构造法求数列通项
构造法求数列通项公式
作者:刘高峰 2016.10 北京师范大学东莞石竹附属学校
复习回顾
一、观察法:如数列 二、公式法:
1, 1 , 1 , 1 , 1 , 3579
1、等差数列:an a1 (n 1)d
2、等比数列:an a1qn1
3、an Sn Sn1 (n 2) ——(作差法)
巩固练习
练习2:已知数列{an }中,a1
3 2
,2an
an1
6n
3,
求an .
课后思考
1、形如 an1 pan an2 bn c 如何求通项公式? 已知数列{an} 满足:a1 1, an1 2an 3n2 4n 5, 求an .
2、形如 an1 pan qn 如何求通项公式? 已知数列{an}满足:a1 1, an1 3an 2n , 求 an .
课后作业
1、已知数列an中,a1 1 ,an1 2an 3,求 an .
2、已知数列an 中,a1 1, an 4an1 n 1, (n 2),
求 an .
再见!
巩固练习
练习1:已知数列{an }中,a1
2
,an1
1 2
an
1 2
,
求数列的通项an .
知识延伸
例2、已知数列{an} 中,a1 , 1 an1 3an 2n , 求 an .
规律总结
an1 pan kn b
an1 x(n 1) y p(an xn y)
问题探究
例1、已知数列{an}满足:a1 1 ,且an1 2an 1 , (1)证明:数列{an 1} 是等比数列; (2)求 an .
(完整版)用构造法求数列的通项公式汇总
用构造法求数列的通项公式上海外国语大学嘉定外国语实验学校 徐红洁在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。
但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。
而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。
对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。
下面给出几种我们常见的构造新数列的方法:一.利用倒数关系构造数列。
例如:中,若求a n }{n a 数列),(411,211N n a a a nn ∈+==++4,n n nn b b a b ==+1,1则设即=4,n n b b -+1}是等差数列。
n b {∴可以通过等差数列的通项公式求出,然再求后数列{ a n }的通项。
n b 练习:1)数列{ a n }中,a n ≠0,且满足求a n),(,311,2111N n a a a nn ∈+==+2)数列{ a n }中,求a n 通项公式。
,22,111+==+n nn a a a a 3)数列{ a n }中,求a n .),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-⋅+≠=--且二.构造形如的数列。
2n n a b =例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52211∈-==+ 解:设4,4,112-=--==++n n n n n n b b b b a b 即则),71(,429429429)4()1(25254}{2211N n n n a na n nb a b b n n n n ∈≤≤-=∴-=-=-⋅-+=∴==-即,是等差数列,公差是数列练习:已知正数数列{ a n }中,,),2(2,211N n n a a a n n ∈≥==-求数列{ a n }的通项公式。
求数列通项公式常用的七种方法
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a .三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a .注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a .注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
数列构造法
构造法求数列的通项公式在数列求通项的有关问题中,经常遇到即非等差数列,又非等比数列的求通项问题,特别是给出的数列相邻两项是线性关系的题型,在老教材中,可以通过不完全归纳法进行归纳、猜想,然后借助于数学归纳法予以证明,但新教材中,由于删除了数学归纳法,因而我们遇到这类问题,就要避免用数学归纳法;这里我向大家介绍一种解题方法——构造等比数列或等差数列求通项公式;构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉. 供参考;1、构造等差数列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.例1设各项均为正数的数列的前n项和为S,对于任意正整数n,都有等式:n成立,求的通项a n.解:, ∴,∵,∴.即是以2为公差的等差数列,且.∴例2数列中前n项的和,求数列的通项公式.解:∵当n≥2时,令,则,且是以为公比的等比数列,∴.2、构造差式与和式解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式.例3设是首项为1的正项数列,且,n∈N,求数列的通项公式a n.解:由题设得.∵,,∴.∴.例4数列中,,且,n∈N,求通项公式a n.解:∵∴n∈N3、构造商式与积式构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法.例5数列中,,前n项的和,求.解:,∴∴4、构造对数式或倒数式有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.例6设正项数列满足,n≥2.求数列的通项公式.解:两边取对数得:,,设,则是以2为公比的等比数列,,,,∴例7已知数列中,,n≥2时,求通项公式.解:∵,两边取倒数得.可化为等差数列关系式.∴。
(完整版)数列通项公式常用求法及构造法
数列通项公式的常用求法构造法求数列通项公式一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例1 在数列{}n a 中,1a =12,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式.解析:由313n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。
解析:当n ≥2时,a n =S n -S n-1 代入a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,n S 1-11-n S =2,∴{n S 1}是首相为1,公差为2的等差数列∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={21138422≥=+--n n n n二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A 为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
求数列通项公式常用的八种方法
求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。
求数列通项公式的三种常用方法
在数列问题中,求数列的通项公式问题比较常见,但有些求数列的通项公式的问题较为复杂,利用等差、等比数列公式很难直接求得结果,需要采用一些方法,如累加法、累乘法和构造法,才能使问题得解.下面我们来探讨一下累加法、累乘法和构造法在解题中的应用.一、累加法有些数列的递推式可以转化为a n +1=a n +f (n )或a n +1-a n =f ()n 的形式,我们就可以采用累加法来求解,将n =1,2,3,…,n 时f (n )的式子表示出来,然后将左边与左边的式子相加,右边与右边的式子相加,通过正负抵消求出a n ,便可得到数列的通项公式.累加法也称为逐差相加法,这种方法是比较简单、比较基础的,操作起来也比较容易.例1.设数列{}a n 满足a 1=1,且a n +1=a n +n +1(n ∈N *),则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=a n +f (n ),可运用累加法来求解,逐一列出各项,并将其累加,便可求出数列的通项公式.解:由题意知a 2=a 1+2,a 3=a 2+3,a 4=a 3+4,…,a n =a n -1+n (n ≥2),将以上各式进行相加可得a n =a 1+2+3+…+n ,又a 1=1,所以a n =1+2+3+…+n =n 2+n 2(n ≥2),当n =1时也满足上式,所以数列{}a n 的通项公式为a n =n 2+n 2(n ∈N *).在运用累加法求和时,很多同学们经常忽略了n =1的情况,因此在求出了a n 之后,必须要检验a 1是否满足所求的通项公式.二、累乘法当遇到形如a n +1a n=f ()n 或a n +1=f ()n a n 的递推式,我们可以采用累乘法来求解.首先列出n =1,2,3,…,n 时f (n )的表达式,然后将每项的左边与左边,右边与右边相乘,通过约分就可以求出a n .需要注意的是,在使用这种方法求数列的通项公式时,不要把a n 与f ()n 、f ()n -1、f ()n +1的对应项弄混.例2.设数列{}a n 满足a 1=1,且a n =n -1n a n -1(n ≥2),则数列{}a n 的通项公式为_____.分析:题目中给出的递推公式为a n =n -1n an -1,即a n a n -1=n -1,形如a n +1a n =f ()n ,运用累乘法求解比较简便.解:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=2a 1.将上述n -1个式子相乘后可得a n =a 1⋅12⋅23⋅34⋅…⋅n -1n =a1n =1n,当n =1时,a 1=1,满足上式,∴a n =1n(n ∈N *).三、构造法对于一些形如a n +1=pa n +q (p ≠0、1,q ≠0)的递推式,我们一般采用构造法来求数列的通项公式.可首先设a n +c =k (a n -1+c ),然后利用待定系数法求出相关k ,c 的值,这样便构造出等比数列{}a n +c ,运用等比数列的通项公式求得{}a n +c 的通项公式,进而得到{}a n 的通项公式.例3.已知数列{}a n 满足a 1=1,且a n +1=3a n +2,则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=pa n +q ,结合已知条件可构造出新的等比数列,然后利用等比数列的通项公式来求解.解:∵a n +1=3a n +2,∴a n +1+1=3a n +2+1,即a n +1+1=3a n +3=3(a n +1),∴a n +1+1a n +1=3,∴数列{}a n +1为q =3的等比数列,又a 1+1=2,∴a n +1+1=2∙3n -1,∴a n =2∙3n -1-1(n ∈N *).以上三种方法都是求数列通项公式的常用方法,同学们要扎实掌握.求数列的通项公式问题并没有同学们想象中的那么难,只要同学们能够熟练掌握常用的解题方法和技巧,学会举一反三,就能在掌握精髓的基础之上破解此类问题.(作者单位:安徽省宣城中学)方法集锦47Copyright©博看网 . All Rights Reserved.。
求数列通项公式常用的七种方法
求数列通项公式经常使用的七种方法一、公式法:已知或根据题目的条件能够推出数列为等差或等比数列,根据通项公式或进行求解.例1:已知是一个等差数列,且,求的通项公式.分析:设数列的公差为,则解得二、前项和法:已知数列的前项和的解析式,求.例2:已知数列的前项和,求通项.分析:当时,==而不适合上式,三、与的关系式法:已知数列的前项和与通项的关系式,求.例3:已知数列的前项和满足,其中,求.分析:①②①-②得即又不适合上式数列从第2项起是以为公比的等比数列注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由与的关系式,类比出与的关系式,然后两式作差,最后别忘了检验是否适合用上面的方法求出的通项. 四、累加法:当数列中有,即第项与第项的差是个有“规律”的数时,就可以用这种方法.例4:,求通项分析:┅以上各式相加得又,所以,而也适合上式,五、累乘法:它与累加法类似,当数列中有,即第项与第项的商是个有“规律”的数时,就可以用这种方法.例5:求通项分析:故而也适合上式,所以六、构造法:㈠、一次函数法:在数列中有(均为常数且),从概况形式上来看是关于的“一次函数”的形式,这时用下面的方法:一般化方法:设则而即故数列是以为公比的等比数列,借助它去求例6:已知求通项分析:数列是以为首项,为公比的等比数列故㈡、取倒数法:这种方法适用于(均为常数),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于的式子.例7:已知求通项即数列是以为首项,以为公差的等差数列㈢、取对数法:一般情况下适用于(为非零常数)例8:已知求通项分析:由知在的两边同取经常使用对数得即数列是以为首项,以为公比的等比数列故七、“(为常数且不为,)”型的数列求通项.例9:设数列的前项和为,已知,求通项.解:两式相减得即上式两边同除以得(这一步是关键)令得(想想这步是怎么得来的)数列从第项起,是以为首项,以为公比的等比数列故又,所以不适合上式注:求(为常数且不为,)”型的数列求通项公式的方法是等式的两边同除以,得到一个“”型的数列,再用上面第六种方法里面的“一次函数法”即可求出的通式,从而求出.另外本题还可以由得到即,依照上面求的方法同理可求出,再求.您不无妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜测法等,但这七种方法是经经常使用的,将其总结到一块,以便于学生记忆和掌握.。
(完整版)高中数学构造法求数列通
构造法求数列通项例题分析型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a n+1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例1、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠, 所以数列{1}n a -是首项为12,公比为12-的等比数列, ∴11111(1)()1()22n n n a a -=---=+-.练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n n a .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nnn n q a p q a q, 令nnna b q =,则可转化为b n+1=pb n +q 的形式求解. 例1、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 na n )+1,令b n =2 n a n , 则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =nn 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a . 答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例1、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--, ∴11(1)n n a b A n B --=---,代入已知条件,得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B+-=,解得A =-4,B=6, 所以112n n b b -=,且46n n b a n =-+,∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462nn a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解.练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n n n-+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A =-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n -+=69912·().(4) f(n)为非等差数列,非等比数列 法一、构造等差数列法例1、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭, ∴数列2nn n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21n n n a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+.练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。
用构造法求数列的通项公式
用构造法求数列的通项公式求数列的通项公式是高考重点考查的内容,作为两类特殊数列----等差数列·等比数列可直接根据它们的通项公式求解,但也有一些数列要通过构造转化为等差数列或等比数列,之后再应用各自的通项公式求解,体现化归思想在数列中的具体应用例1:(06年福建高考题)数列{}=+==+n n n n a a a a a 则中12,1,11 ( )A .n 2B .12+nC .12-nD .12+n 解法1:121+=+n n a a 又211=+a{}1+n a 是首项为2公比为2的等比数列12,22211-=∴=⋅=+-n n n n n a a ,所以选C解法2归纳总结:若数列{}n a 满足q p q pa a n n ,1(1≠+=+为常数),则令)(1λλ+=++n n a p a 来构造等比数列,并利用对应项相等求λ的值,求通项公式。
例2:数列{}n a 中,n n n a a a a a 23,3,11221-===++,则=n a 。
解:)(2112n n n n a a a a -=-+++212=-a a {}1--∴n n a a 为首项为2公比也为2的等比数列。
112--=-n n n a a ,(n>1)n>1时显然n=1时满足上式小结:先构造{}n n a a --1等比数列,再用叠加法,等比数列求和求出通项公式,例3:已知数列{}n a 中)3(,32,2,52121≥+===--n a a a a a n n n 求这个数列的通项公式。
解:2132--+=n n n a a a又{}121,7-+=+n n a a a a 形成首项为7,公比为3的等比数列,则2137--⨯=+n n n a a ………………………①又)3(3211-----=-n n n n a a a a ,13312-=-a a ,{}13--n n a a 形成了一个首项为—13,公比为—1的等比数列则21)1()13(3---⋅-=-n n n a a ………………………② ①+⨯3② 11)1(13374---⋅+⨯=n n n a小结:本题是两次构造等比数列,属于构造方面比较级,最终用加减消元的方法确定出数列的通项公式。
求数列通项公式的十种方法
1. 观察法(求出a1、a2、a3,然后找规律)即归纳推理,就是观察数列特征,找出各项共同的构成规律,然后利用数学归纳法加以证明即可。
例1.设11=a ,)(2221*+∈++-=N n b a a a n n n ,若1=b ,求32,a a 及数列}{n a 的通项公式. 解:由题意可知:11111+-==a , 11221221212+-==++-=a a a ,113121222223+-=+=++-=a a a . 因此猜想11+-=n a n .下面用数学归纳法证明上式.(1)当n =1时,结论显然成立.(2)假设当n =k 时结论成立,即11+-=k a k .(3)则11)1(11)1(11)1(122221+-+=++-=++-=++-=+k k a a a a k k k k , 即当n =k +1时结论也成立.由(1)、(2)可知,对于一切正整数n ,都有)(11*∈+-=N n n a n .(最后一句总结很重要)2. 定义法(已知数列为等差或者等比)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目。
例2.已知等差数列{}n a 满足1210a a +=,432a a -=,求{}n a 的通项公式。
解:设等差数列{}n a 的公差为d .因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =.所以42(1)22n a n n =+-=+ (1,2,)n =.3.公式法若已知数列的前n 项和与的关系,求数列的通项可用公式求解。
(一定要讨论n=1,n≥2)例3.设数列{}n a 的前n 项和为n S ,已知23 3.n n S =+(Ⅰ)求数列{}n a 的通项公式。
解:(Ⅰ)由 233n n S =+可得:当1=n 时, 111(33)32a S ==+=, 当2≥n 时,11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=≥ 而 11133a -=≠,所以 13,1,3, 1.n n n a n -=⎧=⎨>⎩4.累加法当递推公式为)(1n f a a n n +=+时,通常解法是把原递推公式转化为。
求数列通项公式常用的七种方法
第二章 数列的概念与简单表示法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法:一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.取对数法:一般情况下适用于1k ln n a a -=(,k l 为非零常数)特征根法:形如递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
不动点法若,0≠A B 且0-≠AD BC ,解+=+Ax Bx Cx D,设βα,为其两根。
I 、若αβ≠,数列{}αβ--n n a a 是等比数列; II 、若αβ=,数列1{}-n a a是等差数列。
七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例题讲解:1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.2:已知数列{}n a 的前n 项和12-=nn s ,求通项n a .3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 4:()12,011-+==+n a a a n n ,求通项n a5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a8:已知()2113,2n n a a a n -==≥ 求通项n a9: 数列{}n a 满足),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a10.已知数列{}n a 满足1172,223+-==+n n n a a a a ,求数列{}n a 的通项公式。
巧妙运用构造法,快速求解数列的通项公式
之间的联系,明确其中的规律,利用f(97)=97的结论来求得第二个问题的答案.例3.在(1+x)2+(1+x)3+…+(1+x)n+1的展开式中,含x2项的系数是a n,则a8=_____;若对任意的n∈N*,λ·2n-a n≥0恒成立,则实数λ的最小值是_____.分析:根据题目条件中展开式的特征,可知a8表示的是当n=8时展开式中x2的系数,根据二项式定理和二项展开式的通项公式可求得a8的值.对于第二个空,需通过分离参数,将不等式恒成立问题转化为数列问题,根据第一个问题的结论构造出数列{b n},通过作差,判断出数列的单调性,进而求得数列{b n}的最大项,从而求得最小的实数λ.解:由题意可得a8=C22+C23+…+C29=C310=120;而a n=C22+C23+…+C2n+1=C3n+2=(n+2)(n+1)n6,由λ·2n-a n≥0恒成立可得λ≥a n2n=n(n+1)(n+2)6·2n恒成立,设b n=n(n+1)(n+2)6·2n,则b n+1-b n=(n+1)(n+2)(3-n)3·2n+1,当n=1,2时,b n+1-b n>0,即b n+1>b n;当n=3时,b4-b3=0,即b4=b3;当n≥4时,b n+1-b n<0,即b n+1<b n;所以b n的最大项为b4=b3=3×4×56·23=54,则实数λ的最小值是54;故所填答案为:120;54.解答“递进式”双空题,需找出第一、二个问题、结论之间的联系,在第一问题的基础上进行推理、运算,运用从特殊到一般的思想,建立两个问题、两个空之间的联系,逐步进行推理、运算,从而求得问题的答案.总之,解答双空题,要仔细审题,把握两个空之间的逻辑关系.若是并列关系,可以将其看作两个常规填空题进行求解;若是递进关系,需将第一个问题的结论作为第二个问题的求解依据进行思考.(作者单位:福建省永春第一中学)求数列的通项公式问题比较常见,通常要求根据已知递推式求数列的通项公式.由于递推式的形式多变,所以求数列的通项公式的方法多种多样.对于一些结构较为复杂的递推式,采用构造法来求解比较有效.运用构造法,可将复杂的问题转化为简单的、易于计算的问题,这样能有效地降低解题的难度,提升解题的效率.下面主要谈一谈如何用构造法由下列几类递推式求数列的通项公式.一、形如a n+1=ca n+d的递推式若遇到形如a n+1=ca n+d(c≠0,a1=a)的递推式,往往需采用构造法来求数列的通项公式.首先要将递推式变形为a n+1+X=c(a n+X)的形式,再求出X,便可构造出等比数列{a n+X},最后根据等比数列的通项公式进行求解即可.例1.已知数列{a n}满足a1=1,a n+1=3a n+1,求{a n}的通项公式.解:∵a n+1=3a n+1,∵a n+1+12=3a n+32=3(a n+12).∵a1+12=32,考点透视39∴数列{a n+12}是首项为32,公比为3的等比数列,∴a n+12=3n2,∴数列{a n}的通项公式为a n=3n-12.对于形如a n+1=ca n+d(c≠0,a1=a)的递推式,有时很难直接将其变形为a n+1+X=c(a n+X),此时需引入待定系数X,然后将其与原递推式中的各项进行对比,从而建立关于X的方程,解方程即可求得X的值,便可构造出辅助数列.二、形如a n+1=pa n+q n的递推式对于形如a n+1=pa n+q n(p、q为实常数,且n≠0、1)的递推式,也需采用构造法来求数列的通项公式.首先要将递推式变形为a n+1+X·q n+1=p(a n+X·q n)的形式,然后求出X,从而构造出等比数列{a n+X·q n},再根据等比数列的通项公式来求出数列{a n}的通项公式.例2.已知数列{a n}满足a1=5,a2=5,a n+1=a n+6a n-1(n≥2).求数列{a n}的通项公式.解:∵a n+1=a n+6a n-1(n≥2),∴a n+1+2a n=a n+6a n-1+2a n=3(a n+2a n-1)(n≥2).∵a1=5,a2=5,∴2a1+a2=15,∴a n+2a n-1≠0,∴a n+1+2a nan+2a n-1=3(n≥2).∴数列{a n+1+2a n}是以15为首项,3为公比的等比数列.可得a n+1+2a n=15×3n-1=5×3n,∵a n+1-3n+1=-2(a n-3n),∵a1=5,∴a1-3=2,∴a n-3n≠0,∵数列{a n-3n}是以2为首项,-2为公比的等比数列.∵a n-3n=2×(-2)n-1,即a n=-(-2)2+3n(n∈N*).本题中的递推式较为复杂,递推式中a n+1、a n-1的系数都不是1,需先将递推式配成a n+1+2a n=3(a n+2a n-1),这样便构造出等比数列{a n+1+2a n},再根据等比数列的通项公式进行求解.例3.数列{a n}满足:a1=1,a n+1=2a n+2n,则数列{a n}的通项公式为_____.解:∵a1=1,a n+1=2a n+2n,∴a n+12n+1=a n2n+12,∴数列{}a n2n是首项为a12=12,公差为d=12的等差数列,∴a n2n=12+(n-1)×12=12n,即a n=n·2n-1.对于形如a n+1=pa n+q n的递推式,还可以在递推式的左右同时除以q n,将递推式转化为形如a n+1=ca n+d(c≠0,a1=a)形式,再通过构造出辅助数列,求得数列的通项公式.三、形如a n+1=a b n的递推式形如a n+1=a b n(b≠0,且为常数)的递推式中含有指数幂,较为复杂,需作降幂处理,可在递推式的左右两边同时取对数,将递推式变形为lg a n+1=lg a b n的形式,再通过变形得到lg a n+1=lg a2n=2lg a,从而构造出等比数列{lg a n},最后根据等比数列的通项公式或累乘法求得数列{a n}的通项公式.例4.在数列{a n}中,已知a1=9,且a n+1=a2n,求数列{a n}的通项公式.解:∵a n+1=a2n,∴lg a n+1=lg a2n=2lg a n,∵{lg a n}是首项为lg9,公比为2的等比数列.∵lg a n=lg9·2n-1=lg32n,∴a n=32n.仔细观察递推式a n+1=a2n,可发现其中含有指数式,该递推式形如a n+1=a b n,需采用构造法求解.在递推式的两边取对数可得lg an+1=lg a2n=2lg a n,这样就构造出等比数列{lg a n}.可见,运用构造法求数列的通项公式,需根据递推式的结构特征进行合理的变形,以构造出辅助数列,通过求辅助数列的通项公式来求得数列的通项公式.有时通过猜想、试探、类比等方式也可以构造出辅助数列,然后对其进行验证,就能达到解题的目的.(作者单位:甘肃省平凉市灵台县第一中学)考点透视40。
求数列通项公式常用的七种方法
第二章 数列的概念与简单表示法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法:一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.取对数法:一般情况下适用于1k ln n a a -=(,k l 为非零常数)特征根法:形如递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
不动点法若,0≠A B 且0-≠AD BC ,解+=+Ax Bx Cx D,设βα,为其两根。
I 、若αβ≠,数列{}αβ--n n a a 是等比数列; II 、若αβ=,数列1{}-n a a是等差数列。
七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例题讲解:1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.2:已知数列{}n a 的前n 项和12-=nn s ,求通项n a .3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 4:()12,011-+==+n a a a n n ,求通项n a5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a8:已知()2113,2n n a a a n -==≥ 求通项n a9: 数列{}n a 满足),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a10.已知数列{}n a 满足1172,223+-==+n n n a a a a ,求数列{}n a 的通项公式。
专题06 构造法求数列通项的八种技巧(三)(解析版)
专题06构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如1k n n a ca +=,1n k n a ca -=或者1(),n n k b b b a c a -++=为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列{}n a 中,12a =,21n n a a +=,求数列{}n a 的通项公式.【解析】取以12a =为底的对数(不能取c 为底,因为1c =,不能作为对数的底数),得到1222loglogn n a a +=,122log 2log n n aa+=,设2log n an b =,则有12n n b b +=,所以{}n b 是以112log 1ab ==为首项,2为公比的等比数列,所以12n n b -=,所以12log =2n an -,122n n a -=.【经典例题2】数列{}n a 中,11a =,212n n a a +=,求数列{}n a 的通项公式.【解析】取以2为底的对数(这里知道为什么不能取11a =为底数的对数了吧),得到12222loglogn n a a +=,12222log log 2log n n a a +=+,122log 12log n n a a +=+设2log n an b =,则有1=12n n b b ++,这又回归到构造二的情况,接下来的步骤大家应该都记得吧,由于这道题较为简单,所以直接可看出1+1=2(1)n n b b ++,所以{}1n b +是以111b +=为首项,2为公比的等比数列,所以112n n b -+=,所以1=21n n b --,12log =21n a n --,1212n n a --=.【经典例题3】已知12a =,点()1,n n a a +在函数()22f x x x =+的图像上,其中*n N ∈,求数列{}n a 的通项公式.【解析】将()1,n n a a +代入函数得212n n n a a a +=+,()2211211n n n n a a a a ++=++=+,即()2111n n a a ++=+两边同时取以3为底的对数,得()()21111113333loglog log 2log n nn n a a a a ++++++=⇒=(为什么此题取以3为底的对数呢,大家思考下,新构造的数列首项为113log a +,113a +=,所以应当取以3为底,这样计算会简单很多,当然如果你计算能力较强,也可以取其他数作为底数).所以(){}13log na +是以1为首项,2为公比的等比数列,即()113log 12na n +-=⨯,1213n n a -+=,1231n n a -=-.【经典例题4】在数列{}n a 中,11a =,当2n 时,有2142n n n a a a +=++,求数列{}n a 的通项公式.【解析】由2142n n n a a a +=++,得21244n n n a a a ++=++,即()2122n n a a ++=+,两边同取以3为底的对数,得()212233loglog n n a a +++=,即()12233log 2log nn a a +++=,所以数列(){}23log na +是以1为首项,2为公比的等比数列,()213log 2nan +-=,1223n n a -+=,即1232n n a -=-.◆构造七:二阶整体构造等比简单的二阶整体等比:关于11n n n a Aa Ba +-=+的模型,可通过构造二阶等比数列求解,大部分题型可转化为()11(1)n n n n a a A a a +--=--,利用{}1n n a a +-成等比数列,以及叠加法求出n a .还有一小部分题型可转化为()11(1)n n n n a a A a a +-=+++,利用{}1+n n a a +成等比数列求出n a .【经典例题1】已知数列{}n a 满足()*12211,3,32n n n a a a a a n ++===-∈N ,求数列{}n a 的通项公式.【解析】由()1111322n n n n n n n a a a a a a a +-+-=-⇒-=-,故{}1n n a a +-是以212a a -=为首项,2为公比的等比数列,即()112122n n n n a a a a -+-=-=,接下来就是叠加法啦,1121...22n n n a a a a --⎫-=⎪⎬⎪-=⎭全部相加得:122nn a a -=-,所以21nn a =-.【经典例题2】已知数列{}n a 中,11a =,22a =,212133n n n a a a ++=+,求数列{}n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求 证 s1 n 为 等 差 数 列 ; 1 sn n = 为 21n等 差 又 1数 列 a ns 1 n sn -ss 1 n 1 1 ( =2n 1n - 1 ) 22 (= n2 1 n 1)
an 2n(n 1) (n 2)
(1)已知sn求an时,要分n=1和n2两种情况讨论,然后 验证两种情况可否统一的解析式表示,若不能则用分段 函数的形式表示为an ss1n sn, 1,nn21 ; ( 2 ) 当 a n 与 sn 在 同 一 关 系 式 中
武岭中学高三数学组徐云燕 10/3/2020
典型例题
构造法求数列通项
n 3、在数列 a n 中,a11,an1an2n1,则 a n
2 _____
1
4、数列 a n 中,若a11 2,n1ann1an1(n2),则a n n__n__1 _
武岭中学高三数学组徐云燕 10/3/2020
方法归纳
构造法求数列通项
1、观察法
2、 由 an与 sn的 关 系 求 an
分 析 : 变 形 得 an+1+ t=2( an+ t) 且 2t-t= 3, 构 造 得
数 列 an3 为 等 比 数 列 .
武岭中学高三数学组徐云燕 10/3/2020
方法归纳
构造法求数列通项
3、已知数列的递推公式求通项:
例 2 、 数 列 a n 中 , a 1 = 3 , a n + 1 = 2 a n + 3 , 求 通 项 a n .
累加法
反思:哪一类题型可用累加法求通项?
武岭中学高三数学组徐云燕 10/3/2020
方法归纳
构造法求数列通项
3、已知数列的递推公式求通项:
(2 ) a n 1 g q( (n q为)常(g 数( ) n )可 求 积 )
an
4、已知数列{an}满足
a1=
1 2
,(n+1)an=(n-1)an-1
( 4 ) 形 如 a n 1 q a p n a n r ( p ,q ,r 为 非 零 常 数 ) 的 , 将 其 变 形 为 a 1 n + 1 r p a 1 n q p
若 p=r,则 a1n 是 等 差 数 列 , 公 差 为 q p, 可 用 公 式 求 通 项 .
若 pr, 则 采 用 3的 办 法 求 .
解 : 令 an+1+t=2( an+t) 且 2t-t=3, 得 t=3
则 数 列 a n 3 是 以 6 为 首 项 , 2 为 公 比 的 等 比 数 列 .
an 3=62n-1 则an=62n-1 3
武岭中学高三数学组徐云燕 10/3/2020
方法归纳
构造法求数列通项
3、已知数列的递推公式求通项:
而
a1
1 2
;
an
1 2
, n
1
1 2n(n
1)
,
n
2
武岭中学高三数学组徐云燕 10/3/2020
方法归纳
3、已知数列的递推公式求通项:
( ) (1)an+1-an= df((nd)为常f(数n)可求和
构造法求数列通项
3、 在 数 列 an中 , a1=1, an+1=an+2n+1, 求 数 列 an通 项 公 式 .
snsn12snsn10
sn sn1 2 即 1 1 2
snsn1
sn sn1
s1n
为等差数列
用 a n s n s n 1 , n 2 代 入 变 形 为 等 差 、 等 比 数 列 问 题 来 解 .
武岭中学高三数学组徐云燕 10/3/2020
典型例题
构造法求数列通项
例 1、 已 知 数 列 前 n项 和 为 sn, a11 2,且 an2snsn10(n2),
变 式 1 : 已 知 数 列 a n 中 , a 1 = 1 3 , a n = 3 a a n - n 1 - 1 2 n 2 , 求 通 项 a n .
分 析 : 变 形 得 a1n=2a1 n-1+3 a1nt=2a1 n-1t且 2t-t=3, 构 造 得
数 列 a1n3 为 等 比 数 列 .
武岭中学高三数学组徐云燕 10/3/2020
课前热身
构造法求数列通项
s n 1 1、数列
2,
4,8,16, 3 7 15
n 2、数列 a n 的前 项和
的一个通2项公式为_a_n___(_1_)_n_2_n2_n_。1
n
,
则 an
2 ,n1
2__n___1_, _n___2________。
例 1 、 已 (1 )知 求 数 证 列 s1 na n 为 前 等 n 差 项 数 和 列 为 ; s n , a 2 1 求 1 2 a ,且 n 的 a n通 2 项 sn 公 sn 式 1 。 0 (n 2 ),
解 : ( 1 ) a n s n s n 1 ( n 2 ) ,
(n≥2),求数列{an}的通项公式.
a n a 1 1 3 4 2 5 3 n n 1 3 n n 2 n n 1 1 n (
1 n
1)
累积法
反思:哪一类题型可用累积法求出通项?
武岭中学高三数学组徐云燕 10/3/2020
方法归纳
构造法求数列通项
3、已知数列的递推公式求通项:
构造法求数列通项
构造法求数列
an f (n)
点燃青春激情 成就非凡梦想
武岭中学高三数学组徐云燕 10/3/2020
解读高考
构造法求数列通项
数列的通项公式是数列的核心内容之 一,它如同函数中的解析式一样,有了解析式 便可研究其性质等;
而有了数列的通项公式便可求出任一 项以及前n项和等.因此,求数列的通项公式 往往是解题的突破口、关键点. 因此近年来 的高考题中经常出现给出数列的解析式 (包括递推关系式和非递推关系式),求 通项公式的问题,对于这类问题考生感到 困难较大.
(3 )形 如 a n 1p a n q (p ,q 为 非 零 常 数 )的 ,
若 p = 1 , 则 a n 为 等 差 数 列 , 否 则 , 构 造 等 比 数 列
例 2 、 数 列 a n 中 , a 1 = 3 , a n + 1 = 2 a n + 3 , 求 通 项 a n .