2020-2021中考数学复习《直角三角形的边角关系》专项综合练习及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学复习《直角三角形的边角关系》专项综合练习及答案

一、直角三角形的边角关系

1.(6分)某海域有A ,B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求该船与B 港口之间的距离即CB 的长(结果保留根号).

【答案】

【解析】 试题分析:作AD ⊥BC 于D ,于是有∠ABD=45°,得到AD=BD=

,求出∠C=60°,根据

正切的定义求出CD 的长,得到答案. 试题解析:作AD ⊥BC 于D ,∵∠EAB=30°,AE ∥BF ,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,

∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC=,∴CD==

,∴BC=.故该船与B 港口之间的距离CB 的长为

海里.

考点:解直角三角形的应用-方向角问题.

2.如图,反比例函数() 0k y k x

=≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=︒.

(1)求k 的值及点B 的坐标;

(2)求tanC 的值.

【答案】(1)2k =,()1,2B --;(2)2.

【解析】

【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数

()0k y k x

=≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;

(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=︒ , 90BHC ∠=︒ ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出C tan 即可.

【详解】(1)∵点A (1,a )在2y x =上,

∴a =2,∴A (1,2),

把A (1,2)代入 k y x =

得2k =, ∵反比例函数()0k y k x

=≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点, ∴A B 、 两点关于原点O 中心对称,

∴()1

2B --, ; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,

90ABC ∠=︒ , 90BHC ∠=︒ ,∴C ABH ∠∠=,

∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=, ∴AD 22OD 1

tanC tan AOD =∠===.

【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD是关键.

3.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.

(1)判断DE与⊙O的位置关系,并说明理由;

(2)求证:BC2=2CD•OE;

(3)若

314

cos,

53

BAD BE

∠==,求OE的长.

【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =35

6

【解析】

试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;

(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;

(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.

试题解析:(1)DE为⊙O的切线,理由如下:

连接OD,BD,

∵AB为⊙O的直径,

∴∠ADB=90°,

在Rt△BDC中,E为斜边BC的中点,

∴CE=DE=BE=BC,

∴∠C=∠CDE,

∵OA=OD,

∴∠A=∠ADO,

∵∠ABC=90°,

∴∠C+∠A=90°,

∴∠ADO+∠CDE=90°,

∴∠ODE=90°,

∴DE⊥OD,又OD为圆的半径,

∴DE为⊙O的切线;

(2)∵E是BC的中点,O点是AB的中点,

∴OE是△ABC的中位线,

∴AC=2OE,

∵∠C=∠C,∠ABC=∠BDC,

∴△ABC∽△BDC,

∴,即BC2=AC•CD.

∴BC2=2CD•OE;

(3)解:∵cos∠BAD=,

∴sin∠BAC=,

又∵BE=,E是BC的中点,即BC=,

∴AC=.

又∵AC=2OE,

∴OE=AC=.

考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数

4.如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)

参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.62492 1.4142

相关文档
最新文档