江苏省连云港市灌云县2017-2018学年上学期期末考试八年级数学试卷(含答案)

合集下载

2017-2018学年度上学期期末考试八年级数学试卷(含答案)

2017-2018学年度上学期期末考试八年级数学试卷(含答案)

B第9题图八年级数学试题上学期期末考试一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( )A B C D2,.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB ≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和 10cm ,则此三角形的周长是( )A.15cmB. 20cmC. 25cmD.20cm 或25cm6.如图,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C.∠C =∠D D.∠ABC =∠ABD7.如图,已知在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A.10B.7C.5D.4 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠题 10Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( ) 腰三角A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________ 第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为°,求此等腰三角形的顶角为 17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N △PMN 周长的最小值为__________18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。

江苏省连云港市连云区2017-2018学年八年级上期末数学试卷(有答案)【最新】

江苏省连云港市连云区2017-2018学年八年级上期末数学试卷(有答案)【最新】

江苏省连云港市连云区八年级(上)期末数学试卷一、选择题(每小题3分,满分24分)1.下列“QQ表情”中属于轴对称图形的是()A.B.C.D.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.1,D.,,43.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量4.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)5.下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA7.下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2C.y=﹣2x+3D.y=3﹣x8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2018的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)二、填空题(每小题3分,满分24分)9.16的平方根是.10.圆周率π=3.1415926…精确到千分位的近似数是.11.如图,起重机吊运物体,∠ABC=90°.若BC=12m,AC=13m,则AB=m.12.一次函数y=﹣3x+2的图象不经过第象限.13.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=28°,则∠ADE=°.14.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是.15.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.16.如图,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是.三、解答题(共10小题,满分102分)17.(10分)(1)求式中x的值:(x+4)3+2=25(2)计算:20180﹣+18.(8分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.19.(8分)已知一次函数y=kx+2与y=x﹣1的图象相交,交点的横坐标为2.(1)求k的值;(2)直接写出二元一次方程组的解.20.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是.21.(10分)如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.22.(10分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.23.(10分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?24.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.25.(12分)小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?26.(14分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.2017-2018学年江苏省连云港市连云区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,满分24分)1.下列“QQ表情”中属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.1,D.,,4【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不可以构成直角三角形,故A选项错误;B、22+32≠42,不可以构成直角三角形,故B选项错误;C、12+()2=()2,可以构成直角三角形,故C选项正确;D、()2+()2≠42,可以构成直角三角形,故D选项错误.故选:C.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量【分析】根据常量与变量的定义即可判断.【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.【点评】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.4.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点(﹣3,2)关于y轴对称的点的坐标是(3,2),故选:A.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.5.下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.【分析】根据无理数的定义进行估算解答即可.【解答】解:A.﹣<﹣1,故错误;B.﹣<﹣1,故错误;C.﹣1<,故正确;D.>2,故错误;故选:C.【点评】此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故D选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2C.y=﹣2x+3D.y=3﹣x【分析】根据一次函数的性质对各选项进行逐一分析即可.【解答】解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.故选:B.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2018的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【解答】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,),点P5的坐标为(5,3),2018÷4=504…2,∴P2018的坐标为(3,5),故选:B.【点评】本题考查的是点的坐标、坐标与图形变化﹣对称,正确找出点的坐标的变化规律是解题的关键.二、填空题(每小题3分,满分24分)9.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.圆周率π=3.1415926…精确到千分位的近似数是 3.142.【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【解答】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点评】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.11.如图,起重机吊运物体,∠ABC=90°.若BC=12m,AC=13m,则AB=5m.【分析】根据题意直接利用勾股定理得出AB的长.【解答】解:由题意可得:AB==5(m).故答案为:5.【点评】此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.12.一次函数y=﹣3x+2的图象不经过第三象限.【分析】根据一次函数的性质容易得出结论.【解答】解:因为解析式y=﹣3x+2中,﹣3<0,2>0,图象过一、二、四象限,故图象不经过第三象限.故答案为:三【点评】在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.13.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=28°,则∠ADE=34°.【分析】先根据三角形内角和定理计算出∠B=62°,再根据折叠的性质得∠DEC=∠B=62°,然后根据三角形外角性质求∠ADE的度数.【解答】解:∵∠ACB=90°,∠A=28°,∴∠B=90°﹣28°=62°,∵沿CD折叠△CBD,使点B恰好落在AC边上的点E处,∴∠DEC=∠B=62°,∵∠DEC=∠A+∠ADE,∴∠ADE=62°﹣28°=34°.故答案为34°.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是﹣1.【分析】根据垂直的定义得到∠ABC=90°,根据勾股定理得到AC==,求得AD=AC﹣CD=﹣1,根据圆的性质得到AE=AD,即可得到结论.【解答】解:∵BC⊥AB,∴∠ABC=90°,∵AB=2,BC=1,∴AC==,∵CD=BC,∴AD=AC﹣CD=﹣1,∵AE=AD,∴AE=﹣1,∴点E表示的实数是﹣1.故答案为:﹣1.【点评】本题考查了勾股定理,实数与数轴,圆的性质,正确掌握勾股定理是解题的关键.15.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2.【分析】根据函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),然后根据图象即可得到不等式3x+b>ax﹣3的解集.【解答】解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),∴不等式3x+b>ax﹣3的解集是x>﹣2,故答案为:x>﹣2.【点评】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是(2,0).【分析】找点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,先求出直线AC'的解析式,继而可得出点D的坐标.【解答】解:作点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,∵点C'坐标为(0,﹣2),点A坐标为(6,4),∴直线C'A的解析式为:y=x﹣2,故点D的坐标为(2,0).故答案为:(2,0).【点评】本题主要考查了最短线路问题,解题的关键是根据“两点之间,线段最短”,并且利用了正方形的轴对称性.三、解答题(共10小题,满分102分)17.(10分)(1)求式中x的值:(x+4)3+2=25(2)计算:20180﹣+【分析】(1)移项后计算等式的右边,再利用立方根的定义计算可得;(2)先计算零指数幂、算术平方根和立方根,再计算加减可得.【解答】解:(1)∵(x+4)3+2=25,∴(x+4)3=23,则x+4=,∴x=﹣4;(2)原式=1﹣2﹣5=﹣6.【点评】本题主要考查实数的运算,解题的关键是掌握零指数幂、算术平方根和立方根的定义与运算法则.18.(8分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.【分析】欲证明AB=DE,只要证明△ABC≌△DEF即可.【解答】证明:∵AF=CD,∴AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,熟练掌握全等三角形的判定方法是解决问题的关键.19.(8分)已知一次函数y=kx+2与y=x﹣1的图象相交,交点的横坐标为2.(1)求k的值;(2)直接写出二元一次方程组的解.【分析】(1)先将x=2代入y=x﹣1,求出y的值,得到交点坐标,再将交点坐标代入y=kx+2,利用待定系数法可求得k的值;(2)方程组的解就是一次函数y=kx+2与y=x﹣1的交点,根据交点坐标即可写出方程组的解.【解答】解:(1)将x=2代入y=x﹣1,得y=1,则交点坐标为(2,1).将(2,1)代入y=kx+2,得2k+2=1,解得k=;(2)二元一次方程组的解为.【点评】此题主要考查了一次函数与二元一次方程组的关系及待定系数法求字母系数,难度适中.20.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是(a+4,﹣b).【分析】(1)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用平移变换的性质得出点M2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,﹣b).故答案为:(a+4,﹣b).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.21.(10分)如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.【分析】(1)连接AC,先根据勾股定理求出AC的长,再求出AD的长,结合勾股定理的逆定理得到∠D是直角;=S△ABC+S△ADC即可得出结论.(2)由S四边形ABCD【解答】解:(1)∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角;=S△ABC+S△ADC(2)S四边形ABCD=•AB•BC+•AD•DC=234(m2).【点评】本题考查的是勾股定理的应用,熟知勾股定理的应用是解答此题的关键.22.(10分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2,即2CD2=AD2+DB2.【解答】证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△AEC≌△BDC(SAS);(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键.23.(10分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?【分析】(1)当0<x≤6时,根据“水费=用水量×2”即可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×5+(用水量﹣6)×3”即可得出y与x的函数关系式;(3)经分析,当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x﹣6中,求出x值,此题得解.【解答】解:(1)根据题意可知:当0<x≤6时,y=2x;(2)根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6;(3)∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列出函数关系式;(2)根据数量关系列出函数关系式;(3)代入y=27求出x值.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键.24.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.【分析】(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,根据勾股定理列方程即可得到结论;(2)当点P在∠CAB的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,根据勾股定理列方程即可得到结论;【解答】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,∴当t=时,P在△ABC的角平分线上.【点评】本题考查了勾股定理,关键是根据等腰三角形的判定,三角形的面积解答.25.(12分)小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为20分钟,小聪返回学校的速度为0.2千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?【分析】(1)由函数图象的数据可以求出小聪在图书馆查阅资料的时间为20分钟,由速度=路程÷时间就可以得出小聪返回学校的速度;(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式为y=kx,由待定系数法求出其解即可;(3)分类讨论,当小聪、小明同时出发后,在小聪到达图书馆之前、当小聪、小明在相遇之前及当小聪、小明在相遇之后,分别求出来即可.【解答】解:(1)由题意,得小聪在图书馆查阅资料的时间为20分钟.小聪返回学校的速度为4÷20=0.2千米/分钟.故答案为:20,0.2;(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式为s=kt,由题意,得4=60k,解得:k=.∴所求函数表达式为s=t .(3)小聪、小明同时出发后,在小聪到达图书馆之前,两人相距0.4千米时,0.4÷(0.2﹣)=3;当小聪从图书馆返回时:设直线BC 的解析式为s=k 1t +b ,由题意,得,解得:∴直线BC 的函数式为:.当小聪、小明在相遇之前,刚好可以“互相望见”时,即两人相距0.4千米时,﹣t=0.4,解得t=;当小聪、小明在相遇之后,刚好可以“互相望见”时,即两人相距0.4千米时,t ﹣=0.4,解得t=.∴所以两人可以“互相望见”的时间为:﹣=3(分钟) 综上可知,两人可以“互相望见”的总时间为3+3=6(分钟).【点评】本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的关系的运用,解答时求出函数的解析式是关键. 26.(14分)建立模型:如图1,已知△ABC ,AC=BC ,∠C=90°,顶点C 在直线l 上.操作:过点A 作AD ⊥l 于点D ,过点B 作BE ⊥l 于点E .求证:△CAD ≌△BCE .模型应用:(1)如图2,在直角坐标系中,直线l 1:y=x +4与y 轴交于点A ,与x 轴交于点B ,将直线l 1绕着点A 顺时针旋转45°得到l 2.求l 2的函数表达式.(2)如图3,在直角坐标系中,点B (8,6),作BA ⊥y 轴于点A ,作BC ⊥x 轴于点C ,P 是线段BC 上的一个动点,点Q (a ,2a ﹣6)位于第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出此时a 的值,若不能,请说明理由.【分析】操作:根据余角的性质,可得∠ACD=∠CBE,根据全等三角形的判定,可得答案;应用(1)根据自变量与函数值的对应关系,可得A、B点坐标,根据全等三角形的判定与性质,可得CD,BD的长,根据待定系数法,可得AC的解析式;(2)根据全等三角形的性质,可得关于a的方程,根据解方程,可得答案.【解答】解:操作:如图1:,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(1)∵直线y=x+4与y轴交于点A,与x轴交于点B,∴A(0,4)、B(﹣3,0).如图2:,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴在△BDC和△AOB中,,△BDC≌△AOB(AAS),∴CD=BO=3,BD=AO=4.OD=OB+BD=3+4=7,∴C点坐标为(﹣7,3).设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得l2的函数表达式为y=x+4;(2)由题意可知,点Q是直线y=2x﹣6上一点.如图3:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,,∴△AQE≌△QPF(AAS),AE=QF,即6﹣(2a﹣6)=8﹣a,解得a=4如图4:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,AE=2a﹣12,FQ=8﹣a.在△AQE和△QPF中,,△AQE≌△QPF(AAS),AE=QF,即2a﹣12=8﹣a,解得a=;综上所述:A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或4.【点评】本题考查了一次函数综合题,利用余角的性质得出∠ACD=∠CBE是解题关键,又利用了全等三角形的判定;利用了全等三角形的性质得出CD,BD的长是解题关键,又利用了待定系数法求函数解析式;利用全等三角形的性质得出关于a的方程是解题关键,要分类讨论,以防遗漏.。

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。

八年级2017-2018学年第一学期数学期末测试题及答案

八年级2017-2018学年第一学期数学期末测试题及答案
程 米。(用科学计算法表示)
18.如图所示,把一个长方形纸片沿 EF 折叠后,点 D,C 分别落在 D′,C′的位置.
若∠EFB=65°,则∠AED′等于
度.
A
E
D
D′
B
19. 如 图 , 在 Rt△ ABC 中 , ∠ CAB=90° , ∠ B=30 °,
FC C′
A
AD⊥CB 于 D,CD=2,则 CB=
得分 评卷人
26.(本题 10 分)
(1)已知△ABC 为正三角形,点 M 是 BC 上一点,点 N 是 AC 上一点,AM、 BN 相交于点 Q,BM = C N,证明△ABM≌△BCN,并求出∠BQM 的度数.
(2)将(1)中的“正△ABC”分别改为正方形 ABCD、正五边形 ABCDE、正
六边形 ABCDEF、正 n 边形 ABCD…,“点 N 是 AC 上一点”改为点 N 是 CD 上
A.4 对 B.3 对 C. 2 对 D.1 对
C
(请注意:以下选择题每题 3 分)
A
E
B
D
7.下列计算正确的是 (

A. 31 3 B. 32 35 310 C. (33)5 38 D.( 3 2)2 36 .
8. 下列式子正确的是(

A. 1 1 1 a b ab
A.25 海里 B.30 海里 C. 32 海里 D.34 海里

14.在平面直角坐标系中,把一个封闭图形的各个顶点的横坐标都
乘以 1,纵坐标不变,并把得到的顶点依次连接,那么得到
的封闭图形与原来图形相比位置上(

A.向左平移了 1 个单位 B.关于 y 轴对称
C.关于 x 轴对称

江苏省连云港市 八年级(上)期末数学试卷 (含答案)

江苏省连云港市 八年级(上)期末数学试卷 (含答案)

2017-2018学年江苏省连云港市赣榆县八年级(上)期末数学试卷副标题一、选择题(本大题共4小题,共12.0分)1.下列图形中,不是轴对称图形的是()A. B. C. D.2.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A. 1cmB. 2cmC. 3cmD. 4cm3.如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE的长为()A. 3B. 1C. 2D. 44.下列各组数中,可以构成直角三角形的是()A. 2,3,5B. 3,4,5C. 5,6,7D. 6,7,8二、填空题(本大题共6小题,共18.0分)5.函数y=kx的图象过点(-1,2),那么k=______.6.取=1.4142135623731…的近似值,若要求精确到0.01,则=______.7.已知点A(1,y1)、B(2,y2)都在直线y=-2x+3上,则y1与y2的大小关系是______.8.如图,AB垂直平分CD,AD=4,BC=2,则四边形ACBD的周长是______.9.将函数y=2x的图象向下平移3个单位,则得到的图象相应的函数表达式为______.10.把无理数,,-表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是______.三、计算题(本大题共2小题,共18.0分)11.某蔬菜基地要把一批新鲜蔬菜运往外地,现有汽车和火车两种运输方式可供选择.方式一:使用汽车运输,装卸收费400元,另外每千米再加收4元;方式二:使用火车运输,装卸收费720元,另外每千米再加收2元.(1)请分别写出用汽车、火车运输的总费用y1、y2(元)与运输路程x(千米)之间的函数表达式;(2)你认为选用哪种运输方式较好,为什么?12.已知y与x-1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)求x=-5时y的值.四、解答题(本大题共8小题,共84.0分)13.如图,在△ABC中,AB=AC,点D、E、F分别在边AB,BC,AC上,且BD=CE,BE=CF.(1)求证:ED=EF;(2)当点G是DF的中点时,请判断EG和DF的位置关系,并说明理由.14.如图,平面直角坐标系中,直线AB:y=-x+b交y轴于点A,交x轴于点B,S△AOB=8.(1)求点B的坐标和直线AB的函数表达式;(2)直线a垂直平分OB交AB于点D,交x轴于点E,点P是直线a上一动点,且在点D的上方,设点P的纵坐标为m.①用含m的代数式表示△ABP的面积;②当S△ABP=6时,求点P的坐标;③在②的条件下,在坐标轴上,是否存在一点Q,使得△ABQ与△ABP面积相等?若存在,直接写出点Q的坐标,若不存在,请说明理由.15.在4×4的方格中有三个同样大小的正方形如图摆放,请你在图1-图3中的空白处添加一个正方形方格(涂黑),使它与其余三个黑色正方形组成的新图形是一个轴对称图形.16.如图(1),公路上有A、B、C三个车站,一辆汽车从A站以速度v1匀速驶向B站,到达B站后不停留,以速度v2匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图象如图(2)所示.(1)当汽车在A、B两站之间匀速行驶时,求y与x之间的函数关系式及自变量的取值范围;(2)求出v2的值;(3)若汽车在某一段路程内刚好用50分钟行驶了90千米,求这段路程开始时x 的值.17.如图,点A、E、B、D在同一条直线上,BC∥DF,∠A=∠F,AB=FD.求证:AC=EF.18.如图,将长方形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9.(1)求BE的长;(2)求FC的长.19.计算或解方程:(1)-20(2)3x2=2720.已知点(-1,-1)在一次函数y=kx+b的图象上,且一次函数y=kx+b与y=-0.5x+t的图象相交于点(2,5),求t、k、b的值.答案和解析1.【答案】B【解析】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:B.根据轴对称图形的定义判断即可.本题考查轴对称图形、中心对称图形的定义,解题的关键是理解轴对称图形的性质,属于中考常考题型.2.【答案】B【解析】解:在Rt△ABC中,AB=,根据折叠的性质可知:AE=AB=10∵AC=8∴CE=AE-AC=2即CE的长为2故选:B.根据勾股定理可将斜边AB的长求出,根据折叠的性质知,AE=AB,已知AC 的长,可将CE的长求出.此题考查翻折问题,将图形进行折叠后,两个图形全等,是解决折叠问题的突破口.3.【答案】C【解析】解:OB和OC分别平分∠ABC和∠ACB,∴∠DBO=∠OBC,∠ECO=∠OCB.∵DE∥BC,∴∠OBC=∠DOB,∠EOC=∠OCB.∠DBO=∠DOB,∠EOC=∠ECO.∴DB=DO,EO=EC,DE=DO+EO=DB+EC,∵DE=5,BD=3,∴EC=5-3=2,故选:C.根据角平分线的性质,可得∠DBO与∠OBC的关系,∠ECO与∠OCB的关系,根据两直线平行,可得∠DOB与∠OBC的关系,∠EOC与∠OCB的关系,根据等腰三角形的判定,可得BD与DO的关系,EO与EC的关系,可得答案.此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.4.【答案】B【解析】解:∵32+42=25,52=25.∴32+42=52.可构成直角三角形的是3、4、5.故选:B.两边的平方和等于第三边平方的三角形是直角三角形,根据此可找到答案.本题考查勾股定理的逆定理,根据勾股定理的逆定理判断出直角三角形.5.【答案】-2【解析】解:∵函数y=kx的图象过点(-1,2),∴2=-k,∴k=-2.故答案为:-2.由点的坐标利用一次函数图象上点的坐标特征可求出k值,此题得解.本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.6.【答案】1.41【解析】解:∵=1.4142135623731…的近似值,要求精确到0.01,∴=1.41.故答案为:1.41.利用精确值的确定方法四舍五入,进而求出答案.此题主要考查了近似数,正确把握相关定义是解题关键.7.【答案】y1>y2【解析】解:∵点A(1,y1)、B(2,y2)都在直线y=-2x+3上,且y随x的增大而减小.∴y1>y2故答案为y1>y2根据一次函数的增减性可以直接可得.本题考查了一次函数图象上点的坐标特征,关键是灵活利用一次函数的增减性解决问题.8.【答案】12【解析】解:∵AB垂直平分线段CD,∴AC=AD=4,BC=BD=2,∴四边形ACBD的周长为4+4+2+2=12,故答案为12.根据线段的垂直平分线的性质即可解决问题;本题考查线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】y=2x-3【解析】解:将一次函数y=2x的图象向下平移3个单位长度,相应的函数是y=2x-3;故答案为:y=2x-3.直接根据函数图象平移的法则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.10.【答案】【解析】解:由数轴知,被墨迹覆盖住的无理数在3到4之间,∵9<11<16,∴3<<4,∵4<5<9,∴2<<3,∵1<3<4,∴1<<2,∴-2<-<-1∴被墨迹覆盖住的无理数是,故答案为:.由数轴先判断出被覆盖的无理数的范围,再确定出,,-的范围即可得出结论.此题主要实数与数轴,算术平方根的范围,确定出,,-的范围是解本题的关键.11.【答案】解:(1)y1=4x+400,y2=2x+720;(2)①当y1>y2时,4x+400>2x+720,x>160,②当y1<y2时,4x+400<2x+720,x<160,③当y1=y2时,4x+400=2x+720,x=160,答:当运输路程x不超过160公里时,使用火车运输,最节省费用;当运输路程x超过160公里时,使用汽车运输,最节省费用;当运输路程x等于160公里时,使用汽车运输或火车运输,费用相同.【解析】(1)根据总费用=运输路程费用+装卸收费列函数关系式;(2)分三种情况:大于、等于、小于列式,得出结论.本题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出解析式,再求解.12.【答案】解:(1)设y=k(x-1),把x=3,y=4代入得(3-1)k=4,解得k=2,所以y=2(x-1),即y=2x-2;(2)当x=-5时,y=2×(-5)-2=-12.【解析】(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;(2)利用(1)中关系式求出自变量为-5时对应的函数值即可.本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.13.【答案】证明:(1)∵AB=AC,∴∠B=∠C,在△BDE和△CEF中,,∴△BDE≌△CEF,∴ED=EF;(2)又∵点G是DF的中点,则EG垂直平分DF,理由是:等腰三角形底边上的高线与中线重合.【解析】(1)根据全等三角形的判定和性质解答即可;(2)根据等腰三角形的性质解答即可.此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质解答.14.【答案】解:(1)∵直线AB:y=-x+b交y轴于点A,交x轴于点B,∴点A的坐标为(0,b),点B的坐标为(b,0).∵S△AOB=b2=8,∴b=±4.∵点A在y轴正半轴上,∴b=4,∴点B的坐标为(4,0),直线AB的函数表达式为y=-x+4.(2)①∵直线a垂直平分OB,OB=4,∴OE=BE=2.当x=2时,y=-x+4=2,∴点D的坐标为(2,2).∵点P的坐标为(2,m)(m>2),∴PD=m-2,∴S△ABP=S△APD+S△BPD,=DP•OE+DP•BE,=×2(m-2)+×2(m-2)=2m-4.②∵S△ABP=6,∴2m-4=6,∴m=5,∴点P的坐标为(2,5).③假设存在.当点Q在x轴上时,设其坐标为(x,0),∵S△ABQ=AO•BQ=×4×|x-4|=6,∴x1=1,x2=7,∴点Q的坐标为(1,0)或(7,0);当点Q在y轴上时,设其坐标为(0,y),∵S△ABQ=BO•AQ=×4×|y-4|=6,∴y1=1,y2=7,∴点Q的坐标为(0,1)或(0,7).综上所述:假设成立,即在坐标轴上,存在一点Q,使得△ABQ与△ABP面积相等,且点Q的坐标为(1,0)或(7,0)或(0,1)或(0,7).【解析】(1)利用一次函数图象上点的坐标特征可找出点A、B的坐标,结合S△AOB=8即可求出b值,进而可得出点B的坐标和直线AB的函数表达式;(2)①由OB的长度结合直线a垂直平分OB,可得出OE、BE的长度,利用一次函数图象上点的坐标特征可求出点D的坐标,进而可用含m的代数式表示出DP的值,再利用三角形的面积公式即可用含m的代数式表示△ABP的面积;②由①的结论结合S△ABP=6,即可求出m值,此题得解;③分点Q在x轴及y轴两种情况考虑,利用三角形的面积公式即可求出点Q 的坐标,此题得解.本题考查了一次函数图象上点的坐标特征、三角形的面积、垂直平分线、列代数、代数式求值以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征结合三角形的面积,求出b值;(2)①利用三角形的面积公式用含m的代数式表示△ABP的面积;②代入S△ABP=6求出m的值;③分点Q在x轴及y轴上两种情况求出点Q的坐标.15.【答案】解:如图所示:.【解析】利用轴对称图形的性质分别得出符合题意的答案.此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.16.【答案】解:(1)根据图象可设汽车在A、B两站之间匀速行驶时,y与x之间的函数关系式为y=kx,∵图象经过(1,100),∴k=100,∴y与x之间的函数关系式为y=100x,(0<x<3);(2)当y=300时,x=3,4-3=1小时,420-300=120千米,∴v2=120千米/小时;(3)设汽车在A、B两站之间匀速行驶x小时,则在汽车在B、C两站之间匀速行驶(-x)小时,由题意得,100x+120(-x)=90,解得x=0.5,3-0.5=2.5小时.答:这段路程开始时x的值是2.5小时.【解析】(1)根据函数图象设出一次函数解析式,运用待定系数法求出解析式即可;(2)根据距离÷时间=速度计算;(3)设汽车在A、B两站之间匀速行驶x小时,根据题意列出方程,解方程即可.本题考查的是一次函数的应用,正确读懂函数图象、从中获取正确的信息、掌握待定系数法求函数解析式的步骤是解题的关键,解答时,注意方程思想的灵活运用.17.【答案】证明:∵BC∥DF∴∠ABC=∠FDE,在△ABC和△FDE中,,∴△ABC≌△FDE,∴AC=EF.【解析】根据BE∥DF,可得∠ABE=∠D,再利用ASA求证△ABC和△FDC全等即可.此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质得出∠ABC=∠FDE.18.【答案】解:(1)设BE=x,则DE=BE=x,AE=AD-DE=9-x,在Rt△ABE中,AB2+AE2=BE2,则32+(9-x)2=x2,解得:x=5.故BE的长为5;(2)∵AD∥BC,∴∠DEF=∠BFE,∵∠BEF=∠DEF,∴∠BEF=∠BFE,∴BE=BF=5,∴FC=BC-BF=9-5=4.【解析】(1)首先根据BE=x,则DE=BE=x,AE=AD-DE=9-x,进而利用勾股定理求出BE即可.(2)根据平行线的性质和等腰三角形的性质解答即可.此题主要考查了勾股定理的应用以及翻折变换的性质,根据已知得出AE,BE的长是解题关键.19.【答案】解:(1)原式=4-3-1=0;(2)x2=9,解得:x=±3.【解析】(1)直接利用立方根以及零指数幂的性质化简得出答案;(2)直接利用平方根的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:∵点(2,5)在y=-0.5x+t的图象,则5=-1+t,解得t=6;又∵(2,5),(-1,-1)在一次函数y=kx+b的图象上,则,解得.【解析】依据点(2,5)在y=-0.5x+t的图象,即可得到t=6;依据(2,5),(-1,-1)在一次函数y=kx+b的图象上,即可得到k,b的值.本题考查了两直线相交的问题,解题的关键是理解交点是两条直线的公共点.。

最新江苏省2017-2018年八年级上期末考试数学试题含答案

最新江苏省2017-2018年八年级上期末考试数学试题含答案

第一学期期末考试卷八年级数学试题注意事项:1.本卷考试时间为100分钟,满分100分.2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中是轴对称图形的是-------------------------------------------------------( )A .(1)、(2)B .(1)、(3)C .(1)、(4)D .(2)、(3)2.下列实数中,是无理数的为--------------------------------------------------------------------( )AB .13C .0D .3-3.在△ABC 中和△DEF 中,已知BC =EF ,∠C =∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是-------------------------------------------------------------------------( ) A 、AC =DF B 、AB =DE C 、∠A =∠D D 、∠B =∠E4.满足下列条件的△ABC 不是..直角三角形的是----------------------------------------------( ) A 、1=a 、2=b , 3=cB 、1=a 、2=b , 5=cC 、a ∶b ∶c =3∶4∶5D 、∠A ∶∠B ∶∠C =3∶4∶5 5.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是------------------------------------------------------------------------------------------------------( )A .B .C .D .6.设正比例函数mx y 的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m 的值为-----------------------------------------------------------------------------------------------( )A.2B.-2C. 4D.-47.如图,在平面直角坐标系中,点P 坐标为(-4,3),以点B (-1,0)为圆心,以BP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于-----------( )A 、-6和-5之间B 、-5和-4之间C 、-4和-3之间D 、-3和-2之间8. 在平面直角坐标系中,点A(1,1),B(3,3),动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为------------------------------------------------------( ) A.2 B.3 C.4 D.5(第7题)DCB A二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是10.点A (—3,4)关于y 轴对称的点的坐标是 .11.地球上七大洲的总面积约为149 480 000km 2,把这个数值精确到千万位,并用科学计数法表示为 . 12. 函数2-=x y 中自变量x 的取值范围是_____ ________13. 如图,在等腰三角形ABC 中,AC AB =,DE 垂直平分AB ,已知∠ADE =40º,则∠DBC= ︒.14.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为15.如图,已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8.则△ABC 的周长为(第15题)16.如图,直线b kx y +=与x 轴交于点(2,0),若y <0时,则x 的取值范围是 17.已知点P (1-a ,5+a )在第二象限,且到y 轴的距离为2,则点P 的坐标为 .18.函数y =kx +b (k ≠0)的图象平行于直线y =3x +2,且交y 轴于点(0,-1),则其函数表达式是 .19.已知点A (1,5),B (3,-1),点M 在x 轴上,当AM ﹣BM 最大时,点M 的坐标为 .三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(本题每小题3分,共9分)第13题)(第14题) (第16题)(第19题)(1)计算:()232279--+(2)求0942=-x 中x 的值. (3)求()813=-x 中x 的值.\21.(本题共6分)已知某正数的两个平方根分别是3+a 和152-a ,b 的立方根是2-.求a b --的算术平方根.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:⑴、△ABC≌△ADC ;⑵、AC垂直平分BD.23.(本题共6分)(1)近年来,江苏省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的张村、李村之间建一座定点医疗站P,张、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到张、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)(2)如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于与.第(1)题24.(本题共6分)如图,一次函数y =(m+1)x +32的图像与x 轴的负半轴相交于点A ,与y轴相交于点B ,且△OAB 面积为43. (1)求m 的值及点A 的坐标;(2)过点B 作直线BP 与x 轴的正半轴相交于点P ,且OP =3OA函数表达式 .第(2)题25.(本题共6分)如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;⑵若BC=6,AC=8,求CE的长.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是千米/小时,乙比甲晚出发小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?27.(本题共7分)如图,直线72+-=x y 与x 轴、y 轴分别相交于点C 、B ,与直线x y 23=相交于点A . ⑴ 求A 点坐标; ⑵ 如果在y 轴上存在一点P ,使△OAP 是以OA 为底边的等腰三角形,则P 点坐标是 ;⑶ 在直线72+-=x y 上是否存在点Q ,使△OAQ 的面积等于6,若存在,请求出Q 点的坐标,若不存在,请说明理由.八年级数学参考答案及评分标准一、选择题:(每小题3分,共24分)1.C;2.A;3.B;4.D;5.D;6.B;7.A;8.B;二、细心填一填(本大题共有11小题,每题2分,共22分.)9.4或-4;10.()4,3;11.8105.1⨯;12.x ≥2;13.15︒;14.3;15.48;16.x>2;17.()4,2-;18. y =3x -1;19.(3.5,0)三、解答题(本大题共8小题,共54分.)20.(本题每小题3分,共9分)解:(1)原式=3+3―2--------------------------------------2分=4-------------------------------3分⑵ 492=x ---------1分 解之得:23±=x (1 解1分) ------------- 3分 (3)21=-x --------------------------------2分 ∴3=x -----------------------------3分21.(本题共6分)解:由题意得,(3+a )+(152-a )=0 解得a=4….. …………………..2分∵b 的立方根是2-,∴b=-8……………………….…….4分∴a b --的算术平方根为2……………………… ………6分22.(本题共6分)⑴证明:在△ABC 与△ADC 中,⎪⎩⎪⎨⎧===AC AC CD CB AD AB∴△ABC ≌△ADC (SSS )-------------------------------------------------------3分 ⑵∵△ABC ≌△ADC∴∠BAC =∠DAC---------------------------------------------------------------------5分 又∵AB =AD∴AC 垂直平分BD---------------------------------------------------------------------6分23.(本题共6分)(1)题完成角平分线和线段的垂直平分线共2分(只完成一个得1分),标出点P ;(2)题:画图(各1分),面积是4和25(各1分). 24.(本题共6分)(1)由点B (0,32)得OB =32………………………………………1分 ∵S △OAB =43,∴12×OA ×OB =43,得OA =1,∴A (-1,0)……2分 把点A (-1,0)代入y =(m +1)x +23得m =21. ……………3分 (2)∵OP =3OA ,∴OP =3,∴点P 的坐标为(3,0)………… 4分设直线BP 的函数表达式为y =kx +b ,代入P (3,0)、B (0,32), 得⎪⎩⎪⎨⎧==+2303b b k ,解得⎪⎩⎪⎨⎧=-=2321b k ,直线BP 的函数表达式为y =21-x +32 … 6分 25.(本题共6分)⑴解:∵折叠,∴DE 垂直平分AB ,∴BE =AE∴∠A =∠ABE--------------------------------------------------------------------1分 又∵∠C =90º,ED ⊥AB ,DE =CE ,∴∠CBE =∠ABE-∴∠A =∠ABE =∠CBE--------------------------------------------------2分 又∵∠A +∠ABE +∠CBE =90º∴∠A =30º------------------------------------------------------------------------3分 ⑵解:设CE =x ,则AE =AC -CE =8-x∴BE =AE =8-x -------------------------------------------------------------4分 又∵∠C =90º∴222BE CE BC =+∴()22286x x -=+-----------------------------------------------------------5分 ∴47=x ,即CE =47--------------------------------------------------------6分 26.(本题共8分)⑴5,1---------------2分 ⑵t s 5=甲,20-20t s =乙,--------4分(3)⎩⎨⎧-==20205t s t s 解之:⎪⎪⎩⎪⎪⎨⎧==32034s t ∴34小时-----6分 20402033-=千米---------------8分27.(本题共7分)解:⑴解方程组:⎪⎩⎪⎨⎧=+-=x y x y 2372- 解之得:⎩⎨⎧==32y x ∴A 点坐标是()3,2----------------------------------------------1分⑵P 点坐标是⎪⎭⎫ ⎝⎛613,0------------------------------------------3分 ⑶存在 ∵6421<=∆AOC S ,67>=∆AO B S ∴Q 点有两个位置:Q 在线段AB 上和AC 的延长线上,设点Q 的坐标是()y x ,当Q 点在线段AB 上:作QD ⊥y 轴于点D ,则QD =x x =,∴167=-=-=∆∆∆O AQ O AD O BQ S S S , ∴121=⨯QD OB ,即127=x ,∴72=x ,把72=x 代入72+-=x y ,得745=y ∴Q 的坐标是⎪⎭⎫ ⎝⎛745,72------------------------------------------------------------------5分 当Q 点在AC 的延长线上时,作QD ⊥x 轴于点D ,则QD =y y -=, ∴434216=-=-=∆∆∆OAC OAQ OCQ S S S , ∴1324OC QD ∙=,即()7344y ⨯-=,∴37y =-,把37y =-代入72+-=x y ,得267x =∴Q 的坐标是263,77⎛⎫- ⎪⎝⎭ 综上所述:点Q 是坐标是⎪⎭⎫ ⎝⎛745,72或263,77⎛⎫- ⎪⎝⎭-----------------------------7分。

2017-2018学年八年级上数学期末试卷(连云港市连云区带答案)

2017-2018学年八年级上数学期末试卷(连云港市连云区带答案)

2017-2018学年江苏省连云港市连云区八年级(上)期末数学试卷一、选择题(每小题3分,满分24分)1.下列“QQ表情”中属于轴对称图形的是()A.B.C.D.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.1,D.,,43.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量4.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)5.下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA7.下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2C.y=﹣2x+3D.y=3﹣x8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2018的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)二、填空题(每小题3分,满分24分)9.16的平方根是.10.圆周率π=3.1415926…精确到千分位的近似数是.11.如图,起重机吊运物体,∠ABC=90°.若BC=12m,AC=13m,则AB=m.12.一次函数y=﹣3x+2的图象不经过第象限.13.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E 处.若∠A=28°,则∠ADE=°.14.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是.15.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.16.如图,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是.三、解答题(共10小题,满分102分)17.(10分)(1)求式中x的值:(x+4)3+2=25(2)计算:20180﹣+18.(8分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.19.(8分)已知一次函数y=kx+2与y=x﹣1的图象相交,交点的横坐标为2.(1)求k的值;(2)直接写出二元一次方程组的解.20.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是.21.(10分)如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.22.(10分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.23.(10分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?24.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.25.(12分)小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?26.(14分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.2017-2018学年江苏省连云港市连云区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,满分24分)1.下列“QQ表情”中属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.1,D.,,4【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不可以构成直角三角形,故A选项错误;B、22+32≠42,不可以构成直角三角形,故B选项错误;C、12+()2=()2,可以构成直角三角形,故C选项正确;D、()2+()2≠42,可以构成直角三角形,故D选项错误.故选:C.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量【分析】根据常量与变量的定义即可判断.【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.【点评】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.4.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点(﹣3,2)关于y轴对称的点的坐标是(3,2),故选:A.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.5.下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.【分析】根据无理数的定义进行估算解答即可.【解答】解:A.﹣<﹣1,故错误;B.﹣<﹣1,故错误;C.﹣1<,故正确;D.>2,故错误;故选:C.【点评】此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC ≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故D选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2C.y=﹣2x+3D.y=3﹣x【分析】根据一次函数的性质对各选项进行逐一分析即可.【解答】解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.故选:B.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y 随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2018的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【解答】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,),点P5的坐标为(5,3),2018÷4=504…2,∴P2018的坐标为(3,5),故选:B.【点评】本题考查的是点的坐标、坐标与图形变化﹣对称,正确找出点的坐标的变化规律是解题的关键.二、填空题(每小题3分,满分24分)9.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.圆周率π=3.1415926…精确到千分位的近似数是 3.142.【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【解答】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点评】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.11.如图,起重机吊运物体,∠ABC=90°.若BC=12m,AC=13m,则AB=5m.【分析】根据题意直接利用勾股定理得出AB的长.【解答】解:由题意可得:AB==5(m).故答案为:5.【点评】此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.12.一次函数y=﹣3x+2的图象不经过第三象限.【分析】根据一次函数的性质容易得出结论.【解答】解:因为解析式y=﹣3x+2中,﹣3<0,2>0,图象过一、二、四象限,故图象不经过第三象限.故答案为:三【点评】在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.13.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E 处.若∠A=28°,则∠ADE=34°.【分析】先根据三角形内角和定理计算出∠B=62°,再根据折叠的性质得∠DEC=∠B=62°,然后根据三角形外角性质求∠ADE的度数.【解答】解:∵∠ACB=90°,∠A=28°,∴∠B=90°﹣28°=62°,∵沿CD折叠△CBD,使点B恰好落在AC边上的点E处,∴∠DEC=∠B=62°,∵∠DEC=∠A+∠ADE,∴∠ADE=62°﹣28°=34°.故答案为34°.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是﹣1.【分析】根据垂直的定义得到∠ABC=90°,根据勾股定理得到AC==,求得AD=AC﹣CD=﹣1,根据圆的性质得到AE=AD,即可得到结论.【解答】解:∵BC⊥AB,∴∠ABC=90°,∵AB=2,BC=1,∴AC==,∵CD=BC,∴AD=AC﹣CD=﹣1,∵AE=AD,∴AE=﹣1,∴点E表示的实数是﹣1.故答案为:﹣1.【点评】本题考查了勾股定理,实数与数轴,圆的性质,正确掌握勾股定理是解题的关键.15.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2.【分析】根据函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),然后根据图象即可得到不等式3x+b>ax﹣3的解集.【解答】解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),∴不等式3x+b>ax﹣3的解集是x>﹣2,故答案为:x>﹣2.【点评】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是(2,0).【分析】找点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,先求出直线AC'的解析式,继而可得出点D的坐标.【解答】解:作点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,∵点C'坐标为(0,﹣2),点A坐标为(6,4),∴直线C'A的解析式为:y=x﹣2,故点D的坐标为(2,0).故答案为:(2,0).【点评】本题主要考查了最短线路问题,解题的关键是根据“两点之间,线段最短”,并且利用了正方形的轴对称性.三、解答题(共10小题,满分102分)17.(10分)(1)求式中x的值:(x+4)3+2=25(2)计算:20180﹣+【分析】(1)移项后计算等式的右边,再利用立方根的定义计算可得;(2)先计算零指数幂、算术平方根和立方根,再计算加减可得.【解答】解:(1)∵(x+4)3+2=25,∴(x+4)3=23,则x+4=,∴x=﹣4;(2)原式=1﹣2﹣5=﹣6.【点评】本题主要考查实数的运算,解题的关键是掌握零指数幂、算术平方根和立方根的定义与运算法则.18.(8分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.【分析】欲证明AB=DE,只要证明△ABC≌△DEF即可.【解答】证明:∵AF=CD,∴AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,熟练掌握全等三角形的判定方法是解决问题的关键.19.(8分)已知一次函数y=kx+2与y=x﹣1的图象相交,交点的横坐标为2.(1)求k的值;(2)直接写出二元一次方程组的解.(1)先将x=2代入y=x﹣1,求出y的值,得到交点坐标,再将交点坐标代入y=kx+2,【分析】利用待定系数法可求得k的值;(2)方程组的解就是一次函数y=kx+2与y=x﹣1的交点,根据交点坐标即可写出方程组的解.【解答】解:(1)将x=2代入y=x﹣1,得y=1,则交点坐标为(2,1).将(2,1)代入y=kx+2,得2k+2=1,解得k=;(2)二元一次方程组的解为.【点评】此题主要考查了一次函数与二元一次方程组的关系及待定系数法求字母系数,难度适中.20.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是(a+4,﹣b).【分析】(1)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用平移变换的性质得出点M2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,﹣b).故答案为:(a+4,﹣b).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.21.(10分)如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.【分析】(1)连接AC,先根据勾股定理求出AC的长,再求出AD的长,结合勾股定理的逆定理得到∠D是直角;=S△ABC+S△ADC即可得出结论.(2)由S四边形ABCD【解答】解:(1)∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角;=S△ABC+S△ADC(2)S四边形ABCD=•AB•BC+•AD•DC=234(m2).【点评】本题考查的是勾股定理的应用,熟知勾股定理的应用是解答此题的关键.22.(10分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2,即2CD2=AD2+DB2.【解答】证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△AEC≌△BDC(SAS);(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键.23.(10分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?【分析】(1)当0<x≤6时,根据“水费=用水量×2”即可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×5+(用水量﹣6)×3”即可得出y与x的函数关系式;(3)经分析,当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x﹣6中,求出x值,此题得解.【解答】解:(1)根据题意可知:当0<x≤6时,y=2x;(2)根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6;(3)∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列出函数关系式;(2)根据数量关系列出函数关系式;(3)代入y=27求出x值.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键.24.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.【分析】(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,根据勾股定理列方程即可得到结论;(2)当点P在∠CAB的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,根据勾股定理列方程即可得到结论;【解答】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,∴当t=时,P在△ABC的角平分线上.【点评】本题考查了勾股定理,关键是根据等腰三角形的判定,三角形的面积解答.25.(12分)小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为20分钟,小聪返回学校的速度为0.2千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?【分析】(1)由函数图象的数据可以求出小聪在图书馆查阅资料的时间为20分钟,由速度=路程÷时间就可以得出小聪返回学校的速度;(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式为y=kx,由待定系数法求出其解即可;(3)分类讨论,当小聪、小明同时出发后,在小聪到达图书馆之前、当小聪、小明在相遇之前及当小聪、小明在相遇之后,分别求出来即可.【解答】解:(1)由题意,得小聪在图书馆查阅资料的时间为20分钟.小聪返回学校的速度为4÷20=0.2千米/分钟.故答案为:20,0.2;(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式为s=kt,由题意,得4=60k,解得:k=.∴所求函数表达式为s=t.(3)小聪、小明同时出发后,在小聪到达图书馆之前,两人相距0.4千米时,0.4÷(0.2﹣)=3;当小聪从图书馆返回时:设直线BC的解析式为s=k1t+b,由题意,得,解得:∴直线BC的函数式为:.当小聪、小明在相遇之前,刚好可以“互相望见”时,即两人相距0.4千米时,﹣t=0.4,解得t=;当小聪、小明在相遇之后,刚好可以“互相望见”时,即两人相距0.4千米时,t﹣=0.4,解得t=.∴所以两人可以“互相望见”的时间为:﹣=3(分钟)综上可知,两人可以“互相望见”的总时间为3+3=6(分钟).【点评】本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的关系的运用,解答时求出函数的解析式是关键.26.(14分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.【分析】操作:根据余角的性质,可得∠ACD=∠CBE,根据全等三角形的判定,可得答案;应用(1)根据自变量与函数值的对应关系,可得A、B点坐标,根据全等三角形的判定与性质,可得CD,BD的长,根据待定系数法,可得AC的解析式;(2)根据全等三角形的性质,可得关于a的方程,根据解方程,可得答案.【解答】解:操作:如图1:,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(1)∵直线y=x+4与y轴交于点A,与x轴交于点B,∴A(0,4)、B(﹣3,0).如图2:,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴在△BDC和△AOB中,,△BDC≌△AOB(AAS),∴CD=BO=3,BD=AO=4.OD=OB+BD=3+4=7,∴C点坐标为(﹣7,3).设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得l2的函数表达式为y=x+4;(2)由题意可知,点Q是直线y=2x﹣6上一点.如图3:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,,∴△AQE≌△QPF(AAS),AE=QF,即6﹣(2a﹣6)=8﹣a,解得a=4如图4:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,AE=2a﹣12,FQ=8﹣a.在△AQE和△QPF中,,△AQE≌△QPF(AAS),AE=QF,即2a﹣12=8﹣a,解得a=;综上所述:A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或4.【点评】本题考查了一次函数综合题,利用余角的性质得出∠ACD=∠CBE是解题关键,又利用了全等三角形的判定;利用了全等三角形的性质得出CD,BD的长是解题关键,又利用了待定系数法求函数解析式;利用全等三角形的性质得出关于a的方程是解题关键,要分类讨论,以防遗漏.。

2017-2018学年度 八年级数学期末测试卷(含答案)

2017-2018学年度 八年级数学期末测试卷(含答案)

2017—2018学年度第一学期期末检测试卷八年级数学A 卷 B 卷题号一二三2324252627总 分得分A 卷(100分)一、选择题(每小题4分,共40分)1、-8的立方根为 ( )A .2B .-2C .±2D .±42、实数, -π, , , 0, 3 , 0.1010010001……中,无理数的71132-4个数是 ( )A .2B .3C .4D .53、下列图形中是中心对称图形的为 ( )4、下列运算正确的是 ( )A. B. C. D.623a a a =⨯633x x =)(1055x x x =+3325b a ab ab -=-÷-)()(5、分解因式结果正确的是 ( )32b b a -A 、B 、C 、D 、)(22b a b -2)(b a b -))((b a b ab -+))((b a b a b -+6、通过估算,估计 76 的大小应在 ( )A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间7、下列图形中是旋转对称图形有 ( )①正三角形 ②正方形 ③三角形 ④圆 ⑤线段A.个B.个C.个D.个54328、已知a 、b 、c 是三角形的三边长,如果满足,则0108)6(2=-+-+-c b a 三角形的形状是 ( )A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形9、如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为 ( )A .5B .10C .6D .810、如图,□ABCD 中,对角线AC 和BD 交于O ,若AC =8,BD =6,则AB 长的取值范围是 ( )A .B .71<<AB 42<<AB C .D .86<<AB 43<<AB 二、填空题(每小题4分,共32分)11、的算术平方根是________;3612、.计算: .()[]=+-222322221n m mn n m 13、多项式是完全平方式,则m = .6422++mx x 14、如图,在平行四边形ABCD 中,EF∥AD,GH∥AB,EF 、GH10题图9题图相交于点O,则图中共有____ 个平行四边形.15、已知,如图,网格中每个小正方形的边长为1,则四边形ABCD 的面积为 .16、已知:等腰梯形的两底分别为和,一腰长为,则它的对cm 10cm 20cm 89角线的长为 .cm 17、□中,是对角线,且,,则ABCD BD BD BC =︒=∠70CBD =∠ADC 度.三、解答题(共28分)19、(每小题4分,共8分)因式分解(1) (2)22916y x -22242y xy x +-20、(本题8分) 先化简,再求值:,其中()()()()224171131x x x x +--++-12x =-15题图18题图A B CD 14题H G F EO21、(每小题3分,共6分)在如图的方格中,作出△ABC 经过平移和旋转后的图形:(1)将△ABC 向下平移4个单位得△;C B A '''(2)再将平移后的三角形绕点顺时针方向旋转90度。

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。

2017-2018学年第一学期期末八年级数学试题(含答案)

2017-2018学年第一学期期末八年级数学试题(含答案)

2017—2018学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题选对得3分,满分30分. 1.在下列长度的三条线段中,能组成三角形的是A.1,2,3 B.3,8,4 C.10,6,5 D.2,4,22.下列图形:①角,②线段,③等腰三角形,④直角三角形,其中是轴对称图形的有A.①②③④ B.①②③C.②④D.①③3.△ABC中,若∠B =∠A+10°,∠C=∠B+10°,则下列结论错误的是A.∠C=∠A+20°B.∠A=50°C.∠B的外角是130°D.△ABC是一个锐角三角形4.下列数据能唯一确定三角形的形状和大小的是A.∠A=50°,∠B =60°,∠C=70°B.AB=6,∠B =70°,∠C=60°C.AB=4,BC =5,∠C=60°D.AB=4,BC =5,CA=105.下列运算正确的是A .2222x x x =B .326()x x =C .3412(2)8x x -=D .734()()x x x -÷-=-6.下列各因式分解正确的是A .22(2)(2)(2)x x x -+-=-+B .2221(1)x x x +-=-C .22441(21)x x x -+=-D .242(2)(2)x x x x -=+-7.若分式12x x -+的值为0,则x 应满足的条件是 A .x =-2 B .x =0 C.x =1或x =-2 D .x =18.下列计算错误的是A .0.220.77a b a b a b a b++=--B .3223x y x x y y=C .1a bb a-=--D .123c c c+= 9.如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应修建在△ABC 的 A .两条中线的交点处B .两条角平分线的交点处C .两条高的交点处D .两条边的垂直平分线的交点处10.如图,△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是 A .22 cm B .20 cm C .18 cm D .15 cm(第9题图)第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分. 11.点(-7,9)关于y 轴对称的点的坐标是 .12.计算:0220183--+-()= . 13.如果216x kx ++可运用完全平方公式进行因式分解,那么k 的值是 . 14.张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书.如果李强单独清点这批图书需要 小时. 15.一个多边形的内角和比它的外角和的3倍多180°,则它是 边形. 16.如图,∠1=∠2,∠3=∠4,∠BDC =130°,则∠A = .17.在Rt△ABC 中,∠ACB =90°,BC =2.1cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =4cm ,则AE = cm . 18.如图,∠A =61°,∠C ′=47°,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B =____ .三、解答题:本大题共7个小题,满分46分. 解答时请写出必要的演推过程.19.先化简,再求值:222693293x x x x x x-+-÷--+,其中2018x =-.20.计算:(1)23215)()ab ab a b --÷-(; (2)222)()()6x y x y x y y +-+--(. 21.分解因式:(1)4811m -; (2)43242025ab ab ab -+.22. 两个小组同时开始攀登一座600m 高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早20min 到达顶峰,两个小组的攀登速度各是多少m/min ?如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则请直接写出两组的攀登速度各是多少m/min ?23. 如图,在平面直角坐标系中,点A 的坐标为(-2,0),△AOB 是等边三角形,点C 为OA 延长线上的一个动点,以BC 为边在第二象限中作等边△BCE ,连接EA 并延长EA 交y 轴于点F .(1)求∠EAB 的度数;(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 .24. 如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D ,E ,AD 和BE 相交于点F ,DF =EF ,延长CF 交AB 于点G .(1)图中共有 个等腰三角形,共有 对全等三角形; (2)求证:CG 垂直平分AB .G FEDCBA(第23题图)(第24题图)2017—2018学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.(7,9); 12.89-; 13.±8; 14.4; 15.九; 16.80°; 17.1.9; 18.72°. 三、解答题:(共46分)19.解:222693293x x x x x x-+-÷--+ =2(3)(3)2(3)(3)3x x x x x x -+-+-- ……………………………………… 4分 = 2x -. ……………………………………… 5分 当2018x =-时,原式=-2018-2=-2020. …………………………… 6分20.解:(1)23215)()ab ab a b --÷-( =362215a b a b a b --÷ ………………………………… 2分=321625a b ---- ………………………………… 3分 =1b. ………………………………… 4分(2)222)()()6x y x y x y y +-+--( =22222446x xy y x y y ++-+- ……………………………………6分 =24xy y -. ……………………………………7分 21.解:(1)4811m -=22(91)(91)m m +- ………………………………… 2分 =2(91)(31)(31)m m m ++-. ………………………………… 4分(2)43242025ab ab ab -+=22(42025)ab b b -+ ………………………………… 5分=22(25)ab b - . ………………………………… 7分 22.解:设第二组的攀登速度为x m/min ,根据题意,列出方程600600201.2x x+=……………………………… 3分 解得 x =20 ……………………………… 4分经检验,x =20是原方程的解. ……………………………… 5分此时,1.2x =24 ……………………………… 6分 答:第一组的速度为24m/min 第二组的速度为20m/min ;如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则第一组的速度为ah h t -m/min 第二组的速度为ah hat-m/min. …………………… 8分 23.(1)解:∵△AOB 和△BCE 是等边三角形,∴BE =BC ,BA =BO ,∠EBC =∠ABO =∠AOB =60°,…………………… 3分 ∴∠EBC +∠ABC =∠ABO +∠ABC ,即∠EBA =∠CBO ,…………………… 4分 ∴△EBA ≌△CBO (SAS) …………………………………… 5分 ∴∠EAB =∠AOB =60°. …………………………………… 6分(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 保持不变 .…………………………………… 8分24. (1)图中共有 2 个等腰三角形,共有 6 对全等三角形;……2分 (2)证明:∵AD ⊥BC ,BE ⊥AC ,∴∠AEF =∠CEF =90°, ∠BDF =∠CDF =90°,∴∠CEF =∠CDF =90°, ∠AEF =∠BDF =90°,………………3分 在△CEF 和△CDF 中90,CEF CDF EF DF CF CF ∠=∠=︒⎧⎪=⎨⎪=⎩,∴△CEF ≌△CDF (HL) …………………………………… 5分 ∴∠ACG =∠BCG ,CE =CD . ………………………………… 6分 在△AEF 和△BDF 中90,AEF BDF EF DF EFA DFB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BDF (ASA) …………………………………… 8分 ∴AE =BD ,∴CE +AE =CD +BD ,即AC =BC ,…………………………… 9分 又∠ACG =∠BCG ,∴CG 垂直平分AB . …………………………………… 10分。

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。

2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。

3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。

4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。

不按以上要求作答的答案无效。

5.考试结束只上交答题卡。

第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。

1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。

2017-2018学年第一学期期末检测八年级数学试题(附答案)

2017-2018学年第一学期期末检测八年级数学试题(附答案)

2017--2018学年度第一学期期末检测八年级数学试题全卷满分150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题(共12小题,每小题4分,共48分)1、第24届冬季奥林匹克运动会,将于2022年02月04–2022年02月20日在中华人民共和国北京市和张家口市联合举行。

在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是( )A B C D2、下列各组线段,能组成三角形的是( )A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,8cm3、在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是( )A. 150°B. 135°C. 120°D. 100°4、下列运算结果正确的是()。

A B: C: D:A.2≠aB.0≠aC.02≠≠a a 且D.一切实数 6、若()()A b a b a +-=+22,则A 为( )A. 2abB. -2abC. 4abD. -4ab 7、下列各式能用平方差公式分解因式的有( ) ①x 2+y 2;②x 2-y 2;③-x 2-y 2;④-x 2+y 2;⑤-x 2+2xy-y 2. A 、1个B 、2个C 、3个D 、4个8、如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从4321,,,P P P P 四个点中找出符合条件的点P ,则点P 有( )个。

2017-2018学年八年级(上)期末数学试卷含答案解析

2017-2018学年八年级(上)期末数学试卷含答案解析

2017-2018学年八年级(上)期末数学试卷一、选择题(本题共8小题,每小题3分,共24分,每小题给出4个选项,有且只有一个答案是正确的)1.下列四个汉字中,可以看作是轴对称图形的是()A.魅B.力C.黄D.冈2.下列各式计算正确的是()A.2a2+a3=3a5B.(3xy)2÷(xy)=3xy C.(2b2)3=8b5D.2x•3x5=6x6 3.一个等腰三角形的一边长为6cm,周长为30cm,则它的另两边长分别为()A.6cm,18cm B.12cm,12cmC.6cm,12cm D.6cm,18cm或12cm,12cm4.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x<﹣2 C.x>﹣2 D.x≠﹣25.长为10,7,5,3的四根木条,选其中三根首尾顺次相连接组成三角形,选法有()A.1种 B.2种 C.3种 D.4种6.已知a﹣b=3,ab=2,则a2﹣ab+b2的值为()A.9 B.13 C.11 D.87.已知﹣=5,则分式的值为()A.1 B.5 C.D.8.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为()A.3 B.4.5 C.6 D.7.5二、填空题(本题共8小题,每小题3分,共24分)9.因式分解3x3+12x2+12x=.10.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.11.计算(2m2n﹣2)2•3m﹣2n3的结果是.12.若分式的值为0,则x=.13.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为.14.计算2016×512﹣2016×492,结果是.15.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为cm.16.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共72分)17.计算下列各题:(1)(﹣2)3+×0﹣(﹣)﹣2.(2)[(x2+y2)﹣(x﹣y)2﹣2y(x﹣y)]÷4y.18.解方程:.19.先化简,再求值:(﹣)÷,其中x=3.20.如图,点E,C在BF上,BE=CF,AB=DF,∠B=∠F.求证:∠A=∠D.21.如图所示,△ABC的顶点分别为A(﹣2,3),B(﹣4,1),C(﹣1,2).(1)作出△ABC关于x轴对称的图形△A1B1C1;(2)写出A1、B1、C1的坐标;(3)求△ABC的面积.22.甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?23.如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)求证:CD=2BE.24.如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.2017-2018学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分,每小题给出4个选项,有且只有一个答案是正确的)1.下列四个汉字中,可以看作是轴对称图形的是()A.魅B.力C.黄D.冈【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、“魅”不是轴对称图形,故本选项错误;B、“力”不是轴对称图形,故本选项错误;C、“黄”是轴对称图形,故本选项正确;D、“冈”不是轴对称图形,故本选项错误.故选C.2.下列各式计算正确的是()A.2a2+a3=3a5B.(3xy)2÷(xy)=3xy C.(2b2)3=8b5D.2x•3x5=6x6【考点】整式的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;单项式的除法法则,单项式乘单项式的运算法则,对各选项计算后利用排除法求解.【解答】解:A、2a2与a3不是同类项不能合并,故本选项错误;B、应为(3xy)2÷(xy)=9x2y2÷xy=9xy,故本选项错误;C、应为(2b2)3=23×(b2)3=8b6,故本选项错误;D、2x•3x5=6x6,正确.故选D.3.一个等腰三角形的一边长为6cm,周长为30cm,则它的另两边长分别为()A.6cm,18cm B.12cm,12cmC.6cm,12cm D.6cm,18cm或12cm,12cm【考点】等腰三角形的性质;三角形三边关系.【分析】由等腰三角形的周长为30cm,三角形的一边长6cm,分别从6cm是底边长与6cm为腰长去分析求解即可求得答案.【解答】解:∵等腰三角形的周长为30cm,三角形的一边长6cm,∴若6cm是底边长,则腰长为:(30﹣6)÷2=12(cm),∵6cm,12cm,12cm能组成三角形,∴此时其它两边长分别为12cm,12cm;若6cm为腰长,则底边长为:30﹣6﹣6=18(cm),∵6+6<18,∴不能组成三角形,故舍去.∴其它两边长分别为12cm,12cm.故选B.4.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x<﹣2 C.x>﹣2 D.x≠﹣2【考点】分式有意义的条件.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由分式有意义,得x+2≠0,解得x≠﹣2,故选:D.5.长为10,7,5,3的四根木条,选其中三根首尾顺次相连接组成三角形,选法有()A.1种 B.2种 C.3种 D.4种【考点】三角形三边关系.【分析】根据任意两边之和大于第三边判断能否构成三角形.【解答】解:选其中3根组成一个三角形,不同的选法有3cm,5cm,7cm;3cm,5cm,10cm;5cm,7cm,10cm;3cm,7cm,10cm;能够组成三角形的只有:3cm,5cm,7cm;5cm,7cm,10cm;共2种.故选B.6.已知a﹣b=3,ab=2,则a2﹣ab+b2的值为()A.9 B.13 C.11 D.8【考点】完全平方公式.【分析】根据完全平方公式即可求出答案.【解答】解:∵(a﹣b)2=a2﹣2ab+b2,∴32=a2+b2﹣2×2∴a2+b2=9+4=13,∴原式=13﹣2=11故选(C)7.已知﹣=5,则分式的值为()A.1 B.5 C.D.【考点】分式的值.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选A8.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为()A.3 B.4.5 C.6 D.7.5【考点】等边三角形的性质;角平分线的性质.【分析】由在等边三角形ABC中,DE⊥BC,可求得∠CDE=30°,则可求得CD的长,又由BD平分∠ABC交AC于点D,由三线合一的知识,即可求得答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC=AC,∵DE⊥BC,∴∠CDE=30°,∵EC=1.5,∴CD=2EC=3,∵BD平分∠ABC交AC于点D,∴AD=CD=3,∴AB=AC=AD+CD=6.故选C二、填空题(本题共8小题,每小题3分,共24分)9.因式分解3x3+12x2+12x=3x(x+2)2.【考点】提公因式法与公式法的综合运用.【分析】直接提取公因式3x,进而利用完全平方公式分解因式即可.【解答】解:3x3+12x2+12x=3x(x2+4x+4)=3x(x+2)2.故答案为:3x(x+2)2.10.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.11.计算(2m2n﹣2)2•3m﹣2n3的结果是.【考点】单项式乘单项式;幂的乘方与积的乘方;负整数指数幂.【分析】直接利用积的乘方运算法则进而结合同底数幂的乘法运算法则求出答案.【解答】解:(2m2n﹣2)2•3m﹣2n3=4m4n﹣4•3m﹣2n3=12m2n﹣1=.故答案为:.12.若分式的值为0,则x=﹣1.【考点】分式的值为零的条件.【分析】根据分式的值等于0的条件:分子=0且分母≠0即可求解.【解答】解:根据题意得x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故答案是:﹣1.13.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为36°.【考点】等腰三角形的性质.【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故答案为:36°.14.计算2016×512﹣2016×492,结果是403200.【考点】因式分解的应用.【分析】利用提取公因式法和平方差公式分解因式,再计算即可得到结果.【解答】解:2016×512﹣2016×492=2016=2016(51+49)(51﹣49)=2016×100×2=403200;故答案为:403200.15.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为9cm.【考点】翻折变换(折叠问题).【分析】由折叠中对应边相等可知,DE=CD,BE=BC,可求AE=AB﹣BE=AB﹣BC,则△AED的周长为AD+DE+AE=AC+AE.【解答】解:DE=CD,BE=BC=7cm,∴AE=AB﹣BE=3cm,∴△AED的周长=AE+AD+DE=AC+AE=6+3=9cm.16.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】首先过点D作DF⊥AB于E,DF⊥AC于F,易证得△DEB≌△DFC(HL),即可得∠BDC=∠EDF,又由∠EAF+∠EDF=180゜,即可求得答案;【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共72分)17.计算下列各题:(1)(﹣2)3+×0﹣(﹣)﹣2.(2)[(x2+y2)﹣(x﹣y)2﹣2y(x﹣y)]÷4y.【考点】整式的混合运算;实数的运算;零指数幂;负整数指数幂.【分析】(1)根据有理数的乘法和加法可以解答本题;(2)根据完全平方公式、整式的加减法和除法可以解答本题.【解答】解:(1)(﹣2)3+×0﹣(﹣)﹣2=(﹣8)+×1﹣9=(﹣8)+﹣9=﹣16;(2)[(x2+y2)﹣(x﹣y)2﹣2y(x﹣y)]÷4y=[x2+y2﹣x2+2xy﹣y2﹣2xy+2y2]÷4y=2y2÷4y=.18.解方程:.【考点】解分式方程.【分析】本题的最简公分母是3(x+1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.19.先化简,再求值:(﹣)÷,其中x=3.【考点】分式的化简求值;约分;分式的乘除法;分式的加减法.【分析】先根据分式的加减法则算括号里面的,同时把除法变成乘法,再进行约分,最后把x=3代入求出即可.【解答】解:原式=[﹣]÷,=×,=×,=,当x=3时,原式==1.20.如图,点E,C在BF上,BE=CF,AB=DF,∠B=∠F.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】根据等式的性质可以得出BC=EF,根据SAS可证明△ABC≌△DEF就可以得出结论.【解答】证明:∵BE=CF,∴BE+CE=EC+CF,∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.21.如图所示,△ABC的顶点分别为A(﹣2,3),B(﹣4,1),C(﹣1,2).(1)作出△ABC关于x轴对称的图形△A1B1C1;(2)写出A1、B1、C1的坐标;(3)求△ABC的面积.【考点】作图-轴对称变换.【分析】(1)分别作出各点关于x轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出其坐标即可;(3)利用矩形的面积减去三角形各顶点上三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)由图可知,A1(﹣2,﹣3),B1(﹣4,﹣1),C1(﹣1,﹣2);=2×3﹣×1×3﹣×1×1﹣×2×2=6﹣﹣﹣2=2.(3)S△ABC22.甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)直接利用队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,进而利用总工作量为1得出等式求出答案;(2)直接利用甲队参与该项工程施工的时间不超过36天,得出不等式求出答案.【解答】解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工90天完成该项工程,根据题意可得:+15(+)=1,解得:x=30,检验得:x=30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程.23.如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)求证:CD=2BE.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质得到∠A=∠B=45°,根据等腰三角形的性质计算即可;(2)作AF⊥CD,证明△AFD≌△CEB,根据全等三角形的性质证明即可.【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)证明:作AF⊥CD,∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,∴BE=DF,∴CD=2BE.24.如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.【考点】三角形综合题;全等三角形的判定与性质;等腰三角形的性质;等腰直角三角形.【分析】(1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,再根据∠AFC=∠BFH,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP=∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.【解答】解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图1,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°﹣α,∴∠BAM+∠ABM=180°﹣α,∴△ABM中,∠AMB=180°﹣=α;(3)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.。

2017~2018学年苏科版八年级上期末数学试卷含答案解析

2017~2018学年苏科版八年级上期末数学试卷含答案解析

2017~2018学年度八年级上学期期末数学试卷一、选择题(每小题2分,计12分.将正确答案的序号填写在下面的表格中)1.下列图形中,不是轴对称图形的是()A.线段 B.等腰三角形C.圆D.平行四边形2.16的平方根是()A.4 B.﹣4 C.±4 D.±23.已知一个样本含有30个数据,这些数据被分成4组,各组数据的个数之比为2:4:3:1,则第三小组的频数和频率分别为()A.12、0.3 B.9、0.3 C.9、0.4 D.12、0.44.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.小明从家出发,外出散步,到一个公共阅报栏看了一会报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(米)与离家后所用时间t(分)之间的函数关系.则下列说法中错误的是()A.小明看报用时8分钟B.小明离家最远的距离为400米C.小明从家到公共阅报栏步行的速度为50米/分D.小明从出发到回家共用时16分钟6.如图,已知一次函数y=ax+b的图象为直线l,则关于x的不等式ax+b<1的解集为()A.x<0 B.x>0 C.x<1 D.x<2二、填空题(本大题共10小题,每小题2分,共20分)7.比较大小:2.8.一只不透明袋子中装有1个白球和2个红球,每个球除颜色外都相同,将球摇匀.从中任意摸出1个球,摸到红球的概率记为P1,摸到白球的概率记为P2,则P1P2.(填“>”、“<”或“=”)9.在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线为cm.10.某图书馆有A、B、C三类图书,它们的数量用如图所示的扇形统计图表示,若B类图书有37.5万册,则C类图书有万册.11.如图,在△ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD.如果∠CBD=10°,则∠BAC的度数为°.12.一次函数y=mx+3的图象与一次函数y=x+1和正比例函数y=﹣x的图象相交于同一点,则m=.13.已知点P(a,b)在一次函数y=2x﹣1的图象上,则2a﹣b+1=.14.一次函数y=2x的图象沿x轴正方向平移3个单位长度,则平移后的图象所对应的函数表达式为.15.如图,平面直角坐标系内有一点A(3,4),O为坐标原点.点B在y轴上,OB=OA,则点B 的坐标为.16.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.三、解答题(本大题共9小题,共68分)17.计算:+(π﹣1)0+.优等品频率,;(2)在图中画出这批乒乓球“优等品”频率的折线统计图;(3)这批乒乓球“优等品”的概率的估计值是.19.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中D等级对应的扇形的圆心角是多少度?(3)如果该厂年生产5000辆这种电动汽车,估计能达到D等级的车辆有多少台?20.已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:∠ADE=∠AED.21.如图,平面直角坐标系中,一次函数y=﹣2x+1的图象与y轴交于点A.(1)若点A关于x轴的对称点B在一次函数y=x+b的图象上,求b的值,并在同一坐标系中画出该一次函数的图象;(2)求这两个一次函数的图象与y轴围成的三角形的面积.22.如图,Rt△ABC中,AB=AC,∠BAC=90°,点O是BC的中点,如果点M、N分别在线段AB、AC上移动,并在移动过程中始终保持AN=BM.(1)求证:△ANO≌△BMO;(2)求证:OM⊥ON.23.如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的平分线,交BC于点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BD=5,CD=3,求AC的长.24.如图①所示,某乘客乘高速列车从甲地经过乙地到丙地,假设列车匀速行驶.如图②表示列车离乙地路程y(千米)与列车从甲出发后行驶时间x(小时)之间的函数关系图象.(1)甲、丙两地间的路程为千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围;(3)当行驶时间x在什么范围时,高速列车离乙地的路程不超过100千米.25.已知,点M、N分别是正方形ABCD的边CB、CD的延长线上的点,连接AM、AN、MN,∠MAN=135°.(友情提醒:正方形的四条边都相等,即AB=BC=CD=DA;四个内角都是90°,即∠ABC=∠BCD=∠CDA=∠DAB=90°)(1)如图①,若BM=DN,求证:MN=BM+DN.(2)如图②,若BM≠DN,试判断(1)中的结论是否仍成立?若成立,请给予证明;若不成立,请说明理由.八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题2分,计12分.将正确答案的序号填写在下面的表格中)1.下列图形中,不是轴对称图形的是()A.线段 B.等腰三角形C.圆D.平行四边形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、线段是轴对称图形;B、等腰三角形是轴对称图形;C、圆是轴对称图形;D、平行四边形是中心对称图形,不是轴对称图形.故选D.【点评】掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.16的平方根是()A.4 B.﹣4 C.±4 D.±2【考点】平方根.【分析】根据平方根定义求出即可.【解答】解:16的平方根是±4,故选C.【点评】本题考查了平方根的应用,注意:一个正数有两个平方根,它们互为相反数.3.已知一个样本含有30个数据,这些数据被分成4组,各组数据的个数之比为2:4:3:1,则第三小组的频数和频率分别为()A.12、0.3 B.9、0.3 C.9、0.4 D.12、0.4【考点】频数与频率.【分析】根据比例关系由频数=总数×频率即可得出第三小组的频数,进而得出它的频率.【解答】解:∵一个样本含有30个数据,这些数据被分成4组,各组数据的个数之比为2:4:3:1,∴第三小组的频数为:30×=9,∴第三小组的频率分别为:=0.3.故选:B.【点评】此题考查了频数与频率,一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的分量.4.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选D.【点评】本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1,难度不大.5.小明从家出发,外出散步,到一个公共阅报栏看了一会报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(米)与离家后所用时间t(分)之间的函数关系.则下列说法中错误的是()A.小明看报用时8分钟B.小明离家最远的距离为400米C.小明从家到公共阅报栏步行的速度为50米/分D.小明从出发到回家共用时16分钟【考点】函数的图象.【分析】根据函数图象,从转折点考虑得到信息判断即可.【解答】解:A、小明看报用时8﹣4=4分钟,错误;B、小明离家最远的距离为400米,正确;C、小明从家到公共阅报栏步行的速度为50米/分,正确;D、小明从出发到回家共用时16分钟,正确;故选A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,通常从函数图象考虑信息.6.如图,已知一次函数y=ax+b的图象为直线l,则关于x的不等式ax+b<1的解集为()A.x<0 B.x>0 C.x<1 D.x<2【考点】一次函数与一元一次不等式.【专题】计算题.【分析】观察函数图象,写出在y轴右侧的自变量的取值范围即可.【解答】解:当x>0时,ax+b<1,即不等式ax+b<1的解集为x<0.故选B.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题(本大题共10小题,每小题2分,共20分)7.比较大小:>2.【考点】实数大小比较.【专题】推理填空题;实数.【分析】首先分别求出、2的立方的值各是多少;然后根据实数大小比较的方法:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,判断出、2的立方的大小关系,即可推得、2的大小关系.【解答】解:=9,23=8,∵9>8,∴>2.故答案为:>.【点评】(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)解答此题的关键是判断出、2的立方的大小关系.8.一只不透明袋子中装有1个白球和2个红球,每个球除颜色外都相同,将球摇匀.从中任意摸出1个球,摸到红球的概率记为P1,摸到白球的概率记为P2,则P1>P2.(填“>”、“<”或“=”)【考点】概率公式.【分析】由一只不透明袋子中装有1个白球和2个红球,每个球除颜色外都相同,直接利用概率公式求解即可求得P1与P2,继而求得答案.【解答】解:∵一只不透明袋子中装有1个白球和2个红球,每个球除颜色外都相同,∴从中任意摸出1个球,摸到红球的概率为P1==;摸到白球的概率为P2==,∴P1>P2.故答案为:>.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线为5cm.【考点】直角三角形斜边上的中线;勾股定理.【专题】常规题型.【分析】利用勾股定理求出斜边的长度,然后根据直角三角形斜边上的中线等于斜边的一半的性质解答.【解答】解:根据勾股定理得,斜边==10cm,∴斜边上的中线=×斜边=×10=5cm.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理,熟记性质是解题的关键.10.某图书馆有A、B、C三类图书,它们的数量用如图所示的扇形统计图表示,若B类图书有37.5万册,则C类图书有45万册.【考点】扇形统计图.【分析】由图可知B类图书占25%,则可直接求出总图书的册数,再利用C类图书占30%解答即可.【解答】解:C类图书有37.5÷25%×30%=45万册,故答案为:45.【点评】本题考查了扇形统计图,关键是根据从扇形图上可以清楚地看出各部分数量和总数量之间的关系解答.11.如图,在△ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD.如果∠CBD=10°,则∠BAC的度数为40°.【考点】翻折变换(折叠问题).【分析】由翻折的性质可知∠BAC=∠DAC,∠ABC=∠ADC,∠CBD=∠CDB=10°,由等腰三角形的性质可知∠BAC=∠ABC,最后在△ABD依据三角形的内角和是180°列方程求解即可.【解答】解:设∠BAC=x.∵AC=BC,∴∠BAC=∠ABC=x.由翻折的性质可知:∠BAC=∠DAC=x,∠ABC=∠ADC=x,∠CBD=∠CDB=10°.∵在△ABD中由勾股定理可知:∠BAC+∠DAC+∠ABC+∠ADC+∠CBD+∠CDB=180°.∴4x+20°=180°.解得:x=40°.故答案为:40.【点评】本题主要考查的是翻折变换、等腰三角形的性质、三角形的内角和定理的应用,依据翻折的性质和等腰三角形的性质得到∠BAC=∠DAC=∠ABC=∠ADC是解题的关键.12.一次函数y=mx+3的图象与一次函数y=x+1和正比例函数y=﹣x的图象相交于同一点,则m= 5.【考点】两条直线相交或平行问题.【分析】求得一次函数y=x+1和正比例函数y=﹣x的图象的交点,代入y=mx+3即可求得m的值.【解答】解:解得,∴交点为(﹣,),∵一次函数y=mx+3的图象与一次函数y=x+1和正比例函数y=﹣x的图象相交于同一点,∴=﹣m+3解得m=5.故答案为5.【点评】本题考查了两直线相交的问题,根据两直线的交点坐标符合两直线的解析式是解题的关键.13.已知点P(a,b)在一次函数y=2x﹣1的图象上,则2a﹣b+1=2.【考点】一次函数图象上点的坐标特征.【分析】直接把点P(a,b)代入一次函数y=2x﹣1,进而可得出结论.【解答】解:∵点P(a,b)在一次函数y=2x﹣1的图象上,∴2a﹣1=b,∴2a﹣b=1,∴2a﹣b+1=2.故答案为:2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.一次函数y=2x的图象沿x轴正方向平移3个单位长度,则平移后的图象所对应的函数表达式为y=2x﹣6.【考点】一次函数图象与几何变换.【分析】沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.【解答】解:一次函数y=2x的图象沿x轴正方向平移3个单位长度,得到直线y=2(x﹣3),即y=2x ﹣6.故答案为y=2x﹣6.【点评】本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.15.如图,平面直角坐标系内有一点A(3,4),O为坐标原点.点B在y轴上,OB=OA,则点B 的坐标为0,5)或(0,﹣5).【考点】勾股定理;坐标与图形性质.【分析】作AC⊥x轴于C,则∠OCA═90°,OC=3,AC=4,由勾股定理求出OA=5,得出OB=5,即可得出点B的坐标;注意两种情况.【解答】解:作AC⊥x轴于C,如图所示:则∠OCA═90°,OC=3,AC=4,∴OA==5,∴OB=5,当点B在y轴正半轴上时,B(0,5);当点B在y轴﹣半轴上时,B(0,﹣5);故答案为:(0,5)或(0,﹣5).【点评】本题考查了勾股定理、坐标与图形性质;熟练掌握勾股定理是解决问题的关键,注意分两种情况讨论.16.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE=,∴DF=EF﹣ED=,∴B′F=.故答案为:.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.三、解答题(本大题共9小题,共68分)17.计算:+(π﹣1)0+.【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】原式第一项利用立方根定义计算,第二项利用零指数幂法则计算,最后一项利用算术平方根定义计算即可得到结果.【解答】解:原式=﹣3+1+3=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.优等品频率(1)a=0.94,b=0.945;(2)在图中画出这批乒乓球“优等品”频率的折线统计图;(3)这批乒乓球“优等品”的概率的估计值是0.95.【考点】利用频率估计概率;频数(率)分布折线图.【分析】(1)利用频率的定义计算;(2)先描出各点,然后折线连结;(3)根据频率估计概率,频率都在0.95左右波动,所以可以估计这批乒乓球“优等品”概率的估计值是0.95.【解答】解:(1)a==0.94,b==0.945;(2)如图,(3)这批乒乓球“优等品”概率的估计值是0.95.故答案为0.94,0.945;0.95.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了频率分布折线图.19.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中D等级对应的扇形的圆心角是多少度?(3)如果该厂年生产5000辆这种电动汽车,估计能达到D等级的车辆有多少台?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】数形结合.【分析】(1)先利用B等级的数量和它所占的百分比可计算出抽检的电动汽车的总数,然后计算出A等级电动汽车的数量,再补全条形统计图;(2)用D等级所占的百分比乘以360°可得D等级对应的扇形的圆心角;(3)利用样本估计总体,用样本中D等级所占的百分比乘以5000即可.【解答】解:(1)抽检的电动汽车的总数为30÷30%=100(辆),A等级电动汽车的数量为100﹣30﹣40﹣20=10(辆),条形统计图为:(2)20÷100×360°=72°,答:扇形统计图中D等级对应的扇形的圆心角是72°;(3)20÷100×5000=1000,答:估计能达到D等级的车辆有1000台.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.20.已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:∠ADE=∠AED.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】根据等腰三角形等边对等角的性质可以得到∠B=∠C,然后证明△ABD和△ACE全等,根据全等三角形对应边相等有AD=AE,再根据等边对等角的性质即可证明.【解答】证明:法一:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE=∠AED(等边对等角).法二:过点A作AM⊥BC于M,∵AB=AC,∴BM=CM,∵BD=CE,∴DM=EM,∴AD=AE,∴∠ADE=∠AED(等边对等角).【点评】本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.21.如图,平面直角坐标系中,一次函数y=﹣2x+1的图象与y轴交于点A.(1)若点A关于x轴的对称点B在一次函数y=x+b的图象上,求b的值,并在同一坐标系中画出该一次函数的图象;(2)求这两个一次函数的图象与y轴围成的三角形的面积.【考点】一次函数图象上点的坐标特征;一次函数的图象.【分析】(1)先求出A点坐标,再根据关于x轴对称的点的坐标特点得出B点坐标,代入一次函数y=x+b求出b的值即可得出其解析式,画出该函数图象即可;(2)设两个一次函数图象的交点为点C,联立两函数的解析式得出C点坐标,利用三角形的面积公式即可得出结论.【解答】解:(1)∵把x=0代入y=﹣2x+1,得y=1.∴点A坐标为(0,1),∴点B坐标为(0,﹣1).∵点B在一次函数y=x+b的图象上,∴﹣1=×0+b,∴b=﹣1.(2)设两个一次函数图象的交点为点C.∵,解得,∴点C坐标为(,﹣).∴S△ABC=×2×=.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.22.如图,Rt△ABC中,AB=AC,∠BAC=90°,点O是BC的中点,如果点M、N分别在线段AB、AC上移动,并在移动过程中始终保持AN=BM.(1)求证:△ANO≌△BMO;(2)求证:OM⊥ON.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据SAS证明△AON≌△BOM即可;(2)根据全等三角形的性质和垂直的定义证明即可.【解答】证明:(1)∵AB=AC,∠BAC=90°,O为BC的中点,∴OA⊥BC,OA=OB=OC,∴∠NAO=∠B=45°,在△AON与△BOM中,,∴△AON≌△BOM;(2)∵△AON≌△BOM,∴∠NOA=∠MOB,∵AO⊥BC,∴∠AOB=90°,即∠MOB+∠AOM=90°.∴∠NOM=∠NOA+∠AOM=∠MOB+∠AOM=90°,∴OM⊥ON.【点评】本题考查了全等三角形的判定和性质;熟练掌握全等三角形的判定方法是解决问题的关键.23.如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的平分线,交BC于点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BD=5,CD=3,求AC的长.【考点】作图—基本作图;全等三角形的判定与性质.【分析】(1)首先以A为圆心,小于AC长为半径画弧,交AC、AB于H、F,再分别以H、F为圆心,大于HF长为半径画弧,两弧交于点M,再画射线AM交CB于D;(2)过点D作DE⊥AB,垂足为E,首先证明△ACD≌△AED可得AC=AE,CD=DE=3,在Rt△BDE 中,由勾股定理得:DE2+BE2=BD2,进而可得BE长,然后再在Rt△ABC中,设AC=x,则AB=AE+BE=x+4,利用勾股定理可得x2+82=(x+4)2,再解即可.【解答】解:(1)如图:(2)过点D作DE⊥AB,垂足为E.则∠AED=∠BED=90°.∵AD平分∠BAC,∴∠CAD=∠EAD.在△ACD和△AED中,,∴△ACD≌△AED(AAS).∴AC=AE,CD=DE=3.在Rt△BDE中,由勾股定理得:DE2+BE2=BD2.∴BE2=BD2﹣DE2=52﹣32=16.∴BE=4.在Rt△ABC中,设AC=x,则AB=AE+BE=x+4.由勾股定理得:AC2+BC2=AB2,∴x2+82=(x+4)2.解得:x=6,即AC=6.【点评】此题主要考查了基本作图,以及勾股定理的应用,全等三角形的判定和性质,关键是得到AC=AE,CD=DE,掌握直角三角形中,两直角边的平方和等于斜边的平方.24.如图①所示,某乘客乘高速列车从甲地经过乙地到丙地,假设列车匀速行驶.如图②表示列车离乙地路程y(千米)与列车从甲出发后行驶时间x(小时)之间的函数关系图象.(1)甲、丙两地间的路程为1050千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围;(3)当行驶时间x在什么范围时,高速列车离乙地的路程不超过100千米.【考点】一次函数的应用;一元一次不等式的应用;待定系数法求一次函数解析式.【专题】综合题;函数思想;一元一次不等式(组)及应用;一次函数及其应用.【分析】(1)由图可知,甲地到乙地距离900km,乙地与丙地距离150km,进而得到甲、丙间的距离;(2)先求出列车到达丙地的时间,然后用待定系数法分别求出从甲到乙、从乙到丙时,y与x的函数关系式;(3)分两种情况:①未到乙地时,离乙地的路程不超过100千米;②已过乙地,离乙地的路程不超过100千米;分别列出不等式求出x的范围即可.【解答】解:(1)由函数图象可知,当x=0时y=900,即刚出发时,甲与乙的距离为900千米,当x=3时y=0,表示3小时后列车到达乙地,故列车速度为:900÷3=300千米/小时,∵150÷300=0.5小时,∴0.5小时后列车到达丙地,乙与丙间的距离为150千米,故甲、丙两地间的距离为:900+150=1050千米;(2)当0≤x≤3时,设函数关系式为:y=k1x+b1,将(0,900),(3,0)代入得:,解得:,∴y=﹣300x+900;当3≤x≤3.5时,设函数关系式为:y=k2x+b2,将(3,0),(3.5,150)代入得:,解得:,∴y=300x﹣900;综上,当0≤x≤3时,y=﹣300x+900;当3≤x≤3.5时,y=300x﹣900;(3)①当列车从甲到乙地的路程不超过100千米时,即当0≤x≤3时,有:﹣300x+900≤100,解得:≤x≤3;②当列车从乙行驶到丙,到乙地的路程不超过100千米时,即当3≤x≤3.5时,有:300x﹣900≤100,解得:3≤x≤;综上,当≤x≤时,高速列车离乙地的路程不超过100千米.【点评】本题主要考查一次函数的综合应用,结合题意读懂图象是前提,待定系数法求函数解析式是关键.25.已知,点M、N分别是正方形ABCD的边CB、CD的延长线上的点,连接AM、AN、MN,∠MAN=135°.(友情提醒:正方形的四条边都相等,即AB=BC=CD=DA;四个内角都是90°,即∠ABC=∠BCD=∠CDA=∠DAB=90°)(1)如图①,若BM=DN,求证:MN=BM+DN.(2)如图②,若BM≠DN,试判断(1)中的结论是否仍成立?若成立,请给予证明;若不成立,请说明理由.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)作AE⊥MN,垂足为E.证明△ADN≌△ABM.得到AN=AM,∠NAD=∠MAB.再证明△ADN≌△AEN.得到DN=EN,即可解答.(2)利用已知条件证明△ABP≌△ADN,得到AP=AN,∠BAP=∠DAN.再证明∠MAN=∠MAP.从而证明△ANM≌△APM,得到MN=MP,由MP=BM+BP=BM+DN,即可得到MN=BM+DN.【解答】解:(1)如图①,作AE⊥MN,垂足为E.∵四边形ABCD是正方形,∴AD=AB,∠ADC=∠ABC=90°,∴∠ADN=∠ABM=90°.在△ADN与△ABM中,,∴△ADN≌△ABM.∴AN=AM,∠NAD=∠MAB.∵∠MAN=135°,∠BAD=90°,∴∠NAD=∠MAB=(360°﹣135°﹣90°)=67.5°.∴∠AND=∠AMB=22.5°,∵AN=AM,∠MAN=135°,AE⊥MN,∴MN=2NE,∠AMN=∠ANM=22.5°.在△ADN与△AEN中,∵,∴△ADN≌△AEN.∴DN=EN.∴MN=2EN=2DN=BM+DN.(2)如图②,若BM≠DN,①中的结论仍成立,理由如下:延长BC到点P,使BP=DN,连结AP.∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠BAD=90°.∴∠ADN=90°.在△ABP与△ADN中,∵,∴△ABP≌△ADN.∴AP=AN,∠BAP=∠DAN.∵∠MAN=135°,∴∠MAP=∠MAB+∠BAP=∠MAB+∠DAN=360°﹣∠MAN﹣∠BAD=360°﹣135°﹣90°=135°.∴∠MAN=∠MAP.在△ANM与△APM中,∵,∴△ANM≌△APM.∴MN=MP.∵MP=BM+BP=BM+DN,∴MN=BM+DN.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明三角形全等.。

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末学业水平测试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列根式中不是最简二次根式的是(A )13 (B )12 (C )42+a (D )2 2.无论a 取何值时,下列分式一定有意义的是(A )221aa + (B )21aa +(C )112+-a a(D )112+-a a 3.如图,ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是(A )①②③ (B )①②④ (C )①③④ (D )②③④4.如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A ′O ′B ′=∠AOB 的依据是 (A )SSS (B )SAS (C )ASA (D )AAS(第4题图)5.如图,36DBC ECB ∠=∠=︒,72BEC BDC ∠=∠=︒,则图中等腰三角形的个数是 (A ) 5 (B ) 6 (C ) 8(D ) 96.下列运算:(1)a a a 2=+;(2)1243a a a =⨯;(3)()22ab ab = ;(4)()632a a =-.其中错误的个数是(A ) 1 (B ) 2 (C ) 3 (D ) 4 7.若A b a b a +-=+22)()(,则A 等于(A )ab 2 (B )ab 2- (C )ab 4- (D )ab 48.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有 ①)1)(1(3-+=+x x x x x ②222)(2y x y xy x -=+- ③1)1(12+-=+-a a a a ④)4)(4(1622y x y x y x -+=- (A )1个(B )2个(C )3个(D )4个9.关于x 的分式方程101m x x -=+的解,下列说法正确的是 (A )不论m 取何值,该方程总有解(B )当1m ≠时该方程的解为1mx m=- (C )当1,0m m ≠≠且时该方程的解为1mx m=-(D )当2m =时该方程的解为2x = 10.如果把分式yx x 34y3-中的x 和y 的值都扩大为原来的3倍,那么分式的值(A )扩大为原来的3倍 (B )扩大6倍 (C )缩小为原来的12倍 (D )不变11.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=4,BC=8,则△BC ′F 的周长为(A )12 (B )16 (C )20 (D )2412.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有(A )①②③ (B )①③④ (C )②③ (D )①②③④第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.在△ABC 中,∠C=90°,BC=16,∠BAC 的平分线交BC 于D ,且BD :DC=5:3, 则D 到AB 的距离为_____________.14.已知等腰三角形的一个内角为50°,则顶角角的大小为________________. 15.分解因式:322318122xy y x y x -+- =__________________________________. 16.若362+-mx x 是一个完全平方式,则m=____________________.17.当x 的值为 ,分式242x x -+的值为0.18.如果直角三角形的三边长为10、6、x ,则最短边上的高为______.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(本小题满分8分) (1)计算:)35()35(45205152+--+-. (2)计算:2(3)(3)(2)a b a b a b ---+-20.(每小题5分,共10分)根据要求,解答下列问题: (1)计算:()()()()x x x x x-+--÷-123286234(2)化简:)111(3121322-+--+-⨯--x x x x x x . 21.(本小题满分10分)如图,已知点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足.连接CD , 且交OE 于点F .(1)求证:OE 是CD 的垂直平分线. (2)若∠AOB=60°,求证:OE=4EF .22.(本小题满分10分)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段 BD 交AC 于点G ,线段AE 交CD 于点F.求证:(1)△ACE ≌△BCD ;(2)△GFC 是等边三角形.23.(本小题满分12分)如图,中,,若动点 P 从点C 开始,按的路径运动,且速度为每秒1cm ,设出发的时间为t 秒. (1)出发2秒后,求的周长. (2)问t 满足什么条件时,为直角三角形? (3)另有一点Q ,从点C 开始,按的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出(第21题图)发,当P 、Q 中有一点到达终点时,另一点也停止运动当t 为何值时,直线PQ 把的周长分成相等的两部分?24.(本小题满分10分)如图所示,港口A 位于灯塔C 的正南方向,港口B 位于灯塔C 的南偏东60°方向,且港口B 在港口A 的正东方向的135公里处.一艘货轮在上午8时从港口A 出发,匀速向港口B 航行.当航行到位于灯塔C 的南偏东30°方向的D 处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B ,顺利完成交货.求货轮原来的速度是多少?2017—2018学年第一学期期末学业水平测试八年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDACCDBCAAD二、填空题(本大题6个小题,每小题4分,共24分)13.6; 14.50°或80°; 15.232)(y x xy --;AC B第24题图D16.21±; 17.2 ; 18. 8或10 三、解答题(本大题6个小题,共60分) 19.(本小题满分10分)解:(1)原式=)35(453525-++- …………………………2分 =125453525-++- …………………………3分 =1256- ………………………………………………5分(2)2(3)(3)(2)a b a b a b ---+-= 2222944b a a ab b -+-+ ……………4分= 2134b ab - ……………5分20.(每小题5分,共10分)化简: 解:原式()()xx x x x23234322--+-+-=……………4分x x x x x23234322++--+-=23-=x . ……………5分(2)原式=()()()⎪⎭⎫ ⎝⎛++-+---⨯-+--1111311132x x x x x x x x ……2分 =111+++--x xx x ……………4分 =11+x . ……………5分21.(本小题满分10分)解:(1)∵OE 是∠AOB 的平分线,EC ⊥OB ,ED ⊥OA ,OE=OE ,∴Rt △ODE ≌Rt △OCE (AAS ), …………………………2分 ∴OD=OC ,∴△DOC 是等腰三角形, …………………………3分 ∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线. …………………………5分 (2)∵OE 是∠AOB 的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°, ………………6分∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,…………………………8分∴∠EDF=30°,∴DE=2EF,…………………………9分∴OE=4EF.…………………………10分22.(本小题满分10分)证明:(1)∵△ABC与△DCE都是等边三角形,∴AC=BC,CE =CD,∠ACB =∠DCE=60°, ------------------------3分∴∠ACB+∠ACD =∠DCE+∠ACD,即∠ACE =∠BCD,∴△ACE≌△BCD(SAS). ----------------------------5分(2)∵△ABC与△DCE都是等边三角形,CD=ED,∠ABC =∠DCE=60°(此步不再赋分),由平角定义可得∠GCF=60°=∠FCE, ---------------------7分又由(1)可得∠GDC=∠FEC,∴△GDC≌△FEC(AAS). ----------8分∴GC=FC, --------------------------9分又∠GCF=60°,∴△GFC是等边三角形. -----------------------10分23.解:,,动点P从点C开始,按的路径运动,速度为每秒1cm,出发2秒后,则,,,的周长为:;-----------------3分,动点P从点C开始,按的路径运动,且速度为每秒1cm,在AC上运动时为直角三角形,,当P在AB上时,时,为直角三角形,,,解得:,,,速度为每秒1cm,,综上所述:当或为直角三角形;-----------------8分当P点在AC上,Q在AB上,则,直线PQ把的周长分成相等的两部分,,;当P点在AB上,Q在AC上,则,直线PQ把的周长分成相等的两部分,,,当或6秒时,直线PQ把的周长分成相等的两部分.-------------12分24.(本小题满分10分)解:根据题意,A ∠=90°,ACB ∠=60°,ACD ∠=30°, ∴603030DCB ∠=︒-︒=︒, 906030B ∠=︒-︒=︒, ∴DCB B ∠=∠∴CD BD = -----------2分 ∵A ∠=90°,ACD ∠=30° ∴2CD AD =∴2BD AD = -----------4分 又135AB =∴45AD =,,90BD = -----------5分 设货轮原来的速度是x 公里/时,列方程得45901281.2x x+=- ----------8分 解得 x =30 ----------9分 检验,当x =30时,1.2x ≠0. 所以,原分式方程的解为x =30.答: 货轮原来的速度是30公里/时. -----------10分注意:评分标准仅做参考,只要学生作答正确,均可得分。

连云港市灌云县2017-2018学年八年级上期末数学试卷含答案解析

连云港市灌云县2017-2018学年八年级上期末数学试卷含答案解析

1.2. 3. 2017-2018学年江苏省连云港市灌云县八年级(上)期末数学试卷 、选择题(每题3分,共24分,每题中只有一个正确选项)F 列奥运会会徽,是轴对称图形的是( ) A . OQ9北廉 C . 19比義特刹尔 B. 1跖2洛杉矶X-OLYMP1AD 10$ ANGELES1932 D . 195目黑尔津: A 、B 、C 、D 四组图形中,是全等图形的一组是( C . F 列 B.D. F 列各组数中,能构成直角三角形的是( A . 1,忑壬 B. 6, 8, 10 4.下列讥、0、0.565656 •■•*、- 0.010010001 C. 4, …(每两个无理数的个数为( )A . 1 B. 2 C. 3 5.由四舍五入得到的近似数 8.01 X104,精确到( A . 10 000 B. 100 C. 0.01 D . 5, 12, 18 之间增加1个0)各数中, D . 4 D . 0.000 1 6.在平面直角坐标系中,点P (- 2, -3)向右移动 3个单位长度后的坐标是( A . (-5,- 3) B. (1,- 3) C. (1, 0) D . (-2, 0) 7.已知等腰三角形的两边长为4, 5, 则它的周长为( A . 13 B. 14C. 15 D . 13 或 148. 已知一次函数y= (m - 1)x的图象上两点A (x i, y i), B (X2, y2),当x i>X2时,有y i<y2,那么m的取值范围是()A. m>0B. m<0C. m> 1D. m< 1二、填空题(本大题共10小题,每小题4分,共40分)9. ___________________________ 点(2, 3)在哪个象限.10. 4是_______ 的算术平方根.11. 小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为 ______ .12. 点P (- 4,2)关于x轴对称的点Q的坐标________ .13. 如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,- 1),白棋③的坐标是(-1,- 3),则黑棋②的坐标是_______ .14. 当直线y=kx+b与直线y=2x- 2平行,且经过点(3, 2)时,则直线y=kx+b为_____15. ________________________________________________________________ 如图,已知AB=AC用“AS定理证明△ ABD^A ACE还需添加条件____________________ .16. 如图矩形ABCD中,AD=5, AB=7,点E为DC上一个动点,把△ ADE沿AE折叠,当点D的对应点D落在/ ABC的角平分线上时,DE的长为________ .17 .如图,每个小正方形的边长都为1,则厶ABC的三边长a、b、c的大小关系是_______18•已知如图,在平面直角坐标系中,x轴上的动点P (x, 0)到定点A (0, 2)、B(3,1)的距离分别为PA和PB,求PA+PB的最小值为___________ .4 -3三、解答题(本大题共9小题,共86分.解答时应写出文字说明、证明过程或演算步骤19. (8分)求下列各式中x的值.(1)x2=3(2)x3=- 6420. (6分)在数轴上画出表示了的点.---- —!——t——:——*——-——-——“21. (8分)已知如图:AB// CD, AB=CD BF=CE点B、F、E、C在一条直线上,求证:(ABE^A DCF22. (8分)已知:如图,锐角△ ABC的两条高BD CE相交于点O,且OB=OC(1)求证:△ ABC是等腰三角形;(2)判断点O是否在/ BAC的角平分线上,并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省连云港市灌云县2017-2018学年上学期期末考试八年级数学试卷
一、选择题(每题3分,共24分,每题中只有一个正确选项)
1.(3分)下列奥运会会徽,是轴对称图形的是()
A.B.C.D.
2.(3分)下列A、B、C、D四组图形中,是全等图形的一组是()
A.B. C.D.
3.(3分)下列各组数中,能构成直角三角形的是()
A.1,B.6,8,10 C.4,5,9 D.5,12,18
4.(3分)下列、0、0.565656…、、﹣0.010010001…(每两个1之间增加1个0)各数中,无理数的个数为()
A.1 B.2 C.3 D.4
5.(3分)由四舍五入得到的近似数8.01×104,精确到()
A.10 000 B.100 C.0.01 D.0.000 1
6.(3分)在平面直角坐标系中,点P(﹣2,﹣3)向右移动3个单位长度后的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(1,0)D.(﹣2,0)
7.(3分)已知等腰三角形的两边长为4,5,则它的周长为()
A.13 B.14 C.15 D.13或14
8.(3分)已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是()
A.m>0 B.m<0 C.m>1 D.m<1
二、填空题(本大题共10小题,每小题4分,共40分)
9.(4分)点(2,3)在哪个象限.
10.(4分)4是的算术平方根.
11.(4分)小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为.
12.(4分)点P(﹣4,2)关于x轴对称的点Q的坐标.
13.(4分)如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是.
14.(4分)当直线y=kx+b与直线y=2x﹣2平行,且经过点(3,2)时,则直线y=kx+b为.15.(4分)如图,已知AB=AC,用“ASA”定理证明△ABD≌△ACE,还需添加条件.
16.(4分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE 折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.
17.(4分)如图,每个小正方形的边长都为1,则△ABC的三边长a、b、c的大小关系是.
18.(4分)已知如图,在平面直角坐标系中,x轴上的动点P(x,0)到定点A(0,2)、B (3,1)的距离分别为PA和PB,求PA+PB的最小值为.
三、解答题(本大题共9小题,共86分.解答时应写出文字说明、证明过程或演算步骤) 19.(8分)求下列各式中x的值.
(1)x2=3
(2)x3=﹣64
20.(6分)在数轴上画出表示的点.
21.(8分)已知如图:AB∥CD,AB=CD,BF=CE,点B、F、E、C在一条直线上,
求证:(1)△ABE≌△DCF;
(2)AE∥FD.
22.(8分)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.
(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由.
23.(8分)从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?
24.(10分)(1)请在所给的平面直角坐标系中画出一次函数y1=x﹣1和y2=﹣2x+5画出函数的图象;
(2)根据图象直接写出的解为;
(3)利用图象求两条直线与x轴所围成图形的面积.
25.(10分)甲汽车出租公司按每100千米150元收取租车费;乙汽车出租公司按每100千米50元收取租车费,另加管理费800元设甲家收取租车费y1元、乙家收取的租车费y2元.(1)分别求出y1元、y2元与所使用的里程x千米之间的函数关系式;
(2)判断x在什么范围内,乙家收取的租车费y2元较甲家y元较少.
26.(14分)已知一辆快车与一辆慢车沿着相同路线从甲地到乙地,同起点同方向,所行路程与所用的时间的函数图象如图所示:y表示离开出发点的距离.(单位:千米)
(1)快车比慢车迟出发小时,早到小时;
(2)求两车的速度;
(3)求甲乙两地的距离;
(4)求图中图中直线AB的解析式,并说出点C表示的实际意义.
27.(14分)活动一:已知如图1,AB⊥AD,DE⊥AD,BC⊥CE,且AB=CD.求证:△ABC≌△DCE.
活动二:动手操作,将两个斜边长相等的直角三角形纸片按图2放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C按顺时针方向旋转15°得到△MCN.
如图3,连接MB,找出图中的全等三角形,并说明理由;
活动三:已知如图,点C坐标为(0,2),B为x轴上一点,△ABC是以BC为腰的等腰直角三角形,∠BCA=90°,当B点从原点出发沿x轴正半轴运动时,在图中画出A点运动路线.并请说明理由.
参考答案
1-8、CCBBB BDD
9、第一象限
10、16
11、B10
12、(-4,-2)
13、(1,-2)
14、y=2x-4
15、∠B=∠C
16、
17、c<a<b
18、
19、
20、
解:如图所示:
首先过O作垂线,再截取AO=2,然后连接A和表示1的点B,再以O为圆心,AB长为半径画弧,与原点右边的坐标轴的交点为
21、
22、
(1)证明:∵OB=OC,
∴∠OBC=∠OCB,
∵锐角△ABC的两条高BD、CE相交于点O,
∴∠BEC=∠CDB=90°,
∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,∴180°-∠BEC-∠BCE=180°-∠CDB-∠CBD,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形;
(2)解:点O在∠BAC的角平分线上.
理由:连接AO并延长交BC于F,
在△AOB和△AOC中,
∴△AOB≌△AOC(SSS).
∴∠BAF=∠CAF,
∴点O在∠BAC的角平分线上.
23、
解:设旗杆高度为AC=h米,则绳子长为AB=h+2米,BC=8米,根据勾股定理有:h2+82=(h+2)2,解得h=15米.
24、
解:(1)如图,
25、
】解:(1)y1=1.5x,
y2=0.5x+800;
(2)当y1<y2时,乙家收取的租车费y2元较甲家y元较少;
1.5x<0.5x+800
解得x<800;
答:当汽车行驶路程为小于800千米时,乙家收取的租车费y2元较甲家y元较少.
26、
解:(1)慢车比快车早出发2小时,快车比慢车早4小时到达;
故答案为:2;4;
(2)设快车追上慢车时,慢车行驶了x小时,
根据两车行驶的路程相等,
解得x=6(小时).
27、
活动一:证明:如图1中,
∵AB⊥AD,DE⊥AD,BC⊥CE,
∴∠A=∠D=∠BCE=90°,
∴∠B+∠ACB=90°,∠ACB+∠ECD=90°,∴∠B=∠ECD,
∵AB=CD,
∴△ABC≌△DCE.
活动二:解:结论:△ACB≌△CBM.
理由:∵∠CNM=90°,∠CMN=30°,
∴∠MCN=60°,
∵∠BCN=15°,
∴∠MCB=45°,
∵∠A=45°,
∴∠A=∠BCM,
∵AB=CM,AC=CB,
∴△ACB≌△CBM(ASA).
活动三:解:作AH⊥y轴于H.
∵C(0,2),
∴OC=2,
∵∠AHC=∠COB=∠ACB=90°,
∴∠HAC+∠ACH=90°,∠ACH+∠BCO=90°,∴∠HAC=∠BCO,∵AC=CB,
∴△ACH≌△CBO,
∴AH=OC=2,
∴点A到y的距离为定值,
∴点A在平行于y轴的射线上运动,射线与y轴之间的距离为2(如图中虚线);。

相关文档
最新文档