《1.1.3集合的基本运算(1)》同步训练2

合集下载

人教版高中数学必修一:1.1.3集合的的基本运算(一)

人教版高中数学必修一:1.1.3集合的的基本运算(一)

高一数学学科教学设计A级1. 设{}{}=∈≤=∈>那么A B等于().5,1,A x Z xB x Z xA.{1,2,3,4,5} B.{2,3,4,5}C.{2,3,4}D.{}15<≤x x2. 已知集合M={(x, y)|x+y=2},N={(x, y)|x-y=4},那么集合M∩N为().A. x=3, y=-1B. (3,-1)C.{3,-1}D.{(3,-1)}3. 设{}0,1,2,3,4,5,{1,3,6,9},{3,7,8}===,则()A B CA B C等于().A. {0,1,2,6}B. {3,7,8,}C. {1,3,7,8}D. {1,3,6,7,8}B级1. 设{|}=<<,若A B=∅,求实数a的取值范围B x x=>,{|03}A x x a是 .以表格的形式呈现交集并集的三种语言的表达方式。

检查结果及修改意见:合格[ ] 不合格[ ]组长(签字):检查日期:年月日精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

【人教A版高一数学试题】必修一1.1.3《集合的基本运算》 及答案解析

【人教A版高一数学试题】必修一1.1.3《集合的基本运算》     及答案解析

集合的基本运算1.设集合A ={x|2≤x <4},B ={x|3x -7≥8-2x},则A ∪B 等于( )A .{x|x ≥3}B .{x|x ≥2}C .{x|2≤x <3}D .{x|x ≥4}2.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩B =( )A .{3,5}B .{3,6}C .{3,7}D .{3,9}3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.4.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.6.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合的基本运算(答案解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于() A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.【答案】 B2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6}C.{3,7} D.{3,9}【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】 D3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.【答案】454.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.【解析】 ∵A ∩B ={9},∴9∈A ,∴2a -1=9或a 2=9,∴a =5或a =±3. 当a =5时,A ={-4,9,25},B ={0,-4,9}. 此时A ∩B ={-4,9}≠{9}.故a =5舍去.当a =3时,B ={-2,-2,9},不符合要求,舍去. 经检验可知a =-3符合题意.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16}, ∴{a ,a 2}={4,16},∴a =4,故选D. 【答案】 D2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S ∩T ={x|-12<x<53}.故选D.【答案】 D3.已知集合A ={x|x>0},B ={x|-1≤x ≤2},则A ∪B =( ) A .{x|x ≥-1} B .{x|x ≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【答案】 A4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4【解析】集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需a≤1.【答案】a≤16.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.【解析】由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且A中至少有一个元素为5,从而A中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】 4三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.若x2-1=3则x=±2;若x2-1=5,则x=±6;综上,x=±2或±6.当x=±2时,B={1,2,3},此时A∩B={1,3};当x=±6时,B={1,2,5},此时A∩B={1,5}.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.【解析】由A∩B=Ø,(1)若A=Ø,有2a>a+3,∴a>3.(2)若A≠Ø,如图:∴,解得-≤a≤2.综上所述,a的取值范围是{a|-≤a≤2或a>3}.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【解析】设单独参加数学的同学为x人,参加数学化学的为y人,单独参加化学的为z人.依题意⎩⎪⎨⎪⎧x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧x =12,y =8,z =1.∴同时参加数学化学的同学有8人,答:同时参加数学和化学小组的有8人.。

1.1.3《集合的基本运算》同步练习题

1.1.3《集合的基本运算》同步练习题

1.1.3《集合间的基本运算》同步训练题1.已知集合U ={1,3,5,7,9},A ={1,5,7},则C U A =( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}2.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(C R B )=( )A .{x |x >1}B .{x |x ≥1}C .{x |1<x ≤2}D .{x |1≤x ≤2}3.已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}4.已知全集U ={1,2,3,4,5},且A ={2,3,4},B ={1,2},则A ∩(C U B )等于( )A .{2}B .{5}C .{3,4}D .{2,3,4,5}5.已知全集U ={0,1,2},且C U A ={2},则A =( )A .{0}B .{1}C .∅D .{0,1}6.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合C U (A ∩B )中的元素共有( )A .3个B .4个C .5个D .6个7.已知集合U ={2,3,4,5,6,7},M ={3,4,5,7},N ={2,4,5,6},则( )A .M ∩N ={4,6}B .M ∪N =UC .(C U N )∪M =UD .(C U M )∩N =N8.已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合C U (A ∪B )中元素个数为( )A .1B .2C .3D .49.已知全集U =A ∪B 中有m 个元素,(C U A )∪(C U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n10.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若C U A ={x |2≤x ≤5},则a =________.11.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∪B )∩(C U C )=________.12.已知全集U ={2,3,a 2-a -1},A ={2,3},若C U A ={1},则实数a 的值是________.13.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(C U A )∩B =∅,则实数m 的取值范围为________.14.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥25},求A ∩B ,(C U B )∪P ,(A ∩B )∩(C U P ).15.设A={-4,2a-1,a2},B={a-5,1-a,9},已知A∩B={9},求a的值,并求出A∪B.16.已知集合A={x|2a-2<x<a},B={x|1<x<2},且A C R B,求实数a的取值范围.17.已知A={x|x2-px-2=0},B={x|x2+qx+r=0},且A∪B={-2,1,5},A∩B={-2},求p,q,r的值.18.已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足B∩(C U A)={2},A∩(C U B)={4},U=R,求实数a,b的值.19.设集合A={x|-2<x<-1}∪{x|x>1},B={x|a≤x≤b},若A∪B ={x|x>-2},A∩B={x|1<x≥3},求实数a,b的值.参考答案1.D 2.D 3.A 4.C 5.D 6.A 7.B 8.B 9.D10.211.{2,5}12.-1或213.{m |m ≥2}14.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥25},求A ∩B ,(C U B )∪P ,(A ∩B )∩(C U P ).解:将集合A 、B 、P 表示在数轴上,如图:∵A ={x |-4≤x <2},B ={x |-1<x ≤3},∴A ∩B ={x |-1<x <2}.∵C U B ={x |x ≤-1或x >3}∴(C U B )∪P ={x |x ≤0或x ≥25},(A ∩B )∩(C U P )={x |-1<x <2}∩{x |0<x <25}={x |0<x <2}. 15.设A ={-4,2a -1,a 2},B ={a -5,1-a ,9},已知A ∩B ={9},求a 的值,并求出A ∪B . 解:∵A ∩B ={9} ∴9∈B∴2a -1=9或a 2=9解得a =±3或a =5当a =3时,A ={-4,5,9},B ={-2,-2,9},B 中元素违背了互异性,舍去;当a =-3时,A ={-4,-7,9},B ={-8,4,9},A ∩B ={9}满足题意,故A ∪B ={-8,-7,-4,4,9};当a =5时,A ={-4,9,25},B ={0,-4,9},A ∩B ={-4,9}与题意矛盾,舍去;∴综上所述,a =-3且A ∪B ={-8,-7,-4,4,9}.16.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且AC R B ,求实数a 的取值范围. 解:C R B ={x |x ≤1或x ≥2}≠∅,∵A R B ,∴分A =∅和A ≠∅两种情况讨论.①若A =∅,此时有2a -2≥a ,∴a ≥2②若A ≠∅,则有⎩⎨⎧≤<-122a a a 或⎩⎨⎧≥-<-22222a a a ,∴a≤1 综上所述,a ≤1或a ≥2.17.已知A ={x |x 2-px -2=0},B ={x |x 2+qx +r =0},且A ∪B ={-2,1,5},A ∩B ={-2},求p ,q ,r 的值. 解:由A∩B={﹣2}可知x =﹣2为x 2﹣px ﹣2=0和x 2+qx +r=0的解代入求得p =﹣1,4﹣2q +r =0①把p =﹣1代入到x 2﹣px ﹣2=0中解得x =﹣2,x =1由A ∪B ={﹣2,1,5}可知5为x 2+qx +r=0的解代入得25+5q +r =0②将①②联立求得q =﹣3,r =﹣10∴综上所述,p ,q ,r 的值分别为﹣1,﹣3,﹣10.18.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(C U A )={2},A ∩(C U B )={4},U =R ,求实数a ,b 的值.解:∵B ∩(C U A )={2},∴2∈B ,但2∉A∵A ∩(C U B )={4},∴4∈A ,但4∉B∴⎩⎨⎧=+-=++022*******b a b a ,解得⎪⎪⎩⎪⎪⎨⎧==71278b a ∴a ,b 的值为78,712. 19.设集合A ={x |﹣2<x <﹣1}∪{x |x >1},B ={x |a ≤x ≤b},若A ∪B ={x |x >﹣2},A ∩B ={x |1<x ≥3},求实数a ,b 的值.解:在数轴上把相关集合代表的范围表示出来如图:∵集合A 与A ∪B 相差的一段是﹣1≤x ≤1∴﹣1≤x ≤1这一段应该包含在集合B ={x |a ≤x ≤b}中,所以a ≤﹣1,b ≥1由A ∩B ={x |1<x ≤3}容易得b =3如果a <﹣1,则A 与B 的交集应该有二段范围,与题意不符,所以a =﹣1综上述得:a =﹣1,b =3.。

1.3 集合的基本运算(第二课时)(同步训练)(附答案)—高一上学期数学必修第一册

1.3  集合的基本运算(第二课时)(同步训练)(附答案)—高一上学期数学必修第一册

1.3 集合的基本运算(第二课时)(同步训练)一、选择题1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩∁N B等于()A.{1,5,7} B.{3,5,7}C.{1,3,9} D.{1,2,3}2.(多选)设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1} B.∁U B={4}C.A∪B={0,1,3,4} D.集合A的真子集个数为83.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤2 B.a<1C.a≥2 D.a>24.图中的阴影部分表示的集合是()A.A∩(∁U B) B.B∩(∁U A)C.∁U(A∩B) D.∁U(A∪B)5.设全集U=R,集合A={x|0<x<9},B={x∈Z|-4<x<4},则集合(∁U A)∩B中的元素的个数为()A.3 B.4 C.5 D.66.(多选)已知集合A={x|-1<x≤3},集合B={x||x|≤2},则下列关系式正确的是()A.A∩B=∅B.A∪B={x|-2≤x≤3}C.A∪∁R B={x|x≤-1或x>2} D.A∩∁R B={x|2<x≤3}7.M,N为集合I的非空真子集,且M,N不相等,若N∩∁I M=∅,则M∪N等于()A.M B.NC.I D.∅二、填空题8.已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________9.已知集合A={1,2,m},集合B={1,2},若∁A B={5},则实数m=________10.已知全集U=A∪B={1,2,3,4},A={1,2,4},A∩B={1},则集合∁U B为________,集合B 共有________个子集.11.设全集U=R,已知集合A={x|x<3或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为________12.已知集合A={x|x<a},B={x|1<x<2},A∪(∁R B)=R,则实数a的取值范围是________三、解答题13.已知全集U=R,集合A={x|x<1或x>2},集合B={x|x<-3或x≥1},求∁R A,∁R B,A∩B,A∪B.14.已知全集U=R,集合A={x|-1≤x≤2},B={x|4x+p<0},且B⊆∁U A,求实数p的取值范围.15.已知集合A={x|x2+4ax-4a+3=0},B={x|x2+(a-1)x+a2=0},C={x|x2+2ax-2a=0},其中至少有一个集合不为空集,求实数a的取值范围.参考答案:一、选择题1.A2.AC3.C4.B5.B6.BD7.A二、填空题8.答案:{2,3,5,7}9.答案:510.答案:{2,4},411.答案:{a|a>3}12.答案:{a|a≥2}解析:因为B={x|1<x<2},所以∁R B={x|x≤1或x≥2}.又因为A∪(∁R B)=R,A={x|x<a},观察∁R B与A在数轴上表示的区间,如图所示.可得当a ≥2时,A ∪(∁R B)=R.三、解答题13.解:如图,可知∁R A ={x|1≤x ≤2},∁R B ={x|-3≤x<1}.所以A ∩B ={x|x<-3或x>2},A ∪B =R.14.解:∁U A ={x|x<-1或x>2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x<-p 4. 因为B ⊆∁U A ,所以-p 4≤-1.所以p ≥4. 所以p 的取值范围是{p|p ≥4}.15.解:假设集合A 、B 、C 都是空集,当A =∅时,表示不存在x 使得x 2+4ax -4a +3=0成立,所以Δ=16a 2-4(-4a +3)<0,解得-32<a <12; 当B =∅时,同理Δ=(a -1)2-4a 2<0,解得a >13或a <-1; 当C =∅时,同理Δ=(2a)2+8a <0,解得-2<a <0.三者交集为-32<a <-1,取反面即可得A ,B ,C 三个集合至少有一个集合不为空集, 所以a 的取值范围是a ≥-1或a ≤-32.。

高中数学:第一章1.1.3集合的基本运算 (2)

高中数学:第一章1.1.3集合的基本运算  (2)

集合1.1.3集合的基本运算第一课时并集与交集预习课本P8~10,思考并完成以下问题(1)两个集合的并集与交集的含义是什么?它们具有哪些性质?(2)怎样用Venn图表示集合的并集和交集?[新知初探]1.并集和交集的概念及其表示类别概念自然语言符号语言图形语言并集由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”)A∪B={x|x∈A,或x∈B}交集由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”)A∩B={x|x∈A,且x∈B}[点睛](1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B 可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.2.并集与交集的运算性质并集的运算性质交集的运算性质A∪B=B∪A A∩B=B∩A[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)并集定义中的“或”就是“和”.()(2)A∪B表示由集合A和集合B中元素共同组成.()(3)A∩B是由属于A且属于B的所有元素组成的集合.() 答案:(1)×(2)×(3)√2.设集合M={-1,0,1},N={0,1,2},则M∪N等于() A.{0,1}B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}答案:D3.若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=() A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}答案:A4.满足{1}∪B={1,2}的集合B的个数是________.答案:2并集的运算[例1](1)(2017·全国卷Ⅱ)设集合A={1,2,3},B={2,3,4},则A∪B=() A.{1,2,3,4}B.{1,2,3}C.{2,3,4} D.{1,3,4}(2)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1}C.{x|-2<x<-1} D.{x|-1<x<2}[解析](1)由题意得A∪B={1,2,3,4}.(2)画出数轴如图所示,故A∪B={x|x>-2}.[答案](1)A(2)A求集合并集的2种基本方法[活学活用]1.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=() A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}解析:选A将集合M和N在数轴上表示出来,如图所示,可知M∪N={x|x<-5或x>-3}.2.已知集合A={0,2,4},B={0,1,2,3,5},则A∪B=________________. 解析:A∪B={0,2,4}∪{0,1,2,3,5}={0,1,2,3,4,5}.答案:{0,1,2,3,4,5}交集的运算[例2](1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于()A.{x|0≤x≤2} B.{x|1≤x≤2}C.{x|0≤x≤4} D.{x|1≤x≤4}(2)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3 D.2[解析](1)在数轴上表示出集合A与B,如下图.则由交集的定义,A∩B={x|0≤x≤2}.(2)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.故选D.[答案](1)A(2)D1.求集合交集的运算类似于并集的运算,其方法为:(1)定义法,(2)数形结合法. 2.若A ,B 是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.[活学活用]3.(2017·北京高考)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}. 4.若集合A ={x |2x +1>0},B ={x |-1<x <3},则A ∩B =________.解析:∵A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12,B ={x |-1<x <3},画数轴如图:∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <3. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <3题点一:由并集、交集求参数的值1.已知M ={1,2,a 2-3a -1},N ={-1,a,3},M ∩N ={3},求实数a 的值.由集合的并集、交集求参数解:∵M ∩N ={3},∴3∈M ; ∴a 2-3a -1=3,即a 2-3a -4=0, 解得a =-1或4.但当a =-1时,与集合中元素的互异性矛盾,舍去; 当a =4时,M ={1,2,3},N ={-1,3,4},符合题意. ∴a =4.题点二:由并集、交集的定义求参数的范围2.设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求a 的取值范围.解:如图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3.题点三:由交集、并集的性质求参数的范围3.已知集合A ={x |-3<x ≤4},集合B ={x |k +1≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.解:∵A ∪B =A ,∴B ⊆A , ①当B =∅时,k +1>2k -1,∴k <2.②当B ≠∅,则根据题意如图所示: 根据数轴可得⎩⎪⎨⎪⎧k +1≤2k -1,-3<k +1,2k -1≤4,解得2≤k ≤52.综合①②可得k 的取值范围为⎩⎨⎧⎭⎬⎫k ⎪⎪k ≤52. 4.把3题中的条件“A ∪B =A ”换为“A ∩B =A ”,求k 的取值范围.解:∵A ∩B =A ,∴A ⊆B .又A ={x |-3<x ≤4},B ={x |k +1≤x ≤2k -1},可知B ≠∅.由数轴可知⎩⎪⎨⎪⎧k +1≤-3,2k -1≥4,解得k ∈∅,即当A ∩B =A 时,k 不存在.由集合交集、并集的性质解题的方法及关注点(1)方法:当题目中含有条件A ∩B =A ,A ∪B =B ,解答时常借助于交集、并集的定义及集合间的关系去分析,将关系进行等价转化如:A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等.此类问题常借助数轴解决,首先根据集合间的关系画出数轴,然后根据数轴列出关于参数的不等式(组),求解即可,特别要注意端点值的取舍.(2)关注点:当题目条件中出现B ⊆A 时,若集合B 不确定,解答时要注意讨论B =∅的情况.层级一 学业水平达标1.(2017·浙江高考)已知集合P ={x |-1<x <1},Q ={x |0<x <2},那么P ∪Q =( ) A .(-1,2) B .(0,1) C .(-1,0)D .(1,2)解析:选A 根据集合的并集的定义,得P ∪Q =(-1,2). 2.若A ={0,1,2,3},B ={x |x =3a ,a ∈A },则A ∩B =( ) A .{1,2}B .{0,1}C.{0,3} D.{3}解析:选C因为B={x|x=3a,a∈A}={0,3,6,9},所以A∩B={0,3}.3.A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则下图中阴影部分表示的集合为()A.{2} B.{3}C.{-3,2} D.{-2,3}解析:选A注意到集合A中的元素为自然数,因此A={1,2,3,4,5,6,7,8,9,10},而B={-3,2},因此阴影部分表示的是A∩B={2},故选A.4.设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于()A.{1,2} B.{1,5}C.{2,5} D.{1,2,5}解析:选D∵A∩B={2},∴2∈A,2∈B,∴a+1=2,∴a=1,b=2,即A={1,2},B={2,5}.∴A∪B={1,2,5},故选D.5.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是() A.a<2 B.a>-2C.a>-1 D.-1<a≤2解析:选C∵A={x|-1≤x<2},B={x|x<a},要使A∩B≠∅,借助数轴可知a>-1.6.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.解析:∵A={1,2,3},B={2,4,5},∴A∪B={1,2,3,4,5},∴A∪B中元素个数为5.答案:57.若集合A={x|-1<x<5},B={x|x≤1,或x≥4},则A∪B=________,A∩B=________. 解析:借助数轴可知:A∪B=R,A∩B={x|-1<x≤1,或4≤x<5}.答案:R{x|-1<x≤1,或4≤x<5}8.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围为________.解析:因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,解得a ≤-32;②当C ≠∅时,要使C ⊆A ,则有⎩⎪⎨⎪⎧ -a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②,得a 的取值范围为(-∞,-1].答案:(-∞,-1]9.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0},(1)当m =2时,求M ∩N ,M ∪N .(2)当M ∩N =M 时,求实数m 的值.解:(1)由题意得M ={2}.当m =2时,N ={x |x 2-3x +2=0}={1,2},则M ∩N ={2},M ∪N ={1,2}.(2)∵M ∩N =M ,∴M ⊆N .∵M ={2},∴2∈N .∴2是关于x 的方程x 2-3x +m =0的解,即4-6+m =0,解得m =2.10.已知集合A ={x |-2<x <4},B ={x |x -m <0}.(1)若A ∩B =∅,求实数m 的取值范围;(2)若A ∩B =A ,求实数m 的取值范围.解:(1)∵A ={x |-2<x <4},B ={x |x <m },又A ∩B =∅,∴m ≤-2.(2)∵A ={x |-2<x <4},B ={x |x <m },由A ∩B =A ,得A ⊆B ,∴m ≥4.层级二 应试能力达标1.设集合M ={m ∈Z|-3<m <2},N ={n ∈Z|-1≤n ≤3},则M ∩N =()A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}解析:选B 由题意,得M ={-2,-1,0,1},N ={-1,0,1,2,3},∴M ∩N ={-1,0,1}.2.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)}解析:选D 集合M ,N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.3.下列四个命题:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆B ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的个数是( )A .1B .2C .3D .4 解析:选C a ∈(A ∪B )⇒a ∈A 或a ∈B ,所以①错,由交集、并集的定义,易知②③④正确.4.已知M ={x |y =x 2-1},N ={y |y =x 2-1},那么M ∩N 等于( )A .{y |y =-1或0}B .{x |x =0或1}C .{(0,-1),(1,0)}D .{y |y ≥-1}解析:选D M ={x |y =x 2-1}=R ,N ={y |y =x 2-1}={y |y ≥-1},故M ∩N ={y |y ≥-1}.5.集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为________. 解析:∵A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},∴a =4,a 2=16或a =16,a 2=4(舍去),解得a =4.答案:46.已知A ={x |a <x ≤a +8},B ={x |x <-1,或x >5},若A ∪B =R ,则a 的取值范围为________.解析:由题意A ∪B =R ,在数轴上表示出A ,B ,如图所示,则⎩⎪⎨⎪⎧a <-1,a +8≥5,解得-3≤a <-1. 答案:-3≤a <-17.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∪B =A ,求a 的值. 解:∵A ∪B =A ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B =⎩⎨⎧⎭⎬⎫-1a , ∴-1a ∈A ,即有-1a =-2,得a =12. 综上,a =0或a =12.8.已知非空集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22}.(1)当a =10时,求A ∩B ,A ∪B ;(2)求能使A ⊆(A ∩B )成立的a 的取值范围.解:(1)当a =10时,A ={x |21≤x ≤25}.又B ={x |3≤x ≤22},所以A ∩B ={x |21≤x ≤22},A ∪B ={x |3≤x ≤25}.(2)由A ⊆(A ∩B ),可知A ⊆B ,又因为A 为非空集合,所以⎩⎪⎨⎪⎧ 2a +1≥3,3a -5≤22,2a +1≤3a -5,解得6≤a ≤9.。

1.3 集合的基本运算同步练习卷【新教材】人教A版(2019)高中数学必修第一册(含答案)

1.3 集合的基本运算同步练习卷【新教材】人教A版(2019)高中数学必修第一册(含答案)

1.3 集合的基本运算同步练习卷【人教A版2019】考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本节内容的具体情况!一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•泸州期末)设全集U={1,2,3,4,5,6},A={2,3,4},B={1,2},则图中阴影部分表示的集合为()A.{1,2,5,6}B.{1}C.{2}D.{3,4}2.(3分)(2020秋•宁波期末)集合U={1,2,3,4,5},S={1,4,5},T={2,3,4},则S∩(∁U T)=()A.{1,5}B.{1}C.{1,4,5}D.{1,2,3,4,5}3.(3分)(2021春•龙凤区校级期中)设A={x|x2﹣8x+15=0},B={x|ax﹣1=0},若A∩B=B,求实数a组成的集合的子集个数有()A.2B.3C.4D.84.(3分)(2021春•瑶海区月考)已知集合A={x|x2﹣2x﹣3<0},B={x|0<x<m},若A∪B={x|﹣1<x <5},则m=()A.﹣1B.3C.5D.105.(3分)(2021春•五华区校级月考)已知集合A={2,4,a2},B={2,a+6},若A∩B=B,则a=()A.﹣3B.﹣2C.3D.﹣2或36.(3分)(2020秋•鼓楼区校级月考)设集合A={3,m,m﹣1},集合B={3,4},若∁A B={5},则实数m的值为()A.4B.5C.6D.5或67.(3分)(2021春•鼓楼区校级期中)设集合A={2,3,5},B={x∈Z|x2﹣6x+m<0},A∩B={3},则A ∪B=()A.{2,3,4}B.{1,2,3,4,5}C.{2,3,5}D.{2,3,4,5}8.(3分)(2021•香坊区校级三模)如图,U是全集,M、P、S是U的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁U S D.(M∩P)∪∁U S二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•辽宁期中)已知全集U=R,集合A={x|1≤x≤3或4<x<6},集合B={x|2≤x<5},下列集合运算正确的是()A.∁U A={x|x<1或3<x<4或x>6}B.∁U B={x<2或x≥5}C.A∩(∁U B)={x|1≤x<2或5≤x<6}D.(∁U A)∪B={x|x<1或2<x<5或x>6}10.(4分)(2020秋•长沙月考)已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则下列判断正确的是()A.M∪N={0,1,2,3,4}B.(∁U M)∩N={0,1}C.∁U N={1,2,3}D.M∩N={0,4}11.(4分)(2020秋•邵阳县期中)已知全集为U,集合A和集合B的韦恩图如图所示,则图中阴影部分可表示为()A.(∁U A)∩B B.∁U(A∩B)C.[∁U(A∩B)]∩B D.(∁U A)∪(∁U B)12.(4分)(2021春•恩施市校级月考)已知非空集合A、B满足:全集U=A∪B=(﹣1,5],A∩∁U B=[4,5],下列说法不一定正确的有()A.A∩B=∅B.A∩B≠∅C.B=(﹣1,4)D.B∩∁U A=(﹣1,4)三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•泸县校级月考)已知集合A={1,2,3},B={y|y=2x﹣1},则A∩B=.14.(4分)(2020春•徐汇区校级期中)已知M={(x,y)|y≠x+1},N={(x,y)|y≠﹣x},U={(x,y)|x∈R,y∈R},则∁U(M∪N)=.15.(4分)(2021春•金山区校级期中)已知集合A={x|﹣6≤x≤8},B={x|x≤m},若A∪B≠B且A∩B ≠∅,则m的取值范围是.16.(4分)(2020秋•开福区校级月考)高二某班共有60人,每名学生要从物理、化学、生物、历史、地理、政治这六门课程中选择3门进行学习.已知选择物理、化学、生物的学生各有至少25人,这三门学科均不选的有15人.这三门课程均选的有10人,三门中任选两门课程的均至少有16人.三门中只选物理与只选化学均至少有6人,那么该班选择物理与化学但未选生物的学生至多有人.四.解答题(共6小题,满分44分)17.(6分)(2020秋•莲湖区期中)已知全集U=R,A={x|﹣1≤x≤4},B={x|﹣2≤x≤2},P={x|x≤0或x≥7 2}.(1)求A∪B,A∩B;(2)求(∁U B)∩P,(∁U B)∪P.18.(6分)(2020秋•绍兴期末)已知集合A={x|x<2},B={x|x2﹣4x+3<0}.(1)求集合B;(2)求(∁R A)∩B.19.(8分)(2021春•莲池区校级期中)设集合A={x|3≤x<7},B={x|2<x<10},C={x|5﹣a<x<a}.(1)求A∪B与(∁R A)∩B;(2)若(A∪B)⊆C,求实数a的取值范围.20.(8分)(2021春•朝阳区校级月考)已知集合A={x|﹣2<x+1<3},集合B为整数集,令C=A∩B.(1)求集合C;(2)若集合D={1,a},C∪D={﹣2,﹣1,0,1,2},求实数a的值.21.(8分)(2020秋•番禺区校级期中)已知全集U=R,集合A={x|x>2},B={x|﹣4<x<4}.(Ⅰ)求∁U(A∪B);(Ⅱ)定义A﹣B={x|x∈A,且x∉B},求A﹣B,A﹣(A﹣B).22.(8分)(2020秋•佛山期末)在①A∩B=∅,②A∩(∁R B)=A,③A∩B=A这三个条件中任选一个,补充到下面的问题中,并求解下列问题:已知集合A={x|a﹣1<x<2a+3},B={x|﹣7≤x≤4},若____,求实数a的取值范围.1.3 集合的基本运算同步练习卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•泸州期末)设全集U={1,2,3,4,5,6},A={2,3,4},B={1,2},则图中阴影部分表示的集合为()A.{1,2,5,6}B.{1}C.{2}D.{3,4}【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A ∩(∁U B).∵U={1,2,3,4,5,6},B={1,2},A={2,3,4},∴∁U B={3,4,5,6},则A∩(∁U B)={3,4}故选:D.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.2.(3分)(2020秋•宁波期末)集合U={1,2,3,4,5},S={1,4,5},T={2,3,4},则S∩(∁U T)=()A.{1,5}B.{1}C.{1,4,5}D.{1,2,3,4,5}【分析】根据补集与交集的定义,计算即可.【解答】解:集合U={1,2,3,4,5},S={1,4,5},T={2,3,4},所以∁U T={1,5},所以S∩(∁U T)={1,5}.故选:A.【点评】本题考查了集合的定义与运算问题,是基础题.3.(3分)(2021春•龙凤区校级期中)设A={x|x2﹣8x+15=0},B={x|ax﹣1=0},若A∩B=B,求实数a组成的集合的子集个数有()A.2B.3C.4D.8【分析】可以求出A={3,5},根据A∩B=B即可得出B⊆A,从而可讨论B是否为空集:B=∅时,a=0;B≠∅时,1a=3或5,解出a,从而得出实数a组成集合的元素个数,进而可求出实数a组成集合的子集个数.【解答】解:A={3,5},B={x|ax=1}∵A∩B=B∴B⊆A,∴①B=∅时,a=0;②B≠∅时,1a =3或1a=5,∴a=13,或15,∴实数a组成的集合的元素有3个,∴实数a组成的集合的子集个数有23=8个.故选:D.【点评】考查描述法、列举法的定义,交集的定义及运算,以及子集、空集的定义,子集个数的计算公式.4.(3分)(2021春•瑶海区月考)已知集合A={x|x2﹣2x﹣3<0},B={x|0<x<m},若A∪B={x|﹣1<x <5},则m=()A.﹣1B.3C.5D.10【分析】求出集合A={x|﹣1<x<3},由B={x|0<x<m},根据A∪B={x|﹣1<x<5},能求出m.【解答】解:∵集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x|0<x<m},A∪B={x|﹣1<x<5},∴m=5.故选:C.【点评】本题考查实数值的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.5.(3分)(2021春•五华区校级月考)已知集合A={2,4,a2},B={2,a+6},若A∩B=B,则a=()A.﹣3B.﹣2C.3D.﹣2或3【分析】根据A∩B=B可得出B⊆A,然后即可得出a+6=4或a+6=a2,然后解出a的值,并验证是否满足集合元素的互异性,得出a的值即可.【解答】解:∵A∩B=B,∴B⊆A,若a+6=4,则a=﹣2,a2=4,集合A中的元素不满足互异性,舍去;若a+6=a2,则a=3或﹣2,因为a≠﹣2,所以a=3.故选:C.【点评】本题考查了列举法的定义,交集及其运算,子集的定义,集合元素的互异性,考查了计算能力,属于基础题.6.(3分)(2020秋•鼓楼区校级月考)设集合A={3,m,m﹣1},集合B={3,4},若∁A B={5},则实数m的值为()A.4B.5C.6D.5或6【分析】推导出A=B∪(∁A B)={3,4,5},由此能求出实数m的值.【解答】解:∵集合A={3,m,m﹣1},集合B={3,4},∁A B={5},∴A=B∪(∁A B)={3,4,5},∴实数m=5.故选:B.【点评】本题考查实数值的求法,考查补集、并集的定义等基础知识,考查运算求解能力,是基础题.7.(3分)(2021春•鼓楼区校级期中)设集合A={2,3,5},B={x∈Z|x2﹣6x+m<0},A∩B={3},则A ∪B=()A.{2,3,4}B.{1,2,3,4,5}C.{2,3,5}D.{2,3,4,5}【分析】由A∩B={3},B={x∈Z|x2﹣6x+m<0},结合y=x2﹣6x+m的图象关于x=3对称知,B={x∈Z|x2﹣6x+m<0}={3},从而求得.【解答】解:∵A∩B={3},B={x∈Z|x2﹣6x+m<0},∴3是x2﹣6x+m<0的解,2,5不是x2﹣6x+m<0的解,故△>0,又∵y=x2﹣6x+m的图象关于x=3对称,∴B={x∈Z|x2﹣6x+m<0}={3},故A∪B={2,3,5},故选:C.【点评】本题考查了集合的运算,难点在于确定集合B,注意到x=3是y=x2﹣6x+m的图象的对称轴是关键,属于中档题.8.(3分)(2021•香坊区校级三模)如图,U是全集,M、P、S是U的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁U S D.(M∩P)∪∁U S【分析】利用阴影部分所属的集合写出阴影部分所表示的集合.【解答】解:由图知,阴影部分在集合M中,在集合P中,但不在集合S中故阴影部分所表示的集合是(M∩P)∩∁U S故选:C.【点评】本题考查集合的交集、并集、补集的定义、并利用定义表示出阴影部分的集合.二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•辽宁期中)已知全集U=R,集合A={x|1≤x≤3或4<x<6},集合B={x|2≤x<5},下列集合运算正确的是()A.∁U A={x|x<1或3<x<4或x>6}B.∁U B={x<2或x≥5}C.A∩(∁U B)={x|1≤x<2或5≤x<6}D.(∁U A)∪B={x|x<1或2<x<5或x>6}【分析】利用补集、交集、并集等定义直接求解.【解答】解:∵全集U=R,集合A={x|1≤x≤3或4<x<6},集合B={x|2≤x<5},∴∁U A={x|x<1或3<x≤4或x≥6},故A错误;∁U B={x|x<2或x≥5},故B正确;A∩(∁U B)={x|1≤x<2或5≤x<6},故C正确;(∁U A)∪B={x|x<1或2<x<5或x≥6},故D错误.故选:BC.【点评】本题考查补集、交集、并集的求法,考查补集、交集、并集的定义等基础知识,考查运算求解能力,是基础题.10.(4分)(2020秋•长沙月考)已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则下列判断正确的是()A.M∪N={0,1,2,3,4}B.(∁U M)∩N={0,1}C.∁U N={1,2,3}D.M∩N={0,4}【分析】根据集合的基本运算进行求解即可.【解答】解:M∪N={0,1,2,3,4},故A正确,∁U M={0,1},则(∁U M)∩N={0,1},故B正确,∁U N={2,3},故C错误,M∩N={4},故D错误,故选:AB.【点评】本题主要考查集合的基本运算,结合补集,交集,并集的定义是解决本题的关键,是基础题.11.(4分)(2020秋•邵阳县期中)已知全集为U,集合A和集合B的韦恩图如图所示,则图中阴影部分可表示为()A.(∁U A)∩B B.∁U(A∩B)C.[∁U(A∩B)]∩B D.(∁U A)∪(∁U B)【分析】利用韦恩图能求出图中阴影部分的集合.【解答】解:由韦恩图得图中阴影部分可表示为:(∁U A)∩B或[∁U(A∩B)]∩B,故A和C正确,B和D错误.故选:AC.【点评】本题考查阴影部分的集合的求法,考查韦恩图的性质等基础知识,考查运算求解能力,是基础题.12.(4分)(2021春•恩施市校级月考)已知非空集合A、B满足:全集U=A∪B=(﹣1,5],A∩∁U B =[4,5],下列说法不一定正确的有()A.A∩B=∅B.A∩B≠∅C.B=(﹣1,4)D.B∩∁U A=(﹣1,4)【分析】根据已知求出B,进而得到集合A一定包含[4,5],再由A的特殊值即可解决.【解答】解:∵A ∩∁u B =[4,5],U =A ∪B =(﹣1,5],∴B =U ﹣A ∩∁u B =(﹣1,4),∴C 正确.则集合A 一定包含[4,5],当A =[4,5]时,A ∩B =∅,∴B 错误.当A =(3,5]时,A ∩B =(3,4),∴A 错误.此时∁u A =(﹣1,3],B ∩∁u A =(﹣1,3],∴D 错误.故选:ABD .【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•泸县校级月考)已知集合A ={1,2,3},B ={y |y =2x ﹣1},则A ∩B = {1,2,3} .【分析】可求出集合B ,然后进行交集的运算即可.【解答】解:∵A ={1,2,3},B =R ,∴A ∩B ={1,2,3}.故答案为:{1,2,3}.【点评】本题考查了列举法和描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.14.(4分)(2020春•徐汇区校级期中)已知M ={(x ,y )|y ≠x +1},N ={(x ,y )|y ≠﹣x },U ={(x ,y )|x ∈R ,y ∈R },则∁U (M ∪N )= {(−12,12)} .【分析】进行并集和补集的运算即可.【解答】解:M ∪N ={(x ,y )|y ≠x +1或y ≠﹣x },∴∁U (M ∪N)={(x ,y)|{y =x +1y =−x}={(−12,12)}. 故答案为:{(−12,12)}.【点评】本题考查了集合的描述法和列举法的定义,并集和补集的运算,考查了计算能力,属于基础题.15.(4分)(2021春•金山区校级期中)已知集合A ={x |﹣6≤x ≤8},B ={x |x ≤m },若A ∪B ≠B 且A ∩B ≠∅,则m 的取值范围是 [﹣6,8) .【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可.【解答】解:A ={x |﹣6≤x ≤8},B ={x |x ≤m },若A ∪B ≠B 且A ∩B ≠∅,则{m ≥−6m <8,故答案为:[﹣6,8).【点评】本题考查了集合的交集、并集的定义,是一道基础题.16.(4分)(2020秋•开福区校级月考)高二某班共有60人,每名学生要从物理、化学、生物、历史、地理、政治这六门课程中选择3门进行学习.已知选择物理、化学、生物的学生各有至少25人,这三门学科均不选的有15人.这三门课程均选的有10人,三门中任选两门课程的均至少有16人.三门中只选物理与只选化学均至少有6人,那么该班选择物理与化学但未选生物的学生至多有8人.【分析】利用venn图进行分析即可.【解答】解:总人数为60人,其中15人全不选,因此至少选择1门的有45人,由题可得如下venn图.由题可知,选生物的人数至少有20人,所以④+⑤+⑥+⑦≥20,所以①+②+③≤20;因为①≥6,③≥6,所以①+③≥12,所以②≤8.故答案为:8【点评】本题考查逻辑推理能力.借助Venn图解决问题,属于中档题.四.解答题(共6小题,满分44分)17.(6分)(2020秋•莲湖区期中)已知全集U=R,A={x|﹣1≤x≤4},B={x|﹣2≤x≤2},P={x|x≤0或x≥7 2}.(1)求A∪B,A∩B;(2)求(∁U B)∩P,(∁U B)∪P.【分析】(1)进行交集和并集的运算即可;(2)进行交集、并集和补集的运算即可.【解答】解:(1)∵A={x|﹣1≤x≤4},B={x|﹣2≤x≤2},∴A∪B={x|﹣2≤x≤4},A∩B={x|﹣1≤x≤2};(2)∁U B={x|x<﹣2或x>2},∴(∁U B)∩P={x|x<−2或x≥72},(∁U B)∪P={x|x≤0或x>2}.【点评】本题考查了描述法的定义,交集、并集和补集的定义及运算,全集的定义,考查了计算能力,属于基础题.18.(6分)(2020秋•绍兴期末)已知集合A={x|x<2},B={x|x2﹣4x+3<0}.(1)求集合B;(2)求(∁R A)∩B.【分析】(I)利用一元二次不等式的解法能求出集合B.(Ⅱ)由集合A={x|x<2},求出∁U A={x|x≥2},由此能求出(∁U A)∩B.【解答】解:(I)B={x|x2﹣4x+3<0}={x|(x﹣1)(x﹣3)<0}={x|1<x<3}.(Ⅱ)∵集合A={x|x<2},∴∁U A={x|x≥2},∴(∁U A)∩B={x|2≤x<3}.【点评】本题考查集合、补集、交集的求法,考查补集、交集定义等基础知识,考查运算求解能力,是基础题.19.(8分)(2021春•莲池区校级期中)设集合A={x|3≤x<7},B={x|2<x<10},C={x|5﹣a<x<a}.(1)求A∪B与(∁R A)∩B;(2)若(A∪B)⊆C,求实数a的取值范围.【分析】(1)利用并集定义能求出A ∪B ;求出∁R A ,利用交集定义能求出(∁R A )∩B .(2)由(A ∪B )⊆C ,列出不等式组,能求出实数a 的取值范围.【解答】解:(1)∵集合A ={x |3≤x <7},B ={x |2<x <10},∴A ∪B ={x |2<x <10}.∁R A ={x |x <3或x ≥7},∴(∁R A )∩B ={x |2<x <3或7≤x <10}.(2)∵集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |5﹣a <x <a }.∴A ∪B ={x |2<x <10}.∵(A ∪B )⊆C ,∴{10≤a5−a ≤25−a <a,解得a ≥10.∴实数a 的取值范围是[10,+∞).【点评】本题考查交集、并集、补集的求法,考查交集、并集、补集定义、不等式的性质等基础知识,考查运算求解能力等数学核心素养,是基础题.20.(8分)(2021春•朝阳区校级月考)已知集合A ={x |﹣2<x +1<3},集合B 为整数集,令C =A ∩B .(1)求集合C ;(2)若集合D ={1,a },C ∪D ={﹣2,﹣1,0,1,2},求实数a 的值.【分析】(1)可求出集合A ,然后进行交集的运算即可求出C ={﹣2,﹣1,0,1};(2)根据并集的定义及运算即可求出a 的值.【解答】解:(1)∵A ={x |﹣3<x <2},B =Z ,∴C =A ∩B ={﹣2,﹣1,0,1};(2)∵C ={﹣2,﹣1,0,1},D ={1,a },C ∪D ={﹣2,﹣1,0,1,2},∴a =2.【点评】本题考查了描述法和列举法的定义,交集和并集的定义及运算,考查了计算能力,属于基础题.21.(8分)(2020秋•番禺区校级期中)已知全集U =R ,集合A ={x |x >2},B ={x |﹣4<x <4}. (Ⅰ)求∁U (A ∪B );(Ⅱ)定义A ﹣B ={x |x ∈A ,且x ∉B },求A ﹣B ,A ﹣(A ﹣B ).【分析】(Ⅰ)先求出A ∪B ={x |x >﹣4},由此能求出∁U (A ∪B ).(Ⅱ)由定义A ﹣B ={x |x ∈A ,且x ∉B },集合A ={x |x >2},B ={x |﹣4<x <4}.能求出A ﹣B ,A ﹣(A﹣B ).【解答】解:(Ⅰ)∵全集U =R ,集合A ={x |x >2},B ={x |﹣4<x <4}.∴A ∪B ={x |x >﹣4},∴∁U (A ∪B )={x |x ≤﹣4}.(Ⅱ)∵定义A ﹣B ={x |x ∈A ,且x ∉B },集合A ={x |x >2},B ={x |﹣4<x <4}.∴A ﹣B ={x |x ≥4},A ﹣(A ﹣B )={x |2<x <4}.【点评】本题考查交、并、补集的混合运算,考查交集、并集、补集、差集的定义等基础知识,考查运算求解能力,是基础题.22.(8分)(2020秋•佛山期末)在①A ∩B =∅,②A ∩(∁R B )=A ,③A ∩B =A 这三个条件中任选一个,补充到下面的问题中,并求解下列问题:已知集合A ={x |a ﹣1<x <2a +3},B ={x |﹣7≤x ≤4},若 ____,求实数a 的取值范围.【分析】分别利用集合的交集、补集、并集的定义对a 进行分类讨论,分别求解即可.【解答】解:若选择①A ∩B =∅,则当A =∅时,即a ﹣1≥2a +3,即a ≤﹣4时,满足题意,当a >﹣4时,应满足{a >−42a +3≤−7或{a >−4a −1≥4,解得a ≥5, 综上可知,实数a 的取值范围是(﹣∞,﹣4]∪[5,+∞).若选择②A ∩(∁R B )=A ,则A 是∁R B 的子集,∁R B =(﹣∞,﹣7)∪(4,+∞),当a ﹣1≥2a +3,即a ≤﹣4时,A =∅,满足题意;当a >﹣4时,{a >−42a +3≤−7或{a >−4a −1>4,解得a ≥5, 综上可得,实数a 的取值范围是(﹣∞,﹣4]∪[5,+∞).若选择③A ∩B =A ,则A ⊆B ,当a ﹣1≥2a +3,即a ≤﹣4时,A =∅,满足题意;当a >﹣4时,{a −1≥−72a +3≤4,解得−6≤a ≤12; 综上可知,实数a 的取值范围是(−∞,12].【点评】本题考查了交集、并集、补集的综合运算,涉及了分类讨论思想的应用,解题的关键是掌握集合交集、并集、补集的定义,是基础题.。

人教A版(2019)高一上册数学:1.3 集合基本运算同步训练 word版,含答案

人教A版(2019)高一上册数学:1.3 集合基本运算同步训练  word版,含答案

人教A 版(2019)高一上册数学:1.3 集合基本运算同步训练一、选择题1.设全集{1,A =2,3,4},{|21,}B y y x x A ==-∈,则A B ⋃等于( ) A .{}1,3 B .{}2,4C .{2,4,5,7}D .{1,2,3,4,5,7}2.设集合{}{}0,2,A B m ==,且{}1,0,2A B ⋃=-,则实数m 等于 A .1-B .1C .0D .23.已知集合{|26}A x x =∈-<<R ,{|2}B x x =∈<R ,则()C R A B ⋃=( ) A .{|6}x x <B .{|22}x x -<<C .{|2}x x >-D .{|26}x x ≤≤4.若全集{}1,2,3,4U =,集合{}2430M x x x =-+=,{}2560N x x x =-+=,则()UM N =.A .{}4B .{}1,2C .{}1,2,4D .{}1,3,45.已知全集U Z =,{31,}A x x n n Z ==-∈,{3,}B x x x Z =>∈,则()U A C B ⋂中元素的个数为 A .4B .3C .2D .16.已知集合{}0,1,2,3A =,{}=02,B x x x R ≤≤∈,则A B 的子集个数为( )A .2B .4C .7D .87.若集合A ={0,1,2,3},B ={1,2,4},则集合A B =A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}8.设M 、P 是两个非空集合,定义M 与P 的差集为{M P x x M -=∈且}x P ∉,则()M M P --等于( ) A .P B .MC .MPD .M P ⋃9.设{|210},{|350}Sx x T x x ,则S TA .∅B .1|2x xC .3|5x x D .15|23x x10.设全集U ={x |x 是小于5的非负整数},A ={2,4},则∁U A = A .{1,3}B .{1,3,5}C .{0,1,3}D .{0,1,3,5}11.已知集合{}1A x x =≤,{}12B x x =-<<则()R A B =A .{}12x x <<B .{}1x x >C .{}12x x ≤<D .{}1x x ≥12.已知集合{}A x x a =<,{}2B x x =<,且()RA B =R ,则a 满足A .2a ≥B .2a >C .2a <D .2a ≤13.已知M,N 都是U 的子集,则图中的阴影部分表示( )A .M∁NB .∁U (M∁N)C .(∁U M)∩ND .∁U (M∩N)14.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()UM P S ⋂⋂D .()()UM P S ⋂⋃二、填空题15.设全集{}1,3,5,7,9U =,{}1,5,9A a =-,{}5,7UA =,则a =_____.16.已知集合{}0A x x a =->,{}20B x x =-<,且A B B ⋃=,则实数a 满足的条件是______. 17.设集合{}0,1,2,3U =,集合{}2|0A x U x mx =∈+=,若{}1,2U C A =,则实数m =_____.18.设集合{}24A x x =≤<,{}12B x x m =≤-,若AB =∅,则实数m 的取值范围为______.19.已知全集为R ,集合()(){}620A x x x =-->,{}44B x a x a =-≤≤+,且A B ⊆R,则实数a的取值范围是______.20.已知{}{}|12M x x N x x a =≤-=-,,若M N ≠∅,则a 的范围是________.三、解答题21.设{4,5,6,8}A =,{3,5,7,8}B =,求A B .22.设{}3,5,6,8A =,{4,5,7,8}B =,求A B ,A B .23.已知集合22{|190}A x x ax a =-+-=,2{|560}B x x x =-+=,2{|280}C x x x =+-=. (1)若A B ⋂≠∅与A C ⋂=∅同时成立,求实数a 的值; (2)若()A B C ⊆⋂,求实数a 的取值范围.24.已知{1,2,3,4,5,6,7}U =,{2,4,5}A =,{1,3,5,7}B =,求()U A B ,()()U U A B .25.图中U 是全集,A ,B 是U 的两个子集,用阴影表示:(1)()()UU A B ; (2)()()U U A B ⋃.26.若A ={3,5},B ={x |x 2+mx +n =0},A ∁B =A ,A ∩B ={5},求m ,n 的值.27.设全集I R =,已知集合(){}{}22|30,|60M x x N x x x =+≤=+-=(1)求()I C M N ⋂;(2)记集合(),I A C M N =⋂已知集合{}|15,,B x a x a a R =-≤≤-∈若A B A ⋃=,求实数a 的取值范围.参考答案1.D 【解析】 【分析】先求出集合A ,B ,再利用并集定义能求出结果. 【详解】全集{1,A =2,3,4},{|21,}{1,B y y x x A ==-∈=3,5,7}, {1,A B ∴⋃=2,3,4,5,7}.故选D . 【点睛】本题考查并集的求法,是基础题. 2.A 【分析】根据,A B ,以及A 与B 的并集,确定出m 的值即可. 【详解】{}{}0,2,A B m ==,且{}1,0,2A B ⋃=-,所以1B -∈,1m ∴=-,故选A.【点睛】本题主要考查并集的定义,意在考查对基础知识的掌握情况,属于简单题. 3.C 【分析】先由补集的概念,求出C R B ,再和集合A 求交集,即可得出结果. 【详解】由{|2}B x x =∈<R ,得C {|2}R B x x =∈≥R .又{|26}A x x =∈-<<R ,所以()C {|2}R A B x x ⋃=>-.故选:C. 【点睛】本题主要考查集合的交集与补集的运算,熟记概念即可,属于基础题型. 4.C 【分析】先根据一元二次方程的解表示出集合,M N ,然后再求解出M N ⋂的结果,最后求解出()UM N 的结果. 【详解】2430x x -+=的解为1x =或3,{}1,3M ∴=,2560x x -+=的解为2x =或3,{}2,3N ∴=,∁{}3M N ⋂=,∁(){}1,2,4UM N =,故选C . 【点睛】本题考查集合的交集、补集混合运算,难度较易.()UM N 的计算除了按本题的方法外,还可以由()()()UUUMN M N =来计算.5.C 【分析】先求出U C B ,然后求出()U A C B ⋂,即可得到答案. 【详解】{3,}U C B x x x Z =≤∈,{31,}A x n n Z ==-∈,则(){}12U A C B ⋂=-,.故答案为C. 【点睛】本题考查了集合的运算,主要涉及交集与补集,属于基础题. 6.D 【分析】先求出A B ⋂集合元素的个数,再根据求子集的公式求得子集个数. 【详解】因为集合{}0,1,2,3A =,{}=02,B x x x R ≤≤∈ 所以{}0,1,2A B ⋂= 所以子集个数为328= 个 所以选D 【点睛】本题考查了集合交集的运算,集合子集个数的求解,属于基础题. 7.A 【详解】因为集合A ={0,1,2,3},B ={1,2,4}, 所以由并集的定义可得,故选A.8.C 【分析】根据题意,分M P ⋂=∅和M P ⋂≠∅两种情况,结合集合的基本运算,借助venn 图,即可得出结果. 【详解】当M P ⋂=∅,由于对任意x M ∈都有x P ∉,所以M P M -=, 因此()M M P M M M P --=-=∅=⋂; 当M P ⋂≠∅时,作出Venn 图如图所示,则M P -表示由在M 中但不在P 中的元素构成的集合,因而()M M P --表示由在M 中但不在M P -中的元素构成的集合,由于M P -中的元素都不在P 中,所以()M M P --中的元素都在P 中,所以()M M P --中的元素都在M P ⋂中,反过来M P ⋂中的元素也符合()M M P --的定义,因此()M M P M P --=⋂.故选:C. 【点睛】本题主要考查集合的应用,熟记集合的基本运算即可,属于常考题型. 9.D 【分析】先分别求解出集合,S T 中表示元素的范围,然后利用数轴表示出交集,从而求解出S T 的结果.【详解】 ∁1{|210}|2Sx x x x,5{|350}|3T x x x x,如图所示,∁15|23S T x x, 故选D. 【点睛】本题考查集合的交集运算,难度较易.集合的交集运算结果可通过数轴来直观表示,具体做法为:将相应集合对应的解集表示在数轴上,然后求解公共部分范围即为交集运算结果. 10.C 【分析】全集U ={x |x 是小于5的非负整数}={0,1,2,3,4},由集合的补集的概念得到结果. 【详解】全集U ={x |x 是小于5的非负整数}={0,1,2,3,4},A ={2,4},∁∁U A ={0,1,3}. 故选C . 【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算. 11.A 【分析】 根据()RA B ⋂可知,应先求解A R ,再求解B ,最终根据交集运算进行求解即可【详解】因为集合{}1A x x =≤,所以{}1RA x x =>,则(){}12R AB x x ⋂=<<.答案选A 【点睛】本题考查集合的混合运算,在运算法则中应遵循有括号先算括号的基本原则,易错点为将A R错解为{}1RA x x =≥12.A 【分析】 可先求出B R,再根据()RAB =R 进行求解即可【详解】{}2RB x x =,则由()RA B =R ,得2a ≥,故选A.【点睛】本题考查并集与补集的混合运算,易错点为求解时忽略端点处2a =能取得到的情况,为了提升准确率,建议对范围理解陌生的考生最好辅以数轴图进行求解 13.B 【分析】观察图形可知,图中非阴影部分所表示的集合是A B ,从而得出图中阴影部分所表示的集合.【详解】由题意,图中非阴影部分所表示的集合是A B ,所以图中阴影部分所表示的集合为A B 的 补集,即图中阴影部分所表示的集合为()U C A B ,故选B.【点睛】本题主要考查集合的venn 图的表示及应用,其中venn 图既可以表示一个独立的集合,也可以表示集合与集合之间的关系,熟记venn 图的含义是解答的关键. 14.C 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题. 15.2或8 【分析】根据题意得出53a -=,解出该方程即可得出实数a 的值. 【详解】全集{}1,3,5,7,9U =,{}1,5,9A a =-,{}5,7UA =,53a ∴-=,解得2a =或8.故答案为2或8. 【点睛】本题考查利用补集的结果求参数,根据题意得出方程是解题的关键,考查运算求解能力,属于基础题. 16.2a ≥ 【分析】根据A B B ⋃=可得A B ⊆,分别化简集合A 与B ,进行求解即可 【详解】{}{}0A x x a x x a =->=>,{}{}202B x x x x =-<=>.A B B =,A B ⊆,则2a ≥. 【点睛】本题考查根据集合的并集结果求参数问题,易错点为忽略端点处元素2的存在,需注意若A B ⊆,其中也包括A B =的情况下 17.-3 【详解】因为集合{}0,1,2,3U =, {}1,2U C A =,A={0,3},故m= -3.18.1,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】根据A B =∅可判断212m >-,求出m 即可【详解】因为A B =∅,所以212m >-, 所以1,2m ⎛⎫∈-+∞ ⎪⎝⎭. 【点睛】本题考查根据空集的概念求解参数问题,属于基础题19.{|10a a ≥或}2a ≤-【分析】先求解出R B ,根据A B ⊆R 得到集合,A B 的端点值之间的不等式关系,从而求解出a 的取值范围. 【详解】 由题可知{}26A x x =<<,{4R B x x a =<-或}4x a >+, 因为A B ⊆R ,所以64a ≤-或24a ≥+,即10a ≥或2a ≤-.故答案为{|10a a ≥或}2a ≤-.【点睛】本题考查根据集合的包含关系确定参数范围以及补集运算,难度一般.除了直接分析出不等式组,通过数轴根据解集的位置关系列出不等式组求解亦可.20.1a <【分析】表示出N 中不等式的解集,根据M 与N 交集不为空集,即可确定出a 的范围.【详解】集合{}{}|12M x x N x x a =≤-=-,,MN ≠∅,则21a -<-,解得:1a <故填1a <.【点睛】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.21.{3,4,5,6,7,8}【解析】【分析】根据并集定义直接求解即可.【详解】由并集定义可知:{}3,4,5,6,7,8AB = 【点睛】本题考查集合运算中的并集运算,属于基础题.22.{}5,8A B =,{}3,4,5,6,7,8A B =【分析】根据交集和并集定义直接求解即可.【详解】由交集定义知:{}5,8AB =;由并集定义知:{}3,4,5,6,7,8A B = 【点睛】本题考查集合运算中的交集和并集运算,属于基础题.23.(1)2a =-(2)a >a < 【分析】(1)先化简集合B 与集合C ,再根据A B ⋂≠∅,A C ⋂=∅,得到3是方程22190x ax a -+-=的解,求出2a =-或5a =,再检验,即可得出结果;(2)先由(1)得到{}2B C ⋂=,根据()A B C ⊆⋂,得到A =∅或{}2A =,分别讨论这两种情况 ,即可得出结果.【详解】(1)由题意可得{}2{|560}2,3B x x x =-+==,{}2{|280}2,4C x x x =+-==-, ∁A B ⋂≠∅,A C ⋂=∅,集合A 中的元素有3,即3是方程22190x ax a -+-=的解;把3x =代入方程得23100a a --=,解得2a =-或5a =.当2a =-时,{}5,3A =-,满足题意;当5a =时,{}2,3A =,此时A C ⋂≠∅,故5a =不满足题意,舍去.综上知2a =-.(2)由(1)可知{}2B C ⋂=,若()A B C ⊆⋂,则A =∅或{}2A =.当A =∅时,()224190a a ∆=--<,解得a >或a <. 当{}2A =时,方程22190x ax a -+-=有两个相等的实数根2,由根与系数的关系得222,1922,a a =+⎧⎨-=⨯⎩解得a ∈∅.综上可得,实数a 的取值范围是3a >或3a <-. 【点睛】本题主要考查由集合交集的结果求参数,以及由集合间的包含关系求参数,熟记集合交集的概念,以及集合间的基本关系即可,属于常考题型.24.(){}2,4U A B =,()(){}6U U A B =.【分析】 根据补集定义首先求得U A 和U B ,由交集定义可求得结果. 【详解】{}1,3,6,7U A =,{}2,4,6U B =(){}2,4U A B ∴=,()(){}6U U A B =【点睛】本题考查集合运算中的补集和交集运算,属于基础题.25.(1)图象见解析;(2)图象见解析.【分析】根据补集、交集和并集的定义,利用Venn 图表示出来即可.【详解】如下图阴影部分所示.【点睛】本题考查Venn 图表示集合,涉及到集合的交集、并集和补集运算,属于基础题.26.10,{25.m n =-=【分析】由题意,A∁B =A ,A∩B ={5},求得B ={5},进而得到方程x 2+mx +n =0只有一个根为5,列出方程组,即可求解.【详解】解:∁A ∁B =A ,A ∩B ={5},A ={3,5},∁B ={5}.∁方程x 2+mx +n =0只有一个根为5,∁2255040m n m n ++=⎧⎨∆=-=⎩∁解得10,25.m n =-⎧⎨=⎩【点睛】本题主要考查了集合的交集、并集的应用,其中解答中熟记集合的交集、并集的基本运算,转化为方程的根求解是解答的关键,着重考查了转化思想的应用,以及推理与运算能力.27.(1){}2;(2){}|3a a ≥.【分析】(1)通过解不等式和方程求得集合M,N ,再进行集合的补集、交集运算;(2)由(1)知集合{}2A =,根据集合关系B A A ⋃=,得B φ=或{}2B =,利用分类讨论求出a 的范围.【详解】(1)∁(){}{}2|303,M x x =+≤=- {}2{|60)3,2,N x x x =+-==- {|I C M x x R ∴=∈且3},x ≠-(){}12C M N ∴⋂=(2)由题意得(){}2I A C M N =⋂=.∁,A B A ⋃=B A ∴⊆,∁B =∅或{}2,B =∁当B =∅时, 15a a ->-,得3a >;∁当{}2B =时,解得3a =.综上所述,所求a 的取值范围为{}|3a a ≥.【点睛】该题考查的是与集合相关的参数的取值范围的问题,在解题的过程中,涉及到的知识点有集合的交集,集合的补集,以及集合之间的包含关系,正确得出其满足的式子是解题的关键.。

人教A版必修一第一章1.1.3 第2课时集合间的基本运算同步练习

人教A版必修一第一章1.1.3 第2课时集合间的基本运算同步练习

第一章 1.1 1.1.3第2课时A级基础巩固一、选择题1.(2019·山东烟台高一期中测试)设全集U={x|x是小于5的非负整数},A={2,4},则∁U A=(C)A.{1,3}B.{1,3,5}C.{0,1,3} D.{0,1,3,5}[解析]∵U={0,1,2,3,4},A={2,4},∴∁A={0,1,3}.U2.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为(C)A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}[解析]因为U={0,1,2,3,4},A={1,2,3},所以∁A={0,4},故(∁U A)∪B={0,2,4}.U3.已知集合U={x|x>0},∁U A={x|0<x<2},那么集合A=(C)A.{x|x≤0或x≥2} B.{x|x<0或x>2}C.{x|x≥2} D.{x|x>2}[解析]利用数轴分析,可知A={x|x≥2}.4.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=(D)A.{x|x≥0} B{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析]∵A∪B={x|x≤0或x≥1},∴∁(A∪B)={x|0<x<1}.故选D.U5.(2019·南阳市高一期末测试)如图,集合U为全集,则图中阴影部分表示的集合是(C)A.∁U(A∩B)∩C B.∁U(B∩C)∩AC.A∩∁U(B∪C) D.∁U(A∪B)∩C[解析]由图可知图中阴影部分表示的集合是A∩∁(B∪C).U6.已知集合A ={x |x <a },B ={x |x <2},且A ∪(∁R B )=R ,则a 满足( A ) A .a ≥2 B .a >2 C .a <2D .a ≤2[解析] ∁R B ={x |x ≥2},则由A ∪(∁R B )=R 得a ≥2,故选A . 二、填空题7.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =__-3__. [解析] ∵∁U A =={1,2},∴A ={0,3}. ∴0,3是方程x 2+mx =0的两根. ∴0+3=-m .∴m =-3.8.已知全集U =R ,M ={x |-1<x <1},∁U N ={x |0<x <2},那么集合M ∪N =__{x <1或x ≥2}__.[解析] ∵U =R ,∁U N ={x |0<x <2}, ∴N ={x |x ≤0或x ≥2},∴M ∪N ={x |-1<x <1}∪{x |x ≤0或x ≥2} ={x |x <1或x ≥2}. 三、解答题9.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).[解析] 将集合A ,B ,P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3}, ∴A ∩B ={x |-1<x <2}. ∵∁U B ={x |x ≤-1或x >3}, ∴(∁U B )∪P ={x |x ≤0或x ≥52},∴(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.B 级 素养提升一、选择题1.(2019·山东莒县一中高一期末测试)如图,I是全集,M,P,S是I的子集,则阴影部分所表示的集合是(C)A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩(∁I S) D.(M∩P)∪(∁I S)[解析]由图可知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈∁S,故阴影部分所I表示的集合是(M∩P)∩(∁I S).2.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于(D)A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)[解析]根据已知可知,M∪N={1,2,3,4},M∩N=∅,(∁M)∪(∁U N)={1,4,5,6}∪{2,3,5,6}U={1,2,3,4,5,6},(∁U M)∩(∁U N)={1,4,5,6}∩{2,3,5,6}={5,6},因此选D.3.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为(B)A.4 B.3C.2 D.1[解析]∵∁A={2,4},∴非空子集有22-1=3个,故选B.U4.设P={x|x>4},Q={x|-2<x<2},则(D)A.P⊆Q B.Q⊆PC.P⊇∁R Q D.Q⊆∁R P[解析]∵Q={x|-2<x<2},而∁R P={x|x≤4},∴Q⊆∁R P.二、填空题5.已知全集U={1,2,3,4,5,6},集合A={1,3},集合B={3,4,6},集合U,A,B的关系如图所示,则图中阴影部分所表示的集合用列举法表示为__{4,6}__.[解析] 由题意可知,阴影部分所表示的集合为B ∩(∁U A ). ∵U ={1,2,3,4,5,6},A ={1,3}, ∴∁U A ={2,4,5,6}. ∵B ={3,4,6}, ∴B ∩(∁U A )={4,6}.6.已知全集为R ,集合M ={x ∈R |-2<x <2},P ={x |x ≥a },并且M ⊆∁R P ,则a 的取值范围是__a ≥2__.[解析] M ={x |-2<x <2},∁R P ={x |x <a }.∵M ⊆∁R P ,∴由数轴知a ≥2. 三、解答题7.设全集I ={2,3,x 2+2x -3},A ={5},∁I A ={2,y },求实数x 、y 的值. [解析] 因为A ={5},∁I A ={2,y }. 所以I ={2,5,y }, 又I ={2,3,x 2+2x -3},所以⎩⎪⎨⎪⎧x 2+2x -3=5y =3,所以⎩⎪⎨⎪⎧ x =-4y =3或⎩⎪⎨⎪⎧x =2y =3.故x =2,y =3或x =-4,y =3.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =∅,则a +3≤2a ,即a ≥3,满足B ⊆∁R A . (2)若B ≠∅,则由B ⊆∁R A ,得2a ≥-1且2a <a +3, 即-12≤a <3.综上可得a ≥-12.9.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.[解析] ∵(∁U A )∩B ={2},∴2∈B , ∴4-2a +b =0.①又∵A ∩(∁U B )={4},∴4∈A , ∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧4-2a +b =016+4a +12b =0,解得⎩⎨⎧a =87b =-127.经检验,符合题意:∴a =87,b =-127.。

高一数学必修一 1.1.3集合的基本运算同步练习及答案解析

高一数学必修一 1.1.3集合的基本运算同步练习及答案解析

1.1.3 集合的基本运算建议用时 实际用时满分 实际得分45分钟100分一、 选择题(本大题共6小题,每小题6分,共 36分)1.下列表述中错误的是( ) A .若,A B A B A ⊆= 则 B .若A B B A B =⊆ ,则 C .()A B ÜA Ü()A BD .∁U (A ∩B )= (∁U A )∪(∁U B )2.已知全集U ={-1,0,1,2},集合A ={-1,2},B ={0,2},则(∁U A )∩B =( ) A.{0}B.{2}C. {0,1}D.{-1,1}3.若全集U =R ,集合M ={x |-2≤x ≤2},N ={x |x 2-3x ≤0},则M ∩(∁U N )=( ) A. {x |x <0} B.{x |-2≤x <0} C.{x |x >3} D.{x |-2≤x <3}4.若集合M ={x ∈R |-3<x <1},N ={x ∈Z |-1≤x ≤2},则M ∩N =( ) A .{-1} B.{0} C. {-1,0} D. {-1,0,1}5.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .m B.m +n C.m -n D.n -m6.设U ={n |n 是小于9的正整数},A ={n ∈U |n 是奇数},B ={n ∈U |n 是3的倍数},则∁U (A ∪B ) =( )A. {2,4}B. {2,4,8}C. {3,8}D. {1,3,5,7} 二、填空题(本大题共3小题,每小题6分,共18分)7.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的有 人.8.若集合{(x ,y )|x +y -2=0且x -2y +4=0}{(x ,y )|y =3x +b },则b =________. 9.已知集合}023|{2=+-=x axx A 至多有一个元素,则a 的取值范围是 ;若至少有一个元素,则a 的取值范围是 . 三、解答题(本大题共3小题,共46分)10.(14分)集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-=,满足A B ≠∅ ,,A C =∅ 求实数a 的值.11.(15分)已知集合A={x∈R|ax2-3x+2=0}.(1)若A=,求实数a的取值范围;(2)若A是单元素集,求a的值及集合A.12.(17分)设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围一、选择题1.C 解析:当A B =时,A B A A B == .2.A 解析:∁U A ={0,1},故(∁U A )∩B ={0}.3.B 解析:根据已知得M ∩(∁U N )={x |-2≤x ≤2}∩{x |x <0或x >3}={x |-2≤x <0}.4. C 解析:因为集合N ={-1,0,1,2},所以M ∩N ={-1,0}.5.C 解析:∵U =A ∪B 中有m 个元素, (ðU A )∪(ðU B )=ðU (A ∩B )中有n 个元素, ∴A ∩B 中有m -n 个元素.6.B 解析:U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7}, 则ðU (A ∪B )={2,4,8}. 二、填空题7.26 解析:全班分4类人:设既爱好体育又爱好音乐的有x 人;仅爱好体育 的有(43x )人;仅爱好音乐的有(34x )人;既不爱好体育又不爱好音乐的 有4人 ,∴43x 34xx 4=55,∴x =26.8.2 解析:由得⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.9.9|,08a a a ⎧⎫≥=⎨⎬⎩⎭或,9|8a a ⎧⎫≤⎨⎬⎩⎭解析:当A 中仅有一个元素时,0a =,或980a ∆=-=; 当A 中有0个元素时,980a ∆=-<; 当A 中有两个元素时,980a ∆=->.三、解答题 10. 解:{}2,3B =,{}4,2C =-,而A B ≠∅ ,则2,3至少有一个元素在A 中.又A C =∅ ,∴2A ∉,3A ∈,即293190a a -+-=,得52a a ==-或, 而5a A B ==时,,与A C =∅ 矛盾,∴2a =-.11.解:(1)A 是空集,即方程ax 2-3x +2=0无解.若a =0,方程有一解x =23,不合题意.若a ≠0,要使方程ax 2-3x +2=0无解,则Δ=9-8a <0,则a >98.综上可知,若A =,则a 的取值范围应为a >98.(2)当a =0时,方程ax 2-3x +2=0只有一根x =23,A ={23}符合题意.当a ≠0时,=9-8a =0,即a =98时,方程有两个相等的实数根=43,则A ={43}.综上可知,当a =0时,A ={23};当a =98时,A ={43}.12.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0,解得a =-1或a =-3. 当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件. 综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴BA . ①当Δ<0,即a <-3时,B =满足条件; ②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得 解得⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3.。

1.1.3集合的基本运算

1.1.3集合的基本运算

练习5.若集合A {x | 3 x 5}, B {x | 2m 1 x 2m 9}, A B B, 求m的取值范围
求A B, A B.
4 设集合A 练习5.
2
{x | x ax 12 0},
2
0且 } A B {3, 4}, B {x | x bx c},
A B {3}, 求实数a, b, c的值.
练习设集合 . A = {2}, B {x R | ax x 1 0}.
A
A
(4) A A B, B A B; (5) A B A B B.
考察下面的问题,集合A, B与集合C之间有什么关系? (1) A {2, 4, 6,8,10}, B {3,5,8,12}, C {8}; (2) A {x | x是等腰三角形},B {x | x是直角三角形}, C {x | x是等腰直角三角形}.
x 4,
交集的运算性质 (1) A B B A; (3) A _____; (4) A B A, A B B; (5) A B A B A.
(2) A A _____;
A
4 已知集合A {x | 0 x 2}, B {x | x a, a 0}, 例5.
一般地,由属于集合A且属于集合B的所有元素组成 的集合,称为A与B的交集,记作A B.
例3.设M {( x, y) | x y 2}, N {( x, y) | x y 0}, 求M N .
练习.已知集合A = {x x 2, x R}, B {x x Z }, 则A B ______ .

1.1.3 集合的基本运算(1)

1.1.3 集合的基本运算(1)
TIP3:认知获取是学习的开始,而不是结束。
为啥总是听懂了, 但不会做,做不好?
高效学习模型-内外脑 模型
2
内脑- 思考内化
思维导图& 超级记忆法& 费曼学习法
1
外脑- 体系优化
知识体系& 笔记体系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆 规律
记忆前
选择记忆的黄金时段
前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
0
1
0
{a}
1
2
1
{a,b}
2
4
3
{a,b,c}
3
8
7
{a,b,c,d}
4
16
15



{a1 , a2 , ,an } n 个元素
2n
2n-1
一、复习回顾
结论:
含有n个元素的集合{a1, a2 , , an }
(1)子集个数是 ____2_n__; (2)真子集的个数是 __2_n____1; (3)非空真子集的个数是 __2_n____2_ .
M∩N= { 1 } ,M∪N= R 。
一、复习回顾
1、下列各式正确的个数是( )
(1){0}{0,1,2}; (2){0,1,2} {1,0,2}; (3) {0,1,2};
(4)=0; (5){0,1}={(0,1)}; (6)0={0}.
A. 1 B.2
C.3 D.4
2、设x R,y R,观察下面四个集合,他们表示的含义相同吗? A { y x2 1}; 由函数y x2 1这么一个元素组成的集合 B { x | y x2 1}; 由函数y x2 1的自变量的取值组成的集合 C { y | y x2 1}; 由函数y x2 1的所有函数值组成的集合 D {( x, y) | y x2 1}.由函数y x2 1图象上的所有点组成的集合

《集合的基本运算》同步练习及答案(共五套)

《集合的基本运算》同步练习及答案(共五套)

《1.3 集合的基本运算》分层同步练习(一)基础巩固1.设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于( )A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.已知U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( )A.1B.2C.3D.44.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( )A.3B.0或3C.1或0D.1或36.已知全集U=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N*},则( )A.U=A∪BB.U=(∁UA)∪BC.U=A∪(∁UB)D.U=(∁UA)∪(∁UB)7.集合A={x|x≤-1或x>6},B={x|-2≤x≤a},若A∪B=R,则实数a的取值范围为_________.8.已知集合A={x|1≤x≤2},B={x|x<a},若A∩B=A,则实数a的取值范围是_________,若A∩B=∅,则a的范围为_________.能力提升9.已知全集U=R,M={x|x≤1},P={x|x≥2},则∁U(M∪P)等于( )A. {x|1<x<2}B.{x|x≥1}C.{x|x≤2}D.{x|x≤1或x≥2}10.已知集合A={x|x<1,或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.11.已知全集U=R,集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}且A⊆∁U B,求实数a的取值范围.素养达成12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【答案解析】基础巩固1.设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于( )A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【答案】B【解析】因为U={1,2,3,4,5},A={1,2},所以∁U A={3,4,5}.2.已知U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}【答案】D【解析】图中阴影部分表示的集合是(∁UA)∩B={2,4}.故选D.3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( )A.1B.2C.3D.4【答案】D【解析】因为{1,3}∪A={1,3,5},所以1和3可能是集合A的元素,5一定是集合A的元素,则集合A可能是{5},{1,5},{3,5},{1,5,3}共4个.故选D.4.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}【答案】A【解析】在数轴上分别表示集合M和N,如图所示,则M∪N={x|x<-5,或x>-3}.5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( )A.3B.0或3C.1或0D.1或3【答案】B【解析】因为B∪A=A,所以B⊆A,因为集合A={1,3,m2},B={1,m},所以m=3,或m2=m,所以m=3或m=0.故选B.6.已知全集U=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N*},则( )A.U=A∪BB.U=(∁UA)∪BC.U=A∪(∁UB)D.U=(∁UA)∪(∁UB)【答案】C【解析】由题意易得B A,画出如图所示的示意图,显然U=A∪(∁U B),故选C.7.集合A={x|x≤-1或x>6},B={x|-2≤x≤a},若A∪B=R,则实数a的取值范围为_________.【答案】{a|a≥6}【解析】由图示可知a≥6.所以a的取值范围为{a|a≥6}8.已知集合A={x|1≤x ≤2},B={x|x<a},若A ∩B=A,则实数a 的取值范围是_________,若A ∩B=∅,则a 的范围为_________.【答案】{a|a>2} {a|a ≤1}【解析】根据题意,集合A={x|1≤x ≤2},若A ∩B=A,则有A ⊆B,必有a>2,若A ∩B=,必有a ≤1.能力提升9.已知全集U=R,M={x|x ≤1},P={x|x ≥2},则∁U(M ∪P)等于( )A. {x|1<x<2}B.{x|x ≥1}C.{x|x ≤2}D.{x|x ≤1或x ≥2}【答案】A【解析】因为M ∪P={x|x ≤1或x ≥2},所以∁U(M ∪P)={x|1<x<2}.故选A.10.已知集合A={x|x<1,或x>5},B={x|a ≤x ≤b},且A ∪B=R,A∩B={x|5<x≤6},则2a-b=________.【答案】-4【解析】如图所示,可知a=1,b=6,2a-b=-4.11.已知全集U=R,集合A={x|-2≤x ≤5},B={x|a+1≤x ≤2a-1}且A ⊆∁U B,求实数a 的取值范围.【答案】见解析【解析】若B=∅,则a+1>2a-1,则a<2,此时∁U B=R,所以A ⊆∁U B;若B ≠∅,则a+1≤2a-1,即a ≥2,此时∁U B={x|x<a+1,或x>2a-1},由于A ⊆∁U B,如图,则a+1>5,所以a>4,所以实数a 的取值范围为{a|a<2,或a>4}.素养达成12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【答案】见解析【解析】设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学参加课外探究小组可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.《1.3 集合的基本运算》分层同步练习(二)(第1课时)巩固基础1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B等于( )A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.已知集合A={x|x≥0},B={x|-1≤x≤2},则A∪B=( )A.{x|x≥-1} B.{x|x≤2} C.{x|0<x≤2} D.{x|1≤x≤2} 3.若集合A={参加伦敦奥运会比赛的运动员},集合B={参加伦敦奥运会比赛的男运动员},集合C={参加伦敦奥运会比赛的女运动员},则下列关系正确的是( )A.A⊆B B.B⊆C C.A∩B=C D.B∪C=A4.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3} 5.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为( ) A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}6.设集合M={1,2},则满足条件M∪N={1,2,3,4}的集合N的个数是( ) A.1 B.3 C.2 D.47.设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=∅,则实数t的取值范围是( )A.t<-3 B.t≤-3 C.t>3 D.t≥38.若集合A={x|x≤2},B={x|x≥a},满足A∩B={2},则实数a=________. 9.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.综合应用11.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1 C.2 D.412.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠∅,若A∪B =A,则( )A.-3≤m≤4 B.-3<m<4 C.2<m<4 D.2<m≤413.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于( )A.0.0或3 C.1.1或314.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=________,b=________.15.已知M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于。

【2010高一上学期湖北荆州中学】数学人教版A必修1同步训练1.1.3集合的基本运算(附答案)

【2010高一上学期湖北荆州中学】数学人教版A必修1同步训练1.1.3集合的基本运算(附答案)

1.1.3集合的基本运算1.设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于()A.{3,4,5,6,7,8} B.{5,8}C.{3,5,7,8} D.{4,5,6,8}2.设集合A={x|2x+1<3},B={x|-3<x<2},则A∩B等于()A.{x|-3<x<1} B.{x|1<x<2}C.{x|x>-3} D.{x|x<1}3.设全集U={a,b,c,d,e},集合M={a,c,d},N={b,d,e},那么(∁U M)∩(∁N)是()UA.∅B.{d}C.{a,c} D.{b,e}4.(2009福建泉州一模,文2)设集合A={x|x+1>0},B={x|x-2<0},则图中阴影部分表示的集合为()A.{x|x>-1}B.{x|x<2}C.{x|x>2或x<-1}D.{x|-1<x<2}课堂巩固1.(2008广东高考,文1)第二十九届夏季奥林匹克运动会于2008年8月8日在北京举行.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是() A.A⊆B B.B⊆CC.A∩B=C D.B∪C=A2.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为() A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}3.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则∁U(S∪T)等于() A.∅B.{2,4,7,8}C.{1,3,5,6} D.{2,4,6,8}4.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∪N=UC.(∁U N)∪M=U D.(∁U M)∩N=N5.设全集U={1,2,3,4,5},集合A={1,a-2,5},∁U A={2,4},则a的值为() A.3 B.4 C.5 D.66.(2008北京高考,文1)若集合A={x|-2≤x≤3},B={x|x<-1或x>4},则集合A∩B 等于()A.{x|x≤3或x>4} B.{x|-1<x≤3}C.{x|3≤x<4} D.{x|-2≤x<-1}7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=__________.8.已知集合A={0,m},B={n∈Z|0<n<3},若A∩B≠∅,则m的值为________.9.设全集U={0,1,2,3,4,5},A∩B={1},A∩(∁U B)={2},(∁U A)∩(∁U B)={0,5},则(∁A)∪B=________.U10.设A={x∈Z||x|≤6},B={1,2,3},C={3,4,5,6},求:(1)A∩(B∩C);(2)A∩∁A(B∪C).1.已知全集U=Z,A={-1,0,1,2},B={x|x2=x},则A∩∁U B为()A.{-1,2} B.{-1,0}C.{0,1} D.{1,2}2.已知集合S={x∈R|x+1≥2},T={-2,-1,0,1,2},则S∩T等于()A.{2} B.{1,2}C.{0,1,2} D.{-1,0,1,2}3.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(∁U A)∪(∁U B)等于() A.{1,6} B.{4,5}C.{1,2,3,4,5,7} D.{1,2,3,6,7}4.(2008山东高考,1)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是…()A.1 B.2 C.3 D.45.已知全集U={0,1,2,3,4,5},集合M={0,3,5},M∩(∁U N)={0,3},则满足条件的集合N共有()A.4个B.6个C.8个D.16个6.(2008陕西高考,理2)已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x =2a,a∈A},则集合∁U(A∪B)中元素的个数为()A.1 B.2 C.3 D.47.设集合U={1,2,3,4},N={1,2},M={2,4},则图中阴影部分所表示的集合是()A.{1,2,4} B.{1,4}C.{1} D.{2}8.如右图所示,全集为I,非空集合P、Q满足,若含P、I、Q的一个集合运算表达式使运算结果为∅,则这个运算表达式可以是__________.(只需写一个表达式) 9.定义集合M与N的新运算如下:M*N={x|x∈M∪N,且x∉M∩N}.若M={0,2,4,6,8,10,12},N={0,3,6,9,12,15},则(M*N)*M=__________.10.集合A={x|-2<x<-1或x>1},B={x|a≤x≤b},若A∪B={x|x>-2},A∩B ={x|1<x≤3}.求a、b的值.11.已知A={2,4,a3-2a2-a+7},B={-4,a+3,a2-2a+2,a3+a2+3a+7},且A∩B={2,5}.(1)求实数a的值;(2)求A∪B.12.已知全集U={1,2,3,4,5},A={x|x2-5x+m=0},B={x|x2+nx+12=0},且(∁U A)∪B ={1,3,4,5},你能求m+n的值吗?答案与解析1.1.3集合的基本运算课前预习1.A2.A集合A={x|2x+1<3}={x|x<1},借助数轴易知选A.3.A∁U M={b,e},∁U N={a,c},于是(∁U M)∩(∁U N)={b ,e}∩{a ,c}=∅.4.D A ={x|x>-1},B ={x|x<2},于是A ∩B ={x|-1<x<2}.课堂巩固1.D 参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C.2.D M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1. 3.B S ∪T ={1,3,5,6},则∁U (S ∪T)={2,4,7,8}.4.B 由M 、N 的元素容易知道M ∪N ={2,3,4,5,6,7},即M ∪N =U.5.C 由已知可得3∈A ,故a -2=3,所以a =5.6.D 利用数轴表示,如图所示,可得A ∩B ={x|-2≤x<-1}.7.0或1 由A ∪B =A 知B ⊆A ,∴t 2-t +1=-3①或t 2-t +1=0②或t 2-t +1=1③.①无解;②无解;③t =0或t =1.8.1或2 化简B ={1,2},∵A ∩B ≠∅,∴m =1或2.9.{0,1,3,4,5} 根据题设要求,将6个元素分别填入符合要求的集合中(如图所示),易得(∁U A)∪B ={0,1,3,4,5}.10.解:A ={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(1)∵B ∩C ={3},∴A ∩(B ∩C)={3}.(2)由B ∪C ={1,2,3,4,5,6},得∁A (B ∪C)={-6,-5,-4,-3,-2,-1,0}.∴A ∩∁A(B ∪C)={-6,-5,-4,-3,-2,-1,0}.课后检测1.A B ={0,1},A ∩∁U B ={-1,2}.2.B (直接法)S ={x ∈R |x ≥1},T ={-2,-1,0,1,2},故S ∩T ={1,2}.(排除法)由S ={x ∈R |x ≥1}可知S ∩T 中的元素比0要大,而C 、D 项中有元素0,故排除C 、D 项,且S ∩T 中含有元素1,故排除A 项.3.D ∁U A ={1,3,6},∁U B ={1,2,6,7},则(∁U A)∪(∁U B)={1,2,3,6,7}.4.B 由题意知a 1∈M ,a 2∈M ,a 3∉M ,a 4具有不确定性,故M 可能为{a 1,a 2}或{a 1,a2,a4},共2个.5.C集合N中没有元素0,3,有元素5,故集合N的个数为含元素1,2,4的集合的子集的个数23=8个.6.B A={x|x2-3x+2=0},因此A={1,2},B={x|x=2a,a∈A},当a=1时,x=2;当a=2时,x=4.因此B={2,4},此时A∪B={1,2,4}.因此∁U(A∪B)={3,5},其中含元素的个数为2.7.C阴影部分可表示为(∁U M)∩N={1,3}∩{1,2}={1}.8.P∩(∁I Q)用Venn图表示含I、P、Q的运算表达式结果为∅,只需无公共部分的两区域表示的集合取交集即可.由Venn图,知P∩(∁I Q)或(∁I Q)∩(Q∩P)或(∁I Q)∩(Q∪P),(∁Q)∩(∁Q P),(∁Q P)∩P均可.I9.N方法一:∵M∩N={0,6,12},∴M*N={2,3,4,8,9,10,15}.∴(M*N)*M={0,3,6,9,12,15}=N.方法二:如图所示,由定义可知M*N为图中的阴影区域,∴(M*N)*M为图中阴影Ⅱ和空白的区域,∴(M*N)*M=N.10.解:先在数轴上画出A的范围及B的范围.若使A∪B={x|x>-2},则应有-2<a≤-1,b≥1.若使A∩B={x|1<x≤3},则-1≤a≤1,b=3.综上所述,a=-1,b=3.11.解:(1)由题意,知a3-2a2-a+7=5,解得a=-1,1,2.当a=-1,1时,A={2,4,5},B={-4,2,4,5}或{-4,1,4,12},均与已知A∩B={2,5}矛盾;当a=2时,符合题意,故a=2.(2)此时A∪B={2,4,5}∪{-4,2,5,25}={-4,2,4,5,25}.点评:在处理集合运算时,对于能化简的集合要先进行化简.如果集合中含有字母,要注意对字母进行讨论,如何选择正确的分类标准是关键.求出待定系数的值后,要进行检验.其中,集合中元素的互异性是检验的一个依据.12.解:∵U={1,2,3,4,5},(∁U A)∪B={1,3,4,5},∴2∈A.又A={x|x2-5x+m=0},∴2是关于x的方程x2-5x+m=0的一个根,得m=6且A={2,3}.∴∁U A={1,4,5}.∴3∈B且B={x|x2+nx+12=0}.∴3一定是关于x的方程x2+nx+12=0的一个根.∴n=-7且B={3,4}.∴m+n=-1.点评:(1)全集是一个相对的概念,因研究问题的范围不同而有所变化,如在实数范围内解方程、不等式,全集为R,而在整数范围内解方程、不等式,全集可为Z.(2)补集是相对于全集U而言的,它包含三层意思:①A是U的一个子集,即A⊆U;②∁U A表示一个集合,且∁U A⊆U;③∁U A是由U中不属于A的所有元素组成的集合,即∁U A={x|x∈U,且x∉A}.。

2020秋新教材高中数学1.1集合1.1.3集合的基本运算2补集及其应用作业课件人教B版必修一

2020秋新教材高中数学1.1集合1.1.3集合的基本运算2补集及其应用作业课件人教B版必修一
第一章 集合与常用逻辑用语 1.1 集合
1.1.3 集合的基本运算 第2课时 补集及其应用
课时作业基设础训计练(45分钟)
——基础巩固——
一、选择题(每小题 5 分,共 40 分)
1.已知全集 U={1,2,3,4,5,6},集合 A={1,2,5},∁UB={4,5,6},
则 A∩B=( A )
15.(5 分)设集合 A={x|x+m≥0},B={x|-2<x<4},全集 U=R,且(∁UA)∩B=∅,则实数 m 的取值范围为 m≥2 .
16.(10 分)已知全集 U={不大于 20 的素数},M,N 为 U 的 两个子集,且满足 M∩(∁UN)={3,5},(∁UM)∩N={7,19},(∁UM)∩(∁ UN)={2,17},求 M,N.
10.已知 A={0,2,4},∁UA={-1,1},∁UB={-1,0,2},则 B = {1,4} .
解析:∵A={0,2,4},∁UA={-1,1}, ∴U=A∪(∁UA)={-1,0,1,2,4}. ∵∁UB={-1,0,2}, ∴B=∁U(∁UB)={1,4}.
11.设 U=R,A={x|a≤x≤b},∁UA={x|x>4 或 x<3},则 a +b= 7 .
8.已知全集 U=R,集合 A={x|x+1<0},B={x|x-3≤0},
那么集合(∁UA)∩B 等于( A )
A.{x|-1≤x≤3} B.{x|-1<x<3}
C.{x|x<-1}
D.{x|x>3}
解析:∁UA={x|x≥-1},B={x|x≤3}, 故(∁UA)∩B={x|-1≤x≤3},故选 A.
1<x<4},则 B∩(∁UA)=( B )
A.{3}

高中数学新人教B版必修一《1.1.3集合的基本运算》同步练习

高中数学新人教B版必修一《1.1.3集合的基本运算》同步练习

高中数学学习材料(灿若寒星 精心整理制作)例1 设集合A={x ︱-1<x <2},集合B={ x ︱1<x ≤3 },求A B.例2 A={ x ︱-1<x ≤4},B={ x ︱2<x ≤5},求A B.例3 若A 、B 、C 为三个集合,A B = B C ,则一定有( )A. A ⊆CB. C ⊆AC. A≠CD. A = ∅的解为A ,U=R ,试求A 及C U A ,并把它们分别表示 例4 不等式组在数轴上。

题型一 基本概念例1 设集合A={(x ,y )∣a 1x + b 1y + c 1= 0},B={(x ,y )∣a 2x + b 2y + c 2= 0},则方程组⎩⎨⎧=++=++0,0222111c y b x a c y b x a 的解集是__________;方程(a 1x + b 1y + c 1)(a 2x + b 2y + c 2)= 0的解集是__________.题型二集合的并集运算例2 若集合A={1,3,x},B={1,x2},A B ={1,3,x},则满足条件的实数有()A. 1个B. 2个C. 3个D. 4个题型三集合的交集运算例3 若集合A={x∣x2- ax + a2- 19 = 0},B={x∣x2- 5x + 6 = 0},C={x∣x2+ 2x∅(A B)与A C=∅同时成立。

- 8 = 0},求a的值使得⊆例4 集合A={1,2,3,4},B⊆A,且1∈(A B),但4∉(A B),则满足上述条件的集合B的个数是()A. 1B. 2C. 4D. 8题型四集合的补集运算A例5 设全集U={1,2,x2- 2},A={1,x},求CU例6设全集U为R,A={x︱x2- x –2 = 0},B={x︱x= y + 1,y∈A},求C U B题型五 集合运算性质的简单应用例8 已知A={x ︱x 2- px –2 = 0},B= {x ︱x 2+ qx + r = 0},且A B ={-2,1,5},A B ={-2},求实数p 、q 、r 的值。

1.1.3集合的基本运算

1.1.3集合的基本运算

1.1.3 集合的运算(1) 引入一思考:实数有加法运算。

类比实数的加法运算, 集合是否也可以“相加”呢?考察下列各个集合,你能说出集合C 与 集合A 、B 之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}(2)A={x|x 是有理数},B={x|x 是无理数}, C={x|x 是实数}一、并集由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集(读作“A 并B ”) 符号表示:A B ={|x x A ∈或韦恩图:例4、设A={4,5,6,8},B={3,5,7,8},求A B 提醒:注意集合中元素的“互异性”例5、设集合A={|12}x x -<<,集合B={|13}x x <<,求A B提醒:数轴表示在集合运算中的运用引入二思考:考察下面的问题,集合A 、B 与集合C 之间有何关系?(1)A={2,4,6,8,10},B={3,5,8,12},C={8}(2)A={x|x 是我校的女同学},B={x|x 是我校的高一年级同学},C={x|x 是我校的高一年级女同学}二、交集由属于集合A 且属于集合B称为A 与B 的交集,记作:(读作“A 交B ”) 符号表示:A B ={|}x x A ∈ 韦恩图:例6、我校开运动会,设A={x|x 是我校高一参加百米 赛跑的同学},B={x|x 是我校高一参加跳高比赛的同学}, 求A B例7、设平面内直线1l 上点的集合为L 1,直线直线2l 上点 的集合为L 2,试用集合的运算表示1l ,2l 的位置关系。

补充练习:1、设A={|12}x x -<<,B={|13}x x <<,求A B ;2、设A={|14}x x -<<,B={|13}x x x <>或,求A B ;三、补集全集:如果一个集合含有我们所研究问题中涉及的所有元素, 那么就称这个集合为全集,常记作U补集:对于一个集合A ,由全集U 中不属于集合A 的 U 的补集,简称为集合A 的补集符号表示:U A ð={|}x x U A ∈ 韦恩图:例8、设U={x|x 是小于9的正整数},A={1,2,3},B={3,4,5,6},求U A ð,U B ð例9、设全集U={x|x 是三角形},A={x|x 是锐角三角形},B={x|x 是钝角三角形},求A B ,()U A B ð补充练习:1、设A={|12}x x -<<,则R A ð=2、设U={|15}x x ≤≤,A={|23}x x ≤≤,则U A ð=练习:P11 1,2,3,41.1.3 集合的基本运算(2)一、复习1、集合有哪些基本运算?定义、符号表示及图示分别是?2、试叙述下列式子的含义:1A B ∈ 2A B ∈ 3U A ∈ð二、集合运算的一些简单性质1、A B B A = A A = A φ =2、A B B A = A A = A φ =3、U U ð= U φð= ()U U A 痧=()U A A ð= ()U A A ð=4、A B A = ⇔ A B ⊆A B A = ⇔ B A ⊆5、完成如下练习,发现内在规律已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7} 试求:① ()()U U A B 痧 ② ()U A B ð③ ()()U U A B 痧 ④ ()U A B ð结论:德·摩根定律()()U U A B 痧=()U A B ð()()U U A B 痧=()U A B ð能否借助韦恩图解释上面的定律?6、在下面的韦恩图中找出,下列集合所表示的部分 ① A B ② ()U A B ð③ ()U B A ð ④ ()()U U A B 痧运用:已知全集U={1,2,3,4,5,6,7},()U A B ð={1,3,5},A B ={6},()()U U A B 痧={7},求集合B三、补充练习:1、已知M=2{|21}y y x =+,N=2{|4}b b a =-+, 则M N =2、已知P=2{(,)|21}x y y x =+,Q=2{(,)|4}x y y x =-+, 则P Q =3、设U 为全集,M 、P 、N 是U 的三个子集,则图中阴影部分表示的集合是 ( )A 、(M P)NB 、(M P)NC 、(M P)(N)U ðD 、(M P)(N)U ð4、已知A={|}x x a <,B={|12}x x <<, 若()R A B R = ð,则a 的取值范围是5、已知关于x 的方程22(2)0x x m ---=与221204x mx m m ++++=,若这两个方程至少 有一个方程有实数解。

课时作业2:1.1.3 集合的基本运算(1)

课时作业2:1.1.3 集合的基本运算(1)

1.1.3 集合的基本运算第1课时并集、交集一、基础达标1.已知集合A={x|x≥0},B={x|-1≤x≤2},则A∪B=() A.{x|x≥-1} B.{x|x≤2}C.{x|0<x≤2} D.{x|1≤x≤2}答案 A解析结合数轴得A∪B={x|x≥-1}.2.(2013·课标全国Ⅱ)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=() A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}答案 A解析先求出集合M,然后运用集合的运算求解.集合M={x|-1<x<3,x ∈R},N={-1,0,1,2,3},则M∩N={0,1,2},故选A.3.(2013·广东高考)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=() A.{0} B.{0,2}C.{-2.0} D.{-2,0,2}答案 D解析先确定两个集合的元素,再进行并集运算.集合M={0,-2},N={0,2},故M∪N={-2,0,2},选D.4.设集合M={x|-3<x<2},N={x|1≤x≤3},则M∩N=() A.{x|1≤x<2} B.{x|1≤x≤2}C.{x|2<x≤3} D.{x|2≤x≤3}答案 A解析∵M={x|-3<x<2}且N={x|1≤x≤3},∴M∩N={x|1≤x<2}.5.(2014·淮北高一检测)设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=∅,则实数t的取值范围是() A.t<-3 B.t≤-3C.t>3 D.t≥3答案 A解析B={y|y≤t},结合数轴可知t<-3.6.若集合A={x|x≤2},B={x|x≥a},满足A∩B={2},则实数a=________.答案 2解析∵A∩B={x|a≤x≤2}={2},∴a=2.7.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.解(1)∵B={x|x≥2},∴A∩B={x|2≤x<3}.(2)∵C={x|x>-a2},B∪C=C⇔B⊆C,∴a>-4.二、能力提升8.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为() A.0 B.1C.2 D.4答案 D解析∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4.9.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},且B ≠∅,若A ∪B =A ,则( )A .-3≤m ≤4B .-3<m <4C .2<m <4D .2<m ≤4答案 D解析 ∵A ∪B =A ,∴B ⊆A .又B ≠∅,∴⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,即2<m ≤4.10.设集合A ={x |-1≤x ≤2},B ={x |-1<x ≤4},C ={x |-3<x <2}且集合A ∩(B ∪C )={x |a ≤x ≤b },则a =________,b =________. 答案 -1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ). ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}. ∴a =-1,b =2.11.已知A ={x |-2≤x ≤4},B ={x |x >a }. (1)若A ∩B ≠A ,求实数a 的取值范围;(2)若A ∩B ≠∅,且A ∩B ≠A ,求实数a 的取值范围.解 (1)如图可得,在数轴上实数a 在-2的右边,可得a ≥-2;(2)由于A ∩B ≠∅,且A ∩B ≠A ,所以在数轴上,实数a 在-2的右边且在4的左边,可得-2≤a <4. 三、探究与创新12.已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围.解 ∵A ∪B =A ,∴B ⊆A . 若B =∅时,2a >a +3,即a >3;若B ≠∅时,⎩⎨⎧2a ≥-2,a +3≤5,2a ≤a +3,解得:-1≤a ≤2,综上所述,a 的取值范围是{a |-1≤a ≤2,或a >3}.13.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1,或x >16},分别根据下列条件求实数a 的取值范围. (1)A ∩B =∅;(2)A ⊆(A ∩B ). 解 (1)若A =∅,则A ∩B =∅成立. 此时2a +1>3a -5, 即a <6.若A ≠∅,如图所示,则⎩⎨⎧2a +1≤3a -5,2a +1≥-1,3a -5≤16,解得6≤a ≤7.综上,满足条件A ∩B =∅的实数a 的取值范围是{a |a ≤7}. (2)因为A ⊆(A ∩B ),且(A ∩B )⊆A , 所以A ∩B =A ,即A ⊆B . 显然A =∅满足条件,此时a <6.若A ≠∅,如图所示,则⎩⎨⎧2a +1≤3a -5,3a -5<-1或⎩⎨⎧2a +1≤3a -5,2a +1>16.由⎩⎨⎧2a +1≤3a -5,3a -5<-1解得a ∈∅;由⎩⎨⎧2a +1≤3a -5,2a +1>16解得a >152. 综上,满足条件A ⊆(A ∩B )的实数a 的取值范围是{a |a <6,或a >152}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《1.1.3集合的基本运算(1)》同步训练2 1.设X={0,1,2,4,5,7},Y={1,4,6,8,9},Z={4,7,9},则(X∩Y)∪(X ∩Z)等于( )
A.{1,4} B.{1,7}
C.{4,7} D.{1,4,7}
解析∵X∩Y={1,4},X∩Z={4,7},
∴(X∩Y)∪(X∩Z)={1,4,7}.
答案D
2.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B等于( )
A.{x=1,或y=2} B.{1,2}
C.{(1,2)} D.(1,2)
解析可用排除法,A∩B是点集,可排除A、B、D,必选C,也可用直接法.
答案C
3.已知集合M={x|-3<x≤5},N={x|x<-5,或x>-3},则M∪N等于( )
A.{x|x<-5,或x>-3} B.{x|-5<x<5}
C.{x|-3<x<5} D.{x|x<-3,或x>5}
解析如图所示.
A∪B={x|x<-5,或x>-3}.
答案A
4.已知集合A={1,3,m},B={1,m},A∪B=A,则m=( )
A.0或 3 B.0或3
C.1或 3 D.1或3
解析由A∪B=A得B⊆A,所以有m=3或m=m.由m=m得m=0或1,经检验,m=1时B={1,1}不符合集合元素的互异性,m=0或3时符合.
答案B
5.A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影表示的集合为( )
A .{2}
B .{3}
C .{-3,2}
D .{-2,3}
解析 A ={1,2,3,4,5,6,7,8,9,10},B ={-3,2},由题意可知,阴影部分即为A ∩B ,故A ∩B ={2}.
答案 A
6.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( ) A .a <2 B .a >-2 C .a >-1
D .-1<a ≤2
解析 ∵A ={x |-1≤x <2},B ={x |x <a },要使A ∩B ≠∅,借助数轴可知a >-1.
答案 C
7.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是________.
解析 如图,
要使A ∪B =R ,只要a 不大于1,∴a ≤1. 答案 a ≤1
8.设集合A ={(x ,y )|a 1x +b 1y +c 1=0},B ={ (x ,y )|a 2x +b 2y +c 2=0},则方程组

⎪⎨
⎪⎧
a 1x +
b 1y +
c 1=0,a 2x +b 2y +c 2=0的解集是________,方程(a 1x +b 1y +c 1)(a 2x +b 2y +c 2)=0的解集是_
_______.
答案 A ∩B A ∪B
9.设集合A ={5,a +1},集合B ={a ,b }.若A ∩B ={2},则A ∪B =________. 解析 ∵A ∩B ={2},∴2∈A ,故a +1=2,a =1, 即A ={5,2};又2∈B ,∴b =2,即B ={1,2}, ∴A ∪B ={1,2,5}. 答案 {1,2,5}
10.已知集合A ={1,3,5},B ={1,2,x 2-1},若A ∪B ={1,2,3,5},求x 及A ∩B .
解 ∵B ⊆(A ∪B ),∴x 2
-1∈A ∪B .
∴x 2-1=3或x 2
-1=5. 解得x =±2或x =± 6. 若x 2
-1=3,则A ∩B ={1,3}. 若x 2-1=5,则A ∩B ={1,5}.
11.若非空集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},求使A ∩B =A 成立时a 的所有值.
解 ∵A ∩B =A ,∴A ⊆B ,由数轴知
⎩⎪⎨⎪
⎧ 2a +1≤3a -5,2a +1≥3,3a -5≤22,⇒⎩⎪⎨⎪

a ≥6,a ≥1,a ≤9.
∴6≤a ≤9.
12.已知集合A ={x |x 2-ax +a 2
-19=0},
B ={x |x 2-5x +6=0},
C ={x |x 2+2x -8=0},求a 取何实数时,A ∩B ≠∅与A ∩C =∅同时成立.
解 B ={2,3},C ={2,-4}.∵A ∩B ≠∅,
∴2或3是方程x 2-ax +a 2
-19=0的解.
又∵A ∩C =∅,
∴2和-4都不是方程x 2-ax +a 2
-19=0的解.
∴3是方程x 2-ax +a 2
-19=0的解. ∴a 2
-3a -10=0,∴a =-2或a =5. 当a =-2时,A ={-5,3}满足题意. 当a =5时,A ={2,3},此时A ∩C ≠∅, ∴a =5不满足题意,舍去. 综上知a =-2.。

相关文档
最新文档