函数y =kx +b (k ,b 是常数,k ≠0),的图象是一条直线,作图时通常取两点(0,b )、(-kb ,0)即可画出一次函数的图象;正比例函数y =kx (k 是常数,k ≠0)的图象是过点(0,0)与(1,k )的一条直线. 押题3.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( )x1 02 y3m5A .12分钟B .15分钟C .25分钟D .27分钟解析:本题中实际是三个函数之间的关系,理清了这三个关系,回家用的时间就可以确定了.根据图形我们可以发现,小高在图中平路时,1千米用了3分钟,上坡路1千米用了5分钟,下坡路1千米用了2分钟。

相关文档
最新文档