1扫描电镜SEMPPT课件

合集下载

扫描电子显微镜(SEM)-PPT课件

扫描电子显微镜(SEM)-PPT课件

特征X射线发射
五、特征X射线 (characteristic X-ray)
• 若这一能量以X射线形式放出,这就是该元素的K辐射, hc 此时X射线的波长为: K EK EL2 式中,h为普朗克常数,c为光速。对于每一元素,EK、EL2 都有确定的特征值,所以发射的X射线波长也有特征值, 这种X射线称为特征X射线。 K • X射线的波长和原子序数之间服从莫塞莱定律: 2 Z
三、吸收电子 (absorption electron)
• 入射电子进入样品后,经多次非弹性散射,能量 损失殆尽(假定样品有足够厚度,没有透射电子 产生),最后被样品吸收。 • 若在样品和地之间接入一个高灵敏度的电流表, 就可以测得样品对地的信号,这个信号是由吸收 电子提供的。 • 入射电子束与样品发生作用,若逸出表面的背散 射电子或二次电子数量任一项增加,将会引起吸 收电子相应减少,若把吸收电子信号作为调制图 像的信号,则其衬度与二次电子像和背散射电子 像的反差是互补的。
• 背散射电子是指被固体样品中的原子反弹回来的一部分入 射电子。 • 其中包括弹性背散射电子和非弹性背散射电子。 • 弹性背散射电子是指被样品中原子核反弹回来的散射角大 于90的那些入射电子,其能量基本上没有变化。 • 弹性背散射电子的能量为数千到数万电子伏。 • 非弹性背散射电子是入射电子和核外电子撞击后产生非弹 性散射而造成的,不仅能量变化,方向也发生变化。 • 如果有些电子经多次散射后仍能反弹出样品表面,这就形 成非弹性背散发固体产生的 四种电子信号强度与入射电子强度之间必然满足以下 关系: i0=ib+is+ia+it 式中:ip ib is ia it 是透射电子强度。
将上式两边同除以i0 η+δ+a+τ =1 式中:η= ib/i0 δ= is/i0,为二次电子发射系数; a = ia/i0 τ = it/i0,为透射系数。

sem扫描电镜 ppt课件

sem扫描电镜  ppt课件
II. 背散射电子成像:入射电子与样品接触时,其中一部分几乎 不损失能量地在样品表面被弹性散射回来,这部分电子被称 为背散射电子。背散射电子的产额随样品的原子序数的增大 而增加,因此成像可以反映样品 的元素分布,及不同相成分 区域的轮廓。
ppt课件
19
二次电子像的信号是二次电子,用于表面形貌分析;背散射电子 像的信号是背散射电子,用于成分分析。因此二次电子像对形貌 敏感,背散射电子像对成分敏感。
信号收集:二次电子和背散射电子收集器、吸收电子显示器、 X射线检测器(波谱仪和能谱仪)。
显示系统:显示屏有两个,一个用于观察,一个用于记录照 相。阴极射线管CRT扫描一帧图像可以有0.2s、0.5s等扫描速 度,10cm×10cm的屏幕,一般有500条线,用于人眼观察; 照相的800〜1000条线。观察时为便于调焦,采用快的扫描 速度;拍照时为得到高分辨率,采用慢的扫描扫描速度(50 〜100s)。
ppt课件
9
图3 三种不同类型的电子枪材质
ppt课件
10
电磁透镜
作用:是把电子枪的束斑逐渐缩小,从原来直径约为50μm的 束斑缩小成一个只有几nm的细小束斑。
工作原理:一般有三个聚光镜,前两个透镜是强透镜,用来 缩小电子束光斑尺寸。
第三个聚光镜是弱透镜(习惯上称其为物镜),具有较长的 焦距,它的功能是在样品室和透镜之间留有尽可能大的空间, 以便装入各种信号探测器。在该透镜下方放置样品可避免磁 场对二次电子轨迹的干扰。
探测器收集信号电子,经过放大、转换,在显示系统上成像 (扫描电子像)。
二次电子的图像信号动态地形成三维图像。 简单概括起来就是“光栅扫描,逐点成像”。
ppt课件
4
SEM的主要结构

扫描电镜分析简介ppt

扫描电镜分析简介ppt
• 扫描电镜的景深为比一般光学显微镜景深大100-500倍,比 透射电镜的景深大10 倍。
• 景深取决于分辨本领和电子束入射半角ac。由右下图可知, 扫描电镜的景深F为:
d0临界分辨本领, ac电子束的入射半角
扫描电镜应用实例
断口形貌分析 纳米材料形貌分析 在微电子工业方面的应用
断口形貌分析
扫描电镜显微分析简介
扫描电子显微镜
扫描电子显微镜
扫描电镜显微分析简介
概况 扫描电镜的优点 扫描电镜成像的物理信号 扫描电镜的工作原理 扫描电镜的构造 扫描电镜的主要性能 应用举例
概况
扫描电子显微镜简称扫描电镜,英 文缩写:SEM。为适应不同要求,在扫描电 镜上安装上多种专用附件,实现一机多用, 使扫描电镜成为同时具有透射电子显微镜 (TEM)、电子探针X射线显微分析仪 (EPMA)、电子衍射仪(ED)等多种功能 的一种直观、快速、综合的表面分析仪器。
电源系统由稳压,稳流及相应的安全保护电路 所组成,其作用是提供扫描电镜各部分所需的电 源。
扫描电镜的主要性能
放大倍数 分辨率 景深
扫描电镜的主要性能
放大倍数
M=AC/AS 式中AC是荧光屏上图像的边长, AS是电子束在样品上
的扫描振幅。 目前大多数商品扫描电镜放大倍数为20-20000倍,介
背散射电子:入射电子在样品中经散射后再从上表 面射出来的电子。反映样品表面不同取向、不同平 均原子量的区域差别。
二次电子:由样品中原子外壳层释放出来,在扫描 电子显微术中反映样品上表面的形貌特征。
X射线:入射电子在样品原子激发内层电子后外层电 子跃迁至内层时发出的光子。
其他信号
俄歇电子:入射电子在样品原子激发内层电 子后外层电子跃迁至内层时,多余能量转移 给外层电子,使外层电子挣脱原子核的束缚, 成为俄歇电子。

扫描电镜(SEM)精品课件-1

扫描电镜(SEM)精品课件-1
扫描电子显微镜
Scanning Electron Microscope(SEM)
Contents
1
绪论
2
电子光学基础
3
入射电子与物质的相互作用
4
扫描电子显微镜的工作原理、构造和性能
5
扫描电子像的衬度效应来源
6
扫描电子显微镜的成分分析技术
第一章 绪 论
Chapter 1 Introduction
Contents
1.2 电子显微镜的类型
Types of Electron Microscope
1.2.1 类型
扫描电子显微镜
scanning electron microscope, SEM
透射电子显微镜
transmission electron microscope,TEM
扫描透射电子显微镜
scanning transmission electron microscope, STEM
1.2.2 扫描电子显微镜
昆虫的扫描电镜照片
1.2.2 扫描电子显微镜
三氧化钼晶体
1.2.2 扫描电子显微镜
树枝状晶体
1.2.3 透射电子显微镜
透射电子显微镜(简称透射电镜)是以波 长极短的电子束作为照明源,用电磁透镜聚 焦成像的一种高分辨本领、高放大倍数的电 子光学仪器。
1.2.3 透射电子显微镜 透射电镜构造 原理图和光路
1.2.2 扫描电子显微镜
扫描电子显微镜是探索微观世界奥秘的最有效的 大型精密仪器之一。由于其具备分辨率高、放大倍 数变化范围宽、景深大、立体感强、样品制备简单 等特点,因此广泛地应用于众多的科学研究领域。
1.2.2 扫描电子显微镜
显微镜系统示意图

SEM扫描电子显微镜PPT

SEM扫描电子显微镜PPT

环保材料与工艺
采用环保材料和工艺, 降低生产过程中的环境 污染。
安全操作规程
制定严格的安全操作规 程,确保操作人员和设 备安全。
THANKS FOR WATCHING
感谢您的观看
sem扫描电子显微镜
目 录
• 简介 • 应用领域 • 技术特点 • 操作与维护 • 未来发展与挑战
01 简介
定义与特点
定义
扫描电子显微镜(SEM)是一种利用 电子束扫描样品表面并收集其产生的 二次电子、背散射电子等信号来生成 样品表面形貌和成分信息的显微镜。
特点
SEM具有高分辨率、高放大倍数、高 景深等特点,能够观察样品的表面形 貌和微观结构,广泛应用于材料、生 物医学、环境等领域。
操作步骤
01
关机步骤
02
03
04
关闭SEM软件和电脑。
关闭显微镜主机,并将显微镜 归位。
关闭电源开关,确保电源完全 断开。
常见问题与解决方案
原因
可能是由于聚焦不准确或样品表 面不平整。
解决方案
重新调整聚焦或对样品表面进行 预处理,确保表面平整。
常见问题与解决方案
原因
可能是由于样品台倾斜或扫描参数设置不正确。
3
拓展多模式功能
开发具备多种模式(如透射、反射、能谱分析等) 的扫描电子显微镜,满足更多应用需求。
提高检测灵敏度与分辨率
优化电子光学系统
改进透镜、加速电压和探 测器等关键部件Biblioteka 提高成 像质量。发展超分辨技术
利用超分辨算法和纳米材 料等手段,突破光学衍射 极限,实现更高的分辨率。
提升信号处理能力
改进信号采集、处理和传 输技术,降低噪声干扰, 提高检测灵敏度。

扫描电镜SEM简介-PPT版

扫描电镜SEM简介-PPT版

透射电子
适合作表层轻元素成分分析。
电子束与固体的相互作用
其它信息
入射电子进人样品后,经多次 非弹性散射能量损失殆尽,最后 被样品吸收,即吸收电子。
入射高压电子束
如果被分析的样品很薄.那么 俄歇电子
背散射电子
就会有一部分入射电子穿过薄
样品而成为透射电子。
阴极荧光
二次电子 X射线
半导体样品在入射电子的照射 下,产生电子-空穴对。当电子
包括:二次电子、背散射电子、特征X 射线、 俄歇电子、吸收电子、透射电子、阴极荧光等。
电子束与固体的相互作用
二次电子
二次电子是指在入射电子束作用下 被轰击出来并离开样品表面的样品
的核外层电子。
二次电子的能量较低,一般都不超 过50 ev。大多数二次电子只带有几 个电子伏的能量。
入射高压电子束
俄歇电子
电子束与固体的相互作用
SEM的工作原理
电子枪发射电子束(直径50m)。 电压加速、磁透镜系统会聚,形成直径约为5nm的电子束。 电子束在偏转线圈的作用下,在样品表面作光栅状扫描,
激发多种电子信号。 探测器收集信号电子,经过放大、转换,在显示系统上成
像(扫描电子像)。 二次电子的图像信号“动态”地形成三维图像。 扫描电镜图像的放大倍数定义为:
M=L/l L显象管的荧光屏尺寸;l电子束在试样上扫描距离 “光栅扫描,逐点成像”
SEM的结构与工作原理
SEM的主要结构
SEM的结构与工作原理
随着信号的有效作用深度增加,作 用区的范围增加,信号产生的空间 范围也增加,这对于信号的空间分 辨率是不利的。
各种信号的空间分辨率
二次电子:5~10nm =>形貌分析
背散射电子:50~200nm

扫描电镜SEM简介-PPT版

扫描电镜SEM简介-PPT版

实际样品中二次电子的激发过程示意图

SEM的衬度与成像
二次电子像的衬度
原子序数
Z大于20, 二次电子 产额基本 不随试样 成分改变
电压的作用
荷电(充电)
二次电子在负电荷区容非导体上多余的累积电荷不易导 走,发生局部充电,使二次电子 产生强的衬度(很亮)

SEM的产生
Max Knoll (1897-1969) 1935 年提出扫描电镜的设 计思想和工作原理。
1965 年,剑桥仪器公司制造出世 界第一台商用扫描电镜。
SEM的产生
电子束与固体的相互作用
一束细聚焦的电子束轰 击试样表面时,入射电子束 与试样的原子核和核外电子 将产生弹性或非弹性散射作 用,并激发出反映试样形貌、 结构和组成的各种信息。 包括:二次电子、背散射电子、特征X 射线、 俄歇电子、吸收电子、透射电子、阴极荧光等。

SEM的结构与工作原理
SEM的衬度与成像
扫描电镜像的衬度来源有三个方面:

试样本身性质:表面凹凸不平、成分差别、 电压差异、表面电荷分布 信号本身性质:二次电子、背散射电子、 吸收电子 对信号的人工处理


SEM的衬度与成像
二次电子产生的规律
与入射电子束能量的关系 角分布:余弦 与入射电子束角度的关系

金属线圈对电子流折射聚焦: 电场和磁场可以作为电子束的透镜,进行折射 和聚焦。
SEM的产生
SEM的产生过程


1924年,德布罗意(De Broglie)提出物质波的概念;
1926年,德国的Garbor和Busch发现用铁壳封闭的线圈形 成轴对称磁场可以使电子流折射聚焦; 1935年,德国的Knoll提出现代SEM的概念; 1965年,英国剑桥仪器公司生产出第一台商用SEM; 1968年,Knoll研制出场发射电子枪; 1975年,中国科学院北京科学仪器厂生产了我国第一台 SEM,分辨率为10nm。

扫描电镜原理-SEM剖析精品PPT课件

扫描电镜原理-SEM剖析精品PPT课件

能清晰成像。

二次电子的强度主要与样品表面形
貌有关。二次电子和背散射电子共同用于扫描
电镜(SEM)的成像。
特征X射 线
如果入射电子把样品表面原子的内层电子撞 出,被激发的空穴由高能级电子填充时,能 量以电磁辐射的形式放出,就产生特征X射线 ,可用于元素分析。
如果入射电子把外层电子打进内层,原
俄歇 子被激发了.为释放能量而电离出次外层电
d 2a
△F——焦深; d ——电子束直径; 2a——物镜的孔径角
衬度
表面形貌衬度
原子序数衬度
衬度
表面形貌衬度
表面形貌衬度主要是样品表面的凹凸(称为表面地 理)决定的。一般情况下,入射电子能从试详表面 下约5nm厚的薄层激发出二次电子。
原子序数衬度
原子序数衬度指扫描电子束入射试祥时产生的背散 射电子、吸收电子、X射线,对微区内原子序数的 差异相当敏感,而二次电子不敏感。
低原子序 Z
高原子序 Z
高加速电压 kV
低加速电压 kV
1. 电子束斑大小基本不能影响分辨率 2. 而加速电压 kV 和平均原子序 Z 则起决定作用。
信号的方向性
SE 信号 – 非直线传播 通过探头前加有正电压的金属网来吸引
BSE 信号 – 直线发散传播 探头需覆盖面积大
X-射线信号 –直线发散传播
样品腔
SEM控制台
样品腔 样品台
OM & SEM
Comparison
显微镜类 型 OM
SEM
照明源 可见光 电子束
照射方式
成像信息
光束在试样上 以静止方式投

反射光/投射 光
电子束在试样 上作光栅状扫
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

减速模式
减速模式提高分辨率,减小样品损伤,消除核电效应, 各种信息对表面更为敏感。
能谱
特征X射线的产生是由入射电子激发元素内层电子而 发生的。即内壳层电子被轰击后跳到比费米能级高的能 级上,电子轨道内出现的空位被外层轨道的电子填入时, 放出的能量就是特征X 射线。高能级的电子落入空位时, 要遵从所谓的选择规则(selection rule),只允许满足轨 道量子数l的变化Δl=±1 的特定跃迁。特征X 射线具有 元素固有的能量。所以,将它们展开成能谱后,根据它 的能量值就可以确定元素的种类,而且根据谱的强度分 析就可以确定其含量。
扫描电镜样品室空间较大,进行 较全面的原位分析,放大倍数连 续调节范围大,景深长,分辨本 领较高
分析中心扫描电镜发展
扫描电子显微镜结构、原理
1 2
3
SEM结构
扫描电子显微镜结构、工作原理
电子枪
热发射电子枪
场发射电子枪


优于

定因素:Fra bibliotek磁透镜
旋转对称的磁场对电子束有聚焦作用,能使电子束聚焦 成像。产生这种旋转对称非均匀磁场的线圈装置就是磁透镜.
背散射电子衬度
如果试样表面存在不均 匀的元素分布,则平均原子 序数较大的区域将产生强的 被散射电子信号,因而在被 散射电子像上显示出较亮的 衬度;反之平均原子序数较 小的区域在被散射电子像上 是暗区。因此,根据被散射 电子像的亮暗程度,可判别 出相应区域的原子序数的相 对大小,由此可对金属及合 金的显微组织进行成分分析。
低真空(Helix探头)
Helix探测技术将浸入式透镜和低真空扫描电镜两种技术 成功地组合在一起,在带来超高分辨率的同时,还能在低真 空环境下有效地抑制非导电材料的电荷积累效应。
Helix探头拍摄的图片
vCD(low Voltage high Contrast Detector)
由于低电压与样品相互作用时, 相互体积减少,激发的背散射和 二次电子信号更靠近表面,更能 反应表面的形貌。
扫描电镜样品的制备
透射电镜相比, 扫描电镜试样制备比较简单。 在保持材 料原始形状情况下,直接观察和研究试样表面形貌及其它物理 效应(特征) ,是扫描电镜的一个突出优点。
块状样品
导电性材料主要是指金属,一些矿物和半导体材料也具有 一定的导电性。这类材料的试样制备最为简单。只要使试样大 小不得超过仪器规定,然后用导电胶带粘在载物盘,之后就可 放到扫描电镜中直接进行观察。
能谱仪: EDS (Energy Dispersive Spectrometer) 能谱分析:EDAX(Energy Dispersive Analysis of X-rays) 能谱法: EDX (Energy Dispersive X-ray Spectrometer)
能谱仪分析
定性分析:X射线的光电子能量为E=hγ,h为普朗克常 数,γ为光子频率,不同元素的特征X射线具有不用的 频率,即具有不用的能量,只要检测不同光子的能量 即可以检测元素。 定量分析:在相同条件下,同时检测标样和试样中各 元素的X射线强度,通过强度比,再经过修正后,可求 出各元素的百分含量。
二次电子(Secondary Electrons):电子束和样品作用,可将 传导能带(conduction band)的电子击出,此即为二次电子,其能 量约 < 50eV。由于是低能量电子,所以只有在距离样品表面约 50~500nm深度范围内所产生之二次电子,才有机会逃离样品表 面而被侦测到。由于二次电子产生的数量,会受到样品表面起 伏状况影响,所以二次电子影像可以观察出样品表面之形貌特 征。
非导电性的块状材料试样的制备也比较简单, 基本可以像 导电性块状材料试样的制备一样。 可以对其进行喷金,再使用 导电胶将表面和载物盘连通。可以使用导电银浆对其处理,处 理时一定要从载物盘一直连到块状材料试样的上表面,因为观 察时候电子束是直接照射在试样的上表面的。
能谱分析方法
点分析:电子束固定在试样感兴趣的点上,进行分析。该方法准确度高,用于 显微结构的成分分析。对于低含量元素的试样,只能采用点分析。 线扫描:电子束沿一条线进行扫描时,能获得元素含量变化的线分布曲线,结 果和试样形貌对照分析,能直观的获得元素在不同区域的分布情况。 面分布:电子束在试样表面扫描时,元素在试样表面的分布能在屏幕上以彩色 分布显示出来,亮度越亮,说明元素含量越高。
环境扫描电镜
环境扫描电镜 一定程度地模拟样品所处的环境,含水、 含油、非导电、被污染的样品均能在不做任何处理的自然 状态下进行观察。生物(如细胞、细菌等)样品可以直接 进行观察而不改变其原貌。可以对样品的溶解、析晶过程 和加热冷却过程中的结构变化进行动态观察。
环境扫描电镜
热场发射扫描电镜
Nanosem 430是世界上第一款可以对有机材料、基 板、多孔材料、塑料以及高聚物材料等有电荷积累的样 品和/或污染性样品进行超高分辨表征的低真空场发射扫 描电子显微镜(FEG-SEM)。
扫描电子显微镜
扫描电镜简介
历史 :
1935年,Max Knoll提出扫描电 子显微镜(SEM)的工作原理和 设计
1938年,Von Ardenne在实验 室制作出第一台扫描电子显 微镜,1965年,英国生产出 实用化的商品。
扫描电镜的特点
光学显微镜可以直接观察大块试样, 但分辨本领、放大倍数、景深都比较 低。
二次电子的衬度
二次电子产额于入射角度的关系: 1/cos
背散射电子
背散射电子发射系数可表示为:
= In Z α- 1 64
入射电子与样品接触时,其 中一部分几乎不损失能量地在 样品表面被弹性散射回来,这 部分电子被称为背散射电子( Backscattered Electron)。
背散射电子的产额随样品的 原子序数的增大而增加,因此 成像可以反映样品的元素分布 ,及不同相成分区域的轮廓。
SEM 工作原理
电子束与样品的相互作用
电子束和样品的作用有两类,一为弹性碰撞,几乎没有损失能量,另一 为非弹性碰撞,入射电子束会将部份能量传给样品,而产生二次电子、背散 射电子、俄歇电子、X射线光电子、长波电磁放射、电子-空位对等。SEM中 主要研究的有二次电子、背向散射电子、X射线光电子。
二次电子
相关文档
最新文档