石室佳兴外国语学校七年级下册半期数学试题(1)
成都石室佳兴外国语学校数学代数式单元测试卷 (word版,含解析)
一、初一数学代数式解答题压轴题精选(难)1.某超市在十一长假期间对顾客实行优惠,规定如下:________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。
(4)解:一次性购物能更省钱。
【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.故答案为:190;280;10( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.故答案为:(0.8x+60)【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;(4)通过计算可知一次性购物能更省钱.2.在一个m(m≥3,m为整数)位的正整数中,若从左到右第n(n≤m,n为正整数)位上的数字与从右到左第n位上的数字之和都等于同一个常数k(k为正整数),则称这样的数为“对称等和数”.例如在正整数3186中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”,其中k=12.(1)已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位上的数字为s(1≤s≤9,s为整数),百位上的数字为t(0≤t≤9,t为整数),是整数,求这个四位“对称等和数”;(2)已知数A,数B,数C都是三位“对称等和数”.A= (1≤a≤9,a为整数),设数B 十位上的数字为x(0≤x≤9,x为整数),数C十位上的数字为y(0≤y≤9,y为整数),若A+B+C=1800,求证:y=﹣x+15.【答案】(1)解:设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b 为整数),由题意得:s+b=t+a=4,∴b=4﹣s,a=4﹣t,∵四位数为能被11整除,∴ =1000s+100t+10a+b,=1000s+100t+10(4﹣t)+4﹣s,=999s+90t+44,=1001s+88t+44+2t﹣2s,=11(91s+8t+4)+2(t﹣s),∵91s+8t+4是整数,∴2(t﹣s)是11的倍数,即t﹣s是11的倍数,∵1≤s≤9,∴﹣9≤﹣s≤﹣1,∵0≤t≤9,∴﹣9≤t﹣s≤8,∴t﹣s只能为0,即t=s,∵是整数,4﹣s≥0,4﹣t≥0,∴s=t=2或s=t=4,当s=t=2时,a=b=2,当s=t=4时,a=b=0,综上所述,这个四位“对称等和数”有2个,分别是:2222,4400(2)解:证法一:证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),∴2a=1+5,a=3,∴A=135,由题意设:B= ,C= ,则b+c=2x,d+e=2y,∵A+B+C=1800,∴B+C=1800﹣135=1665,∴ =1665,∴15≤b+d≤16,①当b+d=15时,x+y=16,c+e=5,∴b+d+c+e=15+5=20,即2x+2y=20,x+y=10≠16,不符合题意;②当b+d=15时,x+y=15,c+e=15,∴b+d+c+e=15+15=30,即2x+2y=30,x+y=15,符合题意;∴y=﹣x+15,③当b+d=16时,x+y=6,c+e=5,∴b+d+c+e=16+5=21,即2x+2y=21,x+y=10.5≠6,不符合题意;④当b+d=16时,x+y=5,c+e=15,∴b+d+c+e=16+15=31,即2x+2y=31,x+y=15.5≠5,不符合题意;综上所述,则y=﹣x+15.证法二:证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),∴2a=1+5,a=3,∴A=135,由题意设:B= ,C= ,∵A+B+C=1800,即135+ + =1800,+ =1665,100m+10x+2x﹣m+100n+10y+2y﹣n=1665,99(m+n)+12(x+y)=1665,33(m+n)+4(x+y)=555,x+y= =139﹣8(m+n)+ ,∵0≤x≤9,0≤y≤9,且x、y是整数,∴是整数,∵1≤m≤9,1≤n≤9,∴2≤m+n≤18,∴3≤1+m+n≤19,则1+(m+n)=4,8,12,16,∴m+n=3,7,11,15,当m+n=3时,x+y=139﹣8×3+ =114(舍),当m+n=7时,x+y=139﹣8×7+ =81(舍),当m+n=11时,x+y=139﹣8×11+ =48(舍),当m+n=15时,x+y=139﹣8×15+ =15,∴y=﹣x+15【解析】【分析】(1)设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b为整数),根据“对称等和数”的意义可得s+b=t+a=4,变形得b=4﹣s,a=4﹣t,再由这个四位数能被11整除和这个四位数的构成可得=11(91s+8t+4)+2(t﹣s),易得t ﹣s是11的倍数,结合s、t的范围即可求解;(2)根据“对称等和数”的意义和A=可得2a=1+5,a=3,则数A可求解,由题意可设B=,C=,因为A+B+C=1800,所以将A、B、C代入上式,再根据三位数的构成=100百位上的数字+10十位上的数字+个位上的数字可得100m+10x+2x﹣m+100n+10y+2y﹣n=1665,整理可得33(m+n)+4(x+y)=555,则x+y可用含m、n的代数式表示,结合x、y的取值范围和x、y、m、n是正整数分析即可求解。
2020-2021成都石室外语学校七年级数学下期中试题附答案
2020-2021成都石室外语学校七年级数学下期中试题附答案一、选择题1.无理数23的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°3.若点(),P a b 在第四象限,则( )A .0a >,0b >B .0a <,0b <C .0a <,0b >D .0a >,0b <4.下列说法一定正确的是( )A .若直线a b ∥,a c P ,则b c ∥B .一条直线的平行线有且只有一条C .若两条线段不相交,则它们互相平行D .两条不相交的直线叫做平行线 5.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( )A .1600名学生的体重是总体B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本6.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度7.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)8.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a (a >1),那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位长度C.图案向左平移了a个单位长度,并且向下平移了a个单位长度D.图案向右平移了a个单位长度,并且向上平移了a个单位长度9.下列图中∠1和∠2是同位角的是( )A.(1)、(2)、(3)B.(2)、(3)、(4)C.(3)、(4)、(5)D.(1)、(2)、(5)10.不等式组324323x xx+⎧⎪-⎨≥⎪⎩<的解集,在数轴上表示正确的是()A.B.C.D.11.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°12.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°二、填空题13.已知实数x的两个平方根分别为2a+1和3-4a,实数y的立方根为-a2x y+的值为______.14.已知AB∥x轴,A(-2,4),AB=5,则B点横纵坐标之和为______.15.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.16.请设计一个解为51x y =⎧⎨=⎩的二元一次方程组________________. 17.如图,直线a 和b 被直线c 所截,∠1=110°,当∠2=_____时,直线a ∥b 成立18.若α∠与β∠的两边分别平行,且()210x α∠=+︒,()320x β=-︒∠,则α∠的度数为__________.19.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.20.若264a =3a =______.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.22.某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?23.如图,AD//BC,∠A=∠C.求证:AB//DC.24.甲、乙两名同学在解方程组5{213mx yx ny+=-=时,甲解题时看错了m,解得7{22xy==-;乙解题时看错了n,解得3{7xy==-.请你以上两种结果,求出原方程组的正确解.25.解二元一次方程组:(1)23532 x yx y+=⎧⎨-=-⎩(2)25 411 x yx y-=⎧⎨+=⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先确定3的范围,然后再确定23的取值范围即可.【详解】∵1.52=2.25,22=4,2.25<3<4,<<,∴1.532<<,∴3234故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.2.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.3.D解析:D【解析】【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】由点P(a,b)在第四象限内,得a>0,b<0,故选:D.【点睛】此题考查各象限内点的坐标,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.A解析:A【解析】【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【详解】A、在同一平面内,平行于同一直线的两条直线平行.故正确;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、根据平行线的定义知是错误的.D、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;故选:A.【点睛】此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.5.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.7.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.8.C解析:C【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比,图案向左平移了a个单位长度,并且向下平移了a个单位长度.故选:C.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.10.A解析:A【解析】【分析】【详解】324{32?3x xx<+-≥①②,由①,得x<4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;故选A.11.B解析:B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B .点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.12.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°. 故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.二、填空题13.3【解析】【分析】利用平方根立方根的定义求出x 与y 的值即可确定的值【详解】解:根据题意的2a+1+3-4a=0解得a=2∴故答案为:3【点睛】本题考查了平方根和立方根熟练掌握相关的定义是解题的关键解析:3【解析】【分析】利用平方根、立方根的定义求出x 与y 2x y +的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,2252(8)=3x y ∴+=+⨯-,故答案为:3.【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.14.-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同再根据线段AB的长度为5B点在A点的坐标或右边分别求出B点的坐标即可得到答案【详解】解:∵AB∥x轴∴B点的纵坐标和A点的纵坐标解析:-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB 5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.15.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE时∠BAD=∠DAE=45°;当BC∥AD时∠DAE=∠B=60°;当BC∥AE时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC ∥AE 时,∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;当AB ∥DE 时,∵∠E =∠EAB =90°, ∴∠BAD =∠DAE +∠EAB =45°+90°=135°. 故答案为:45°,60°,105°,135°. 点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).16.(答案不唯一)【解析】【分析】由写出方程组即可【详解】解:∵二元一次方程组的解为∴即所求方程组为:故答案为:(答案不唯一)【点睛】此题考查二元一次方程组的解的概念:使方程左右两边相等的未知数的值叫做解析:64x y x y +=⎧⎨-=⎩(答案不唯一) 【解析】【分析】由516+=,514-=写出方程组即可.【详解】解:∵二元一次方程组的解为51x y =⎧⎨=⎩, ∴6x y +=,4x y -=,即所求方程组为:64x y x y +=⎧⎨-=⎩, 故答案为:64x y x y +=⎧⎨-=⎩.(答案不唯一) 【点睛】 此题考查二元一次方程组的解的概念:使方程左右两边相等的未知数的值叫做方程的解. 17.70°【解析】【分析】根据平行的判定要使直线a∥b 成立则∠2=∠3再根据∠1=110°即可把∠2的度数求解出来【详解】解:要使直线a∥b 成立则∠2=∠3(同位角相等两直线平行)∵∠1=110°∴∠3解析:70°【解析】【分析】根据平行的判定,要使直线a ∥b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a ∥b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.【点睛】本题主要考查了平行的判定(同位角相等,两直线平行),掌握直线平行的判定方法是解题的关键.18.70°或86°【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x然后求解即可【详解】∵∠α与∠β的两边分别平行∴①∠α=∠β∴(2x+10)°=(3x−20)°解得x=30∠α=(2×解析:70°或86°.【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x,然后求解即可.【详解】∵∠α与∠β的两边分别平行,∴①∠α=∠β,∴(2x+10)°=(3x−20)°,解得x=30,∠α=(2×30+10)°=70°,或②∠α+∠β=180°,∴(2x+10)°+(3x−20)°=180°,解得x=38,∠α=(2×38+10)°=86°,综上所述,∠α的度数为70°或86°.故答案为70°或86°.【点睛】此题考查平行线的性质,解题关键在于掌握其性质.19.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BA E+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.20.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】a ,∴a=±8.2解:∵264故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..三、解答题21.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.26元.【解析】【分析】通过理解题意,可知本题存在两个等量关系,即甲种服装的标价+乙种服装的标价=240元,甲种服装的标价×0.7+乙种服装的标价×0.8=186元,根据这两个等量关系可列出方程组求出甲、乙服装的进价,用售价减进价即可求出利润.【详解】解:设甲种服装的进价是x 元,乙种服装的进价是y 元.由题意得(150%)(150%)240(150%)0.7(150%)0.8186x y x y +++=⎧⎨+⨯++⨯=⎩解,得40120x y =⎧⎨=⎩186-(40+120)=26(元)答:这两种服装打折之后售出的利润是26元.故答案为26元.【点睛】本题考查了二元一次方程组的应用.解题的关键是弄清题意,找到合适的等量关系,列出方程组,在设未知量时知道到底设哪个更简单,否则较难列出方程.23.证明见解析.【解析】【分析】根据AD ∥BC 得到∠C=∠CDE ,再根据∠A=∠C ,利用等量替换得到∠A=∠CDE 即可判定;【详解】证明:∵AD ∥BC(已知),∴∠C=∠CDE(两直线平行,内错角相等),∵∠A=∠C(已知),∴∠A=∠CDE(等量代换),∴AB ∥CD(同位角相等,两直线平行);【点睛】本题主要考查了平行四边形的性质和判定,掌握直线平行内错角相等的性质和同位角相等两直线平行的判定法则是解题的关键.24.n = 3 , m = 4, 2{3x y ==-【解析】试题分析: 由题意可知722x y ⎧=⎪⎨⎪=-⎩是方程213x ny -=的解,由此即可求得n 的值;37x y =⎧⎨=-⎩是方程5mx y +=的解,由此看求得m 的值;这样即可得到正确的原方程组,再解方程组,即可求得原方程组的正确解;试题解析: 由题意可知722x y ⎧=⎪⎨⎪=-⎩是方程213x ny -=的解, ∴72(2)132n ⨯--=,解得n=3; 37x y =⎧⎨=-⎩是方程5mx y +=的解, ∴375m -=,解得m=4;∴原方程组为:452313x y x y +=⎧⎨-=⎩,解此方程组得23x y =⎧⎨=-⎩, ∴m=4,n=3,原方程组的解为:23x y =⎧⎨=-⎩. 点睛:在本题中“甲、乙两名同学在解方程组5213mx y x ny +=⎧⎨-=⎩时,甲解题时看错了m ,解得722x y ⎧=⎪⎨⎪=-⎩ ”这句话的含义是:“722x y ⎧=⎪⎨⎪=-⎩”是关于x y 、的二元一次方程“213x ny -=”的解.25.(1)11x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【解析】【分析】(1)利用加减消元法,先消去y ,解出x ,再代入原式解出y 即可;(2)先将411x y +=两边同时乘2,得8222x y +=与25x y -=相加,消去y ,解出x ,再代入原式解出y 即可.【详解】解:(1)23532x y x y +=⎧⎨-=-⎩①②, ①+②得:33x =,解得:1x =,将1x =代入①得:1y =,所以方程组的解为:11x y =⎧⎨=⎩, 故答案为:11x y =⎧⎨=⎩; (2)25411x y x y -=⎧⎨+=⎩①②, ②×2得:8222x y +=③, ①+③得:927x =,解得:3x =,将3x =代入①中解得:1y =-,所以方程组的解为:31x y =⎧⎨=-⎩, 故答案为:31x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法,此题运用加减消元法.。
【3套打包】四川省成都市石室中学最新七年级下册数学期中考试题(1)
七年级(下)数学期中考试题(含答案)一、选择题(每题2分,共16分.)1.(2分)下列四个实数中,无理数的是()A.0B.3C.D.2.(2分)无论取什么实数,点(﹣m2﹣1,3)一定在()A.第一象限B.第二象限C.第三象限D.第四象眼3.(2分)下列方程是二元一次方程的是()A.x+xy=1B.﹣3x+y=3(y﹣x)C.+y=5D.x+2y=54.(2分)下列各组数中,互为相反数的一组是()A.﹣2与﹣B.﹣2与C.﹣2与D.|﹣2|与5.(2分)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°6.(2分)如图,若将三角形ABC先向右平移5个单位长度(1个小格代表1个单位长度),再向下平移1个单位长度得到三角形A1B1C1,则点A的对应点A1的坐标是()A.(3,3)B.(3,﹣2)C.(﹣7,5)D.(﹣1,2)7.(2分)下列说法正确的个数有()①两条直线被第三条直线所截,内错角相等;②平面直角坐标系把平面上的点分为四部分;③无理数是无限小数;④体育老师测定同学的跳远成绩的依据是垂线段最短.A.1个B.2个C.3个D.4个8.(2分)在平面直角坐标系中,小明做走棋游戏,其走法:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度…以此类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除,余数为1时,则向右走1个单位长度;当n被3除,余数为2时,则向右走2个单位长度.当走完68步时,棋子所处的位置坐标是()A.(67,22)B.(68,22)C.(69,22)D.(69,23)二.填空题(每题2分,共16分.)9.(2分)﹣的立方根是.10.(2分)在平面直角坐标系中,已知点A(6,3),B(6,﹣5),则线段AB的长.11.(2分)命题“对顶角相等”的题设是,结论是.12.(2分)如图,要使AD∥BE,必须满足条件(写出你认为正确的一个条件).13.(2分)在平面直角坐标系中,点A到x轴的距离是2,到y轴的距离是到x轴距离的4倍,且点A在第三象限,则点A的坐标是.14.(2分)如图,若∠2+∠3=180°,∠1=106°,则∠4的度数是.15.(2分)已如关于x,y的二元一次方程组的解互为相反数,则(m﹣5)2019的值是.16.(2分)一张对边互相平行的纸条折成如图,EF是折痕,若∠EFB=32°,则:①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=106°.以上结论正确的有(填序号).三.解答题(17题8分,18题6分,19题10分,共24分)17.(8分)求下列各式中x的值:(1)25(x﹣1)2=16;(2)4(y﹣2)3=﹣32.18.(6分)如图,直线AB、CD相交于O点,∠AOC与∠AOD的度数比为4:5,OE⊥AB,OF平分∠DOB,求∠EOF的度数.19.(10分)解方程组:(1).(2).20.(8分)如图,一只蚂蚁从点沿数轴向右爬行3个单位长度到达点B,若点A表示﹣,设点B所表示的数为m.(1)求m的值.(2)求|m﹣1|+(m+6)+1的值.21.(8分)星期六,小王、小张、小李三位同学一起到人民广场游玩,出发前,他们每人带了一张利用平面直角坐标系画的示意图(如图),其中升旗台的坐标是(﹣4,2),盘龙苑小区的坐标是(﹣5,﹣3)(1)请根据上述信息,画出这个平面直角坐标系:(2)写出示意图中体育馆、行政办公楼、北部湾俱乐部、南城百货、国际大酒店的坐标:(3)小王跟小李和小张说他现在的位置是(﹣2,﹣2),请你在图中用字母标出小王的位置.22.(8分)如图,已知DG⊥BC,AC⊥BC,EF⊥AB,重足分别为点G,C,E,∠1=∠2;求证:CD⊥AB.完成下面的证明过程:证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直的定义)∴DG∥AC()∴∠2=()又∵∠1=∠2(已知)∴∠1=(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=()∵EF⊥AB(已知)∴∠AEF=90°(垂直的定义)∴∠ADC=90°()∴CD⊥AB().五.解答题(10分)23.(10分)某制衣厂现有22名制作服装的工人,每天都制作某种品牌的村衫和裤子.每人每天可制作这种村衫3件或裤子5条.(1)若该厂要求每天制作的村衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(此问题用列方程组方法求解).(2)已知制作件村衫可获得利润35元,制作一条裤子可获得利润15元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润共是多少元?六、解答题(10分)24.(10分)已知:ABC中,点D为射线CB上一点,且不与点B,点C重合,DE∥AB 交直线AC于点E,DF∥AC交直线AB于点F.(1)画出符合题意的图;(2)猜想∠EDF与∠BAC的数量关系,并证明你的结论.2017-2018学年辽宁省鞍山市台安县七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题2分,共16分.)1.(2分)下列四个实数中,无理数的是()A.0B.3C.D.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:0,3,是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(2分)无论取什么实数,点(﹣m2﹣1,3)一定在()A.第一象限B.第二象限C.第三象限D.第四象眼【分析】由m2≥0入手,结合不等式的性质,判断出﹣m2﹣1<0而求解.【解答】解:∵m2≥0,∴﹣m2﹣1<0,∴(﹣m2﹣1,3)一定在第二象限;故选:B.【点评】本题考查点的坐标;不等式的性质.准确判断点横纵坐标的正负性是解题关键.3.(2分)下列方程是二元一次方程的是()A.x+xy=1B.﹣3x+y=3(y﹣x)C.+y=5D.x+2y=5【分析】根据二元一次方程的定义,逐个判断得结论.【解答】解:由于xy是二次项,故选项A不是二元一次方程;由﹣3x+y=3(y﹣x),整理得2y=0,只含有一个未知数,故选项B不是二元一次方程;+y=5是分式方程,故选项C不是二元一次方程;只有x+2y=5满足二元一次方程的定义,是二元一次方程.故选:D.【点评】本题考查了二元一次方程的定义.二元一次方程需满足三条:(1)方程含有两个未知数;(2)未知项的次数都是1;(3)方程是整式方程.4.(2分)下列各组数中,互为相反数的一组是()A.﹣2与﹣B.﹣2与C.﹣2与D.|﹣2|与【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A、绝对值不同不是相反数,故A错误;B、都是﹣2,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、都是2,故D错误;故选:C.【点评】本题考查了实数的性质,在一个实数的前面加上负号就是这个实数的相反数.5.(2分)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°【分析】根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.【解答】解:如图,∵直线a∥b,∴∠3=∠1=60°.∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣60°=30°,故选:D.【点评】本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.6.(2分)如图,若将三角形ABC先向右平移5个单位长度(1个小格代表1个单位长度),再向下平移1个单位长度得到三角形A1B1C1,则点A的对应点A1的坐标是()A.(3,3)B.(3,﹣2)C.(﹣7,5)D.(﹣1,2)【分析】首先根据坐标系可得A点坐标,再根据点的平移方法可得对应点A1的坐标为(﹣2+5,4﹣1),再解即可.【解答】解:∵点A的坐标为(﹣2,4),∴对应点A1的坐标为(﹣2+5,4﹣1),即(3,3),故选:A.【点评】此题主要考查了坐标和图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.7.(2分)下列说法正确的个数有()①两条直线被第三条直线所截,内错角相等;②平面直角坐标系把平面上的点分为四部分;③无理数是无限小数;④体育老师测定同学的跳远成绩的依据是垂线段最短.A.1个B.2个C.3个D.4个【分析】根据平行线的性质与判定方法、实数的分类、垂线段的概念对各选项分析判断后利用排除法求解.【解答】解:①注意只有两条直线平行,才能得到内错角相等,故①错误;②平面直角坐标系把平面分成4个象限和坐标轴,故②错误;③无理数是指无限不循环小数,故③正确;④体育老师测定同学的跳远成绩的依据是垂线段最短.④正确.故选:B.【点评】本题考查了平行线、直角坐标系、实数等,正确理解相关概念性质是解题的关键.8.(2分)在平面直角坐标系中,小明做走棋游戏,其走法:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度…以此类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除,余数为1时,则向右走1个单位长度;当n被3除,余数为2时,则向右走2个单位长度.当走完68步时,棋子所处的位置坐标是()A.(67,22)B.(68,22)C.(69,22)D.(69,23)【分析】设走完第n步,棋子的坐标用A n来表示.列出部分A点坐标,发现规律“A3n (3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n)”,根据该规律即可解决问题.【解答】解:设走完第n步,棋子的坐标用A n来表示.观察,发现规律:A0(0,0),A1(1,0),A2(3,0),A3(3,1),A4(4,1),A5(6,1),A6(6,2),…,∴A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n).∵68=22×3+2,∴A68(69,22).故选:C.【点评】本题考查了规律型中的点的坐标,解题的关键是发现规律“A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n)”.本题属于基础题,难度不大,解决该题型题目时,根据棋子的运动情况,罗列出部分A点的坐标,根据坐标的变化发现规律是关键.二.填空题(每题2分,共16分.)9.(2分)﹣的立方根是﹣2.【分析】先根据算术平方根的定义求出,再利用立方根的定义解答.【解答】解:∵82=64,∴=8,∴﹣=﹣8,∵(﹣2)3=﹣8,∴﹣的立方根是﹣2.故答案为:﹣2.【点评】本题考查了立方根与算术平方根的定义,是易错题,熟记概念是解题的关键.10.(2分)在平面直角坐标系中,已知点A(6,3),B(6,﹣5),则线段AB的长8.【分析】根据线段长度计算方法计算即可.【解答】解:∵点A(6,3),B(6,﹣5),∴AB=3﹣(﹣5)=8,故答案为:8【点评】此题考查坐标与图形,关键是根据平面直角坐标系中线段长度的计算方法解答.11.(2分)命题“对顶角相等”的题设是两个角是对顶角,结论是这两个角相等.【分析】任何一个命题都可以写成如果…,那么…的形式,如果后面是题设,那么后面是结论.【解答】解:命题“对顶角相等”可写成:如果两个角是对顶角,那么这两个角相等.故命题“对顶角相等”的题设是“两个角是对顶角”,结论是“这两个角相等”.【点评】本题考查的是命题的题设与结论,解答此题目只要把命题写成如果…,那么…的形式,便可解答.12.(2分)如图,要使AD∥BE,必须满足∠1=∠2条件(写出你认为正确的一个条件).【分析】根据平行线的判定,使得这两条直线被第三条直线所截时的同位角相等、内错角相等和同旁内角互补即可,答案不唯一.【解答】解:当∠1=∠2或∠5=∠D或∠B+∠BAD=180°或∠1+∠ACE=180°或∠D+∠BCD=180°时,AD∥BE.故答案为:∠1=∠2(答案不唯一).【点评】此题考查了平行线的判定,解此题的关键是记准平行线的判定定理.13.(2分)在平面直角坐标系中,点A到x轴的距离是2,到y轴的距离是到x轴距离的4倍,且点A在第三象限,则点A的坐标是(﹣8,﹣2).【分析】由点A在第三象限内,先确定点A横纵坐标正负情况,再结合点到坐标轴的距离即是改点横纵坐标的绝对值,即可求解.【解答】解:∵点A在第三象限,∴横坐标小于0,纵坐标小于0,∵A到x轴的距离是2,∴纵坐标是﹣2,又∵到y轴的距离是到轴距离的4倍,∴A到y轴的距离是8,∴横坐标是﹣8,∴A点的坐标是(﹣8,﹣2),故答案为(﹣8,﹣2).【点评】本题考查平面内坐标到坐标轴的距离,平面内象限内点的坐标特点.熟练掌握点到x轴y轴的距离分别是点纵坐标和横坐标的绝对值是解题的关键.14.(2分)如图,若∠2+∠3=180°,∠1=106°,则∠4的度数是74°.【分析】给各角标上序号,由∠2+∠3=180°及邻补角互补可得出∠5+∠6=180°,利用“同旁内角互补,两直线平行”可得出直线l∥直线m,利用“两直线平行,内错角相等”可得出∠4=∠7,由∠1=106°及邻补角互补可求出∠4的度数.【解答】解:给各角标上序号,如图所示.∵∠2+∠6=180°,∠3+∠5=180°,∠2+∠3=180°,∴∠5+∠6=180°,∴直线l∥直线m,∴∠4=∠7.∵∠1+∠7=180°,∠1=106°,∴∠4=180°﹣∠1=74°.故答案为:74°.【点评】本题考查了平行线的判定与性质以及邻补角,利用平行线的性质找出∠4=∠7是解题的关键.15.(2分)已如关于x,y的二元一次方程组的解互为相反数,则(m﹣5)2019的值是﹣1.【分析】根据相反数的概念得到x=﹣y,代入求出x、y,再代入第二个方程求出m,根据有理数的乘方法则计算,得到答案.【解答】解:∵方程组的解互为相反数,∴x=﹣y,则﹣y+2y=3,解得,y=3,则x=﹣3,∴3×(﹣3)+5×3=m+2,解得,m=4,则(m﹣5)2019=(4﹣5)2019=﹣1,故答案为:﹣1.【点评】本题考查的是二元一次方程组的解和解法,掌握解二元一次方程组的一般步骤是解题的关键.16.(2分)一张对边互相平行的纸条折成如图,EF是折痕,若∠EFB=32°,则:①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=106°.以上结论正确的有①③(填序号).【分析】根据平行线的性质由AC′∥BD′可得到∠C′EF=∠EFB=32°;根据折叠的性质得到∠C′EF=∠CEF=32°,再利用邻补角的定义得到∠AEC=116°;由于AC′∥BD′,根据平行线的性质得∠BGE+∠AEG=180°,则∠BGE=180°﹣116°=64°;由GC∥FD,根据平行线的性质和对顶角相等得∠BFD=∠BGC=180°﹣∠BGE=116°.依此即可求解.【解答】解:∵AC′∥BD′,∴∠C′EF=∠EFB=32°,所以①正确;∵一张对边互相平行的纸条折成如图,EF是折痕,∴∠C′EF=∠CEF=32°,∴∠AEC=180°﹣2×32°=116°,所以②错误;∵AC′∥BD′,∴∠BGE+∠AEG=180°,∴∠BGE=180°﹣116°=64°,所以③正确;∵GC∥FD,∴∠BFD=∠BGC=180°﹣∠BGE=180°﹣64°=116°,所以④错误.故答案为:①③.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.三.解答题(17题8分,18题6分,19题10分,共24分)17.(8分)求下列各式中x的值:(1)25(x﹣1)2=16;(2)4(y﹣2)3=﹣32.【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.【解答】解:(1)25(x﹣1)2=16则(x﹣1)2=,故x﹣1=±,解得:x=或x=;(2)4(y﹣2)3=﹣32(y﹣2)3=﹣8,故y﹣2=﹣2,则y=0.【点评】此题主要考查了立方根以及平方根,正确把握相关定义是解题关键.18.(6分)如图,直线AB、CD相交于O点,∠AOC与∠AOD的度数比为4:5,OE⊥AB,OF平分∠DOB,求∠EOF的度数.【分析】设∠AOC=4x,则∠AOD=5x,根据邻补角的定义得到∠AOC+∠AOD=180°,即4x+5x=180°,解得x=20°,则∠AOC=4x=80°,利用对顶角相等得∠BOD=80°,由OE⊥AB得到∠BOE=90°,则∠DOE=∠BOE﹣∠BOD=10°,再根据角平分线的定义得到∠DOF=∠BOD=40°,利用∠EOF=∠EOD+∠DOF即可得到∠EOF的度数.【解答】解:设∠AOC=4x,则∠AOD=5x,∵∠AOC+∠AOD=180°,∴4x+5x=180°,解得x=20°,∴∠AOC=4x=80°,∴∠BOD=80°,∵OE⊥AB,∴∠BOE=90°,∴∠DOE=∠BOE﹣∠BOD=10°,又∵OF平分∠DOB,∴∠DOF=∠BOD=40°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.【点评】本题考查了垂线的性质:两直线垂直,则它们相交所成的角为90°.也考查了对顶角相等以及邻补角的定义.19.(10分)解方程组:(1).(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为;(2)方程组整理得:,①×5+②得:14y=14,解得:y=1,把y=1代入①得:x=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(8分)如图,一只蚂蚁从点沿数轴向右爬行3个单位长度到达点B,若点A表示﹣,设点B所表示的数为m.(1)求m的值.(2)求|m﹣1|+(m+6)+1的值.【分析】(1)根据数轴上的点向右移动加,可得答案;(2)根据绝对值的性质可得答案.【解答】解:(1)m的值为﹣+3.(2)|m﹣1|+(m+6)+1=|﹣+3﹣1|+×(﹣+3+6)+1=2﹣﹣3+9+1=8.【点评】本题考查了实数与数轴,绝对值,注意数轴上的点向右移动加,向左移动减.21.(8分)星期六,小王、小张、小李三位同学一起到人民广场游玩,出发前,他们每人带了一张利用平面直角坐标系画的示意图(如图),其中升旗台的坐标是(﹣4,2),盘龙苑小区的坐标是(﹣5,﹣3)(1)请根据上述信息,画出这个平面直角坐标系:(2)写出示意图中体育馆、行政办公楼、北部湾俱乐部、南城百货、国际大酒店的坐标:(3)小王跟小李和小张说他现在的位置是(﹣2,﹣2),请你在图中用字母标出小王的位置.【分析】(1)升旗台向右4个单位,向下2个单位确定出坐标原点的位置,然后建立平面直角坐标系即可;(2)根据平面直角坐标系的特点写出各坐标即可;(3)根据平面直角坐标系确定出小王现在的位置,即可得解;【解答】解:(1)如图所示:(2)体育馆(﹣9,4)、行政办公楼(﹣4,3)、北部湾俱乐部(﹣7,﹣1)、南城百货(2,﹣3)、国际大酒店(0,0);(3)如图所示,点A即为所求.【点评】本题考查了坐标位置的确定,是基础题,主要利用了平面直角坐标系的特点,点的坐标的表示,准确确定出坐标原点的位置是解题的关键.22.(8分)如图,已知DG⊥BC,AC⊥BC,EF⊥AB,重足分别为点G,C,E,∠1=∠2;求证:CD⊥AB.完成下面的证明过程:证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直的定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直的定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直的定义).【分析】由DG⊥BC,AC⊥BC可得出DGB=∠ACB=90°,利用“同位角相等,两直线平行”可得出DG∥AC,利用“两直线平行,内错角相等”可得出∠2=∠ACD,结合∠1=∠2可得出∠1=∠ACD,利用“同位角相等,两直线平行”可得出EF∥CD,利用“两直线平行,同位角相等”可得出∠AEF=∠ADC,由EF⊥AB可得出∠AEF=90°,结合∠AEF=∠ADC可得出∠ADC=90°,进而可得出CD⊥AB.【解答】证明:∵DG⊥BC,AC⊥BC(已知),∴∠DGB=∠ACB=90°(垂直的定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠1=∠ACD(等量代换),∴EF∥CD(同位角相等,两直线平行),∴∠AEF=∠ADC(两直线平行,同位角相等).∵EF⊥AB(已知),∴∠AEF=90°(垂直的定义),∴∠ADC=90°(等量代换)∴CD⊥AB(垂直的定义).故答案为:同位角相等,两直线平行;∠ACD;两直线平行,内错角相等;∠ACD;∠ADC;两直线平行,同位角相等;等量代换;垂直的定义.【点评】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.五.解答题(10分)23.(10分)某制衣厂现有22名制作服装的工人,每天都制作某种品牌的村衫和裤子.每人每天可制作这种村衫3件或裤子5条.(1)若该厂要求每天制作的村衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(此问题用列方程组方法求解).(2)已知制作件村衫可获得利润35元,制作一条裤子可获得利润15元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润共是多少元?【分析】(1)设应安排x人制作衬衫,安排y人制作裤子,根据制作衬衫和裤子的共22人且制作裤子的总数量是制作衬衫总数量的2倍,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=每件的利润×制作的总数量,即可求出结论.【解答】解:(1)设应安排x人制作衬衫,安排y人制作裤子,依题意,得:,解得:.答:应安排10人制作衬衫,安排12人制作裤子.(2)35×3×10+15×5×12=1950(元).答:在(1)的条件下,该厂每天制作衬衫和裤子所获得的利润共是1950元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.六、解答题(10分)24.(10分)已知:ABC中,点D为射线CB上一点,且不与点B,点C重合,DE∥AB 交直线AC于点E,DF∥AC交直线AB于点F.(1)画出符合题意的图;(2)猜想∠EDF与∠BAC的数量关系,并证明你的结论.【分析】(1)根据题意分别根据当点D在线段CB上时,当点D在线段CB得延长线上时,画出图象即可;(2)利用平行线的判定与性质分别证明得出即可.【解答】解:(1)如图1,2所示:①当点D在线段CB上时,如图1,∠EDF=∠A,证明:∵DE∥AB(已知),∴∠1=∠A(两直线平行,同位角相等),∵DF∥AC(已知),∴∠EDF=∠1,∴∠EDF=∠A.②当点D在线段CB得延长线上时,如图2,∠EDF+∠BAC=180°,证明:∵DE∥AB,∴∠EDF+∠F=180°,∵DF∥AC,∴∠F=∠BAC,∴∠EDF+∠BAC=180°.【点评】此题主要考查了平行线的判定与性质,利用分类讨论得出是解题关键.七年级(下)数学期中考试试题(含答案)一.选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.(2分)点(,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2分)实数﹣3,,,,π,0中,无理数有()A.2个B.3个C.4个D.5个3.(2分)下列各式中,有意义的是()A.B.C.D.4.(2分)下列各式正确的是()A.=±4B.=C.﹣|﹣|=0D.+=5.(2分)观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是()A.B.C.D.6.(2分)在平面坐标系内,点A位于第二象限,距离x轴2个单位长度,距离y轴3个单位长度,则点A的坐标为()A.(2,3)B.(3,﹣2)C.(﹣2,﹣3)D.(﹣3,2)7.(2分)将一直角三角板与两边平行的纸条如图放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠4=∠5;(4)∠4+∠5=180°其中正确的个数是()A.1B.2C.3D.48.(2分)下列命题中,真命题是()A.的平方根是±9B.0没有平方根C.无限小数都是无理数D.垂线段最短9.(2分)点P是直线1外一点,A、B、C为直线l上的三点,PA=6cm,PB=5cm,PC =4cm,点P到直线l的距离为dcm,则()A.0<d≤4B.d=4C.0≤d≤4D.d≥410.(2分)如图,两个相同的四边形重叠在一起,将其中一个四边形沿DA方向平移AE 长,则下列关于阴影部分面积的说法正确的是()A .S 阴影=S 四边形EHGFB .S 阴影=S 四边形DHGKC .S 阴影=S 四边形EDKFD .S 阴影=S 四边形EDKF ﹣S 四边形DHGK二、填空题(本大题共8个小题,每小题2分,共16分,把答案写在题中横线上) 11.(2分)2﹣的相反数是 .12.(2分)点A (3,4)向左平移3个单位后,再向下平移2个单位,对应点A 1坐标为 . 13.(2分)比较2,3,的大小 (用“<”连接).14.(2分)把命题“相等的角是对顶角”改写成“如果…,那么…”的形式是 . 15.(2分)﹣27的立方根是 .16.(2分)如图所示,直线AB ∥CD ,∠A =23°,则∠C = .17.(2分)已知(x ﹣1)3=﹣8,y 2﹣1=0,则x +y = .18.(2分)如图,点A (0,0),向右平移1个单位,再向上平移2个单位,得到点A 1;点A 1向右平移2个单位,再向上平移4个单位,得到点A 2;点A 2向右平移4个单位,再向上平移8个单位,得到点A 3;……;按这个规律平移得到点A n ,则点A n 的坐标为 .三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤) 19.(7分)计算: (1)﹣|1﹣| (2)()2+.20.(7分)如图,若每个小格的边长均为1,按要求解答:(1)建立适当的平面直角坐标系,写出点A、B、C、D、E的坐标.(2)三角形ACD的面积为.21.(7分)在下列括号内,填上推理的根据.已知:如图,∠1=110°,∠2=70°,求证:a∥b.解:∵∠1=110°(),∠3=∠1(),∴∠3=110°(),又∵(已知)∴∠2+∠3=180°∴a∥b().22.(7分)我们知道,一个正数有两个平方根,它们的关系是互为相反数,请用这个结论解答下题:已知:3x+2与2x﹣7是正数a的平方根,试求x和a的值.23.(8分)如图,已知△ABC,按要求画图;(1)把三角形ABC向右平移8个小格,得到三角形A1B1C1,画出三角形A1B1C1.(2)把三角形A1B1C1向下平移4个小格,得到三角形A2B2C2,画出三角形A2B2C2.(3)若在同一个平面直角坐标系中,点A(﹣5,2),则点B坐标为();点C2坐标为().24.(8分)已知:如图,AB∥CD,DB⊥BC,∠1=40°.求∠2的度数.25.(10分)在《5.3.1平行线的性质》一节,我们用测量的方法得出了“两直线平行,同位角相等”这一性质,但事实上,它可以用我们学过的基本事实来证明,阅读下列证明过程并把它补充完整:(1)若利用基本事实,证明“两直线平行,同位角相等.”如图1,已知直线a∥b,直线AB分别与a、b交于点P、Q求证:∠1=∠2证明:假设∠1≠∠2,则可以过点P作∠APC=∠2,∴PC∥b()又a∥b,且直线a经过点P,∴过点P存在两条直线a、PC与直线b平行,这与基本事实()矛盾,∴假设不成立,∴∠1=∠2(2)利用(1)的结论,证明“两直线平行,同旁内角互补.”要求画图,写出已知、求证、证明.已知:如图2,直线a、b被直线AB所截,分别交于点P、Q,且a∥b.求证:.证明:.26.(10分)认真研究下列探究过程,并将它补充完整:探究:已知直线l1∥l2直线l3和直线l1、l2交于点C和D,直线l3上有一点P.(1)若点P在C、D之间运动时,如图(1),问∠PAC,∠APB,∠PBD之间有什么关系?是否随点P的运动发生变化?并说明理由.解:∠APB=∠PAC+∠PBD,不发生变化.理由如下:作PE∥l1,又∵l1∥l2∴PE∥l2()∴∠PAC=∠APE,∠PBD=∠BPE,()又∵∠APB=∠APE+∠BPE∴∠APB=∠PAC+∠PBD().(2)若点P在l1上方运动时如图(2),试探索∠PAC,∠APB,∠PBD之间的关系,并说明理由.2017-2018学年辽宁省葫芦岛市建昌县七年级(下)期中数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.(2分)点(,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣,﹣5)所在的象限是第三象限.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(2分)实数﹣3,,,,π,0中,无理数有()A.2个B.3个C.4个D.5个【分析】利用无理数的定义判断即可.【解答】解:实数﹣3,,,,π,0中,无理数有,π,共2个,故选:A.【点评】此题考查了无理数,以及算术平方根,熟练掌握各自的定义是解本题的关键.3.(2分)下列各式中,有意义的是()A.B.C.D.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:A、,C、,D、,根号下不能是负数,故此选项错误;只有B选项,三次根号下可以为负数,故此选项正确.故选:B.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.4.(2分)下列各式正确的是()A.=±4B.=C.﹣|﹣|=0D.+=【分析】直接利用算术平方根以及立方根的性质分别化简得出答案.【解答】解:A、=4,故此选项错误;B、=,故此选项错误;C、﹣|﹣|=0,正确;D、+无法计算,故此选项错误.故选:C.【点评】此题主要考查了实数运算,正确化简各数是解题关键.5.(2分)观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是()A.B.C.D.【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【解答】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题意;C、可通过平移得到,符合题意;D、对应点的连线相交,不能通过平移得到,不符合题意;故选:C.【点评】本题考查平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.6.(2分)在平面坐标系内,点A位于第二象限,距离x轴2个单位长度,距离y轴3个单位长度,则点A的坐标为()A.(2,3)B.(3,﹣2)C.(﹣2,﹣3)D.(﹣3,2)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点A的横坐标与纵坐标,然后写出即可.【解答】解:∵点A位于第二象限,距离x轴2个单位长度,距离y轴3个单位长度,∴点A的横坐标为﹣3,纵坐标为2,。
四川省成都市石室佳兴外国语学校2015-2016学年七年级期末模拟数学试题
成都石室佳兴外国语学校2015—2016学年度下学期期末模拟试题(七)年级(数学)试卷满分:(150)分 考试时间:(120)分钟A 卷(满分100分)一、选择题 (每小题3分,共30分) 1.下列计算正确的是A .2a 2+3a 2=5a 4B .(2a 2)3=8a 5C .2a 2(-a 3)=-2a 5D .6a 2m ÷2a m=3a2.下列图形中,不是轴对称图形的是A .B .C .D . 3.如图所示,要得到DE ∥BC ,则需要的条件是 A .CD ⊥AB ,GF ⊥ABB .∠DCE +∠DEC =180°C .∠EDC =∠DCBD .∠BGF =∠DCB4.一个不透明的盒子中装有4个红球和2个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是 A .摸到红球是必然事件 B .摸到白球是不可能事件 C .摸到红球与摸到白球的可能性相同 D .摸到红球比摸到白球的可能性大 5.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,垂足分别为C ,D ,E , 则下列不正确的是A .AC 是△ABC 的高B .DE 是△BCD 的高C .DE 是△ABE 的高D .AD 是△ACD 的高 6. 要从小强、小红和小华三人随机选两人作为升旗手, 则小强和小红同时入选的概率是 A .23 B .13C .12D .16 7. 用直尺和圆规作一个角的平分线示意图如图所示,则能说明∠AOC =∠BOC 的依据是A .AASB .ASAC .SSSD .角平分线上的点到角的两边距离相等 8.已知两个变量x 和y ,它们之间的5组对应值如下表所示.x -2 -1 0 1 2 y-3-1135则变量y 与x之间的关系式可能是A .y =x+1B .y =2x +1C .y =x +2 D .y =x+3 9. 如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM +CN =10,则线段MN 的长为(第3题图)(第7题图)(第9题图)(第5题图)A .10B .9C .8D .710. 某电视台“走基层”栏目的一位记者乘汽车赴360km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确是 A. 汽车在高速公路上的行驶速度为100km/h B. 乡村公路总长为90kmC. 汽车在乡村公路上的行驶速度为60km/hD. 该记者在出发后4.5h 到达采访地二、填空题(每小题3分,共15分)11.计算:()()302241321---÷--+⎪⎭⎫ ⎝⎛-π= .12.一个DNA 分子的直径约为0.0000002cm ,用科学记数法表示为 cm . 13.一个角的余角是它的补角的31,则这个角为 . 14.如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线交AC 于点E ,垂足为点D ,连接BE ,则∠EBC 的度数为 .15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l 甲、l 乙分别表示甲、乙两人前往目的地所行驶路程S (千米)随时间t (分)的变化情况,则每分钟乙比甲多行驶 千米.三、解答题(每小题6分,共18分)16.(1)计算:()()()23222y x y x y x --+- (2)()232322221243⎪⎭⎫⎝⎛-÷-⋅⎪⎭⎫ ⎝⎛c b a c ab c ab(3)先化简,再求值: []x y y x y x y x 25)3)(()2(22÷--+-+,其中41,2=-=y x四、(每小题8分,共16分)17. 如图,已知CD 是∠ACB 的平分线,∠ACB =50°,∠B =70°, DE ∥BC .求∠EDC 和∠BDC 的度数.(第10题图)(第14题图)(第17题图)(第15题图)18.如图,我市某展览厅东面有两个入口A 、B ,南面、西面、北面各有一个出口.小华任选择一个入口进入展览大厅, 参观结束后任选一个出口离开. (1) 写出小华从进入到离开的所有路径;(2) 她从入口A 进入展厅并从北出口离开的概率是多少?五、(第19题10分,第20题11分,共21分)19.如图,在四边形ABCD 中,AD ∥BC ,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F ,点G 在BC 边上,且∠GDF =∠ADF 。
成都石室佳兴外国语学校新初一分班数学试卷
成都石室佳兴外国语学校新初一分班数学试卷一、选择题1.甲乙两地相距170千米,在地图上量得的距离是3.4厘米,这幅地图的比例尺是()。
A.1:500 B.1:5000000 C.1:500002.在9时和3时,时钟的时针和分针呈现同样的角度,下面四个答案中,()时两指针呈现的角度也一样。
A.九点半和三点半B.八点半和三点半C.十一点和十二点五分D.六点和十二点半3.某村去年生产油菜籽120吨,比前年增产一成五,前年生产油菜籽多少吨?正确的算式是()。
A.120×15% B.120×(1+15%)C.120÷(1+15%)4.一个三角形三个内角度数的比是1∶2∶1,这个三角形是()。
A.等边三角形B.等腰直角三角形C.钝角三角形5.用5千克棉花的0.25和5千克铁的相比较,结果是().A.5千克棉花的0.25重B.5千克铁的重C.一样重D.无法比较6.如图,是一个正方体展开图,把它折成正方体后与6相对的面是()。
A.1 B.2 C.3 D.47.下列各个说法中,错误的是()。
A.三角形的面积一定,底与高成反比例B.实际距离和图上距离的比叫做比例尺C.每支铅笔的价钱一定,铅笔支数和总价成正比例D.被除数一定,除数和商成反比例8.a是奇数,b是偶数,下面结果是奇数的式子是()。
A.a+b B.2a+b C.2(a+b)9.一件毛衣降价20%后,再提价20%,现价与原价比()。
A.没变B.贵了C.便宜了10.观察下面的点阵图规律,第(10)个点阵图中点的个数是()A.30个B.33 个C.36个D.39 个二、填空题11.地球上海洋的总面积约是三亿六千二百万平方千米,这个数写作(________)平方千米,省略亿位后面的尾数约是(________)亿平方千米。
十12.519的分数单位是(________),再添上(________)个这样的分数单位就是最小的质数。
十13.一个数,既是15的因数,又是15的倍数,这个数是________,它和30的最小公倍数是________,最大公因数是________。
成都市石室外语学校新初一分班数学试卷含答案
成都市石室外语学校新初一分班数学试卷含答案一、选择题1.在一幅图上,3厘米的线段表示的实际距离是15千米,这幅图的比例尺是( )。
A .1∶500000 B .315000C .1∶5 2.一钟面上绕过1小时,分针转过的角与同一时间内时针转过的角的度数比为( )。
A .360:1 B .12:1 C .1:1D .无法确定3.如图,线段OA 和线段BC 分别是圆的半径和直径,已知线段OA 长5厘米,若一只蚂蚁从B 点出发沿逆时方向绕着圆的边线爬行至C 点,所经过的路程是多少厘米?正确的算式是( )。
A .5×2B .5πC .1(5)2π 4.一个三角形,三个内角度数分别是45°、45°、90°,这个三角形( )。
A .没有对称轴 B .有一条对称轴 C .有两条对称轴 D .有三条对称轴 5.合唱团有男生47人,比女生人数的3倍多2人,合唱团的女生有多少人?设合唱团的女生有x 人,则下面方程中,正确的是( )。
A .()4732x -⨯=B .3472x -=C .3247x x ++=D .3247x += 6.下图是用5个小正方体拼摆而成的,从右面看到的图形是( )。
A .B .C .D . 7.下列有关圆的说法错误的是( )。
A .周长相等的两个圆形,面积也一定相等B .在一个圆中画两条互相垂直的半径,可以得到一个圆心角是90°的扇形C .圆形是轴对称图形,一个圆有4条对称轴D .在同一个圆中,周长是直径的π倍8.底面积相等的圆柱和圆锥,它们的体积比是4∶1,圆锥的高是6厘米,圆柱的高是( )厘米。
A .4B .8C .6D .109.出租车收费规定如下:3千米及3千米以下收费5元,超过3千米的部分(不足1千米的部分,按1千米算),每千米收费2元。
王老师上班坐出租车行驶4.6千米,应付出租车费( )元。
A .10B .9C .710.将一些小圆球如下图摆放,第六幅图中共有( )个小圆球。
【3套打包】成都石室佳兴外国语学校最新七年级下册数学期中考试题
七年级(下)期中考试数学试题(答案)一、选择题(1~10题每题3分,11~16题每题2分,共42分) 1.16的平方根是A.4B.4-C.1616-或D.44-或 2.在平面直角坐标系中,下列各点在第二象限的是A.(1,2)B.(-1,-2)C.(-1,2)D.(1,-2) 3.如图,直线AB 与CD 相交于点O ,OE 平分∠AOC ,且∠AOC=80°,则∠BOE 的度数为 A.140° B.100° C.150° D.40° 4.若x 使()412=-x 成立,则x 的值是A.3B.1-C.13-或D.2±5.在平面直角坐标系内,把点P(-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是A.(-3,2)B.(-7,-6)C.(-7,2)D.(-3,-6) 6.若,437-=x 则x 的取值范围是A.32<<xB.43<<xC.54<<xD.65<<x 7.下列方程中,是二元一次方程的是 A.12=-y x B.12=-y x C.11=+y xD.01=-xy 8.下列4组数值,哪个是二元一次方程532=+y x 的解? A.⎪⎩⎪⎨⎧==530y x B.⎩⎨⎧==11y x C.⎩⎨⎧-==32y x D.⎩⎨⎧==14y x 9.下列现象属于平移的是 ①打气筒活塞的轮复运动; ②电梯的上下运动;③钟摆的摆动;④转动的门;⑤汽车在一条 直的马路上行走。
A.③B.②③C.①②④D.①②⑤10.如图所示,在平面直角坐标系中,点A 、B 、C 的坐标分别为(-1,3)、(-4,1)、(2,1),将△ABC 沿一确定方向平移得到,△111C B A 点B 的对应点1B 的坐标是(1,2),则点11C A 、的坐标分别是A.()()234411,、,C AB.()()123311,、,C AC.()()323411,、,C AD.()()224311,、,C A 11.如图,给出下列几个条件:①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°, 能判断直线b a ∥的有_____个A.1B.2C.3D.412.已知直线AB 、CB 、l 在同一平面内,若AB ⊥l ,垂足为B ,CB ⊥l 垂足也为B ,则符合题意的图形可以是13.解方程组,②①⎩⎨⎧=-=+763132y x y x 用加减法消去y ,需要A.①×2-②B.①×3-②×2C.①×2+②D.①×3+②×2 14.元一次方程52=+y x 的正整数解有A.1组B.2组C.3组D.无数组 15.如图图形中,把△ABC 平移后能得到△DEF 的是16.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒运动1个单位,那么第80秒时质点所在位置的坐标是A.(0,9)B.(9,0)C.(0,8)D.(8,0) 二、填空题(每题3分,共12分)17.若一正数的两个平方根分别是72-a 与,2+-a 则这个正数等于_______.18.如果点P ()a a 212,-在y 人教版数学七年级下册期中考试试题(答案)一、选择题(本大题10小题,每小题3分,共30分。
成都石室佳兴外国语学校七年级数学下册第八单元《二元一次方程组》经典练习(提高培优)
一、选择题1.已知二元一次方程组2513377x y x y +=⎧⎨-=-⎩①②,用加减消元法解方程组正确的( ) A .①×5-②×7B .①×2+②×3C .①×7-②×5D .①×3-②×2D 解析:D【分析】方程组利用加减消元法变形,判断即可.【详解】解:用加减消元法解方程组2513377x y x y +=⎧⎨-=-⎩①②,用①×3-②×2可以消去x , 选项A ,B , C 无法消去方程组中的未知数,故选:D .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.2.若12x y =⎧⎨=-⎩是方程3x+by =1的解,则b 的值为( ) A .1B .﹣1C .﹣2D .2A解析:A【分析】把方程的解代入方程,解方程求出b 的值即可.【详解】 把12x y =⎧⎨=-⎩代入方程3x +by =1,得3−2b =1, 所以−2b =−2,所以b =1.故选:A .【点睛】本题考查了方程的解和解方程,掌握方程解的意义是解决本题的关键.3.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .0C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.4.下列方程中是二元一次方程的是( )A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy = B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误; -1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误; 5xy =最高次是2次,故D 选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键. 5.关于x 、y 的方程组53x ay x y +=⎧⎨-=⎩的解是1•x y =⎧⎨=⎩,其中y 的值被盖住了,不过仍能求出a ,则a 的值是( )A .2B .-2C .1D .-1B 解析:B【分析】把1x =代入②,得到y 的值,再将x 和y 的值代入①即可求解.【详解】解:53x ay x y +=⎧⎨-=⎩①②,把1x =代入②,得2y =-, 把12x y =⎧⎨=-⎩代入①可得:125a -=,解得2a =-, 故选:B .【点睛】本题考查二元一次方程组的解,把1x =代入②得到y 的值是解题的关键.6.若二元一次方程3x ﹣y=﹣7,x+3y=1,y=kx+9有公共解,则k 的取值为( ) A .3B .﹣3C .﹣4D .4D 解析:D【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入y=kx+9中,即可求得k 的值.【详解】解:解方程组3731x y x y -=-⎧⎨+=⎩得: 21x y =-⎧⎨=⎩, 代入9y kx =+得:129k =-+,解得:4k =.故选:D .【点睛】本题考查了二元一次方程组,解决本题的关键是掌握解二元一次方程组的解法. 7.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =- C 解析:C【分析】将x 看做常数移项求出y 即可得.【详解】由2x-y=3知2x-3=y ,即y=2x-3,故选C .【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .8.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( ) A .2-B .2C .6-D .6C解析:C【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值.【详解】2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-,∴()39336x y x y +=+=-,故选:C .【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键. 9.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .452710320x y x y -=⎧⎨+=⎩C .452710320x y x y +=⎧⎨+=⎩D .427510203x y x y -=⎧⎨-=⎩C 解析:C【分析】根据等量关系式“①4辆板车运货量+5辆卡车运货量=27吨;②10辆板车运货量+3辆卡车运货量=20吨”根据相等关系就可设未知数列出方程.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4x+5y=27;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10x+3y=20.可列方程组为452710320x y x y +⎧⎨+⎩==. 故选:C .【点睛】由关键性词语“4辆板车和5辆卡车一次能运27吨货”,“10辆板车和3车卡车一次能运货20吨”,找到等量关系是解决本题的关键.10.小明骑着自行车以每分钟120m 的速度匀速行驶在环城公路上,每隔5min 就和一辆公交车迎面相遇,每隔15min 就被同向行驶的一辆公交车追上,如果公交车是匀速行驶的,并且每相邻的两辆公交车从起点车站发出的间隔时间相等,则公交车的速度是( ).A .180min mB .200min mC .240min mD .250min m C解析:C【分析】设汽车的速度为每分钟2v 米,相邻两车的距离是s , 根据每隔5min 就和一辆公交车迎面相遇,求出汽车相对于人的速度,可得关于s 和2v 的方程;根据每隔15min 就被同向行驶的一辆公交车追上,求出汽车相对于人的速度,可得关于s 和2v 的方程;联立方程组求解;【详解】解:设公交车的速度为每分钟2v 米,相邻两车间的距离为s 米,汽车迎面开来,汽车相对人的速度2120v v =+,则()()1212120=5120+s vt v t v ==+,汽车从后面追上,汽车相对人的速度2120v v '=-,则()()2222120=15120s v t v t v '==--,()()22512015120s v s v =+⎧⎪∴⎨=-⎪⎩()()225120+15120,v v ∴=-∴ 2240min v m =,故选:.C【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系(相邻两车的距离相等),列出方程组再求解。
成都石室佳兴外国语学校七年级下册数学期末试卷测试卷 (word版,含解析)
成都石室佳兴外国语学校七年级下册数学期末试卷测试卷 (word 版,含解析)一、解答题1.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED = .(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.2.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒. (1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).3.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由;(2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AENCDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.4.已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF =β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由. 5.已知,//AB CD .点M 在AB 上,点N 在CD 上.(1)如图1中,BME ∠、E ∠、END ∠的数量关系为: ;(不需要证明);如图2中,BMF ∠、F ∠、FND ∠的数量关系为: ;(不需要证明)(2)如图 3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=,求FME ∠的度数;(3)如图4中,60BME ∠=,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出么FEQ ∠的度数.二、解答题6.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D . ①如图2,说明ABD C ∠=∠成立的理由;②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.7.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系.8.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a 从空气中射入水中,再从水中射入空气中,形成光线b ,根据光学知识有12,34∠=∠∠=∠,请判断光线a 与光线b 是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC 的夹角为40︒,问如何放置平面镜MN ,可使反射光线b 正好垂直照射到井底?(即求MN 与水平线的夹角)(3)如图3,直线EF 上有两点A 、C ,分别引两条射线AB 、CD .105BAF ∠=︒,65DCF ∠=︒,射线AB 、CD 分别绕A 点,C 点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t ,在射线CD 转动一周的时间内,是否存在某时刻,使得CD 与AB 平行?若存在,求出所有满足条件的时间t . 9.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.10.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值; (3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).三、解答题11.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.12.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.13.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”;②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒; ③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数. 14.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.15.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.(1)l 2与l 3的位置关系是 ;(2)如图1,若CE 平分∠BCD ,且∠BCD =70°,则∠CED = °,∠ADC = °; (3)如图2,若CD ⊥BD 于D ,作∠BCD 的角平分线,交BD 于F ,交AD 于G .试说明:∠DGF =∠DFG ;(4)如图3,若∠DBE =∠DEB ,点C 在射线AM 上运动,∠BDC 的角平分线交EB 的延长线于点N ,在点C 的运动过程中,探索∠N:∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.【参考答案】一、解答题1.(1)70°;(2),证明见解析;(3)122°【分析】(1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即; (3)设,则,通过三角形内角和得到,由角平分线解析:(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122° 【分析】(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠;(3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.【详解】解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒, 70AED AEH DEH ∴∠=∠+∠=︒,故答案为:70︒;(2)EAF AED EDG ∠=∠+∠. 理由如下: 过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒, 180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠;(3):1:2EAP BAP ∠∠=, 设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒,22EDK EAP x ∴∠=∠-︒=-︒,DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒,28226EDK ∴∠=︒-︒=︒, 1802632122EKD ∴∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.2.(1)见解析;(2)10°;(3) 【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E 作HE ∥CD ,设 由(1)得AB ∥CD解析:(1)见解析;(2)10°;(3)18015α︒- 【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠. 【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD , ∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠ ∵180DEB ABE CDE ∠+∠-∠=︒, ∴180,FEB ABE ∠+∠=︒ ∴EF ∥AB , ∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图, 设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE , ∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠= ∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+ 又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+ ∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+ 即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图, 由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠= ∴PND CDM DMQ α∠=∠=∠=, 又∵14CDM CDE ∠=∠,∴33,MDE CDM α∠=∠= ∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+= 又∵PN ∥AB , ∴4,PNB NBA α∠=∠=∵14ABN ABE ∠=∠,∴44416,ABM ABN αα∠=∠=⨯= 又∵AB ∥QM , ∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-. 【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.3.(1)见解析;(2);(3)75° 【分析】(1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2)12;(3)75° 【分析】(1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可. 【详解】解:(1)∠C =∠1+∠2,证明:过C 作l ∥MN ,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG ,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.4.(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于解析:(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q∠∠的值不变,12FPN Q =∠∠ 【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ; (2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠. 【详解】解:(1)2(402)|20|0αβ-+-=,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒,EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ;(2)180FMN GHF ∠+∠=︒;理由:由(1)得//AB CD ,MNF PME ∴∠=∠,MGH MNF ∠=∠,PME MGH ∴∠=∠,//GH PN ∴,GHM FMN ∴∠=∠,180GHF GHM ∠+∠=︒,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠; 理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠,12PFQ PFN =∠∠, PER PFQ ∴∠=∠,//ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x R y x EPM =+∠⎧⎨=+∠⎩, 可得12EPM R ∠=∠,112EPM FQM ∴∠=∠,∴112EPM FQM ∠=∠. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.5.(1)∠BME =∠MEN−∠END ;∠BMF =∠MFN +∠FND .(2)120°(3)∠FEQ 的大小没发生变化,∠FEQ =30°.【分析】(1)过E 作EHAB ,易得EHABCD ,根据平行线的性质解析:(1)∠BME =∠MEN −∠END ;∠BMF =∠MFN +∠FND .(2)120°(3)∠FEQ 的大小没发生变化,∠FEQ =30°.【分析】(1)过E 作EH //AB ,易得EH //AB //CD ,根据平行线的性质可求解;过F 作FH //AB ,易得FH //AB //CD ,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME +∠END )+∠BMF −∠FND =180°,可求解∠BMF =60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ =12∠BME ,进而可求解.【详解】解:(1)过E作EH//AB,如图1,∴∠BME=∠MEH,∵AB//CD,∴HE//CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN−∠END.如图2,过F作FH//AB,∴∠BMF=∠MFK,∵AB//CD,∴FH//CD,∴∠FND=∠KFN,∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF−∠FND=180°,∴2∠BME+2∠END+∠BMF−∠FND=180°,即2∠BMF+∠FND+∠BMF−∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ//NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN−∠NEQ=12(∠BME+∠END)−12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.二、解答题6.(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥解析:(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,BG CN//,∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.7.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如图所示,210-∠A=(180°-∠D CM)+α,即∠A-∠DCM=30°-α.综上所述,∠A-∠DCM=30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.8.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF =105°,∠DCF =65°,∴∠DCF =360°-3t °-65°=295°-3t °,∠BAC =105°-t °,要使AB ∥CD ,则∠DCF =∠BAC ,即295-3t =105-t ,解得t =95;如图③,CD 旋转到与AB 都在EF 的左侧时,∵∠BAF =105°,∠DCF =65°,∴∠DCF =3t °-(180°-65°+180°)=3t °-295°,∠BAC =t °-105°,要使AB ∥CD ,则∠DCF =∠BAC ,即3t -295=t -105,解得t =95,此时t >105,∴此情况不存在.综上所述,t 为5秒或95秒时,CD 与AB 平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.9.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α.【详解】解:(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P作FD的平行线PQ,则DF∥PQ∥AC,∴∠α=∠EPQ,∠β=∠APQ,∴∠APE=∠EPQ+∠APQ=∠α+∠β,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ-∠EPQ=∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.10.(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60°;(2)50°;(3)18021n α︒--或18021n α︒-+ 【分析】(1)根据平行线的性质可得CBD ∠的度数,再根据角平分线的性质可得ABE 的度数,应用三角形内角和计算BAC ∠的度数,由已知条件BAE CAE ∠=∠,可计算出CAE ∠的度数; (2)根据题意画出图形,先根据:5:1BAE CAE ∠∠=可计算出CAE ∠的度数,由100BAE ∠=︒可计算出BAC ∠的度数,再根据平行线的性质和角平分线的性质,计算出CBD ∠的度数,即可得出结论;(3)根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可等处结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可等处结论.【详解】解:(1)30α=︒,//AC BD ,30CBD ∴∠=︒, BC 平分ABD ∠,30ABE CBD ∴∠=∠=︒,1801803030120BAC ABE α∴∠=︒-∠-=︒-︒-︒=︒,又BAE CAE ∠=∠,111206022CAE BAC ∴∠=∠=⨯︒=︒; (2)根据题意画图,如图1所示,100BAE ∠=︒,:5:1BAE CAE ∠∠=,20CAE ∴∠=︒,1002080BAC BAE CAE ∴∠=∠-∠=︒-︒=︒,//AC BD ,180100ABD BAC ∴∠=︒-∠=︒,又BC 平分ABD ∠,111005022CBD ABD ∴∠=∠=⨯︒=︒, 50CBD α∴=∠=︒;(3)①如图2所示,//AC BD ,CBD ACB α∴∠=∠=, BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠+∠∠=,(1802):CAE CAE n α︒-+∠∠=, 解得18021CAE n α︒-∠=-;②如图3所示,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠-∠∠=,(1802):CAE CAE n α︒--∠∠=,解得18021CAE n α︒-∠=+.综上CAE ∠的度数为18021n α︒--或18021n α︒-+. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.三、解答题11.(1)120°;(2)∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB ∥CD ,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,证明见详解.【分析】(1)根据题意,当点P 与点E 、F 在一直线上时,作出图形,由AB ∥CD ,∠FHP=60°,可以推出GEP EGP ∠=∠=60°,计算∠PFD 即可;(2)根据点P 是动点,分三种情况讨论:①当点P 在AB 与CD 之间时;②当点P 在AB 上方时;③当点P 在CD 下方时,分别求出∠AEP 、∠EPF 、∠CFP 之间的关系即可.【详解】(1)当点P 与点E 、F 在一直线上时,作图如下,∵AB ∥CD ,∠FHP=60°,GEP EGP ∠=∠,∴GEP EGP ∠=∠=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP .证明:根据点P 是动点,分三种情况讨论:①当点P 在AB 与CD 之间时,过点P 作PQ ∥AB ,如下图,∵AB ∥CD ,∴PQ ∥AB ∥CD ,∴∠AEP=∠EPQ ,∠CFP=∠FPQ ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP ,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.12.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD ,∵AE 是角平分线,∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B ,∴∠CEF=∠CFE ;[变式思考]相等,理由如下:证明:∵AF 为∠BAG 的角平分线,∴∠GAF=∠DAF ,∵∠CAE=∠GAF ,∴∠CAE=∠DAF ,∵CD 为AB 边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE ;[探究延伸]∠M+∠CFE=90°,证明:∵C 、A 、G 三点共线 AE 、AN 为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM ,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B ,∠CFE=∠EAC+∠ACD ,∠ACD=∠B ,∴∠CEF=∠CFE ,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.13.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.14.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AEDEKD∠=︒.80【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.15.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=1BCD,2∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;;理由如下:(4)∠N:∠BCD的值不会变化,等于12∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.。
成都石室佳兴外国语学校七年级下册数学期末试卷测试卷 (word版,含解析)
成都石室佳兴外国语学校七年级下册数学期末试卷测试卷 (word 版,含解析)一、解答题1.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间10秒时,PB '与QC '的位置关系为 ; (2)若射线QC 先转15秒,射线PB 才开始转动,当射线PB 旋转的时间为多少秒时,PB ′//QC ′.2.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示); (2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示); ②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.3.如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .(1)若20n =时,则BED ∠=___________;(2)试求出BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示) 4.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系. 5.已知AB ∥CD ,∠ABE 与∠CDE 的角分线相交于点F .(1)如图1,若BM 、DM 分别是∠ABF 和∠CDF 的角平分线,且∠BED =100°,求∠M 的度数;(2)如图2,若∠ABM =13∠ABF ,∠CDM =13∠CDF ,∠BED =α°,求∠M 的度数;(3)若∠ABM =1n ∠ABF ,∠CDM =1n∠CDF ,请直接写出∠M 与∠BED 之间的数量关系二、解答题6.如图,直线//PQ MN ,一副三角板(90ABC CDE ∠=∠=︒,30ACB ∠=︒,60,45EAC DCE DEC ∠=︒∠=∠=︒)按如图①放置,其中点E 在直线PQ 上,点,B C 均在直线MN 上,且CE 平分ACN ∠.(1)求DEQ ∠的度数.(2)如图②,若将三角形ABC 绕B 点以每秒5︒的速度按逆时针方向旋转(,A C 的对应点分别为,F G ).设旋转时间为t 秒(036)t ≤≤. ①在旋转过程中,若边//BG CD ,求t 的值;②若在三角形ABC 绕B 点旋转的同时,三角形CDE 绕E 点以每秒4︒的速度按顺时针方向旋转(,C D 的对应点分别为,H K ).请直接写出当边//BG HK 时t 的值. 7.如图1,//AB CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠+∠=∠;(2)在图2中,画BEP ∠的平分线与DFP ∠的平分线,两条角平分线交于点Q ,请你补全图形,试探索EQF ∠与EPF ∠之间的关系,并证明你的结论;(3)在(2)的条件下,已知BEP ∠和DFP ∠均为钝角,点G 在直线AB 、CD 之间,且满足1BEG BEP n ∠=∠,1DFG DFP n∠=∠,(其中n 为常数且1n >),直接写出EGF ∠与EPF ∠的数量关系.8.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值; (3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示). 9.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n ∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)10.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ; (2)求∠CBD 的度数;(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 .三、解答题11.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON =60°,在射线OM 上取一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点C 不与O 、B 重合),若∠ACB =80°.判定△AOB 、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取一点F ,使得∠EFC +∠BDC =180°,∠DEF =∠B .若△BCD 是“梦想三角形”,求∠B 的度数.12.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.13.模型与应用. (模型)(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)14.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P 在边AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ;(3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间的关系为: . 15.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.【参考答案】一、解答题1.(1)PB′⊥QC′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB′∥QC′ 【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O ,过O 作OE ∥AB ,根解析:(1)PB ′⊥QC ′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB ′∥QC ′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.2.(1);(2)① ;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到,再由折叠的性质及平角的定义解析:(1)1902a︒-;(2)①1454a︒+;②50︒【分析】(1)由平行线的性质得到4'B FC a∠=∠=,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F , ∴14a ∠=∠=, ∵//AD BC , ∴4'B FC a ∠=∠=, 180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- ,∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-,再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭',13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠,11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭,又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.3.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数;(2)同(1)中方法求解解析:(1)60°;(2)n °+40°;(3)n °+40°或n °-40°或220°-n °【分析】(1)过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; (2)同(1)中方法求解即可;(3)分当点B 在点A 左侧和当点B 在点A 右侧,再分三种情况,讨论,分别过点E 作EF ∥AB ,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n =20时,∠ABC =40°,过E 作EF ∥AB ,则EF ∥CD ,∴∠BEF =∠ABE ,∠DEF =∠CDE ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠BEF =∠ABE =20°,∠DEF =∠CDE =40°,∴∠BED =∠BEF +∠DEF =60°;(2)同(1)可知:∠BEF =∠ABE =n °,∠DEF =∠CDE =40°,∴∠BED =∠BEF +∠DEF =n °+40°;(3)当点B 在点A 左侧时,由(2)可知:∠BED =n °+40°;当点B 在点A 右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=12∠ABC=n°,∠CDE=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.4.(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P 进行分类讨论解析:(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE ∥AD ∥BC ,∴∠EPC=β,∠EPD =α,∴CPD βα∠=∠-∠;当P 在BO 之间时,如备用图2:∵PE ∥AD ∥BC ,∴∠EPD =α,∠CPE =β,∴CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.5.(1)65°;(2);(3)2n ∠M+∠BED=360°【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+解析:(1)65°;(2)3606α︒-︒;(3)2n ∠M +∠BED =360° 【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE +∠CDE =260°,再利用角平分线的定义得到∠ABF +∠CDF =130°,从而得到∠BFD 的度数,再根据角平分线的定义和三角形外角的性质可求∠M 的度数;(2)先由已知得到∠ABE =6∠ABM ,∠CDE =6∠CDM ,由(1)得∠ABE +∠CDE =360°-∠BED ,∠M =∠ABM +∠CDM ,等量代换即可求解;(3)由(2)的方法可得到2n ∠M +∠BED =360°.【详解】解:(1)如图1,作//EG AB ,//FH AB ,连结MF ,//AB CD ,//////EG AB FH CD ∴,ABF BFH ∴∠=∠,CDF DFH ∠=∠,180ABE BEG ∠+∠=︒,180GED CDE ∠+∠=︒, 360ABE BEG GED CDE ∴∠+∠+∠+∠=︒,100BED BEG DEG ∠=∠+∠=︒,260ABE CDE ∴∠+∠=︒,ABE ∠和CDE ∠的角平分线相交于E ,130ABF CDF ∴∠+∠=︒,130BFD BFH DFH ∴∠=∠+∠=︒, BM 、DM 分别是ABF ∠和CDF ∠的角平分线,12MBF ABF ∴∠=∠,12MDF CDF ∠=∠, 65MBF MDF ∴∠+∠=︒,1306565BMD ∴∠=︒-︒=︒;(2)如图1,13ABM ABF ∠=∠,13CDM CDF ∠=∠, 3ABF ABM ∴∠=∠,3CDF CDM ∠=∠,ABE ∠与CDE ∠两个角的角平分线相交于点F ,6ABE ABM ∴∠=∠,6CDE CDM ∠=∠,66360ABM CDM BED ∴∠+∠+∠=︒,BMD ABM CDM ∠=∠+∠,6360BMD BED ∴∠+∠=︒,3606BMD α︒-︒∴∠=; (3)由(2)结论可得,22360n ABM n CDM E ∠+∠+∠=︒,M ABM CDM ∠=∠+∠, 则2360n M BED ∠+∠=︒.【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.二、解答题6.(1)60°;(2)①6s ;②s 或s【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.②分两种情形:如图③中,当解析:(1)60°;(2)①6s;②103s或703s【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.【详解】解:(1)如图①中,∵∠ACB=30°,∴∠ACN=180°-∠ACB=150°,∵CE平分∠ACN,∴∠ECN=12∠ACN=75°,∵PQ∥MN,∴∠QEC+∠ECN=180°,∴∠QEC=180°-75°=105°,∴∠DEQ=∠QEC-∠CED=105°-45°=60°.(2)①如图②中,∵BG∥CD,∴∠GBC=∠DCN,∵∠DCN=∠ECN-∠ECD=75°-45°=30°,∴∠GBC=30°,∴5t=30,∴t=6s.∴在旋转过程中,若边BG∥CD,t的值为6s.②如图③中,当BG∥HK时,延长KH交MN于R.∵BG∥KR,∴∠GBN=∠KRN,∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,∴∠KRN=90°-(60°+4t)=30°-4t,∴5t=30°-4t,∴t=10s.3如图③-1中,当BG∥HK时,延长HK交MN于R.∵BG ∥KR ,∴∠GBN +∠KRM =180°,∵∠QEK =60°+4t ,∠EKR =∠PEK +∠KRM ,∴∠KRM =90°-(180°-60°-4t )=4t -30°,∴5t +4t -30°=180°,∴t =703s . 综上所述,满足条件的t 的值为103s 或703s . 【点睛】本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.7.(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,,再根据角平分线性质可得;(3)由(2)结论可得:.【详解】(1)证明:如图1,过解析:(1)见解析;(2)2360EPF EQF ∠+∠=︒;见解析;(3)360EPF n EGF ∠+∠=︒【分析】(1)过点P 作//PG AB ,根据平行线性质可得;(2)由(1)结论可得:EPF AEP CFP ∠=∠+∠,EQF BEQ DFQ ∠=∠+∠,再根据角平分线性质可得EQF BEQ DFQ ∠=∠+∠()13602EPF =︒-∠; (3)由(2)结论可得:()1EGF BEG DFG BEP DFP n ∠=∠+∠=∠+∠()1360EPF n =︒-∠. 【详解】(1)证明:如图1,过点P 作//PG AB ,∵//AB CD ,∴//PG CD ,∴1AEP ∠=∠,2CFP ∠=∠,又∵12EPF ∠+∠=∠,∴AEP CFP EPF ∠+∠=∠;(2)如图2,由(1)可得:EPF AEP CFP ∠=∠+∠,EQF BEQ DFQ ∠=∠+∠,∵BEP ∠的平分线与DFP ∠的平分线相交于点Q , ∴1()2EQF BEQ DFQ BEP DFP ∠=∠+∠=∠+∠ []()11360()36022AEP CFP EPF =︒-∠+∠=︒-∠, ∴2360EPF EQF ∠+∠=︒;(3)由(2)可得:EPF AEP CFP ∠=∠+,EGF BEG DFG ∠=∠+∠,∵1BEG BEP n ∠=∠,1DFG DFP n∠=∠, ∴1()EGF BEG DF nG BEP DFP ∠=∠+∠=∠+∠ []()11360()360AEP CFP EPF n n=︒-∠+∠=︒-∠, ∴360EPF n EGF ∠+∠=︒;【点睛】考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键. 8.(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先解析:(1)60°;(2)50°;(3)18021n α︒--或18021n α︒-+ 【分析】(1)根据平行线的性质可得CBD ∠的度数,再根据角平分线的性质可得ABE 的度数,应用三角形内角和计算BAC ∠的度数,由已知条件BAE CAE ∠=∠,可计算出CAE ∠的度数; (2)根据题意画出图形,先根据:5:1BAE CAE ∠∠=可计算出CAE ∠的度数,由100BAE ∠=︒可计算出BAC ∠的度数,再根据平行线的性质和角平分线的性质,计算出CBD ∠的度数,即可得出结论;(3)根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可等处结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可等处结论.【详解】解:(1)30α=︒,//AC BD ,30CBD ∴∠=︒, BC 平分ABD ∠,30ABE CBD ∴∠=∠=︒,1801803030120BAC ABE α∴∠=︒-∠-=︒-︒-︒=︒,又BAE CAE ∠=∠,111206022CAE BAC ∴∠=∠=⨯︒=︒; (2)根据题意画图,如图1所示,100BAE ∠=︒,:5:1BAE CAE ∠∠=,20CAE ∴∠=︒,1002080BAC BAE CAE ∴∠=∠-∠=︒-︒=︒,//AC BD ,180100ABD BAC ∴∠=︒-∠=︒,又BC 平分ABD ∠,111005022CBD ABD ∴∠=∠=⨯︒=︒, 50CBD α∴=∠=︒;(3)①如图2所示,//AC BD ,CBD ACB α∴∠=∠=, BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠+∠∠=,(1802):CAE CAE n α︒-+∠∠=, 解得18021CAE n α︒-∠=-;②如图3所示,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠-∠∠=,(1802):CAE CAE n α︒--∠∠=,解得18021CAE n α︒-∠=+.综上CAE ∠的度数为18021n α︒--或18021n α︒-+. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 9.(1)120º,120º;(2)160;(3)【分析】(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据 ADB ADH BDH ∠=∠+∠即可得到结果;(2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n ∠=∠求解即可;【详解】解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,∵EFMN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒, ∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH , ∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒,∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-.【点睛】本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.10.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒②CBN;(2)58︒;(3)不变,:2:1∠∠=,理由见解析;APB ADB(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;∠ABN,即可求出结果;(2)由角平分线的定义可以证明∠CBD=12(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.三、解答题11.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=5407().【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”∴∠OAB =90°,∴∠ABO =90°﹣∠MON =30°,∴∠OAB =3∠ABO ,∴△AOB 为“梦想三角形”,∵∠MON =60°,∠ACB =80°,∠ACB =∠OAC +∠MON ,∴∠OAC =80°﹣60°=20°,∴∠AOB =3∠OAC ,∴△AOC 是“梦想三角形”.(3)解:∵∠EFC +∠BDC =180°,∠ADC +∠BDC =180°,∴∠EFC =∠ADC ,∴AD ∥EF ,∴∠DEF =∠ADE ,∵∠DEF =∠B ,∴∠B =∠ADE ,∴DE ∥BC ,∴∠CDE =∠BCD ,∵AE 平分∠ADC ,∴∠ADE =∠CDE ,∴∠B =∠BCD ,∵△BCD 是“梦想三角形”,∴∠BDC =3∠B ,或∠B =3∠BDC ,∵∠BDC +∠BCD +∠B =180°,∴∠B =36°或∠B =5407︒(). 【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.12.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠FDM=12∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠FDM=12∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.13.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.14.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.15.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论; (2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45EDF ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45EDF ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.。
成都石室佳兴外国语学校七年级数学下册第七单元《平面直角坐标系》经典练习(提高培优)
一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( ) A .(4,2) B .(5,2) C .(6,2) D .(5,3) 2.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1) 3.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 4.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b -B .(),a b -C .(),a b --D .(),a b 5.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( )A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3) 6.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 7.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置8.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 9.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 10.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交11.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 12.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上13.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88614.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1) 15.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限C .y 轴上D .第四象限 二、填空题16.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 17.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 18.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.19.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 20.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.21.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.22.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.23.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.24.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.25.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____26.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.三、解答题27.已知点P(a ﹣2,2a+8),分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点Q 的坐标为(1,5),直线PQ ∥y 轴;(3)点P 到x 轴、y 轴的距离相等.28.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.29.如图,在平面直角坐标系中有一个△ABC .(1)将△ABC 向右平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1.(2)写出△A 1B 1C 1,三个顶点的坐标.30.在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,2).(1)将△ABC向右平移6个单位长度,再向下平移4个单位长度,得到△A'B′C′.请画出平移后的△A′B′C′,并写出点的坐标A′(,)、B′(,)、C′(,);(2)求出△A′B′C′的面积;(3)若连接AA′、CC′,则这两条线段之间的关系是.。
成都石室佳兴外国语学校七年级数学下册第六单元《数据的收集、整理与描述》检测(答案解析)
一、选择题1.一次数学测试后,某班80名学生的成绩被分为5组,第一至第四组的频数分别为8、10、16、14,则第五组的频率是()A.0.1 B.0.2 C.0.3 D.0.42.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策3.学校体育室里有6个箱子,分别装有篮球和足球(不混装),数量分别是8,9,16,20,22,27,体育课上,某班体育委员拿走了一箱篮球,在剩下的五箱球中,足球的数量是篮球的2倍,则这六箱球中,篮球有()箱.A.2 B.3 C.4 D.54.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.965.下列调查中:①检测保定的空气质量;②了解《奔跑吧,兄弟》节日收视率的情况;③保证“神舟9号“成功发射,对其零部件进行检查;④调查某班50名同学的视力情况;⑤了解一沓钞票中有没有假钞其中通合采用抽样调查的是()A.①②③B.①②C.①③⑤D.②④6.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5007.某校学生会对学生上网的情况作了调查,随机抽取了若干名学生,按“天天上网、只在周末上网、偶尔上网、从不上网”四项标准统计,绘制了如下两幅统计图,根据图中所给信息,有下列判断:①本次调查一共抽取了200名学生;②在被抽查的学生中,“从不上网”的学生有10人;③在本次调查中“天天上网”的扇形的圆心角为30°.其中正确的判断有()A.0个B.1个C.2个D.3个8.以下问题不适合全面调查方式的是()A.调查某班学生课前预习时间B.调查全国初中生课外阅读情况C.调查某校篮球队员的身高D.调查某中学教师的身体健康状况9.下列调查中,适合用全面调查方式的是()A.了解一批iPad的使用寿命B.了解电视栏目《朗读者》的收视率C.疫情期间,了解全体师生入校时的体温情况D.了解滇池野生小剑鱼的数量10.下列调查适合进行普查的是()A.对和新冠肺炎患者同一车厢的乘客进行医学检查B.了解全国手机用户对废手机的处理情况C.了解全球男女比例情况D.了解某市中小学喜欢的体育运动情况11.调查50名学生的年龄,列频数分布表时,学生的年龄落在5个小组中,第一,二,三,五的数据分别是2,8,15,5,则第四组的频数是()A.20 B.30 C.40 D.0.612.下列调查中,适合采用全面调查的是()A.对某校诺如病毒传染情况的调查B.对全市学生每天睡眠时间的调查C.对钱塘江水质的调查D.对某品牌日光灯质量情况的调查二、填空题13.已知某组数据的频数为49,频率为0.7,则样本容量为_______14.为了了解我校七年级850名学生的数学成绩,从中抽取了90名学生数学成绩进行统计分析,这个问题中的样本容量是_____.15.每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽(A)豆沙粽(B)小枣粽(C)蛋黄粽(D)的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为________;若该社区有10000人,估计爱吃鲜肉粽的人数约为________.16.某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是_____.17.我国是稀土资源最丰富的国家.如图是全球稀土资源储量分布统计图,图中表示“中国”的扇形的圆心角是_________度.18.为最大程度减少因疫情延迟开学带来的影响,实现“离校不离教、停课不停学”,我市全面开展了形式多样的“线上教学”活动.为了解教学效果,某校对“线上教学”的满意度进行了抽样调查,将抽样调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息,计算表示“非常满意”和“满意”的总人数为_____.19.某研究所发布了《2019年中国城市综合实力排行榜》,其中部分城市的综合实力、GDP和教育科研与医疗的排名情况如图所示,综合实力排名全国第5名的城市,教育科研与医疗排名全国第_____名.20.电影公司随机收集了2000部电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指一类电影中获得好评的部数与该类电影的部数的比值.电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么第____类电影的好评率增加0.1,第____类电影的好评率减少0.1,可以使获得好评的电影总部数与样本中的电影总部数的比值达到最大.三、解答题21.我市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取人;m=;n=;(2)请将条形统计图补充完整;(3)若该校学生总人数为2000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.22.泉州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,某校从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.t h频数频率每天课外阅读时间()00.5t<≤24t<≤360.30.51t<≤0.41 1.5t<≤12b1.52合计a1根据以上信息,回答下列问题:(1)表中a=_________ ,b=_________.(2)请补全频数分布直方图;(3)若该校有学生2000人,试估计该校学生每天课外阅读时间超过1h的人数.23.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的读书兴趣,七年级一班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整数据统计图(每组包括最小值不包括最大值).七年级(1)班每天阅读时间在0.5小时以内的学生占全班人数12%.根据统计图解答下列问题:(1)七年级(1)班有______名学生; (2)补全直方图;(3)七年级每天阅读时间在1~1.5小时的学生有180人,请你补全扇形统计图; (4)求该年级每天阅读时间不少于1小时的学生有多少人?24.市种子培育基地用A ,B ,C 三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广.如图是根据试验数据绘制的统计图:(1)请你分别计算A ,B ,C 三种型号的种子粒数; (2)请通过计算加以说明,应选哪种型号的种子进行推广?25.为了支持新冠肺炎疫情防控工作,某社区积极响应党的号召,鼓励共产党员踊跃捐款.为了了解该社区共产党员的捐款情况,抽取了部分党员的捐款金额进行统计,数据整理成如下尚不完整的统计表和统计图. 某社区抽样党员捐款金额统计表 组别 捐款金额x (元)人数 A 100x ≤2 B 100200x <≤10C200300x <≤D 300400x <≤ 14某社区抽样党员捐款人数分布扇形统计图(1)一共抽取了______名党员,捐款金额的中位数在______中(填组别); (2)补全条形统计图,并算出扇形统计图中B 组对应扇形的圆心角度数为______°; (3)该社区共有1000名党员,请估计捐款金额超过300元的党员有多少名?26.某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A :摩拜单车;B :ofo 单车;C :HelloBike ).请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数; (2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩拜单车出行?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D【分析】先求出第5组的频数,再利用频率=频数总数即可求解.【详解】解:第5组的频数为80810161432----=,∴第5组的频率为320.480=,故选:D.【点睛】本题考查求频率,掌握频率=频数总数是解题的关键.2.C解析:C【解析】统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C.3.B解析:B【分析】先计算出这些水果的总质量,再根据剩下的足球与篮球的数量关系,通过推理判断出拿走的篮球的个数,从而计算出剩余篮球的个数.【详解】解:∵8+9+16+20+22+27=102(个)根据题意,在剩下的五箱球中,足球的数量是篮球的2倍,∴剩下的五箱球中,篮球和足球的总个数是3的倍数,由于102是3的倍数,所以拿走的篮球个数也是3的倍数,只有9和27符合要求,假设拿走的篮球的个数是9个,则(102-9)÷3=31,剩下的篮球是31个,由于剩下的五个数中,没有哪两个数的和是31个,故拿走的篮球的个数不是9个,假设拿走的篮球的个数是27个,则(102-27)÷3=25,剩下的篮球是25个,只有9+16=25,所以剩下2箱篮球,故这六箱球中,篮球有3箱,故答案为:B.【点睛】本题主要考查的是学生能否通过初步的分析、比较、推理得出正确的结论,培养学生有顺序、全面思考问题的意识.4.C【详解】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:12100%=24% 6+10+16+12+6,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.5.B解析:B【解析】根据全面调查和抽样调查的定义可知:①②可进行抽样调查,③④⑤可进行全面调查,故选B.6.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.7.C解析:C【分析】结合扇形统计图和条形统计图中“只在周末上网”是120人占60%,可以求得全部人数;再利用“从不上网”的占比得到人数;“天天上网”的圆心角度数是360×10%得到.【详解】因为“只在周末上网”是120人占60%,所以总学生人数为120÷60%=200名,①正确;因为“从不上网”的占比为:1-25%-10%-60%=5%,所以“从不上网”的人数是200×5%=10人,②正确;“天天上网”的圆心角度数:360°×10%=36°,③错误.故选C.【点睛】考查学生对扇形统计图和条形统计图的认识,根据统计图的数据结合起来求相关的人数和占比,学生熟练从两种统计图中提取有用的数据是本题解题的关键.8.B解析:B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.调查某班学生每周课前预习的时间适合全面调查;B. 调查全国初中生课外阅读情况适合抽样调查,不适合全面调查;C.调查某校篮球队员的身高适合全面调查;D. 调查某中学教师的身体健康状况适合全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.C解析:C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A、了解一批iPad的使用寿命适合用抽样调查,故本选项不符合题意;B、了解电视栏目《朗读者》的收视率适合抽样调查,故本选项不符合题意;C、疫情期间,了解全体师生入校时的体温情况适合用全面调查方式,故本选项符合题意;D、了解滇池野生小剑鱼的数量适合用抽样调查,故本选项不符合题意;故选:C.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.A解析:A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、对和新冠肺炎患者同一车厢的乘客进行医学检查,需要得到准确的结果,适合采用全面调查,故本选项符合题意;B、了解全国手机用户对废手机的处理情况,总体容量很大,适合抽样调查,故本选项不合题意;C、了解全球男女比例情况,总体容量大,适合抽样调查,故本选项不合题意;D、了解某市中小学喜欢的体育运动情况,适合抽样调查,故本选项不合题意.故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.A解析:A【分析】根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数.一共5个频数,已知总频数为50,四个频数已知,即可求出其余的一个频数.【详解】一共5个频数,已知总频数为50,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是50-2-8-15-5=20,故选:A.【点睛】此题主要考查对频数定义的理解,熟练掌握即可得解.12.A解析:A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某校诺如病毒传染情况的调查,适合全面调查;B.对全市学生每天睡眠时间的调查,适合抽查;C.对钱塘江水质的调查,适合抽查;D.对某品牌日光灯质量情况的调查,适合抽查.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题13.70【分析】根据即可求解【详解】解:样本容量为故答案为:70【点睛】本题考查频数与频率掌握是解题的关键解析:70【分析】根据=频数频率总数即可求解.【详解】解:样本容量为49=70 0.7,故答案为:70.【点睛】本题考查频数与频率,掌握=频数频率总数是解题的关键.14.【分析】根据样本容量:一个样本包括的个体数量叫做样本容量即可得【详解】解:为了了解我校七年级850名学生的数学成绩从中抽取了90名学生数学成绩进行统计分析这个问题中的样本容量是90故答案为:90【点解析:【分析】根据样本容量:一个样本包括的个体数量叫做样本容量即可得.【详解】解:为了了解我校七年级850名学生的数学成绩,从中抽取了90名学生数学成绩进行统计分析,这个问题中的样本容量是90,故答案为:90.【点睛】本题主要考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.15.120人3000人【分析】根据B的人数除以占的百分比得到调查的总人数再用总人数减去ABD的人数得到本次抽样调查中喜爱小枣粽的人数;利用该社区的总人数×爱吃鲜肉粽的人数所占的百分比得出结果【详解】调查解析:120人, 3000人【分析】根据B的人数除以占的百分比得到调查的总人数,再用总人数减去A、B、D的人数得到本次抽样调查中喜爱小枣粽的人数;利用该社区的总人数×爱吃鲜肉粽的人数所占的百分比得出结果.【详解】调查的总人数为:60÷10%=600(人),本次抽样调查中喜爱小枣粽的人数为:600﹣180﹣60﹣240=120(人);若该社区有10000人,估计爱吃鲜肉粽的人数约为:10000180600⨯=3000(人).故答案为120人;3000人.【点睛】本题考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.16.80【分析】根据频数分布直方图可得全班的总人数及成绩高于60分的学生从而得出答案【详解】∵全班的总人数为3+6+12+11+7+6=45人其中成绩高于60分的学生有12+11+7+6=36人∴成绩高解析:80%.【分析】根据频数分布直方图可得全班的总人数及成绩高于60分的学生,从而得出答案.【详解】∵全班的总人数为3+6+12+11+7+6=45人,其中成绩高于60分的学生有12+11+7+6=36人,∴成绩高于60分的学生占全班参赛人数的百分率是36100%80%45,故答案为80%.【点睛】本题主要考查频数分布直方图,根据频数分布直方图明确各分组人数是解题的关键.17.8【分析】根据扇形统计图中的数据可以计算出图中表示中国的扇形的圆心角的度数【详解】解:由题意可得图中表示中国的扇形的圆心角是:360°×43=1548°故答案为:1548【点睛】本题考查扇形统计图解解析:8.【分析】根据扇形统计图中的数据可以计算出图中表示“中国”的扇形的圆心角的度数.【详解】解:由题意可得,图中表示“中国”的扇形的圆心角是:360°×43%=154.8°,故答案为:154.8.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,求出相应的圆心角的度数.18.70【分析】由两个统计图可知满意不满意较差的人数为40+50+10=100人占调查人数的1﹣15﹣35=50可求出调查人数进而求出非常满意的人数最后计算非常满意和满意人数之和即可【详解】解:调查的总解析:70【分析】由两个统计图可知,“满意、不满意、较差”的人数为40+50+10=100人,占调查人数的1﹣15%﹣35%=50%,可求出调查人数,进而求出“非常满意”的人数,最后计算“非常满意”和“满意”人数之和即可.【详解】解:调查的总人数:(40+50+10)÷(1﹣15%﹣35%)=200(人),“非常满意”的人数:200×15%=30(人),因此“非常满意、满意”的人数为:30+40=70(人),故答案为:70.【点睛】考核知识点:条形图和扇形图.从条形图和扇形图获取信息是关键.19.3【分析】由第一个图可得综合实力排名全国第5名的城市的GDP排名第九再由第二个图可求解【详解】解:由第一个图可得综合实力排名全国第5名的城市的GDP排名第九由第二个图可得GDP排名第九的城市的教育科解析:3【分析】由第一个图可得综合实力排名全国第5名的城市的GDP排名第九,再由第二个图可求解.【详解】解:由第一个图可得综合实力排名全国第5名的城市的GDP排名第九,由第二个图可得GDP排名第九的城市的教育科研与医疗的排名为第3名,故填3.20.五二【分析】只要两类电影的好评率发生变化根据各类电影的部数即可确定答案【详解】∵表格中只有两类电影的好评率数据发生变化某类电影的好评率增加01某类电影的好评率减少01且第五类的电影部数最多第二类的电解析:五二【分析】只要两类电影的好评率发生变化,根据各类电影的部数即可确定答案.【详解】∵表格中只有两类电影的好评率数据发生变化,某类电影的好评率增加0.1,某类电影的好评率减少0.1,且第五类的电影部数最多,第二类的电影部数最少,∴只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可以使获得好评的电影总部数与样本中的电影总部数的比值达到最大.故答案为:五,二.【点睛】此题考查统计量的选择,利用表格中的各类电影的部数确定变化的依据是解题的关键.三、解答题21.(1)200;86;27;(2)见解析;(3)540人【分析】(1)从统计图中可知,“1次及以下”的人数为20,占调查人数的10%,可求出调查人数;“3次”的占调查人数的43%,可求出“3次”的人数,确定m的值;进而求出“4次以上”的百分比,确定n值;(2)求出“2次”的人数,即可补全条形统计图;(3)“4次以上”占27%,因此估计2000人的27%是“4次以上”的人数.【详解】解:(1)从统计图可知:“1次及以下”的人数为20,占调查人数的10%,∴这次调查活动的总人数:20÷10%=200(人),∵“3次”的占调查人数的43%,∴3次”的人数:200×43%=86(人),∵“4次以上”的人数是54,∴“4次以上”占调查人数的:54÷200=27%,即m=86,n=27.故答案为:200;86;27(2)“2次”的人数:200×20%=40(人),补全条形统计图如图所示:(3)∵由(1)求得“4次以上”占调查人数的27%,∴ 2000×27%=540(人).答:该校2000名学生中一周劳动4次及以上的有540人.【点睛】本题考查条形统计图、扇形统计图的意义和制作方法,样本估计总体,从两个统计图中获取数量和数量关系是正确解答的前提.22.(1)120;0.1;(2)见解析;(3)1000人【分析】(1)由0.5<t≤1的频数与频率可得总人数a,再用12除以总人数可得b的值;(2)总人数乘以0.4得出第3组频数,从而补全图形;(3)利用样本估计总体思想可得.【详解】解:(1)a=36÷0.3=120,b=12÷120=0.1,故答案为:120,0.1;(2)1<t≤1.5的人数为120×0.4=48,补全图形如下:(3)估计该校学生每天课外阅读时间超过1小时的人数为2000×(0.4+0.1)=1000(人).该校学生每天课外阅读时间超过1h的人数约1000人.【点睛】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.23.(1)50;(2)图见详解;(3)图见详解;(4)240.【分析】(1)用七年级(1)班每天阅读时间在0.5小时以内的学生人数除以它所占的百分比即可得到全班人数;(2)先计算出0.5-1小时的学生人数,然后补全条形统计图;(3)先计算出七年级每天阅读时间在1-1.5小时以内的学生所占的百分比,再用1分别减去其它三组的百分比即可得到每天阅读时间在0.5-1小时以内的学生所占的百分比,然后补全扇形统计图;(4)由扇形统计图得到该年级每天阅读时间不少于1小时的学生所占的百分比为40%,然后用600乘以40%即可;【详解】(1)6÷12%=50,∴七年级(1)班有50名学生;故答案为:50(2)0.5-1小时的人数=50-6-15-5=24(名)条形统计图为:(3)七年级每天阅读时间 在1-1.5小时以内的学生所占的百分比=180100%600⨯=30%, ∴ 每天阅读时间在0.5-1小时以内的学生所占的百分比=1-30%-10%-12%=48%, 如图:(4)()60010%30%=240⨯+(人)答:该年级每天阅读时间不少于1小时的学生有240人;【点睛】本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能做出正确的判断和解决问题,也考查了扇形统计图;24.(1)A :540,B :360,C :600;(2)B 种【分析】(1)种子的总数乘以各自所占的比例即可求得每类的种子粒数;(2)利用每类中发芽的数除以总数即可得到发芽率,然后确定哪个最大即可.【详解】解:(1)A 类种子的粒数是:1500×36%=540(粒),B 类种子的粒数是:1500×24%=360(粒),C 类种子粒数是:1500(1-36%-24%)=600(粒);。
成都石室佳兴外国语学校七年级数学下册第五单元《相交线与平行线》经典练习(提高培优)
一、选择题1.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( ) A .()182812x x -= B .()1828212x x -=⨯ C .()181412x x -=D .()2182812x x ⨯-=2.下列方程中,解为x=-2的方程是( ) A .2x+5=1-xB .3-2(x -1)=7-xC .x -5=5-xD .1-14x=34x 3.下列各等式的变形中,等式的性质运用正确的是( ) A .由02x=,得2x = B .由14x -=,得5x = C .由23a =,得23a =D .由a b =,得a b c c= 4.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A .B .C .D .5.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为( ) A .100﹣x =2(68+x) B .2(100﹣x)=68+x C .100+x =2(68﹣x) D .2(100+x)=68﹣x 6.一元一次方程−2x +5=3x −10的解是( )A .x =3B .x =−3C .x =5D .x =−57.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A .120元 B .125元 C .135元 D .140元 8.若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6-9.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( ) A .6折B .7折C .8折D .9折10.关于x 的方程2x m3-=1的解为2,则m 的值是( ) A .2.5B .1C .-1D .311.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个A .1B .2C .3D .412.下列说法正确的是( ) A .若a c =bc,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=b D .若a 2=b 2,则a=b13.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D14.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( ) x-2 -1 0 1 2 mx n + -12-8-44A .1x =-B .0x =C .1x =D .2x = 15.下列方程中,以x =-1为解的方程是( ) A . 3x +12=x2−2B .7(x -1)=0C .4x -7=5x +7D .13x =-3二、填空题16.一件衣服进价120元,按标价的八折出售仍能赚32元,则标价是__元.17.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为______________千米/小时. 18.猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x-亥61=-的x 的值为__________. 19.所谓方程的解就是使方程中等号左右两边相等的未知数的值。
【单元练】成都石室佳兴外国语学校七年级数学下册第三单元经典练习(提高培优)
一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4)A解析:A【分析】 由题目中所给的跳蚤运动的特点找出规律,即可解答.【详解】由图可得,(0,1)表示1=12次后跳蚤所在位置;(0,2)表示8=(2+1)2−1次后跳蚤所在位置;(0,3)表示9=32次后跳蚤所在位置;(0,4)表示24=(4+1)2−1次后跳蚤所在位置;…∴(0,44)表示(44+1)2−1=2024次后跳蚤所在位置,则(3,44)表示第2021次后跳蚤所在位置.故选:A .【点睛】本题主要考查点的坐标问题,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.2.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4B .6-C .1-或4D .6-或23C 解析:C【分析】由点M 到两坐标轴的距离相等可得出32=6a a -+,求出a 的值即可.【详解】解:∵点M 到两坐标轴的距离相等, ∴32=6a a -+∴32=6a a -+,()32=-6a a -+∴a=4或a=-1.故选C .【点睛】 本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出32=6a a -+,注意不要漏解.3.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .3B解析:B【分析】由于A 、B 点都在y 轴上,然后用B 点的纵坐标减去A 点的纵坐标可得到两点之间的距离.【详解】解:∵A (0,-6),点B (0,3),∴A ,B 两点间的距离()369=--=.故选:B .【点睛】本题考查了两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.4.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- D 解析:D【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)逐项进行判断即可得到答案.【详解】解:A 、(1,0)是x 轴正半轴上的点,故选项A 不符合题意;B 、(1,1)是第一象限内的点,故选项B 不符合题意;C 、(1,﹣1)是第四象限内的点,故C 不符合题意;D 、(﹣1,1)是第二象限内的点,故D 符合题意;故选:D .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2-B .()2,2C .()4,8--D .()2,8- B 解析:B【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P 对应点的坐标即可得解.【详解】解:点P (-1,-3)向右平移3个单位,再向上平移5个单位,所得到的点的坐标为(-1+3,-3+5),即(2,2),故选:B .【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.6.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7)D解析:D【分析】 根据题意依次写出第一象限角平分线上整数点的坐标及对应的运动分钟数,通过分析发现,点(n ,n ),运动时间n (n+1)分钟,n 为奇数,运动方向向左,n 为偶数,运动方向向下,找到规律后,将2017写成44×45+37,可以看做点(44,44)向下运动37个单位长度,进而求出答案.【详解】解:根据已知图形分析:坐标(1,1),2分钟,2=1×2,运动方向向左,坐标(2,2),6分钟,6=2×3,运动方向向下,坐标(3,3),12分钟,12=3×4,运动方向向左,坐标(4,4),20分钟,20=4×5,运动方向向下,由此发现规律,当点坐标(n ,n ),运动时间n (n+1)分钟,n 为奇数,运动方向向左,n 为偶数,运动方向向下,∵2017=44×45+37,∴可以看做点(44,44)向下运动37个单位长度,∴2017分钟后这个粒子所处的位置(坐标)是(44,7).故选:D .【点睛】本题考查了点的坐标的规律变化,解决此类问题的关键是找到特殊点与变化序号之间的关系.7.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标A .()2,3--B .()2,3C .()2,3-D .以上都不对C解析:C【分析】根据点坐标关于x 轴、y 轴对称的变换规律即可得.【详解】点坐标关于x 轴对称:横坐标不变,纵坐标变为相反数,点坐标关于y 轴对称:横坐标变为相反数,纵坐标不变,点A 坐标为()2,3-, ∴A '的坐标为()2,3--,∴A '关于y 轴对称点的坐标为()2,3-,故选:C .【点睛】本题考查了点坐标关于坐标轴对称的变换规律,熟练掌握点坐标关于坐标轴对称的变换规律是解题关键.8.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上B解析:B【分析】根据点的坐标特点判断即可.【详解】在平面直角坐标系中,点P (-5,0)在x 轴上,故选B .【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.9.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .886C【分析】根据点的坐标变化寻找规律即可.【详解】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L ,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=()12n n -,有(n+1)个点,共2n 个点; 2+4+6+8+10+…+2n≤2018, ()222n n +≤2018且n 为正整数, 得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x=45462⨯=990,46个点, ∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:C .【点睛】 本题考查了规律型:点的坐标,解决本题的关键是观察点的坐标的变化寻找规律. 10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112m B .2505m C .220092m D .2504m B解析:B【分析】 根据图象可得移动4次图象完成一个循环,从而可得出OA 4n =2n 知OA 2020=2×505,据此利用三角形的面积公式计算可得.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 由题意知OA 4n =2n ,∵2020÷4=505,∴OA 2020=2×505,则△OA 2A 2020的面积是12×1×2×505=505m 2, 故选:B .【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得. 二、填空题11.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.(0﹣1)【分析】设M (xy )根据题意列出方程组然后求解即可解答【详解】解:设M (xy )∵M 到ABC 的实际距离相等∴∣2﹣x ∣+∣2﹣y ∣=∣4﹣x ∣+∣﹣2﹣y ∣=∣x+2∣+∣y+4∣解得:x=解析:(0,﹣1)【分析】设M (x ,y ),根据题意列出方程组,然后求解即可解答.【详解】解:设M (x ,y ),∵M 到A ,B ,C 的“实际距离”相等,∴∣2﹣x ∣+∣2﹣y ∣=∣4﹣x ∣+∣﹣2﹣y ∣=∣x+2∣+∣y+4∣,解得:x=0,y=﹣1,∴M(0,﹣1),故答案为:(0,﹣1).【点睛】本题考查坐标与图形,根据题意,利用数形结合思想列出方程组是解答的关键.12.对于平面直角坐标系xOy中的点P(a,b),若点P的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P (1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k属派生点”为点P′,且线段PP′的长度为线段OP长度的5倍,则k的值为___.±5【分析】先根据点P 在x轴正半轴确定出点P的坐标然后利用k表示出P的坐标继而表示出线段PP′的长再根据线段PP′的长为线段OP长的5倍得到关于k的方程解方程即可求得答案【详解】解:设P(m0)(m解析:±5【分析】先根据点P在x轴正半轴确定出点P的坐标,然后利用k表示出P'的坐标,继而表示出线段PP′的长,再根据线段PP′的长为线段OP长的5倍得到关于k的方程,解方程即可求得答案.【详解】解:设P(m,0)(m>0),由题意:P′(m,mk),∵PP′=5OP,∴|mk |=5m ,∵m >0,∴|k |=5,∴k =±5.故答案为:±5.【点睛】本题考查了新定义下的阅读理解能力,涉及了点的坐标,绝对值的性质,两点间的距离等知识,正确理解新定义是解题的关键.13.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.【分析】先分别求出的坐标再归纳类推出一般规律由此即可得【详解】由题意得:观察可知归纳类推得:的坐标为其中n 为正整数∵∴的坐标为即故答案为:【点睛】本题考查了点的坐标的规律性正确归纳类推出一般规律是解解析:()2016,1【分析】先分别求出123,,,P P P 的坐标,再归纳类推出一般规律,由此即可得.【详解】由题意得:()12,1P ,()23,0P ,()33,0P ,()44,1P ,()56,1P ,()67,0P ,()77,0P ,()88,1P ,,观察可知,()()484,1(0,18,),1,P P P ,归纳类推得:4n P 的坐标为()4,1n ,其中n 为正整数,∵20164504=⨯,∴2016P 的坐标为()4504,1⨯,即()2016,1,故答案为:()2016,1.【点睛】本题考查了点的坐标的规律性,正确归纳类推出一般规律是解题关键.14.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________-7或9【分析】根据纵坐标相同可知MN ∥x 轴然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标即可得解【详解】∵点M (13)与点N (x3)的纵坐标都是3∴MN ∥x 轴∵MN =8∴点N 在点M 的左边时x解析:-7或9【分析】根据纵坐标相同可知MN ∥x 轴,然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标,即可得解.【详解】∵点M (1,3)与点N (x ,3)的纵坐标都是3,∴MN ∥x 轴,∵MN =8,∴点N 在点M 的左边时,x =1−8=−7,点N 在点M 的右边时,x =1+8=9,∴x 的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.15.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移得到四边形A 1B 1C 1D 1,已知A (﹣3,5),B (﹣4,3),A 1(3,3),则B 1的坐标为_____.(21)【分析】根据A 和A1点的坐标得到平移路径向下平移2个单位再向右平移6个单位根据同样路径即可确定B1的坐标【详解】由A (﹣35)A1(33)可知四边形ABCD 先向下平移2个单位再向右平移6个单解析:(2,1).【分析】根据A 和A 1点的坐标,得到平移路径向下平移2个单位,再向右平移6个单位,根据同样路径即可确定B 1的坐标.【详解】由A (﹣3,5),A 1(3,3)可知四边形ABCD 先向下平移2个单位,再向右平移6个单位得到四边形A 1B 1C 1D 1,∵B (﹣4,3),∴B 1的坐标为(2,1),故答案为:(2,1).【点睛】本题考查了坐标变换,要先根据已知条件确定平移路径,然后根据平移路径判断坐标变化情况是本题的关键.16.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限的点除外)逐步探索出下标和各点坐标之间的关系总结出规律根据规律推理结果【详解】通过观察可得:下标数字是4的倍数的点在第三象限∵202解析:()505,505--【分析】根据题意可得各个点分别位于象限的角平分线上( A 1和第四象限的点除外),逐步探索出下标和各点坐标之间的关系,总结出规律,根据规律推理结果.【详解】通过观察可得:下标数字是4的倍数的点在第三象限,∵2020÷4=505,第一圈第三象限点的坐标是(-1,-1),第二圈第三象限点的坐标是(-2,-2),第三圈第三象限点的坐标是(-3,-3)……,∴点2020A 在第三象限,且转了505圈,即在第505圈上,∴2020A 的坐标为()505,505--.顾答案为:()505,505--.【点睛】本题考查平面直角坐标系中找点的坐标规律,结题关键是找出坐标系中点的位置和坐标之间的对应关系以及点所在象限和下角标的关系.17.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得解析:(2,2)A 或(1,1)A - 43x >【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得.【详解】(1)由题意得:x y =或x y =-①当x y =时代入方程得:34y y -=,解得2y =则2x =因此,点A 的坐标为(2,2)A②当x y =-时代入方程得:34y y --=,解得1y =-则1x =因此,点A 的坐标为(1,1)A -综上,点A 的坐标为(2,2)A 或(1,1)A -故答案为:(2,2)A 或(1,1)A -;(2)方程34x y -=可变形为34y x =-当点A 在x 轴上方时,点A 的纵坐标一定大于0,即0y >则340x -> 解得43x > 故答案为:43x >. 【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.18.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.【分析】观察发现每6个点形成一个循环再根据点A6的坐标及2020÷6所得的整数及余数可计算出点A2020的横坐标再根据余数对比第一组的相应位置的数可得其纵坐标【详解】解:观察发现每6个点形成一个循环解析:()2020,2-【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2020÷6所得的整数及余数,可计算出点A 2020的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵()66,0A ,∴OA 6=6,∵2020÷6=336…4,∴点A 2020的位于第337个循环组的第4个,∴点A 2020的横坐标为6×336+4=2020,其纵坐标为:﹣2,∴点A 2020的坐标为()2020,2-.故答案为:()2020,2-.【点睛】本题考查点的坐标规律,确定每6个点形成一个循环且点A 2020的位于第337个循环组的第4个是解题的关键.19.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.【分析】先根据点的坐标求出四边形ABCD 的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】解:∵A (11)B (﹣11)C (﹣1﹣2)D (1﹣2)∴AB =1﹣(﹣1)=2BC =1﹣( 解析:()0,1【分析】先根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB =1﹣(﹣1)=2,BC =1﹣(﹣2)=3,CD =1﹣(﹣1)=2,DA =1﹣(﹣2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2021÷10=202…1,∴细线另一端在绕四边形第203圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故答案为:(0,1).【点睛】本题考查了点的坐标规律探求,根据点的坐标求出四边形ABCD一周的长度,从而确定2021个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.20.如果点P(a﹣1,a+2)在x轴上,则a的值为_____.﹣2【分析】根据x轴上点的纵坐标为0列方程求出a的值再求解即可【详解】解:∵点P(a﹣1a+2)在x轴上∴a+2=0解得a=﹣2故答案为:﹣2【点睛】本题考查了点的坐标熟记x轴上点的纵坐标为0是解题解析:﹣2.【分析】根据x轴上点的纵坐标为0列方程求出a的值,再求解即可.【详解】解:∵点P(a﹣1,a+2)在x轴上,∴a+2=0,解得a=﹣2,故答案为:﹣2.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.三、解答题21.观察图形回答问题:(1)所给坐标分别代表图中的哪个点?(﹣3,1):;(1,2):;(2)图形上的一些点之间具有特殊的位置关系,请按如下要求找出这样的点,并说明所找点的坐标之间有何关系:①连接点与点的直线平行于x轴,这两点的坐标的共同特点是;②连接点与点的直线是第一、三象限的角平分线,这两点的坐标的共同特点是.解析:(1)C,F;(2)C,D(或E,F或G,H),纵坐标相等,横坐标不相等;(3)O ,H ,横坐标与纵坐标相等【分析】(1)根据点的坐标的定义结合图形即可求解;(2)①根据图形即可求解(答案不唯一);②观察图形即可求解.【详解】解:(1)由图形可知,(﹣3,1)表示点C ;(1,2)表示点F ;故答案为:C ;F ;(2)①连接点C 与点D 的直线平行于x 轴(或连接点E 与点F 的直线平行于x 轴或连接点G 与点H 的直线平行于x 轴),这两点的坐标的共同特点是纵坐标相等,横坐标不相等.故答案为:C ,D (或E ,F 或G ,H ),纵坐标相等,横坐标不相等;②连接点O 与点H 的直线是第一、三象限的角平分线,这两点的坐标的共同特点是横坐标与纵坐标相等.故答案为:O ,H ,横坐标与纵坐标相等.【点睛】本题考查了坐标与图形性质,点的坐标,平行于 x 轴的直线上任意两点的坐标特征,第一、三象限角平分线上点的坐标特征,利用数形结合是解题的关键.22.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3(1)数轴上点A 表示的数为______.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O A B C '''',移动后的长方形O A B C ''''与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S①设点A 的移动距离AA x '=.当4S =时,x =______.②当S 恰好等于原长方形OABC 面积的一半时,求数轴上点A '表示的数为多少.解析:(1)4;(2)①83,②6或2 【分析】(1)根据正方形的面积求出边长,即可得出点A 所表示的数;(2)①求出重合部分的边长,即可求出平移的距离,②分为左移和右移,由重合部分的面积求出重合部分的边长,进而求出点A 移动的距离,得出点A '所表示的数.【详解】解:(1)1234OA BC ==÷=,故答案为:4;(2)当4S =时,①若正方形OABC 平移后得图2, 重叠部分中4433AO '=÷=,48433AA '=-=. 故答案为:83; ②当S 恰好等于原长方形OABC 面积的一半时,点A 向右或向左移动422÷=, 因此点A '表示的数为426+=或422-=,故点A '所表示的数6或2.【点睛】此题考查数轴表示数的意义,长方形的性质,平移的性质,掌握数轴上两点之间距离的计算方法是解决问题的前提.23.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 .解析:(1)3,4,2;(2)平行【分析】(1)根据坐标得表示方法可得到点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,根据点A 坐标即可求得点A 到原点O 的距离;(2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【详解】(1)点A 到原点O 的距离是3,点B 到x 轴的距离是4,点B 到y 轴的距离是2;(2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【点睛】本题考查点的坐标,熟练掌握利用平面直角坐标系写出点的坐标和确定点的位置是解题的关键.24.在平面直角坐标系中,已知点M 的坐标为()23,1m m +-.(1)若点M 在x 轴上,求m 的值;(2)已知点N 的坐标为(3,2)-,且直线MN x ⊥轴,求线段MN 的长.解析:(1)1m =;(2)6【分析】(1)根据点在x 轴上纵坐标为0求解.(2)根据直线MN ⊥x 轴的横坐标相等求解.【详解】解:(1)由题意,得10m -=,解得:1m =.(2)∵点(3,2)N -,且直线MN x ⊥轴,∴233m +=-,解得:3m =-,∴(3,4)M --,∴()246MN =--=.【点睛】此题考查了点与坐标的对应关系,坐标轴上的点的特征,第一、三象限的角平分线上的点的特征.25.已知点()24,1P m m +-,试分别根据下列条件,求出P 点的坐标.(1)点P 到x 轴的距离是5;(2)点P 在过点()2,3A 且与x 轴平行的直线上.解析:(1)()16,5P 或()4,5--;(2)()12,3P .【分析】(1)根据平面直角坐标系内点的点到x 距离为纵坐标的绝对值即可求解;(2)让纵坐标为-3求得m 的值,代入点P 的坐标即可求解.【详解】(1)∵P 点到x 轴距离为5, ∴15m -=,∴15m -=或15m -=-,∴6m =或4m =-.∴P 点坐标为()16,5或()4,5--.(2)∵过点()2,3A 且与x 轴平行的直线解析式为3y =,∵点A 在直线3y =上,∴13m -=,∴4m =,P 点坐标为()12,3.【点睛】本题考查了坐标与图形性质,主要利用了平行于x 轴的直线上的点的纵坐标相同及坐标系内的点到x 轴的距离纵坐标的绝对值.26.正方形的边长为2,建立适当的直角坐标系,使它的一个顶点的坐标为(2,0),并写出另外三个顶点的坐标.解析:作图见解析;()2,0-;()0,2;()0,2-【分析】先找到()2,0A ,根据正方形的对称性,可知A 点的对称点C 的坐标,同样可得出B 和D 的坐标;【详解】建立坐标轴,使正方形的对称中心为原点,则)2,0A ,()2,0C -, 那么B 的坐标是(2,其对称点D 的坐标为(0,2.【点睛】本题主要考查了正方形的性质和坐标与图形性质,准确判断是解题的关键.27.如图,在平面直角坐标系中,三角形ABC?的顶点坐标分别是()()A 4,1B 1,1?--,,()C 1,4?-,点()11P x ,y ?是三角形 ABC?内一点,点()11 P x ,y ?平移到点()111 P x 3,1?y +-时;(1)画出平移后的新三角形111?A B C 并分别写出点111?A B C 的坐标;(2)求出三角形111?A B C 的面积解析:(1)1A 为(1-,2-),1B 为(4,0),1C 为(2,3);图见详解;(2)192. 【分析】(1)根据点P 平移前后的坐标,可得出平移的规律,继而可得出△A 1B 1C 1三个顶点的坐标;(2)利用构图法,求解△A 1B 1C 1的面积.【详解】解:(1)∵点()11P x ,y 平移到点()111 P x 3,1y +-, ∴平移的规律为:向右平移3个单位,向下平移1个单位,∴1A 为(1-,2-),1B 为(4,0),1C 为(2,3); 平移后的三角形如图所示:(2)面积为:111A B C 11119S 555253322222=⨯-⨯⨯-⨯⨯-⨯⨯=; 【点睛】 本题考查了平移的性质,坐标与图形的变化,要求同学们能根据点平移前后的坐标得出平移规律.28.如图,在平面直角坐标系中,△ABC 的顶点为(5,1)A -,(1,0)B -,(1,5)C -. (1)作出△ABC 关于y 轴对称图形△A 1B 1C 1;(2)若点P 在x 轴上,且△ABP 与△ABC 面积相等,求点P 的坐标.解析:(1)见解析;(2)点P 的坐标为(21,0)-或(19,0)【分析】(1)直接利用轴对称的性质得出对应点位置进而得出答案;(2)依据三角形的面积公式求解即可.【详解】解:(1)如图所示,△A 1B 1C 1即为所求:(2)ABC 1S =54=102∆⨯⨯, 设点P 的坐标为(m ,0),则ABP 1S=m-(-1)1=102⨯⨯,解得:m =-21或19, ∴点P 的坐标(﹣21,0)或(19,0)【点睛】 此题主要考查了轴对称变换,正确得出对应点位置是解题关键.。
成都石室外语学校七年级数学下册第八单元《二元一次方程组》经典复习题(提高培优)
一、选择题1.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .0C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4, 82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.2.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( ) A .2,3B .3,2C .2,4D .3,4B 解析:B【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值.【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩, 解得:23x y =⎧⎨=⎩,将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩, 得:23122313a b b a +=⎧⎨+=⎩, 解得:32a b =⎧⎨=⎩, ∴a 、b 的值分别是3、2.故选:B .【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.3.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a A 解析:A【分析】 设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.4.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )A .1种B .2种C .3种D .4种B【分析】首先设毽子能买x 个,跳绳能买y 根,根据题意列方程即可,再根据二元一次方程求解.【详解】解:设毽子能买x 个,跳绳能买y 根,根据题意可得:3x+5y=35, y=7-35x , ∵x 、y 都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B .【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.5.由方程组71x m y m +⎧⎨-⎩==可得出x 与y 的关系式是( ) A .x+y=8B .x+y=1C .x+y=-1D .x+y=-8A解析:A【分析】将第二个方程代入第一个方程消去m 即可得.【详解】 71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.方程组125x y x y +=⎧⎨+=⎩的解为( ) A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩ C 解析:C【分析】根据解二元一次方程组的方法可以解答本题.【详解】 解:125x y x y +=⎧⎨+=⎩①② ②﹣①,得将x=4代入①,得y=﹣3,故原方程组的解为43x y =⎧⎨=-⎩, 故选:C .【点睛】本题考查了解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法. 7.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( ) A .1x y +=B .1x y +=-C .9x y +=D .9x y -=- C 解析:C【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可.【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=.故选C.【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核. 8.方程组5213310x y x y +=⎧⎨-=⎩的解是( ) A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩ A 解析:A【分析】利用代入消元法即可求解.【详解】 解:5213310x y x y +=⎧⎨-=⎩①②, 由②得:310y x =-③,把③代入②可得:()5231013x x +-=,解得3x =,把3x =代入③得1y =-,故方程组的解为31x y =⎧⎨=-⎩, 故选:A .【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键. 9.小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页.若小明、小颖平均每天分别阅读x 页、y 页,则下列方程组正确的是( )A .485210x y y x -=⎧⎨=-⎩B .485210x y y x +=⎧⎨=+⎩C .458210x y y x =-⎧⎨=-⎩D .458210x y y x =+⎧⎨=+⎩A 解析:A【分析】 设小明、小颖平均每天分别阅读x 页、y 页,根据“小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页”得到两个等量关系,即可求解.【详解】解:设小明、小颖平均每天分别阅读x 页、y 页,根据题意可得:485210x y y x -=⎧⎨=-⎩, 故选:A .【点睛】本题考查列二元一次方程组,根据题意找出等量关系是解题的关键.10.下列方程中,属于二元一次方程的是( )A .235x x -=+B .1xy y +=C .315x y -=-D .325x y+= C 解析:C【分析】根据二元一次方程的定义解答.【详解】解:A 、该方程中只含有1个未知数,不是二元一次方程,故本选项不符合题意; B 、该方程中含有未知数的项最高次数是2,不是二元一次方程,故本选项不符合题意; C 、该方程符合二元一次方程的定义,故本选项符合题意;D 、该方程不是整式方程,故本选项不符合题意;故选:C .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.二、填空题11.已知方程组278ax by cx y +=⎧⎨-=⎩,甲解对了,得32x y =⎧⎨=-⎩.乙看错了c ,得22x y =-⎧⎨=⎩.则abc 的值为_______.-40【分析】把甲的结果代入方程组求出c 的值得到关于a 与b 的方程将乙结果代入第一个方程得到a 与b 的方程联立求出a 与b 的值在计算abc 的值即可【详解】解:由甲运算结果得解得由乙运算结果得得解得=故答案 解析:-40【分析】把甲的结果代入方程组求出c 的值,得到关于a 与b 的方程,将乙结果代入第一个方程得到a 与b 的方程,联立求出a 与b 的值,在计算abc 的值即可.【详解】解:由甲运算结果得322a b -=,3148c +=,解得2c =-,由乙运算结果得222a b -+=,得322222a b a b -=⎧⎨-+=⎩, 解得45a b =⎧⎨=⎩. ∴ abc =45(2)40⨯⨯-=-故答案为:-40【点睛】本题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.12.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为_______.63【分析】设左下角的小正方形边长为左上角最大的正方形的边长为根据长方形的长和宽列出方程组求解即可【详解】解:设左下角的小正方形边长为左上角最大的正方形的边长为解得长方形的长是:长方形的宽是:面积是解析:63【分析】设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,根据长方形的长和宽列出方程组求解即可.【详解】解:设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,()()31311x y x x y y -=⎧⎨++=+-⎩,解得25x y =⎧⎨=⎩, 长方形的长是:22239+++=,长方形的宽是:257+=,面积是:7963⨯=.故答案是:63.【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解. 13.已知关于x 、y 的方程组2326324x y k x y k +=+⎧⎨+=+⎩的解满足2x y +=,则k 的值为__.0【分析】根据x+y=2求出5x+5y=10方程组的两方程的两边分别相加得出5x+5y=3k+10得出方程3k+10=10求出方程的解即可【详解】解:①②得:故答案为:0【点睛】本题考查了二元一次方解析:0【分析】根据x+y=2求出5x+5y=10,方程组的两方程的两边分别相加得出5x+5y=3k+10,得出方程3k+10=10,求出方程的解即可.【详解】解:2326324x y k x y k +=+⎧⎨+=+⎩①②, ①+②得:55310x y k +=+,2x y +=,5510x y ∴+=,31010k ∴+=,0k ∴=,故答案为:0.【点睛】本题考查了二元一次方程组的解,解一元一次方程和解二元一次方程组等知识点,能得出关于k 的一元一次方程是解此题的关键.14.据人口抽样调查,2019年末太原市常住人口446.19万人,比上年末增加4.04万人.其中城镇人口比上年增加1.36%,乡村人口比上年减少1.57%.若设2018年末太原市常住人口中城镇人口有x 万人,乡村人口有y 万人,则根据题意列出的方程组为_____________【分析】首先弄清题意分析出题目中的两个等量关系再用相应的代数式表示数量列出方程组【详解】解:根据题意得:题目中的等量关系有:(1)2018年城镇人口+2018年乡村人口=2019年末太原市常住人口-解析:446.19 4.041 1.36%1 1.57%446.19x y x y +=-⎧⎨++-=⎩【分析】首先弄清题意,分析出题目中的两个等量关系,再用相应的代数式表示数量,列出方程组.【详解】解:根据题意得:题目中的等量关系有:(1)2018年城镇人口+2018年乡村人口=2019年末太原市常住人口-4.04;(2)2019年末太原市城镇人口+2019年末太原市乡村人口=446.19.若设2018年末太原市常住人口中城镇人口有x 万人,乡村人口有y 万人,则根据题意列出的方程组为:446.19 4.041 1.36%1 1.57%446.19x y x y +=-⎧⎨++-=⎩故答案为:446.19 4.041 1.36%1 1.57%446.19x y x y +=-⎧⎨++-=⎩【点睛】本题考查了列二元一次方程组,解题的关键是弄清题意,准确找出题目中的等量关系.15.已知关于x 、y 的方程组22332x y k x y k -=⎧⎨-=-⎩的解满足24x y -=,则k 的值为_______.6【分析】先利用方程组中的第二个方程减去第一个方程可得再根据方程的解满足可得一个关于k 的一元一次方程解方程即可得【详解】由②①得:由题意得:解得故答案为:6【点睛】本题考查了二元一次方程组的特殊解法解析:6【分析】先利用方程组中的第二个方程减去第一个方程可得22x y k -=-,再根据方程的解满足24x y -=可得一个关于k 的一元一次方程,解方程即可得.【详解】22332x y k x y k -=⎧⎨-=-⎩①②, 由②-①得:22x y k -=-,由题意得:24k -=,解得6k =,故答案为:6.【点睛】本题考查了二元一次方程组的特殊解法、解一元一次方程,熟练掌握方程组的解法是解题关键.16.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为46x y =⎧⎨=⎩,则方程组111222435435a x b y c a x b y c +=⎧⎨+=⎩的解为______.【分析】利用换元法解二元一次方程组即可得【详解】方程组可变形为令则方程组可化为由题意得:此方程组的解为因此有解得即所求方程组的解为故答案为:【点睛】本题考查了二元一次方程组的特殊解法观察两个方程组正解析:510x y =⎧⎨=⎩【分析】利用换元法解二元一次方程组即可得.【详解】方程组111222435435a x b y c a x b y c +=⎧⎨+=⎩可变形为11122243554355a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩, 令43,55m x n y ==, 则方程组可化为111222a m b n c a m b n c +=⎧⎨+=⎩, 由题意得:此方程组的解为46m n =⎧⎨=⎩, 因此有445365x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得510x y =⎧⎨=⎩, 即所求方程组的解为510x y =⎧⎨=⎩, 故答案为:510x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的特殊解法,观察两个方程组,正确换元是解题关键. 17.“九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝.【分析】设松鹤长春欢乐远长健康长寿三种花束的销量分别为:(单位:束)再分别求解一束松鹤长春欢乐远长健康长寿的单价根据重阳节当天销售这三种花束共2549元其中百合花的销售额为458元列方程组再求解剑兰解析:216.【分析】设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束),再分别求解一束“松鹤长春”“欢乐远长”“健康长寿”的单价,根据重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,列方程组,再求解剑兰的销量:22y z +,即可得到答案.【详解】解:设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束), 由题意可得:一束“松鹤长春”的单价为:318+16=204⨯⨯(元), 一束“欢乐远长”花束的单价为:316+16+52=284⨯⨯⨯(元), 一束“健康长寿”花束的单价为:314+12+25=234⨯⨯⨯(元),8644582028232549x y z x y z ++=⎧∴⎨++=⎩①②②2⨯-①5⨯得:40564640302050982290,x y z x y z ++---=-26262808,y z ∴+=108,y z ∴+=22216,y z ∴+=即剑兰的销量为:216枝.故答案为:216.【点睛】本题考查的是三元一次方程组的应用,利用整体法求解方程组中的量是解题的关键. 18.若3x b +5y 2a 和﹣3x 2y 2﹣4b 是同类项,则a =_____.7【分析】根据同类项的定义(所含字母相同相同字母的指数相同)列出方程求出a 的值【详解】解:由同类项的定义得解得故答案为:7【点睛】本题考查同类项的定义解二元一次方程组根据同类项的定义列出方程组是解题解析:7【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a 的值.【详解】解:由同类项的定义,得52224b a b+=⎧⎨=-⎩, 解得73a b =⎧⎨=-⎩.故答案为:7.【点睛】本题考查同类项的定义、解二元一次方程组,根据同类项的定义列出方程组是解题的关键.19.130+-++=x y y ,则x y -=________.7【分析】由绝对值的性质可以得到关于xy 的二元一次方程解方程求得xy 的值后即可算出x-y 的值【详解】解:由题意得:解之得:故答案为7【点睛】本题考查绝对值的应用理解绝对值为非负数的性质是解题关键解析:7【分析】由绝对值的性质可以得到关于x 、y 的二元一次方程,解方程求得x 、y 的值后即可算出x-y 的值.【详解】解:由题意得:1030x y y +-=⎧⎨+=⎩,解之得: 43x y =⎧⎨=-⎩,()437x y ∴-=--=, 故答案为7.【点睛】本题考查绝对值的应用,理解绝对值为非负数的性质是解题关键.20.如果28a b --与()21a b ++互为相反数,那么a b =________.9【分析】由题意可知得到二元一次方程组并求解即可【详解】解:∵与互为相反数∴∴解得∴故答案为:9【点睛】本题考查相反数之和为0绝对值的非负性二元一次方程组等根据题意列出二元一次方程组是解题的关键解析:9【分析】 由题意可知()20281a b a b --+++=,得到二元一次方程组并求解即可.【详解】解:∵28a b --与()21a b ++互为相反数, ∴()20281a b a b --+++=, ∴28010a b a b --=⎧⎨++=⎩,解得23a b =⎧⎨=-⎩, ∴()239a b =-=, 故答案为:9.【点睛】本题考查相反数之和为0,绝对值的非负性,二元一次方程组等,根据题意列出二元一次方程组是解题的关键.三、解答题21.解方程(组)(1)21332x x x -+-= (2)3450529x y x y -+=⎧⎨+=⎩解析:(1)x =-7;(2)12x y =⎧⎨=⎩ 【分析】(1)根据去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可; (2)方程整理后,利用加减消元法解方程即可.【详解】解:(1)去分母得 ()()622133x x x --=+去括号得 64239x x x -+=+移项得 64392x x x --=-合并同类项得 7x -=系数化为1得 7x =-(2)方程组整理得345529x y x y -=-⎧⎨+=⎩①②②×2+①得1313x =解得1x =把1x =代入②得529y +=解得2y =∴方程组的解为12x y =⎧⎨=⎩【点睛】本题考查了解一元一次方程及解二元一次方程组.解二元一次方程组的思想是消元思想,常用方法是代入法和加减法. 22.解方程组:22432x y x y +=⎧⎨+=⎩①②. 解析:22x y =⎧⎨=-⎩. 【分析】根据自己的特长,选择代入消元法或加减消元法求解即可.【详解】由22432x y x y +=⎧⎨+=⎩①② 解法1:①×3-②,得24=x ,解得:2x =,把2x =代入①,解得2y =-,∴原方程组的解是22x y =⎧⎨=-⎩; 解法2:由①得:22y x =-③把③代入②得,43(22)2x x +-=解得:2x =,把2x =代入③,得2y =-,∴原方程组的解是22x y =⎧⎨=-⎩. 解法3:由①×2得:424x y +=③,由②-③得,2y =-把2y =-代入①,解得2x =,∴原方程组的解是22x y =⎧⎨=-⎩. 【点睛】本题考查了二元一次方程组的解法,灵活运用代入消元法或加减消元法是解题的关键. 23.杭州某电器超市夏季销售A ,B 两种型号的电风扇,如表所示是近2周的销售情况:填空:完成下列的分析过程:设A 种型号的电风扇的销售单价为x 元/台,设B 种型号的电风扇的销售单价为y 元/台,则第一周销售A种型号销售收入为________元;第一周B种型号销售收入为________元(用含x或y的代数式表示),根据题意可列出第一个方程:________+________2200=同理得到,列出另一个方程:________+________3200=可以求出:x=________;y=________;(2)该电器超市销售A每台进价为120元、B每台进价170元.超市再采购这两种型号的电风扇共130台,并且全部销售完,该超市能否实现这两批的总利润恰好为8010元的目标?若能,请给出相应的采购方案;若不能,请说明理由.(进价、售价均保持不变,利润=销售收入-进货成本)解析:(1)6x,5y,6x,5y,4x,10y,150,260;(2)能,再采购A种型号电风扇89台、B种型号电风扇41台【分析】(1)设A种型号的电风扇的销售单价为x元/台,B种型号的电风扇的销售单价为y元/台,根据总价=单价×数量结合前两周的销售记录,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种型号电风扇m台,则购进B种型号电风扇(130-m)台,根据利润=销售收入一进货成本,即可得出关于m的一元一次方程,解之即可得出结论.【详解】解:(1)设A种型号的电风扇的销售单价为x元/台,设B种型号的电风扇的销售单价为y元/台,则第一周销售A种型号销售收入为6x元;第一周B种型号销售收入为5y元,根据题意可列出第一个方程:6x+5y=2200,同理得到,列出另一个方程:4x+10y=3200,可以求出:x=150;y=260;故答案为:6x,5y,6x,5y,4x,10y,150,260;(2)设购进A种型号电风扇m台,则购进B种型号电风扇(130-m)台,根据题意得:2200+3200+150m+260(130-m)-120×(6+4+m)-170[5+10+(130-m)]=8010,解得:m=89,∴130-m=41.答:超市再采购A种型号电风扇89台、B种型号电风扇41台.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是找准等量关系,正确列出方程(组).24.解方程(组)(1)4, 239, x yx y+=⎧⎨+=⎩(2)(x-1)2-25=0解析:(1)31x y =⎧⎨=⎩;(2)x=6或x=-4. 【分析】(1)用加减消元法求二元一次方程组即可;(2)利用平方根的意义求解即可.【详解】(1)4(1)239(2)x y x y +=⎧⎨+=⎩, (2)−(1)×2,得y =1,将y =1代入(1),得x =3,∴原方程组的解为31x y =⎧⎨=⎩; (2)(x-1)2-25=0,∴(x-1)2=25,∴x-1=5或x-1=-5,∴x=6或x=-4.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.也考查了利用平方根解方程.25.解下列二元一次方程组(1)212110y x x y =-⎧⎨+-=⎩(2)3212223x y x y -=⎧⎨+=⎩解析:(1)35x y =⎧⎨=⎩;(2)31.5x y =⎧⎨=-⎩. 【分析】(1)把①代入②消去y ,求出x ,代入①求出y ,方程得解;(2)①+②消去y ,求出x ,代入②,求出y ,方程得解.【详解】解:(1)212110y x x y =-⎧⎨+-=⎩①② 把①代入②得221110x x +--=,解得 x=3,把x=3代入①得y=2×3-1=5,∴方程组的解为35x y =⎧⎨=⎩;(2)3212223x y x y -=⎧⎨+=⎩①② ①+②得5x=15,解得x=3,把x=3代入②得2×3+2y=3,解得x=-1.5,∴方程组的解为31.5x y =⎧⎨=-⎩. 【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思想是消元,要根据题目的特点选用代入消元法或加减消元法解方程.26.如果(a ﹣2)x +(b +1)y =13是关于x ,y 的二元一次方程,则a ,b 满足什么条件? 解析:a ≠2,b ≠﹣1【分析】根据二元一次方程含有两个未知数可知a ﹣2≠0,b+1≠0,即可求出a ,b 所满足的条件.【详解】解:∵(a ﹣2)x +(b +1)y =13是关于x ,y 的二元一次方程,∴a ﹣2≠0,b +1≠0,∴a ≠2,b ≠﹣1.【点睛】此题考查了二元一次方程的定义:即含有两个未知数的方程,根据定义求参数满足的条件,难度一般.27.若x ,y2(2313)0x y +-=,求2x y -的值.解析:1【分析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,代入原式计算即可得到结果.【详解】解:∵2(2313)0x y +-=, ∴23+5023130x y x y -=⎧⎨+-=⎩ 解得:23x y =⎧⎨=⎩, 则2431x y -=-=.【点睛】此题考查了解二元一次方程组,以及非负数的性质:偶次幂与算术平方根,熟练掌握运算法则是解本题的关键.28.列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?解析:(1)A品牌矿泉水400箱,B品牌矿泉水200箱;(2)7800元【分析】(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,根据总价=单价×数量,结合该超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,即可列出关于x,y的二元一次方程组,解之即可;(2)根据总利润=每箱利润×数量,即可求出该超市销售完600箱矿泉水获得的利润.【详解】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:600 203515000x yx y+=⎧⎨+=⎩,解得:400200 xy=⎧⎨=⎩.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。
成都石室佳兴外国语学校七年级数学下册第八单元《二元一次方程组》经典练习(提高培优)
一、选择题1.若12x y =⎧⎨=-⎩是方程3x+by =1的解,则b 的值为( )A .1B .﹣1C .﹣2D .22.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319ad ,则b c +的值为( )A .3-B .2-C .1-D .03.如图,宽为25cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm 4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( )A .2,3B .3,2C .2,4D .3,46.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,根据题意列方程组正确的是( ) A . 4.512x y y xB . 4.512x y yxC .4.512xy x yD .4.512xyy x7.已知关于x ,y 的方程组232x y ax y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②20x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y =1﹣a 的解;其中正确的是( ) A .①② B .①③ C .②③ D .①②③8.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( )A.﹣1 B.1 C.13D .﹣139.为了研究吸烟是否对肺癌有影响,某研究所随机地抽查了1000人.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这1000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.2210002.5%0.5%x yx y-=⎧⎪⎨+=⎪⎩B.1000222.5%0.5%x yx y+=⎧⎪⎨-=⎪⎩C.10002.5%0.5%22x yx y-=⎧⎨+=⎩D.10002.5%0.5%22x yx y+=⎧⎨-=⎩10.若二元一次方程3x﹣y=﹣7,x+3y=1,y=kx+9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.411.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.2256x yx y+=⎧⎨=⎩B.2265x yx y+=⎧⎨=⎩C.22310x yx y+=⎧⎨=⎩D.22103x yx y+=⎧⎨=⎩12.小明去商店购买A B、两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种13.小明骑着自行车以每分钟120m的速度匀速行驶在环城公路上,每隔5min就和一辆公交车迎面相遇,每隔15min就被同向行驶的一辆公交车追上,如果公交车是匀速行驶的,并且每相邻的两辆公交车从起点车站发出的间隔时间相等,则公交车的速度是().A .180min mB .200min mC .240min mD .250min m14.与方程529x y +=-构成的方程组,其解为33x y =-⎧⎨=⎩的是( )A .21x y +=B .328x y +=-C .348x y -=-D .543x y +=-15.下列说法正确的是( )A .二元一次方程2317x y +=的正整数解有2组B .若52x y =⎧⎨=⎩是232x y k -=的一组解,则k 的值是12C .方程组23321y x x y =-⎧⎨+=⎩的解是11x y =⎧⎨=-⎩D .若3m n x +与22112m x y --是同类项,则2m =,1n =二、填空题16.在长方形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE 为____________cm .17.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__.18.方程27x y +=在正整数范围内的解有_________________. 19.已知37m m n x y +-与653x y 是同类项,则m n -=_______.20.已知x ay b =⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解,则2a b -=_____.21.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________.22.“九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝.23.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________24.为了节省空间,家里的饭碗一般是竖直摆放的,如果4只饭碗(形状、大小相同)竖直摆放的高度为11,8cm 只饭碗竖直摆放的高度为17cm .如图所示,小颖家的碗橱每格的高度为35,cm 则一摞碗竖直放人橱柜时,每格最多能放________________________.25.我们称使方程2323x y x y ++=+成立的一对数x ,y 为“相伴数对”,记为(),x y . (1)若()6,y 是“相伴数对”,则y 的值为______;(2)若(),a b 是“相伴数对”,请用含a 的代数式表示b =______. 26.130+-++=x y y ,则x y -=________.三、解答题27.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费220元,请你根据以上数据,求出表格中的a ,b 的值(2)7月份开始用电增多,小明家缴纳电费285.5元,求小明家7月份的用电量 阶梯 电量x (单位:度) 电费价格 一档 0<x≤180a 元/度二档 180<x≤350 b 元/度 三档x >3500.9元/度28.解方程组: (1)2328x yx y =⎧⎨-=⎩(2)3224()5()2x y x y x y +=⎧⎨+--=⎩29.张伯用100元钱从蔬菜批发市场批发了西红柿和豆角共70千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:(2)张伯当天卖完这些西红柿和豆角能赚多少钱?30.关于,x y的二元一次方程组325x y kx y k+=⎧⎨-=⎩的解也是二元一次方程211x y+=的解,求k的值.。
成都市石室外语学校新初一分班数学试卷
成都市石室外语学校新初一分班数学试卷一、选择题1.在比例尺是1:12500000的地图上,量得两城市之间的距离是8厘米.那么在比例尺是1:8000000的地图上,图上距离是()厘米.A.12.5 B.10 C.64 D.6.82.(1分)(2014•江东区模拟)一个体积25厘米×30厘米×60厘米的箱子里最多能装进棱长为1分米的立方体()A.45个 B.30个 C.72个 D.36个3.商店运来一批水果,卖出50千克后,还剩下这批水果的35,这批水果原来有多少千克?正确的算式是( ).A.50×35B.50÷35C.50÷(1-35) D.50×(1-35)4.一个三角形,其中两条边的长度分别是7厘米和11厘米。
这个三角形第三条边的长度可能是()厘米。
A.4 B.12 C.18 D.225.一根绳子,截去25,还剩15米,截去的和剩下的相比,结果是()。
A.截去的长B.剩下的长C.一样D.无法比较6.把折起来,可以折成一个正方体,和1号相对的面是()号.A.4 B.5 C.67.下列关于“统计与概率”的知识,说法错误的是()。
A.要描述小陈从一年级到六年级的平均体重变化情况,用折线统计图比较合适B.45,73,47,45,68,这五个数的平均数是68C.扇形统计图可以清楚地表示出各部分与总数之间的关系D.掷一枚硬币,连续8次都正面朝上,第9次掷出后,可能是反面朝上8.如图,把底面半径是r,高h的圆柱沿着它的高切成若干等份,拼成一个近似长方体。
这个近似长方体的表面积比原来圆柱的表面积增加了()。
A.2πr2B.2rh C.2πrh D.2πr2h9.一批练习本分发给数学兴趣组的学生,平均每人分到36本,如果只发给女生,平均每人可分到60本,如果这批练习本不超过200本,若只发给男生,那么平均每人可分到()本。
A.36 B.40 C.48 D.9010.如左图,照样子摆三角形,摆12个三角形一共需要()根小棒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
D A C
B A E
A
C
A
B A F A D A
C D B E A
F
C G B A
B A E A
F C
G B A
图① 图② 图③
成都石室佳兴外国语学校2013—2014学年度下期
七年级半期数学测试题
命题:胡 刚 审题:黄红忠 彭国建
考试时间:120分钟 全卷总分:A 卷100分+B 卷50分=150分
一、选择题(每题3分,共30分)
1.计算32a a ⋅的结果是( )
A. 5a
B. 6a
C. 25a
D. 26a 2. 下面四个图形中,∠1=∠2一定成立的是( )
A. B. C. D. 3. 下列每组数分别是三根小木棒的长度,其中能摆成三角形的是( ) A .cm cm cm 5,3,
2 B .cm cm cm 9,8,7
C .cm cm cm 8,
12,3 D .cm cm cm 11,5,5
4. 在①42a a ⋅;②
23()a -;③122a a ÷;④23a a ⋅中,计算结果为6a 的个数是( ) A.1个 B.2个 C.3个 D.4个
5. 如图,已知AB ∥CD ,BC 平分∠ABE ,∠C=34°,则∠BED 的度数是( ) A.17° B.34° C.56° D.68°
6、已知等腰三角形的两边长是5 cm 和12 cm ,则此三角形的周长是( ) A 、17 cm B 、22 cm C 、22 cm 和29 cm D 、以上答案均不对
7. 下列计算正确的是( ) A .()2
22x y x y +=+ B .()2
222x y x xy y -=-- C .()()22222x y x y x y +-=- D .()2
222x y x xy y -+=-+ 8. 如图,不能判定 AB ∥CD 的条件是( ) A .∠B+∠BCD=1800; B. ∠1=∠2;
C. ∠B=∠DCE;
D. ∠3=∠4
9. 若2)32(--=a ,1
)1(--=b ,0)2
3(-=c ,则a 、b 、c 的大小关系是( )
A .a >b =c
B .a >c >b
C .c >a >b
D .b >c >a
10. 如图,图①是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图②,再沿BF 折叠成图③,则图③中的∠CFE 的度数是( ).
A.100°
B.120°
C.140°
D.160° 二、填空题(每小题3分,共15分)
11. 计算:()1
112-⎛⎫
--= ⎪⎝⎭
.
12. 若22425x mxy y ++是一个完全平方式,则m 的值是 . 13. 若m+n=10,m-n=24,则m 2-n 2=__________.
14. 如图,将一副三角板按图中的方式叠放,则∠α等于 .
(第14题图)
15.已知∠ABC=40°,∠ACB=60°,BO 、CO 平分∠ABC 和∠ACB ,
DE 过点O ,且DE ∥BC ,则∠BOC 的度数为 .. 16.计算:(5分⨯5=25分)
(1) ()()()
2012
2013
220.254500498502-+-⨯-+-⨯
(2) (
)()()5
3
3
3
239b a b a ab
-÷-⋅-
(3). ()()()()2
2323412x x x x x +---+- (4)()()55x y x y --+- 17.化简与求值(6分)
225)3)(()2(y y x y x y x --+-+,其中2
1,2=
-=y x . 18.(6分) 如图,已知CD 是∠ACB 的平分线,∠ACB =50°,∠B =70°, DE ∥BC . 求∠EDC 和∠BDC 的度数.
(第18题图)
A B C
D
E O
(第15题图)
19.(8分) 将下面的证明过程补充完整,括号内写上相应理由或依据:
已知,如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠B+∠BDG=180°,试说明∠BEF=∠CDG . 证明:∵CD ⊥AB ,EF ⊥AB (已知) ∴∠BFE=∠BDC=90°( ) ∴EF// ( ) ∴∠BEF= ( ) 又∵∠B+∠BDG=180°(已知)
∴BC// ( ) ∴∠CDG= ( ) ∴∠CDG=∠BEF( )
20、(10分)探索规律:已知A B ∥CD,
(1)∠1、∠2、∠3之间有什么关系,说明理由
(2)∠1、∠2、∠3、∠4 之间有什么关系,说明理由?
(3) ∠1、∠2、∠3、∠4、∠5 之间有什么关系,直接写出结果? (4)n 个角时有什么关系直接写出结果?
B 卷(共50分) 填空题(每题4分,共20分)
21. 计算: 2
2222)2()4()2(b a b a b a ++-= .
22.已知()()201220112013=-⋅-a a ,那么()()=-+-2
2
20112013a a ___________.
23. 若等腰三角形一腰上的高与另一腰的夹角为30°,那么它的顶角为 度.
24.如果0332=-+x x ,则代数式103523-++x x x 的值为 .
25. 如图,在△ABA 1中,∠B =m °,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;
在A 2C 上取一点D ,
延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,锐角∠A n 为 .
26.(8分) 已知: =+1m 3-m 2
0,试求下列代数式的值: (1)m 1m +;(2)22m 1m +;(3)33
m
1m +.
27、(10分)若多项式x 2
+ax+8和多项式x 2
-3x+b 相乘的积中不含x 2
、x 3
项,求(a-b)3
-(a 3
-b 3
)的值
28.(12分)如图,直线AC ∥BD ,连结AB ,直线AC ,BD 及线段AB 把平面分成①、②、
③、④四个部分,规定:线上各点不属于任何部分,当动点P 落在某个部分时,连结P A ,PB ,构成∠P AC ,∠APB ,∠PBD 三个角.(提示:有公共端点的两条重合的射线所组成的角是0°.)
(1)当动点P 落在第①部分时,试说明:∠APB =∠PC +∠PBD .
(2)当动点P 落在第②部分时,∠APB =∠PC +∠PBD 是否成立?
(直接回答成立或不成立)
(3)当动点P 落在第③部分时,请全面探究∠PC ,∠APB , ∠PBD 之间的关系,并写出动点P 的具体位置和相应的结论, 选择其中一种结论加以说明.
A D
G
F
E
C
B
(第25题图)
A C D E
B 1 2 3 4 A
C
D
E B 1 2 3
F C 4 A
G D
E B
1
2 3
F 5。