【初中数学】反比例函数综合测试题 人教版
人教版九年级数学下册反比例函数全章测试含答案
初三数学 反比例函数全章测试(60分钟,满分100分)一.填空题:(每题6分,共48分)1.函数13--=x y 的自变量的取值范围是 . 2.反比例函数xy 6=当自变量2-=x 时,函数值是 .3.图象经过点)4,2(--A 的反比例函数的解析式为 . 4.当0<x 时,反比例函数xy 3-=中,变量y 随x 的增大而 . 5.函数2||)1(--=k x k y 是y 关于x 反比例函数,则它的图象不经过 的象限.6.反比例函数x ky =与一次函数2+=x y 图象的交于点),1(a A -,则=k . 7.反比例函数xk y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中021<<x x 且21y y >,则k 的范围是 .8.已知:点A 在反比例函数图象上,B x AB 轴于点⊥,点C (0,1),且AB C ∆的面积是3,如图,则反比 例函数的解析式为 .二.选择题:(每题5分,共35分)9.下列函数中,变量y 是x 的反比例函数的是( ).A . 21x y =B .1--=x y C .32+=x y D .11-=x y10.在物理学中压力F ,压强p 与受力面积S 的关系是:SFp =则下列描述中正确的是( ).A 当压力F 一定时,压强p 是受力面积S 的正比例函数B 当压强p 一定时,压力F 是受力面积S 的反比例函数C 当受力面积S 一定时,压强p 是压力F 的反比例函数D 当压力F 一定时,压强p 是受力面积S 的反比例函数11.反比例函数xy 6=与一次函数1+=x y 的图象交于点)3,2(A ,利用图象的对称性可知它们的另一个交点是( ).A )2,3(B )2,3(--C )3.2(--D )3,2(-12.若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间函数关系的图象大致是( ).13.某气球内充满了一定质量的气体,当温度不变时,气球 内气体的气压P(kPa)是气体体积V(m 3)的反比例函数,其图 象如图所示. 当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体体积应( ). (13题图)h r O h r O h r O h r O A . B . C . D .A .不大于3m 3524;B .不小于3m 3524;C .不大于3m 3724;D .不小于3m 372414xk 1-的图象不可能是....( ).A B C D15.正方形ABCD 的顶点A (2,2),B(-2,2)C(-2,-2),反比例函数x y 2=与xy 2-=的图象均与正方形ABCD 的边相交,如图,则图中的阴影部分的面积是( ) . A 、2 B 、4 C 、8 D 、6三.解答题:(16题5分,17、18、19题每题4分,共17分)16.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y (m )是面条的粗细(横截面积)S (mm 2)的反比例函数,其图象如图所示.⑴写出y (m )与S (mm 2)的函数关系式;⑵求当面条粗1.6 mm 2时,面条的总长度是多少米?x O yxOyxO yxOyS y(m)(mm 2)O P(4,32)100806040205432117.如图,正方形ABCD 的边长是2,E ,F 分别在BC ,CD 两边上,且E ,F 与BC ,CD 两边的端点不重合,AEF ∆的面积是1,设BE=x ,DF=y.(1)求y 关于x 函数的解析式;(2) 判断在(1)中,y 关于x 的函数是什么函数? (3)写出此函数自变量x 的范围.18.已知:反比例函数的图象经过)2,1(a a A )1,12(aaa a B ---两点, 〈1〉 求反比例函数解析式;〈2〉 若点C )1,(m 在此函数图象上,则ABC ∆的面积是 .(填空)19.如图,已知直线m x y +=1与x 轴,y 轴分别交于点A 、B ,与双曲线xky =2(x <0)分别交于点C 、D ,且点C 的坐标为(-1,2). ⑴ 分别求出直线及双曲线的解析式;⑵利用图象直接写出,当x 在什么范围内取值时,21y y >. 答案1.1≠x ;2.3-=y ;3.xy 8=;4.增大;5.第一、三象限;6. ,1- 7.1->k 8.xy 6=;9.B ;10.D ;11.B ;12.B ;13.B ;14.D ;15.C 16.(1) x y 128= (2)80m ;17.(1)3+=x y xy 2-=(2)12-<<-x18.<1>x y 2=,<2> 3 19.(1)xy 2=(2)反比例函数(3)20<≤xxyD C BAO专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
人教版初中数学九年级数学下册第一单元《反比例函数》检测卷(有答案解析)
一、选择题1.下列式子中表示y 是x 的反比例函数的是( ) A .24y x =-B .y=5x 2C .y=21x D .y=13x2.如图,正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式kax x<的解集为( )A .2x <-或2x >B .2x <-或02x <<C .20x -<<或02x <<D .20x -<<或2x >3.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( )A .120x x <B .130x x <C .230x x <D .120x x +<4.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-5.已知点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y =﹣2x图象上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 1>y 3>y 2D .无法确定6.对于反比例函数21k y x+=,下列说法错误的是( )A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值7.如图,OABC 是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y =1k x和y =2k x 的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①12||AM CN ||k k =;②阴影部分面积是12(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是( )A .①②B .①④C .③④D .①②③8.如图,函数ky x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( ) A . B .C .D .9.如图,已知正比例函数y 1=x 与反比例函数y 2=9x的图像交于A 、C 两点,AB ⊥x 轴,垂足为B , CD ⊥x 轴,垂足为D .给出下列结论:①四边形ABCD 是平行四边形,其面积为18;②AC =2;③当-3≤x<0或x≥3时,y 1≥y 2;④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小.其中正确的结论有( )A .①④B .①③④C .①③D .①②④10.已知二次函数2y ax bx c =++的图象如图,则一次函数y ax bc =+与反比例函数abcy x=在平面直角坐标系中的图象可能是( ).A .B .C .D .11.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,112.如图, O 为坐标原点,点B 在x 轴的正半轴上,四边形OBCA 是平行四边形,45sin AOB ∠=,反比例函数()0m y m x=>在第一象限内的图像经过点A ,与BC 交于点F ,若点F 为BC 的中点,且AOF 的面积为12,则m 的值为( )A .16B .24C .36D .48二、填空题13.如图,在平面直角坐标系中,反比例函数(0)ky x x=>经过矩形ABOC 的对角线OA 的中点M ,己知矩形ABOC 的面积为24,则k 的值为___________14.函数25(1)ny n x -=+是反比例函数,且图象位于第二、四象限内,则n =____.15.如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线()0ky x x=>经过斜边OA 的中点C ,与另一直角边交于点D ,若3ABOS=,则k 的值为______.16.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________.(无需确定x 的取值范围)17.在反比例函数y =-2k 1x+图象上有三个点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),若x 1<0<x 2<x 3,则y 1、y 2、y 3的大小关系为_______.(用“<”连接)18.如图,△DEF 的三个顶点分别在反比例函数=xy n 与()0,0xy m x m n =>>>的图象上,若DB ⊥x 轴于B 点,FE ⊥x 轴于C 点,若B 为OC 的中点,△DEF 的面积为6,则m 与n 的关系式是____.19.如图,△BOD 都是等腰直角三角形,过点B 作AB ⊥OB 交反比例函数y kx=(x >0)于点A ,过点A 作AC ⊥BD 于点C ,若S △BOD ﹣S △ABC =3,则k 的值为____.20.如图,平面直角坐标系中,等腰Rt ABC ∆的顶点.A B 分别在x 轴、y 轴的正半轴,90,ABC =∠CA x ⊥轴, 点C 在函数()0k y x x=>的图象上.若2,AB =则k 的值为_____.三、解答题21.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx(x <0)的图象交于第二象限内的A 、B 两点,过点A 作AC ⊥x 轴于点C ,OA =5,OC =4,点B 的纵坐标为6.(1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积;(3)写出kx +b ﹣mx<0的解集.22.在平面直角坐标系xOy 中,直线l :1y x =-与双曲线ky x=相交于点(2,)A m . (1)求点A 坐标及反比例函数的表达式;(2)若直线l 与x 轴交于点B ,点P 在反比例函数的图象上,当OPB △的面积为1时,求点P 的坐标.23.如图,一次函数1522y x =-+的图象与反比例函数()0ky k x=>的图象交于,A B 两点,过点A 作x 轴的垂线,垂足为M ,AOM ∆面积为1.(1)求反比例函数的解析式.(2)求出A 、B 两点坐标,并直接写出不等式1522k x x <-+的解集. (3)在x 轴上找一点P ,并求出PA PB -取最大值时点P 的坐标.24.如图,已知()()4,2,4A B n --、是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点.(1)求此反比例函数和一次函数的解析式; (2)连接,OA OB ,求AOB ∆的面积;(3)根据图象直接写出使不等式m kx bx+>成立的x的取值范围______________________.25.如图,已知反比例函数y=kx的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=kx的图象上,当-3≤x≤-1时,求函数值y的取值范围.26.如图,在直角坐标系中,双曲线kyx=与直线y ax b=+相交于()2,3,6,)(A B n-两点,(1)求双曲线和直线的函数解析式;(2)点P在x负半轴上,APB△的面积为14,求点P的坐标;(3)根据图象,直接写出不等式组kax bxax b⎧+⎪⎨⎪+⎩﹤﹥的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据反比例函数的定义逐项分析即可. 【详解】A. 24y x =-,y 是x 的一次函数,故不符合题意;B. y=5x2,y 是x 的正比例函数,故不符合题意; C. 21y x =,y 是x²的反比例函数,故不符合题意; D. y=13x ,y 是x 的反比例函数,符合题意; 故选:D . 【点睛】本题考查了反比例函数的定义,一般地,形如ky x=(k 为常数,k ≠0)的函数叫做反比例函数.2.B解析:B 【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象可得kax x<,求出x 的取值范围即可. 【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称, ∵点A 的横坐标为2, ∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方, ∴2x <-或02x <<, 故选:B . 【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.3.A解析:A 【分析】根据反比例函数2y x=和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 在第一象限,得出x 1<x 2<0<x 3,再选择即可. 【详解】解:∵反比例函数2y x=中,2>0, ∴在每一象限内,y 随x 的增大而减小, ∵x 1<x 2<x 3,y 2<y 1<y 3,∴点A ,B 在第三象限,点C 在第一象限, ∴x 1<x 2<0<x 3,∴x 1•x 2>0,x 1•x 3<0,x 2•x 3<0,x 1+x 2<0, 故选:A . 【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.4.C解析:C 【详解】 ∵A (﹣3,4), ∴, ∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8, 故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C .考点:菱形的性质;反比例函数图象上点的坐标特征.5.C解析:C 【分析】根据反比例函数图象上点的坐标特征得到y 1=12x -,y 2=22x -,y 3=32x -,然后根据x 1<0<x 2<x 3比较y 1,y 2,y 3的大小. 【详解】点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是2y x=-的图象上的点, ∴y 1=12x -,y 2=22x -,y 3=32x -,而x 1<0<x 2<x 3, ∴y 1>y 3>y 2. 故选:C . 【点睛】本题考查了反比例函数图象上点的坐标特征:熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.B解析:B 【分析】先判断出k 2 +1的符号,再根据反比例函数的性质即可得出结论. 【详解】A 、∵k 2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B 、∵它的图象分布在第一、三象限,∴在每一象限内y 随x 的增大而减小,故本选项错误;C 、∵它的图象分布在第一、三象限,在每一象限内y 随x 的增大而减小,∵x 1=-1<0,∴y 1<0,∵x 2=1>0,x 3=2>0, ∴y 2>y 3,∴y 1<y 3<y 2故本选项正确;D 、∵P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,∴△OPQ 的面积=12(k 2+1)是定值,故本选项正确. 故选B . 【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=kx(k≠0)中,当k >0时函数图象的两个分支分别位于一三象限是解答此题的关键.7.B解析:B 【分析】作AE ⊥y 轴于点E ,CF ⊥y 轴于点F ,根据平行四边形的性质得S △AOB =S △COB ,利用三角形面积公式得到AE=CF ,则有OM=ON ,再利用反比例函数k 的几何意义和三角形面积公式得到S △AOM =12|k 1|=12OM•AM ,S △CON =12|k 2|=12ON•CN ,所以有12k AM CN k =;由S △AOM =12|k 1|,S △CON =12|k 2|,得到S 阴影部分=S △AOM +S △CON =12(|k 1|+|k 2|)=12(k 1-k 2);当∠AOC=90°,得到四边形OABC 是矩形,由于不能确定OA 与OC 相等,则不能判断△AOM ≌△CNO ,所以不能判断AM=CN ,则不能确定|k 1|=|k 2|;若OABC 是菱形,根据菱形的性质得OA=OC ,可判断Rt △AOM ≌Rt △CNO ,则AM=CN ,所以|k 1|=|k 2|,即k 1=-k 2,根据反比例函数的性质得两双曲线既关于x 轴对称,也关于y 轴对称.【详解】作AE ⊥y 轴于E ,CF ⊥y 轴于F ,如图,∵四边形OABC 是平行四边形,∴S △AOB =S △COB ,∴AE=CF ,∴OM=ON ,∵S △AOM =12|k 1|=12OM•AM ,S △CON =12|k 2|=12ON•CN , ∴12k AM CN k ,故①正确; ∵S △AOM =12|k 1|,S △CON =12|k 2|, ∴S 阴影部分=S △AOM +S △CON =12(|k 1|+|k 2|), 而k 1>0,k 2<0,∴S 阴影部分=12(k 1-k 2),故②错误; 当∠AOC=90°,∴四边形OABC 是矩形,∴不能确定OA 与OC 相等,而OM=ON ,∴不能判断△AOM ≌△CNO ,∴不能判断AM=CN ,∴不能确定|k 1|=|k 2|,故③错误;若OABC 是菱形,则OA=OC ,而OM=ON ,∴Rt △AOM ≌Rt △CNO ,∴AM=CN ,∴|k 1|=|k 2|,∴k 1=-k 2,∴两双曲线既关于x 轴对称,也关于y 轴对称,故④正确.故选:B .【点睛】本题属于反比例函数的综合题,考查了反比例函数的图象、反比例函数k 的几何意义、平行四边形的性质、矩形的性质和菱形的性质.注意准确作出辅助线是解此题的关键. 8.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当0k <时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x =-的图象分布在一、三象限,B 选项正确,故选:B.【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 9.C解析:C【分析】先求出AC 两点的坐标,再根据平行四边形的判定定理与函数图象进行解答即可.【详解】解:∵正比例函数y 1=x 与反比例函数y 2=9x的图象交于A 、C 两点, ∴A (3,3)、C (-3,-3),AB ⊥x 轴,垂足为B ,CD ⊥x 轴,垂足为D ,∴AB=CD ,AB ∥CD ,∴四边形ABCD 是平行四边形.∴S ▱ABCD =3×6=18,故①正确;②∵A (3,3)、C (-3,-3),∴=,故本小题错误;③由图可知,-3≤x <0或x≥3时,y 1≥y 2,故本小题正确;④当x 逐渐增大时,y 1随x 的增大而增大,在每一象限内y 2随x 的增大而减小 故本小题错误.故选:C .【点睛】本题考查的是反比例函数综合题,涉及到平行四边形的判定、一次函数及反比例函数的特点等知识,难度适中.10.C解析:C【分析】由二次函数的图像性质分析a ,b ,c 的符号,从而判断bc 和abc 的符号,然后结合反比例函数和一次函数图像性质进行判断即可.【详解】解:由题意可知,二次函数开口向上,∴a >0由二次函数对称轴在y 轴右侧,∴b<0由二次函数与y 轴交于原点上方,∴c >0∴bc<0,abc<0∴一次函数图像经过一、三、四象限,反比例函数图像经过二四象限故选:C .【点睛】本题考查一次函数、二次函数、反比例函数的图像性质,掌握函数图像性质,利用数形结合思想解题是关键.11.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键. 12.A解析:A【分析】过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,,设OA=5k ,通过解直角三角形得出AM=4k,OM=3k,m=12k 2,,再根据S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN 得到S 梯形AMNF =S △AOF =12,得出12(4k+2k)⋅3k=12,得到k 2的值,再求m 得值即可. 【详解】解:过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,设OA=5k ,∵45sin AOB ∠= ∴AM=4k,OM=3k,m=12k 2,∵四边形OACB 是平行四边形,F 为BC 的中点,∴FN=2k ,ON=6k ,∵S △AOM =S △OFN ,S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN ,∴S 梯形AMNF =S △AOF =12,∴12(4k+2k)⋅3k=12, ∴k 2=43, ∴m=12k 2=16.故选A.【点睛】本题考查反比例函数的性质、平行四边形的性质、三角形的面积、梯形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.二、填空题13.6【分析】设A (ab )由矩形的面积求得ab 再根据中点定义求得M 点坐标进而用待定系数法求得k 【详解】解:设A (ab )则ab=24∵点M 是OA 的中点∴∵反比例函数经过点M ∴故答案为:6【点睛】本题主要考解析:6【分析】设A (a ,b ),由矩形的面积求得ab ,再根据中点定义求得M 点坐标,进而用待定系数法求得k .【详解】解:设A (a ,b ),则ab=24,∵点M 是OA 的中点, ∴1122M a b ⎛⎫ ⎪⎝⎭,, ∵反比例函数(0)k y x x =>经过点M , ∴1111•2462244k a b ab =⨯===, 故答案为:6【点睛】本题主要考查了矩形的性质,反比例函数的图象与性质,关键是通过A 点坐标与已知矩形面积和未知k 联系起来.14.-2【分析】根据反比例函数的定义与性质解答即可【详解】根据反比函数的解析式y=(k≠0)故可知n+1≠0即n≠-1且n2-5=-1解得n=±2然后根据函数的图像在第二四三象限可知n+1<0解得n<-解析:-2.【分析】根据反比例函数的定义与性质解答即可.【详解】根据反比函数的解析式y=k x(k≠0),故可知n+1≠0,即n≠-1, 且n 2-5=-1,解得n =±2,然后根据函数的图像在第二、四三象限,可知n+1<0,解得n<-1,所以可求得n=-2.故答案为:-2【点睛】本题考查反比例函数的定义与性质,熟记定义与性质是解题的关键. 15.【分析】设点B 的坐标为先根据三角形的面积公式可得从而可得点A 的坐标为再根据线段中点的定义可得点C 的坐标为然后将点C 的坐标代入双曲线的解析式即可得【详解】设点B 的坐标为则解得点C 是OA 的中点即又点在双 解析:32【分析】设点B 的坐标为(,0)(0)a a >,先根据三角形的面积公式可得6AB a=,从而可得点A 的坐标为6(,)A a a ,再根据线段中点的定义可得点C 的坐标为3(,)2a C a,然后将点C 的坐标代入双曲线的解析式即可得.【详解】设点B 的坐标为(,0)(0)a a >,则OB a =,132ABC S OB AB =⋅=, 32a AB ∴⋅=,解得6AB a=, 6(,)A a a∴, 点C 是OA 的中点,600(,)22a a C ++∴,即3(,)2a C a, 又点3(,)2a C a在双曲线上, 3322a k a ∴=⋅=, 故答案为:32. 【点睛】 本题考查了反比例函数的几何应用,熟练掌握反比例函数的图象与性质是解题关键. 16.【解析】根据题意得xy =025×400=100∴ 解析:100y x =【解析】根据题意得xy =0.25×400=100,∴100y x=. 17.y2<y3<y1【分析】因为+1>0所以-(+1)<0此函数分布在二四象限在各象限y 随x 的增加而增大即可判断出y2<y3<y1【详解】∵+1>0∴-(+1)<0∴y =-图象在二四象限第二象限y 为正∴解析:y 2<y 3<y 1【分析】因为2k +1>0,所以-(2k +1)<0,此函数分布在二,四象限,在各象限y 随x 的增加而增大,即可判断出y 2<y 3<y 1.【详解】∵2k +1>0,∴-(2k +1)<0,∴y =-2k 1x+, 图象在二,四象限,第二象限y 为正,∴1y 最大,第四象限内y 随x 增大而增大,所以2y 最小,因此y 2<y 3<y 1.故答案为:y 2<y 3<y 1.【点睛】此题考查反比例函数图像和系数k 的关系,会数形结合是本题解题关键,学会利用图像解题.18.【分析】设点D 点坐标根据B 是OC 的中点求出E 点坐标进而得到F 点坐标在根据梯形DFCB 的面积减去梯形DECB 的面积即可列出等量关系求解【详解】解:∵∴DE 所在的反比例函数是设由B 是OC 的中点可知E 点坐 解析:24-=m n【分析】设点D 点坐标,根据B 是OC 的中点,求出E 点坐标,进而得到F 点坐标,在根据梯形DFCB 的面积减去梯形DECB 的面积即可列出等量关系求解.【详解】解:∵n m <∴D 、E 所在的反比例函数是=xy n 设(,)n D a a ,由B 是OC 的中点可知E 点坐标为:(2,)2n a a,又F 点和E 点横坐标相同,且F 在=xy m 上, 故F 点坐标为:(2,)2m a a又11==()()22梯形梯形DECB ∆-+-+DEF DFCB S S S DB FC BC DB EC BC 111()()=()22224=+-+-n m n n a a m n a a a a 又∵△DEF 的面积为6 ∴1()64-=m n ∴24-=m n .故答案为:24-=m n【点睛】 本题考查了反比例函数上点的坐标运算,当两点在反比例函数上时,设其中一个点的坐标,则另一个点的坐标根据题中给定的等量关系用设好的坐标的代数式表示.19.6【分析】设A 点坐标为(ab )根据等腰直角三角形的性质得BC=ACOD=BD 由S △BOD-S △ABC=3得出OD2-AC2=6利用平方差公式得到(OD+AC )(OD-AC )=6得到a•b=6根据反比解析:6.【分析】设A 点坐标为(a ,b ),根据等腰直角三角形的性质得BC=AC ,OD=BD ,由S △BOD -S △ABC =3得出OD 2-AC 2=6,利用平方差公式得到(OD+AC )(OD-AC )=6,得到a•b=6,根据反比例函数图象上点的坐标特征易得k=6.【详解】设A 点坐标为(a ,b).∵△ABC 和△BOD 都是等腰直角三角形,∴BC=AC ,OD=BD∵S △BOD ﹣S △ABC =3,12OD 212-AC 2=3,OD 2﹣AC 2=6, ∴(OD+AC)(OD ﹣AC)=6,∴ab=6,∴k=6.故答案为:6.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y k x=(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 20.4【分析】根据等腰三角形的性质和勾股定理求出AC 的值根据等面积法求出OA 的值OA 和AC 分别是点C 的横纵坐标又点C 在反比例函数图像上即可得出答案【详解】∵△ABC 为等腰直角三角形AB=2∴BC=2解得解析:4【分析】根据等腰三角形的性质和勾股定理求出AC 的值,根据等面积法求出OA 的值,OA 和AC 分别是点C 的横纵坐标,又点C 在反比例函数图像上,即可得出答案.【详解】∵△ABC 为等腰直角三角形,AB=2∴BC=2,AC ==1122BC AB OA AC ⨯⨯=⨯⨯ 112222OA ⨯⨯=⨯⨯解得:∴点C 的坐标为 又点C 在反比例函数图像上∴4k ==故答案为4.【点睛】本题考查的是反比例函数,解题关键是根据等面积法求出点C 的横坐标.三、解答题21.(1)y =﹣12x ,y =32x +9;(2)9;(3)x <﹣4或﹣2<x <0. 【分析】(1)根据勾股定理求出AC 长度,从而得知A 点坐标,用待定系数法可求反比例函数解析式.把B 点纵坐标代入反比例函数即可知道B 点横坐标.同样用待定系数法把A 、B 的坐标代入一次函数解析式可得方程组,求出方程组的解即可求出一次函数解析式; (2)求出一次函数与x 轴交点R 的坐标.=-AOB BOR AOR SS S ,根据三角形的面积公式求出AOR S 和BOR S 即可;(3)要使kx +b ﹣m x<0,即函数y kx b =+的图像在m y x =的下方,在根据A 、B 的坐标即可求出答案.【详解】 (1)在Rt △AOC中,3AC ===, 故点A 的坐标为(-4,3),将A (-4,3)代入m y x=,解得m =﹣12, ∴反比例函数的解析式为y =﹣12x ; ∵当y =6时,代入y =﹣12x,解得x =﹣2, ∴B (-2,6), 将A (-4,3),B (-2,6)代入y =kx +b 得4326k b k b -+=⎧⎨-+=⎩ ,解得329k b ⎧=⎪⎨⎪=⎩, ∴一次函数的解析式为y =32x +9; (2)设一次函数交x 轴于点R , 把y =0代入y =32x +9,解得:x =﹣6, 即R 的坐标是(-6,0),OR =6, S △AOB =S △BOR ﹣S △AOR =116663922⨯⨯-⨯⨯=;(3)由图象知kx +b ﹣m x <0的解集为:x <﹣4或﹣2<x <0. 【点睛】 本题考查一次函数与反比例函数交点的问题,反复用待定系数法先后求出反比例函数和一次函数的解析式,用大三角形面积减去小三角形面积也是本题的关键,最后根据函数图像和两个函数的交点,判断kx +b ﹣m x<0时,即函数y kx b =+的图像在m y x =的下方,x 的取值范围.22.(1)点(2,1)A ,反比例函数2y x =;(2)点()P 12,或(-1,-2)【分析】(1)代入坐标点先求坐标,再求反比例函数表达式;(2)作图,根据图像求出P 点纵坐标,再代入反比例函数即可求出坐标.【详解】(1)∵A 在y=x-1上,∴当x=2时,y=1,即m=1,点(2,1)A ,再把A 的坐标代入反比例函数解得:2y x =;(2)由函数表达式可求得点(1,0)B ,∵1OPB S =△,即12 OB ||1p y =,∴||1p y =,点()P 12,或(-1,-2);【点睛】此题考查反比例函数与一次函数相关知识,结合图像是关键.23.(1)2y x =;(2)()1,2A ,14,2B ⎛⎫⎪⎝⎭,解集为14x <<或0x <;(3)()5,0【分析】(1)根据反比例函数比例系数k 的几何意义得出12|k|=1,进而得到反比例函数的解析式;(2)解析式联立求得A 、B 的坐标,根据图象即可求得不等式1522k x x <-+的解集; (3)一次函数1522y x =-+与x 轴的交点即为P 点,此时|PA−PB|的值最大,最大值为AB 的长;根据一次函数图象上点的坐标特征即可求得点P 的坐标.【详解】(1)∵反比例函数()0k y k x=>的图象过点A ,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1, ∴1|k |12=, ∵0k >, ∴2k =, 故反比例函数的解析式为:2y x=; (2)由15-222y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩, ∴()1,2A ,14,2B ⎛⎫ ⎪⎝⎭, ∴不等式1522k x x <-+的解集为14x <<或0x <; (3)一次函数1522y x =-+的图象与x 轴的交点即为P 点, 此时PA PB -的值最大,最大值为AB 的长.∵一次函数1522y x =-+, 令0y =,则15022x -+=,解得5x =, ∴P 点坐标为()5,0.【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题,解题的关键是确定|PA−PB|的值最大时,点P 的位置,灵活运用数形结合思想是解题的关键.24.(1)一次函数的解析式是2y x =--;(2)6AOB S ∆=;(3)x 的取值范围是4x <-或02x <<.【分析】(1)把A 的坐标代入反比例函数解析式求得m 的值,从而求得反比例函数解析式,然后把B 的坐标代入n 的值,再利用待定系数法求得一次函数的解析式;(2)求得AB 与x 轴的交点,然后根据三角形的面积公式求解;(3)一次函数的值大于反比例函数的值的x 的取值范围就是一次函数的图象在反比例函数图象上方的自变量的取值范围.【详解】解:(1)把()4,2-代入m y x =得24m =-,则8m =-, 则反比例函数的解析式是8y x =-; 把(),4n -代入8y x=-得824n =-=-, 则B 的坐标是()2,4-,根据题意得:2442k b k b =-+⎧⎨-=+⎩,解得12k b =-⎧⎨=-⎩, 则一次函数的解析式是2y x =--;(2)设AB 与x 轴的交点是C ,则C 的坐标是()2,0-,则2OC =,11222,24422AOC BOC S S ∆∆=⨯⨯==⨯⨯=, 则6AOB S ∆=;(3)由函数图象可知x 的取值范围是4x <-或02x <<.【点睛】本题考待定系数法求函数的解析式以及函数与不等式的关系,理解求一次函数的值大于反比例函数的值的x 的取值范围就是一次函数的图象在反比例函数图象上方的自变量的取值范围是关键.25.(1) k =4, m =1;(2)当-3≤x ≤-1时,y 的取值范围为-4≤y ≤-43. 【详解】试题分析:(1)根据反比例函数系数k 的几何意义先得到k 的值,然后把点A 的坐标代入反比例函数解析式,可求出k 的值;(2)先分别求出x=﹣3和﹣1时y 的值,再根据反比例函数的性质求解.试题(1)∵△AOB 的面积为2,∴k=4,∴反比例函数解析式为4y x =,∵A (4,m ),∴m=44=1; (2)∵当x=﹣3时,y=﹣43; 当x=﹣1时,y=﹣4,又∵反比例函数4y x =在x <0时,y 随x 的增大而减小,∴当﹣3≤x≤﹣1时,y 的取值范围为﹣4≤y≤﹣43. 考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征.26.(1)6y x=-,122y =-+;(2)()3,0P -;(3)20x -<< 【分析】 (1)将()2,3A -代入k y x=求出k ,得到B 点坐标,再代入y ax b =+即可求解; (2)作,AD x ⊥轴于,D BE x ⊥轴于E .得到3,1AD BE ==,根据三角形的面积公式求出7PC =,再根据直线解析式求出C 点坐标,故可求出P 点坐标;(3)根据函数图像即可求解.【详解】解:(1)将()2,3A -代入k y x=,得6k =-. ∴双曲线解析式为6y x=- 当6x =时,1y =-∴()6,1B -将()()2,3,6,1A B --代入y ax b =+,得2361a b a b -+=⎧⎨+=-⎩,解得1,22a b =-= ∴直线解析式为122y =-+. (2)作,AD x ⊥轴于,D BE x ⊥轴于E .则3,1AD BE ==.∵1122APB SPC AD PC BE =⋅+⋅ ∴()1142PC AD BE += ∴7PC = 由1202y x =-+=,得4x =. ∴()4,0C ,∴4OC =,∴3OP = ∴()3,0P -(3)由图象,不等式组0k ax b x ax b ⎧+<⎪⎨⎪+>⎩,的解集为20x -<<. 【点睛】此题主要考查一次函数与反比例函数综合,解题的关键是熟知待定系数法的应用.。
初中数学(人教版)九年级下册单元检测卷及答案—反比例函数
初中数学(人教版)九年级下册单元检测卷及答案—反比例函数一、选择题(每小题3分,共30分)1.下列函数中,图象经过点(1,-1)的反比例函数解析式是( ) A .y =1x B .y =-1x C .y =2x D .y =-2x2.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( )3.在反比例函数y =k -3x 图象的任一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( ) A .k >3 B .k >0 C .k <3 D .k <04.点A 为双曲线y =kx (k ≠0)上一点,B 为x 轴上一点,且△AOB 为等边三角形,△AOB 的边长为2,则k 的值为( )A .2 3B .±2 3 C. 3 D .±35.在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx (k≠0)的图象大致是( )6.某汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为( )A .180千米/时B .144千米/时C .50千米/时D .40千米/时7.如图,函数y 1=x -1和函数y 2=2x 的图象相交于点M (2,m ),N (-1,n ),若y 1>y 2,则x 的取值范围是( )A .x <-1或0<x <2B .x <-1或x >2C .-1<x <0或0<x <2D .-1<x <0或x >28.已知反比例函数y =kx (k <0)图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则y 1-y 2的值是( )A .正数B .负数C .非负数D .不能确定9.如图,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( ) A .2 B .4 C .6 D .8第6题图) ,第7题图) ,第9题图),第10题图)10.如图,正方形ABCD 的顶点B ,C 在x 轴的正半轴上,反比例函数y =kx (k ≠0)在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-2),则点F 的坐标是( )A .(54,0)B .(74,0)C .(94,0)D .(114,0)点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x =94,∴F (94,0)二、填空题(每小题3分,共24分)11.写出一个图象在第二、四象限的反比例函数解析式:____.12.已知反比例函数y =kx 的图象在第二、第四象限内,函数图象上有两点A (2,y 1),B (5,y 2),则y 1与y 2的大小关系为____.13.双曲线y=kx和一次函数y=ax+b的图象的两个交点分别为A(-1,-4),B(2,m),则a+2b=____.14.若点A(m,2)在反比例函数y=4x的图象上,则当函数值y≥-2时,自变量x的取值范围是____.15.直线y=ax(a>0)与双曲线y=3x交于A(x1,y1),B(x2,y2)两点.则4x1y2-3x2y1=____.16.点A在函数y=6x(x>0)的图象上,如果AH⊥x轴于点H,且AH∶OH=1∶2,那么点A的坐标为____.17.在平面直角坐标系xOy中,直线y=x向上平移1个单位长度得到直线l,直线l与反比例函数y=kx的图象的一个交点为A(a,2),则k的值等于____.18.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=k1x和y=k2x的一支上,分别过点A,C作x轴的垂线,垂足分别为M和N,则有以下的结论:①AMCN=|k1||k2|;②阴影部分面积是12(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是____.(把所有正确的结论的序号都填上)三、解答题(共66分)19.(6分)已知y=y1+y2,其中y1与3x成反比例,y2与-x2成正比例,且当x=1时,y=5;当x=-1时,y=-2.求当x=3时,y的值.20.(8分)已知点P(2,2)在反比例函数y=kx(k≠0)的图象上.(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.21.(10分)超超家利用银行贷款购买了某山庄的一套100万元的住房,在交了首期付款后,每年需向银行付款y万元.预计x年后结清余款,y与x之间的函数关系如图,试根据图象所提供的信息回答下列问题:(1)确定y与x之间的函数表达式,并说明超超家交了多少万元首付款;(2)超超家若计划用10年时间结清余款,每年应向银行交付多少万元?(3)若打算每年付款不超过2万元,超超家至少要多少年才能结清余款?22.(10分)如图是反比例函数y=kx的图象,当-4≤x≤-1时,-4≤y≤-1.(1)求该反比例函数的表达式;(2)若点M,N分别在该反比例函数的两支图象上,请指出什么情况下线段MN最短(不需要证明),并注出线段MN长度的取值范围.23.(10分)如图是函数y=3x与函数y=6x在第一象限内的图象,点P是y=6x的图象上一动点,PA⊥x轴于点A,交y=3x的图象于点C,PB⊥y轴于点B,交y=3x的图象于点D.(1)求证:D是BP的中点;(2)求四边形ODPC的面积.24.(10分)如图,已知反比例函数y=k1x的图象与一次函数y=k2x+b的图象交于A,B两点,A点横坐标为1,B(-12,-2).(1)求反比例函数和一次函数的解析式;(2)在x轴上是否存在点P,使△AOP为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.(12分)如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=kx(k>0,x>0)的图象上,点P(m,n)是函数y=kx(k>0,x>0)的图象上任一点,过点P分别作x轴、y轴的垂线,垂足分别为E,F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(1)求点B的坐标和k的值;(2)当S=92时,求点P的坐标;(3)写出S关于m的函数表达式.参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.A 7.D 8.D 9.D10.C点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x =94,∴F (94,0)二、填空题11.y =-1x (答案不唯一) 12.y 1<y 2 13.-2 14.x≤-2或x >015.-3 16.(23,3) 17.2 18.①④ 三、解答题19.解:设y =k 13x +k 2(-x 2),求得y =72x +32x 2,当x =3时,y =443. 20.解:(1)-43;(2)43<y <4.21.解:(1)12×5=60(万元),100-60=40(万元),∴y =60x,超超家交了40万元的首付款.(2)把x =10代入y =60x得y =6,∴每年应向银行交付6万元.(3)∵y≤2,∴60x ≤2,∴2x ≥60,∴x ≥30,∴至少要30年才能结清余款.22.解:(1)反比例函数图象的两支曲线分别位于第一、三象限,∴当-4≤x ≤-1时,y 随着x 的增大而减小,又∵当-4≤x≤-1时,-4≤y ≤-1,∴当x =-4时,y =-1,由y =kx得k =4,∴该反比例函数的表达式为y =4x .(2)当点M ,N 都在直线y =x 上时,线段MN 的长度最短,当MN 的长度最短时,点M ,N 的坐标分别为(2,2),(-2,-2),利用勾股定理可得MN 的最短长度为42,故线段MN 长度的取值范围为MN≥4 2.23.(1)证明:∵点P 在函数y =6x 上,∴设P 点坐标为(6m ,m ),∵点D 在函数y =3x上,BP ∥x轴,∴设点D 坐标为(3m ,m ),由题意,得BD =3m ,BP =6m =2BD ,∴D 是BP 的中点.(2)解:S 四边形OAPB =6m ·m =6,设C 坐标为(x ,3x ),D 点坐标为(3y ,y ),S △OBD =12·y ·3y =32,S△OAC=12·x·3x =32,S 四边形OCPD =S 四边形PBOA -S △OBD -S △OAC =6-32-32=3. 24.解:(1)反比例函数为y =1x ,一次函数为y =2x -1.(2)存在,点P 的坐标是(1,0)或(2,0).25.解:(1)依题意,设B 点的坐标为(x B ,y B ),∴S 正方形OABC =x B ·y B =9.∴x B =y B =3,即点B 的坐标为(3,3).又∵x B y B =k ,∴k =9.(2)①∵P (m ,n )在y =9x上,当P 点位于B 点下方时,如图(1),∴S 矩形OEPF =mn =9,S 矩形OAGF=3n.由已知,得S =9-3n =92,∴n =32,m =6,即此时P 点的坐标为P 1(6,32).②当P 点位于B 点上方时,如图(2),同理可求得P 2(32,6).(3)①如图(1),当m≥3时,S 矩形OAGF =3n ,∵mn =9,∴n =9m,∴S =S 矩形OEP 1F -S 矩形OAGF=9-3n =9-27m .②如图(2),当0<m <3时,S 矩形OEGC =3m ,∴S =S 矩形OEP 2F -S 矩形OEGC =9-3m.。
人教版初中数学反比例函数经典测试题附答案
人教版初中数学反比例函数经典测试题附答案一、选择题1.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D 是AB 的中点,12BD AB ∴=, //BD OC , OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =,2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.2.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数k y x=(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .32【答案】D【解析】【分析】【详解】 如图,过点C 作CD ⊥x 轴于点D ,∵点C 的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC 是菱形,∴点B 的坐标为(8,4).∵点B 在反比例函数(x>0)的图象上, ∴. 故选D.3.已知点A (﹣2,y 1),B (a ,y 2),C (3,y 3)都在反比例函数4y x =的图象上,且﹣2<a <0,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 【答案】D【解析】【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可.【详解】∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,∵-2<a <0,∴0>y 1>y 2,∵C (3,y 3)在第一象限,∴y 3>0,∴213y y y <<,故选D .【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.4.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A.1 B.2 C.4 D.8【答案】C【解析】【分析】由反比例函数的系数k的几何意义可知:2OA AD=,然后可求得OA AB的值,从而可求得矩形OABC的面积.【详解】解:反比例函数2yx =,2OA AD∴=.D是AB的中点,2AB AD∴=.∴矩形的面积2224OA AB AD OA===⨯=.故选:C.【点睛】本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.5.对于反比例函数2yx=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【答案】C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化6.已知点()11,A y -、()22,B y -都在双曲线32m y x +=上,且12y y >,则m 的取值范围是( )A .0m <B .0m >C .32m >-D .32m <- 【答案】D【解析】【分析】根据已知得3+2m <0,从而得出m 的取值范围.【详解】∵点()11,A y -、()22,B y -两点在双曲线32m y x+=上,且y 1>y 2, ∴3+2m <0, ∴32m <-, 故选:D .【点睛】 本题考查了反比例函数图象上点的坐标特征,当k >0时,该函数图象位于第一、三象限,当k <0时,函数图象位于第二、四象限.7.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a -),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=2为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F ,则△BEO ∽△OFA ,∴BE OE OF AF=, 设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b=, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b+=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=2 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.8.对于反比例函数2y x =-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.9.如图,ABDC 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ ABDC ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++= ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++, 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=kx的图象经过点A的对应点A′,则k的值为()A.6 B.﹣3 C.3 D.6【答案】C【解析】【分析】直接利用旋转的性质得出A′点坐标,再利用反比例函数的性质得出答案.【详解】如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=kx的图象经过点A的对应点A′,∴A′(3,1),则把A′代入y=kx,解得:k=3.故选C.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确得出A′点坐标是解题关键.11.函数y=1-kx与y=2x的图象没有交点,则k的取值范围是()A.k<0 B.k<1 C.k>0 D.k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k的取值范围.【详解】令1-kx=2x,化简得:x2=1-2k;由于两函数无交点,因此1-2k<0,即k>1.故选D.【点睛】函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S△AOD=12×OD×AD=12xy=1;S△COD=12×OC×OD=12xy=2;S△AOC= S△AOD+ S△COD=3,∴S△ABC= S△AOC+S△COB=6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.13.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-【答案】A【解析】 【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=,即可求出12k k 8-=. 【详解】AB//x 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=, 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.14.如图,点A ,B 是双曲线18y x=图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线k y x=在第二象限的分支上一点,当ABC 满足AC BC =且:13:24AC AB =时,k 的值为( ).A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴2()COFAOES OCS OA∆∆=,∵CA:AB=13:24,AO=OB,∴CA:OA=13:12,∴CO:OA=5:12,∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.15.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】 解:反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.16.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A .22B .12C .14D .3 【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA = 【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴2OB OA =, 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解17.若点A (﹣4,y 1)、B (﹣2,y 2)、C (2,y 3)都在反比例函数1y x =-的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 1>y 3>y 2 【答案】C【解析】【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论.【详解】∵点A(﹣4,y 1)、B(﹣2,y 2)、C(2,y 3)都在反比例函数1y x =-的图象上, ∴11144y =-=-,21122y =-=-,312y =-, 又∵﹣12<14<12, ∴y 3<y 1<y 2,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.18.已知点11(,)x y ,22(,)x y 均在双曲线1y x =-上,下列说法中错误的是( ) A .若12x x =,则12y y =B .若12x x =-,则12y y =-C .若120x x <<,则12y y <D .若120x x <<,则12y y > 【答案】D【解析】【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x =-,用y 1、y 2表示出x 1,x 2,据此进行判断.【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x=-上,∴111y x =-,221y x =-. A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确; B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确; D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误;故选:D .【点睛】 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.19.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B 2C 2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.【详解】等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=,22OA OB ∴==,2AC =, ∴点C 的坐标为2,2⎛⎫ ⎪ ⎪⎝,点C 在函数()0k y x x=>的图象上, 2212k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.20.如图,菱形ABCD 的两个顶点B 、D 在反比例函数y =的图象上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC =60°,则k 的值是( )A .﹣5B .﹣4C .﹣3D .﹣2【答案】C【解析】 分析:根据题意可以求得点B 的坐标,从而可以求得k 的值.详解:∵四边形ABCD 是菱形,∴BA=BC ,AC ⊥BD ,∵∠ABC=60°,∴△ABC 是等边三角形,∵点A (1,1),∴OA=, ∴BO=,∵直线AC 的解析式为y=x ,∴直线BD 的解析式为y=-x ,∵OB=,∴点B 的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.。
(常考题)人教版初中数学九年级数学下册第一单元《反比例函数》测试(含答案解析)
一、选择题1.反比例函数(0)k y k x=≠图象在二、四象限,则二次函数22y kx x =-的大致图象是( ) A . B . C . D . 2.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .53.下列函数中,y 总随x 的增大而减小的是( )A .4y x =-B .4y x =-C .4y x =D .4y x =- 4.下列函数中,y 随x 的增大而减少的是( )A .1y x =-B .2y x =-C .()30y x x =->D .4y x =()0x < 5.规定:如果关于x 的一元二次方程ax 2+bx+c =0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x 2+2x ﹣8=0是倍根方程;②若关于x 的方程x 2+ax+2=0是倍根方程,则a =±3;③若(x ﹣3)(mx ﹣n )=0是倍根方程,则n =6m 或3n =2m ;④若点(m ,n )在反比例函数y =2x的图象上,则关于x 的方程mx 2﹣3x+n =0是倍根方程.上述结论中正确的有( )A .①②B .③④C .②③D .②④ 6.(2017广东省卷)如图,在同一平面直角坐标系中,直线()110y k x k =≠与双曲线()220k y k x =≠相交于A B 、两点,已知点A 的坐标为()1,2,则点B 的坐标为( )A .()1,2--B .()2,1--C .()1,1--D .()2,2--7.对于反比例函数21k y x+=,下列说法错误的是( ) A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值8.已知一个正比例函数与一个反比例函数的图像交于(-3,4),则这两个函数的表达式分别是( )A .412,3y x y x== B .412,3y x y x =-=- C .412,3y x y x =-= D .412,3y x y x==- 9.已知11(,)x y ,22(,)x y , 33(,)x y 是反比例函数2y x=-的图象上的三个点,且120x x <<,30x >,则123,,y y y 的大小关系是( ) A .213y y y << B .312y y y << C .123y y y <<D .321y y y << 10.同一坐标系中,函数()1y k x +=与k y x=的图象正确的是( ) A . B .C .D .11.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积()A.不变B.逐渐变大C.逐渐变小D.先变大后变小12.如图,双曲线kyx=经过Rt BOC∆斜边上的中点A,且与BC交于点D,若BOD 6S∆=,则k的值为()A.2B.4C.6D.8二、填空题13.如图,设点P在函数5yx=的图象上,PC⊥x轴于点C,交函数y=2x的图象于点A,PD⊥y轴于点D,交函数y=2x的图象于点B,则四边形PAOB的面积为_____.14.某药品研究所开发一种抗新冠肺炎的新药,经大量动物实验,首次用于临床人体实验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间的函数关系如图所示,即2,(04)32,(4)x x y x x≤≤⎧⎪=⎨>⎪⎩,若血液中药物浓度不低于4微克/毫升的持续时间不低于7小时,则称药物治疗有效.请根据图中信息计算并判断:血液中药物浓度不低于4微克/毫升的持续时间为______个小时,这种抗菌新药________(“可以”或“不可以”)作为有效药物投入生产.15.如图,一次函数1y k x b =+的图象过点()0,4A ,且与反比例函数()20k y x x=>的图象相交于B 、C 两点,若2BC AB =,则12k k ⋅的值为______.16.如图,在方格纸中(小正方形的边长为1),反比例函数k y x=的图象与直线AB 的交点A 、B 在图中的格点上,点C 是反比例函数图象上的一点,且与点A 、B 组成以AB 为底的等腰△,则点C 的坐标为________.17.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y=3x经过点D ,则正方形ABCD 的面积是_____.18.若点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,则y1,y2的大小关系是y1_____y2.19.若函数2yx=与24y x=--的图像的交点坐标为(,)a b, 则12a b+的值是______.20.若A、B两点关于y轴对称,且点A在双曲线y=12x上,点B在直线y=x+6上,设点A的坐标为(a,b),则a bb a+=_____.三、解答题21.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(x<0)的图象交于第二象限内的A、B两点,过点A作AC⊥x轴于点C,OA=5,OC =4,点B的纵坐标为6.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)写出kx+b﹣mx<0的解集.22.已知y是x的反比例函数,且当x=4时,1y=-.(1)求y与x之间的函数解析式;(2)求当132x-≤≤-时,y的取值范围.23.如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数k y x =(k≠0,x >0)的图象相交于A (1,5),B (m ,1)两点,与x 轴,y 轴分别交于点C ,D ,连接OA ,OB .(1)求反比例函数k y x=(k≠0,x >0)和一次函数y =ax+b (a≠0)的表达式; (2)求△AOB 的面积. 24.如图,已知一次函数y=x+b 的图像与反比例函数k y x=(x <0)的图像相交于点A (-1,2)和点B ,点P 在y 轴上.(1)求b 和k 的值;(2)当PA+PB 的值最小时,点P 的坐标为______;(3)当x+b <k x时,请直接写出x 的取值范围. 25.如图,过直线2y x =上的点A 作x 轴的垂线,垂足为点B (4,0),与双曲线交于点C ,且点A 、C 关于x 轴对称.(1)求该双曲线的解析式;(2)如果点D 在直线2y x =上,且DAB ∆是以AB 为腰的等腰三角形,求点D 的坐标;(3)如果点E 在双曲线上,且ABE ∆的面积为20,求点E 的坐标.26.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min ;完成2间办公室和1间教室的药物喷洒要11min .(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y (单位:mg /m 3)与时间x (单位:min )的函数关系如图所示:校医进行药物喷洒时y 与x 的函数关系式为y =2x ,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为A (m ,n ).当教室空气中的药物浓度不高于1mg /m 3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先根据反比例函数所在象限确定k <0,再根据k <0确定抛物线的开口方向和对称轴,即可选出答案.【详解】解:∵反比例函数(0)k y k x=≠图象在二、四象限, ∴k <0,∴二次函数y=kx 2-2x 的图象开口向下, 对称轴=-212k k-=, ∵k <0, ∴1k<0,∴对称轴在x 轴的负半轴,故选:A .【点睛】本题考查了反比例函数的性质,以及二次函数图象,解题的关键是根据反比例函数的性质确定k 的正负.2.C解析:C【分析】根据点A 在反比例函数图象上结合反比例函数系数k 的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k 值,再结合反比例函数在第一象限内有图象即可确定k 值.【详解】解:∵点A 在反比例函数k y x=的图象上,且AB x ⊥轴于点B , ∴设点A 坐标为(,)x y ,即||k xy =, ∵点A 在第一象限,x y ∴、都是正数,1122AOB S OB AB xy ∴=⋅=, 2AOB S =,4k xy ∴==.故选:C .【点睛】本题考查了反比例函数的性质以及反比例函数系数k 的几何意义,解题的关键是找出关于k 的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k 的几何意义找出关于k 的含绝对值符号的一元一次方程是关键. 3.A解析:A【分析】根据正比例函数的性质,可判断A ;根据一次函数的性质,可判断B ;根据反比例函数的性质,可判断C 、D .【详解】A 选项:y 随x 的增大而减小,符合题意,故A 正确;B 选项:y 随x 的增大而增大,不符合题意,故B 错误;C 选项:在每个象限内y 随x 的增大而减小,不符合题意,故C 错误;D 选项:在每个象限内y 随x 的增大而增大,不符合题意,故D 错误.故选:A .【点睛】本题主要考查了反比例函数的增减性,关键是要注意反比例函数在叙述增减性时必须强调在每个象限内.4.D解析:D【分析】 根据反比例函数k y x=中k>0, 在每个象限内,y 随着x 的增大而减小;k<0,在每个象限内,y 随着x 的增大而增大求解.【详解】-1<0,在每个象限内,y 随着x 的增大而增大,故A 选项错误;-2<0,在每个象限内,y 随着x 的增大而增大,故B 选项错误;-3<0且x >0,y 随着x 的增大而增大,故C 选项错误;4>0且x <0,y 随着x 的增大而减小,故D 选项正确;故选D .【点睛】本题考查反比例函数的性质,解题的关键是掌握反比例函数的性质. 5.D解析:D【分析】】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x 2=2x 1,得到x 1•x 2=2x 12=2,得到当x 1=1时,x 2=2,当x 1=-1时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m ,n )在反比例函数y =2x 的图象上,得到mn=2,然后解方程mx 2-3x+n=0即可得到正确的结论;【详解】解:①∵方程x 2+2x-8=0的两个根是x 1=-4,x 2=2,则2×2≠-4,∴方程x 2+2x-8=0不是倍根方程,故①错误;②若关于x 的方程x 2+ax+2=0是倍根方程,则2x 1=x 2,∵x 1+x 2=-a ,x 1•x 2=2,∴2x 12=2,解得x 1=±1,∴x 2=±2,∴a=±3,故②正确;③解方程(x-3)(mx-n )=0得,123,n x x m ==, 若(x-3)(mx-n )=0是倍根方程,则6n m =或23n m⨯=, ∴n=6m 或3m=2n ,故③错误;④∵点(m ,n )在反比例函数y =2x 的图象上, ∴mn=2,即2n m=, ∴关于x 的方程为2230mx x m -+=, 解方程得1212,x x m m==, ∴x 2=2x 1, ∴关于x 的方程mx 2-3x+n=0是倍根方程,故④正确;故选D .【点睛】本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.6.A解析:A【分析】过原点的直线与反比例函数图象的交点关于原点成中心对称,由此可得B 的坐标.【详解】1y k x =与2k y x=相交于A ,B 两点 ∴A 与B 关于原点成中心对称∵(1,2)B ∴(1,2)A --故选择:A .【点睛】熟知反比例函数的对称性是解题的关键.7.B解析:B【分析】先判断出k 2 +1的符号,再根据反比例函数的性质即可得出结论.【详解】A 、∵k 2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B 、∵它的图象分布在第一、三象限,∴在每一象限内y 随x 的增大而减小,故本选项错误;C 、∵它的图象分布在第一、三象限,在每一象限内y 随x 的增大而减小,∵x 1=-1<0,∴y 1<0,∵x 2=1>0,x 3=2>0,∴y 2>y 3,∴y 1<y 3<y 2故本选项正确;D 、∵P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,∴△OPQ 的面积=12(k 2+1)是定值,故本选项正确.故选B .【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=k x(k≠0)中,当k >0时函数图象的两个分支分别位于一三象限是解答此题的关键. 8.B解析:B【分析】用待定系数法分别求出两个函数表达式即可.【详解】解:设正比例函数为y =kx ,将(-3,4)代入,得4=-3k , 解得43k =-, ∴正比例函数为43y x =-, 设反比例函数为k y x=, 将(-3,4)代入,得43k =- 解得k =-12,∴反比例函数为12y x=-, 故选:B .【点睛】本题考查了用待定系数法求正比例函数表达式和反比例函数表达式,熟练掌握待定系数法是解决本题的关键.9.B解析:B【分析】 先根据反比例函数2y x=-的系数20-<判断出函数图象在二、四象限,在每个象限内,y 随x 的增大而增大,再根据120x x <<,30x >,判断出1y 、2y 、3y 的大小.【详解】解:反比例函数2y x=-中,20k =-<, ∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,∵120x x <<,30x >30y ,210y y >>,∴312y y y <<,故选:B .【点睛】本题考查了二次函数图象上点的坐标特征.用到的知识点为:k 0<时,反比例函数k y x=图象的分支在二、四象限,在第四象限的函数值总小于在第二象限的函数值;在同一象限内,y 随x 的增大而增大. 10.D解析:D【分析】先根据四个选项的共同点确定k 的符号,再根据各函数图象的性质确定图象所在的象限即可.【详解】解:A 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项错误;B 、反比例函数图象位于二、四象限,k 0<,则一次函数图象应该交y 轴于负半轴,故本选项错误;C 、反比例函数图象位于二、四象限,k 0<,则一次函数应该是个减函数,故本选项错误;D 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项正确;故选:D .【点睛】此题考查反比例函数的图象性质和一次函数的图象性质,解题关键是由k 的取值确定函数所在的象限.11.A解析:A【分析】根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE SCOF S = 12=,则四边形OFAE 的面积为定值1k -.【详解】∵点A 是函数(0k y x x=>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C , ∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上, ∴BOE S COF S = 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.12.B解析:B【分析】 设,k A x x ⎛⎫ ⎪⎝⎭,根据A 是OB 的中点,可得22,k B x x ⎛⎫ ⎪⎝⎭,再根据BC OC ⊥,点D 在双曲线k y x =上,可得2,2k D x x ⎛⎫ ⎪⎝⎭,根据三角形面积公式列式求出k 的值即可. 【详解】 设,k A x x ⎛⎫ ⎪⎝⎭∵A 是OB 的中点 ∴22,k B x x ⎛⎫ ⎪⎝⎭∵BC OC ⊥,点D 在双曲线k y x =上 ∴2,2k D x x ⎛⎫ ⎪⎝⎭∴BOD 112322222k k S BD OC x k x x ∆⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ∵BOD 6S ∆= ∴3642k =÷= 故答案为:B .【点睛】本题考查了反比例函数的几何问题,掌握反比例函数的性质、中点的性质、三角形面积公式是解题的关键.二、填空题13.3【分析】根据反比例函数系数k的几何意义求出四边形PCOD的面积△OBD和△OAC的面积然后求解即可【详解】解:根据题意S四边形PCOD=PC•PD=5S△OBD=S△OAC=×2=1所以四边形PA解析:3.【分析】根据反比例函数系数k的几何意义求出四边形PCOD的面积,△OBD和△OAC的面积,然后求解即可.【详解】解:根据题意,S四边形PCOD=PC•PD=5,S△OBD=S△OAC=12×2=1,所以,四边形PAOB的面积=S四边形PCOD﹣S△OBD﹣S△OAC=5﹣1﹣1=3.故答案为:3.【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数kyx(k为常数,k≠0)图象上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数k,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于12k.14.6不可以【分析】分别求出y=4时的两个函数值再求时间差即可解决问题【详解】解:当y=4则4=2x解得:x=2当y=4则4=解得:x=8∵8﹣2=6<7∴血液中药物浓度不低于4微克/毫升的持续时间为6解析:6,不可以【分析】分别求出y=4时的两个函数值,再求时间差即可解决问题.【详解】解:当y=4,则4=2x,解得:x=2,当y=4,则4=32x,解得:x=8,∵8﹣2=6<7,∴血液中药物浓度不低于4微克/毫升的持续时间为6小时,这种抗菌新药不可以作为有效药物投入生产.故答案为:6,不可以.【点睛】本题考查一次函数的应用、反比例函数的应用等知识,解题的关键是灵活应用待定系数法解决问题,学会利用函数图象解决实际问题,属于中考常考题型.15.﹣3【分析】由题意可设一次函数的解析式为y =k1x+4然后联立两个函数的解析式可得等式k1x2+4x ﹣k2=0进而可根据根与系数的关系得出x1+x2=﹣x1x2=﹣再由可得点C 的横坐标是点B 横坐标的解析:﹣3【分析】由题意可设一次函数的解析式为y =k 1x +4,然后联立两个函数的解析式可得等式k 1x 2+4x ﹣k 2=0,进而可根据根与系数的关系得出x 1+x 2=﹣14k ,x 1x 2=﹣21k k ,再由2BC AB =可得点C 的横坐标是点B 横坐标的3倍,不妨设x 2=3x 1,然后对上述的两个式子整理变形即得结果.【详解】解:∵一次函数y =k 1x +b 的图象过点A (0,4),∴一次函数的解析式为y =k 1x +4,由k 1x +4=2k x,得k 1x 2+4x ﹣k 2=0, 设上述方程的两个实数根为x 1、x 2,则x 1+x 2=﹣14k , x 1x 2=﹣21k k , ∵BC =2AB ,∴点C 的横坐标是点B 横坐标的3倍,不妨设x 2=3x 1,∴x 1+x 2=4x 1=﹣14k ,x 1x 2=3x 12=﹣21k k , ∴221113k k k ⎛⎫⨯-=- ⎪⎝⎭,整理得:k 1k 2=﹣3. 故答案为﹣3.【点睛】本题考查了一次函数与反比例函数的交点、一元二次方程的根与系数的关系等知识,熟练掌握上述知识、掌握求解的方法是关键.16.(22)或(-2-2)【分析】先求得反比例函数的解析式为设C 点的坐标为()根据AC=BC 得出方程求出即可【详解】由图象可知:点A 的坐标为(-1-4)代入得:所以这个反比例函数的解析式是设C 点的坐标为解析:(2,2)或(-2,-2)【分析】先求得反比例函数的解析式为4y x =,设C 点的坐标为(x ,4x),根据AC=BC 得出方程,求出x 即可.【详解】 由图象可知:点A 的坐标为(-1,-4), 代入k y x=得:4k xy ==, 所以这个反比例函数的解析式是4y x =, 设C 点的坐标为(x ,4x), ∵A (-1,-4),B (-4,-1),AC=BC , 即()()2222441441x x x x ⎛⎫⎛⎫--+--=--+-- ⎪ ⎪⎝⎭⎝⎭, 解得:2x =±,当2x =时,422y ==, 当2x =-时,422y ==--, 所以点C 的坐标为(2,2)或(-2,-2).故答案为:(2,2)或(-2,-2).【点睛】本题考查了等腰三角形的性质、用待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.17.12【解析】设D (aa )∵双曲线y=经过点D ∴a2=3解得a=∴AD=2∴正方形ABCD 的面积=AD2=(2)2=12故答案为12解析:12【解析】设D (a ,a ),∵双曲线y=3x经过点D , ∴a2=3,解得,∴∴正方形ABCD 的面积=AD2=(2=12.故答案为12.18.<【分析】直接利用反比例函数的增减性分析得出答案【详解】∵反比例函数中k =﹣1<0∴在每个象限内y 随x 的增大而增大∵点A (﹣4y1)B (﹣2y2)都在反比例函数的图象上且﹣2>﹣4∴y1<y2故答案解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1y x=-中,k =﹣1<0, ∴在每个象限内,y 随x 的增大而增大, ∵点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x =-的图象上,且﹣2>﹣4, ∴y 1<y 2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.19.-2【分析】求出两函数组成的方程组的解即可得出ab 的值再分别代入求出即可【详解】解:由题意得:把①代入②得:整理得:x2+2x+1=0解得:∴交点坐标是(-1-2)∴a=-1b=-2∴=-1+(-1解析:-2【分析】求出两函数组成的方程组的解,即可得出a 、b 的值,再分别代入求出即可.【详解】 解:由题意得:224y x y x ⎧=⎪⎨⎪=--⎩①②把①代入②得:224x x=--, 整理得: x 2+ 2x +1=0, 解得: 12x y =-⎧⎨=-⎩ ∴交点坐标是(-1,-2),∴ a= -1,b= -2, ∴12a b+= -1 +(-1)= -2. 故答案为:- 2.【点睛】 本题主要考查函数交点坐标求法与运用;求出两函数组成的方程组的解,即为交点坐标是本题的解题关键.20.70【分析】根据点关于y 轴对称的特点写出B 点坐标再把两点坐标分别代入所求关系式即可解答【详解】解:根据点A 在双曲线y =上得到2ab =1即ab =根据AB 两点关于y 轴对称得到点B (﹣ab )根据点B 在直线解析:70【分析】根据点关于y 轴对称的特点写出B 点坐标,再把两点坐标分别代入所求关系式即可解答.【详解】解:根据点A 在双曲线y =12x 上,得到2ab =1,即ab =12, 根据A 、B 两点关于y 轴对称,得到点B (﹣a ,b ).根据点B 在直线y =x +6上,得到a +b =6, ∴22a b a b b a ab++= =2()2a b ab ab+- =2162212-⨯=36112-=70.故答案为:70.【点睛】 此题考查了反比例函数、一次函数图象上点的坐标特征,能够根据解析式求得点的坐标之间的关系式;熟悉两个点关于y 轴对称的点的坐标关系:纵坐标不变,横坐标互为相反数;能够把要求的代数式变成和或积的形式.三、解答题21.(1)y =﹣12x ,y =32x +9;(2)9;(3)x <﹣4或﹣2<x <0. 【分析】(1)根据勾股定理求出AC 长度,从而得知A 点坐标,用待定系数法可求反比例函数解析式.把B 点纵坐标代入反比例函数即可知道B 点横坐标.同样用待定系数法把A 、B 的坐标代入一次函数解析式可得方程组,求出方程组的解即可求出一次函数解析式; (2)求出一次函数与x 轴交点R 的坐标.=-AOB BOR AOR SS S ,根据三角形的面积公式求出AOR S 和BOR S 即可;(3)要使kx +b ﹣m x<0,即函数y kx b =+的图像在m y x =的下方,在根据A 、B 的坐标即可求出答案.【详解】(1)在Rt△AOC中,3 AC===,故点A的坐标为(-4,3),将A(-4,3)代入myx=,解得m=﹣12,∴反比例函数的解析式为y=﹣12x;∵当y=6时,代入y=﹣12x,解得x=﹣2,∴B(-2,6),将A(-4,3),B(-2,6)代入y=kx+b得4326k bk b-+=⎧⎨-+=⎩,解得329kb⎧=⎪⎨⎪=⎩,∴一次函数的解析式为y=32x+9;(2)设一次函数交x轴于点R,把y=0代入y=32x+9,解得:x=﹣6,即R的坐标是(-6,0),OR=6,S△AOB=S△BOR﹣S△AOR=1166639 22⨯⨯-⨯⨯=;(3)由图象知kx+b﹣mx<0的解集为:x<﹣4或﹣2<x<0.【点睛】本题考查一次函数与反比例函数交点的问题,反复用待定系数法先后求出反比例函数和一次函数的解析式,用大三角形面积减去小三角形面积也是本题的关键,最后根据函数图像和两个函数的交点,判断kx+b﹣mx<0时,即函数y kx b=+的图像在myx=的下方,x的取值范围.22.(1)4yx=-;(2)4y83≤≤.【分析】(1)利用待定系数法确定反比例函数的解析式即可;(2)根据自变量的取值范围确定函数值的取值范围即可.【详解】解:(1)设反比例函数的解析式为kyx =,∵当x=4,y=-1,∴k=-1×4=-4,∴反比例函数的解析式为4y x =-; (2)当x=-3时,43y =,当x=-12时,y=8, ∴当-3≤x≤-12时,y 的取值范围是43≤y≤8. 【点睛】本题考查了反比例函数的性质,求得反比例函数的解析式是解答本题的关键. 23.(1)5y x =,6y x =-+;(2)12 【分析】(1)将点A (1,5)代入k y x=(k≠0,x >0),得到k 的值及反比例函数解析式;再将将点B (m ,1)代入反比例函数,得点B 坐标;将点A (1,5),B (5,1)代入y =ax+b ,通过求解二元一次方程组,即可得到答案;(2)结合一次函数6y x =-+,得点D 坐标;再由△AOB 的面积=△BOD 的面积-△AOD 的面积,经计算即可得到答案.【详解】(1)将点A (1,5)代入k y x=(k≠0,x >0) 得:51k =解得:k =5 ∴反比例函数的表达式为:5y x =将点B (m ,1)代入5y x=得:m =5∴点B (5,1)将点A (1,5),B (5,1)代入y =ax+b 得551a b a b +=⎧⎨+=⎩解得:16a b =-⎧⎨=⎩∴一次函数表达式为:6y x =-+;(2)由一次函数6y x =-+可知:D (0,6)∴△AOB的面积=△BOD的面积-△AOD的面积1165611222=⨯⨯-⨯⨯=.【点睛】本题考查了反比例函数、一次函数、二元一次方程组的知识;解题的关键是熟练掌握反比例函数、一次函数、二元一次方程组的性质,从而完成求解.24.(1)b=3,k=-2;(2)5()3P0,;(3)x<-2或-1<x<0【分析】(1)根据待定系数法即可求得;(2)联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A 关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(3)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.【详解】解:(1)∵一次函数y=x+b的图象与反比例函数kyx=(x<0)的图象交于点A(−1,2),把A(−1,2)代入两个解析式得:2=(−1)+b,2=−k,解得:b=3,k=−2;(2)作点A关于y轴的对称点A′,连接A′B交y轴于点P,此时点P即是所求,如图所示.联立一次函数解析式与反比例函数解析式成方程组:3 {2y xyx+-==,解得:2xy⎧⎨⎩=-=1或12xy⎧⎨⎩=-=,∴点A的坐标为(−1,2)、点B的坐标为(−2,1).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有2{21m n m n +-+==,解得:1353m n ⎧⎪⎪⎨⎪⎪⎩==, ∴直线A′B 的解析式为y =13x +53. 令x =0,则y =53, ∴点P 的坐标为(0,53); (2)观察函数图象,发现: 当x <−2或−1<x <0时,一次函数图象在反比例函数图象下方,∴当x +b <k x时,x 的取值范围为x <−2或−1<x <0. 【点睛】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(2)求出直线A′B 的解析式;(3)找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.25.(1)32y x -=;(2)48⎛ ⎝⎭或8⎛ ⎝⎭或1224,55⎛⎫-- ⎪⎝⎭;(3)329,9⎛⎫- ⎪⎝⎭或()1,32-【分析】(1)求出点C 的坐标,代入k y x=即可求解; (2)分两种情况讨论①8AB AD ==,②8AB BD ==求解即可; (3)设设点E 的坐标为32,b b ⎛⎫- ⎪⎝⎭,利用含b 的式子表示出三角形ABE 的面积求解即可. 【详解】解:(1)由题意知:点A 横坐标为4,将4x =代入2y x =得,8y =,A ∴点坐标为(4,8),点A 、C 关于x 轴对称,∴点C 坐标为(4,-8). 设双曲线解析式为k y x =,将(4,-8)代入k y x=得,32k =- 32y x -∴=(3)DAB ∆是等腰三角形,且AB 为腰,设点D 坐标为(),2a a①8AB AD ==8AD ==,解得:45a =±点D 坐标为48⎛ ⎝⎭或8⎛ ⎝⎭②8AB BD ==8BD ==解得:14a =,2125a =- 点D 不能与点A 重合,14a =舍去点D 坐标为1224,55⎛⎫-- ⎪⎝⎭ (3)设点E 的坐标为32,b b ⎛⎫- ⎪⎝⎭ 由题意可知,14202S ABE AB b ∆=⨯⨯-= 解得:19b =,21b =-E 点坐标为329,9⎛⎫- ⎪⎝⎭或()1,32- 【点睛】 本题考查了反比例函数和一次函数的性质及等腰三角形的性质,注意分类讨论思想的运用.26.(1)校医完成一间办公室和一间教室的药物喷洒各要3min 和5min ;(2)一班学生能安全进入教室,计算说明过程见解析.【分析】(1)设校医完成一间办公室和一间教室的药物喷洒各要min x 和min y ,再根据题干信息建立二元一次方程组,然后解方程组即可得;(2)先求出完成11间教室的药物喷洒所需时间,再根据一次函数的解析式求出点A 的坐标,然后利用待定系数法求出反比例函数的解析式,最后根据反比例函数的解析式求出55x =时,y 的值,与1进行比较即可得.【详解】(1)设校医完成一间办公室和一间教室的药物喷洒各要min x 和min y则3219211x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:校医完成一间办公室和一间教室的药物喷洒各要3min 和5min ;(2)一间教室的药物喷洒时间为5min ,则11个房间需要55min当5x =时,2510y =⨯=则点A 的坐标为(5,10)A 设反比例函数表达式为k y x =将点(5,10)A 代入得:105k =,解得50k = 则反比例函数表达式为50y x =当55x =时,50155y =< 故一班学生能安全进入教室.【点睛】本题考查了二元一次方程组的应用、反比例函数与一次函数的综合等知识点,较难的是题(2),依据题意,正确求出反比例函数的解析式是解题关键.。
人教版初中数学反比例函数经典测试题及答案
人教版初中数学反比例函数经典测试题及答案一、选择题1.如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数1(0)k y x x =>和2(0)k y x x=>的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( )A .∠POQ 不可能等于90°B .12PM QM k k =C .这两个函数的图象一定关于x 轴对称D .△POQ 的面积是()1212k k + 【答案】D【解析】 【分析】【详解】解:根据反比例函数的性质逐一作出判断: A .∵当PM=MO=MQ 时,∠POQ=90°,故此选项错误;B .根据反比例函数的性质,由图形可得:1k >0,2k <0,而PM ,QM 为线段一定为正值,故12PM QM k k =,故此选项错误; C .根据1k ,2k 的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误; D .∵|1k |=PM•MO ,|2k |=MQ•MO ,∴△POQ 的面积=12MO•PQ=12MO (PM+MQ )=12MO•PM+12MO•MQ=()1212k k +. 故此选项正确.故选D .2.如图,点A 是反比例函数y =k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为()A.8 B.﹣8 C.4 D.﹣4【答案】B【解析】【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|k|.【详解】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|k|,∴|k|=8,而k<0∴k=-8.故选:B.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.3.对于反比例函数2yx,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【答案】C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化4.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小5.如图,直线y1=x+b与x轴、y轴分别交于A,B两点,与反比例函数y2=﹣5x(x<0)的图象交于C,D两点,点C的横坐标为﹣1,过点C作CE⊥y轴于点E,过点D作DF ⊥x轴于点F.下列说法正确的是()A.b=5B.BC=ADC.五边形CDFOE的面积为35D.当x<﹣2时,y1>y2【答案】B【解析】【分析】根据函数值与相应自变量的关系,可得C点坐标,根据待定系数法,可得一次函数解析式,可判断A选项;根据解方程组,可得C、D点的坐标,根据全等三角形的判定与性质,可判断B选项;根据图形的分割,可得梯形、矩形,根据面积的和差,可判断C 选项;根据函数与不等式的关系:函数图象在上方的函数值大,可判断D 选项.【详解】解:由反比例函数y 2=﹣5x (x <0)经过C ,点C 的横坐标为﹣1,得 y =﹣51-=5,即C (﹣1,5). 反比例函数与一次函数交于C 、D 点, 5=﹣1+b ,解得b =6,故A 错误;CE ⊥y 轴于E 点,E (0,﹣5),BE =6﹣5=1.反比例函数与一次函数交于C 、D 点,联立65y x y x =+⎧⎪⎨=-⎪⎩, x 2+6x +5=0解得x 1=﹣5,x 2=﹣1,当x =﹣5时,y =﹣5+6=1,即D (﹣5,1),即DF =1,在△ADF 和△CBE 中,DAF BCE AFD CEB DF BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADF ≌△CBE (AAS ),AD =BC ,故B 正确;作CG ⊥x 轴,S △CDFOE =S 梯形DFGC +S 矩形CGOE=()(15)422DF CG FG OG CG ++⨯++1×5=17,故C 错误; 由一次函数图象在反比例函数图象上方的部分,得﹣5<x <﹣1,即当﹣5<x <﹣1时,y 1>y 2,故D 错误;故选:B .【点睛】本题考查了反比例函数综合题,利用了自变量与函数值的对应关系,点的坐标与函数解析式的关系,全等三角形的判定与性质,图形分割法求图形的面积,函数图象与不等式的关系.6.在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,则有()A.m>﹣13B.m<﹣13C.m≥﹣13D.m≤﹣13【答案】B【解析】【分析】先根据y1<0<y2,有x1>x2,判断出反比例函数的比例系数的正负,求出m的取值范围即可.【详解】∵在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,∴反比例函数的图象在二、四象限,∴9m+3<0,解得m<﹣13.故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握反比例函数的性质7.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【答案】C【解析】分析:根据题意可以求得点B 的坐标,从而可以求得k 的值.详解:∵四边形ABCD 是菱形,∴BA=BC ,AC ⊥BD ,∵∠ABC=60°,∴△ABC 是等边三角形,∵点A (1,1),∴OA=, ∴BO=,∵直线AC 的解析式为y=x ,∴直线BD 的解析式为y=-x ,∵OB=,∴点B 的坐标为(−,), ∵点B 在反比例函数y=的图象上, ∴,解得,k=-3,故选C .点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.8.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C【解析】【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号.【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C【点睛】本题考查了反比例函数系数k 的几何意义.9.在平面直角坐标系中,分别过点(),0A m ,()2,0B m﹢作x 轴的垂线1l 和2l ,探究直线1l 和2l 与双曲线 3y x= 的关系,下列结论中错误..的是 A .两直线中总有一条与双曲线相交B .当m =1时,两条直线与双曲线的交点到原点的距离相等C .当20m -﹤﹤ 时,两条直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2【答案】D【解析】【分析】根据题意给定m 特定值、非特定值分别进行讨论即可得.【详解】当m =0时,2l 与双曲线有交点,当m =-2时,1l 与双曲线有交点,当m 0m 2≠≠,﹣时,12l l 与和双曲线都有交点,所以A 正确,不符合题意;当m 1=时,两交点分别是(1,3),(3,1)B 正确,不符合题意;当2m 0-﹤﹤ 时,1l 在y 轴的左侧,2l 在y 轴的右侧,所以C 正确,不符合题意;两交点分别是33m (m 2m m 2++,和,),当m 无限大时,两交点的距离趋近于2,所以D 不正确,符合题意,故选D.【点睛】本题考查了垂直于x 轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.10.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为4,2,反比例函数y k x=(x >0)的图象经过A ,B 两点,若菱形ABCD的面积为25,则k 的值为( )A .2B .3C .4D .6【答案】C【解析】【分析】 过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为4,2,可得出横坐标,即可求得AE ,BE 的长,根据菱形的面积为25,求得AE 的长,在Rt △AEB 中,即可得出k 的值.【详解】 过点A 作x 轴的垂线,交CB 的延长线于点E ,∵A ,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A (4k ,4),B (2k ,2), ∴AE =2,BE 12=k 14-k 14=k , ∵菱形ABCD 的面积为5∴BC×AE =5BC 5=∴AB =BC 5=在Rt △AEB 中,BE 22AB AE =-=1 ∴14k =1, ∴k =4.故选:C .【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.11.已知点11(,)x y ,22(,)x y 均在双曲线1y x =-上,下列说法中错误的是( ) A .若12x x =,则12y y =B .若12x x =-,则12y y =-C .若120x x <<,则12y y <D .若120x x <<,则12y y > 【答案】D【解析】【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x =-,用y 1、y 2表示出x 1,x 2,据此进行判断.【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x =-上, ∴111y x =-,221y x =-. A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确; B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确; D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误;故选:D .【点睛】 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D【解析】【分析】 先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可. 【详解】当12x =时,2y = ,当2x =时,12y = , ∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ ,将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+.当0y =时,52x = ,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.13.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ,则AOB 的面积为( )A .6B .5C .3D .1.5【答案】C【解析】 【分析】 先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解.【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3∴23y x =--则点B (0,-3)∴AOB 的面积为132=32⨯⨯ 故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.14.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSS=,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13BCOAODSS=,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S △AOD =2是解题关键.15.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x =<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.16.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( )A .B .C .D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a =+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】 本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.17.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A .22B .12C .14D .33【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出22OB OA = 【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴22OB OA =, 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解18.已知反比例函数y =﹣2x的图象上有三个点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则下列关系是正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 2<y 3<y 1【答案】B【解析】【分析】根据函数的解析式得出图象所在的象限和增减性,再进行比较即可.【详解】解:∵反比例函数y=﹣2x,∴函数图象在第二、四象限,且在每个象限内,y随x的增大而增大,∵函数的图象上有三个点(x1,y1),(x2,y2)、(x3,y3),且x1>x2>0>x3,∴y2<y1<0,y3>0∴. y2<y1<y3故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.19.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.0【答案】B【解析】【分析】根据反比例函数的性质,逐一进行判断即可得答案.【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选B.【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.20.如图,矩形ABCD的边AB在x轴上,反比例函数kyx=(0)k≠的图象过D点和边BC的中点E,连接DE,若CDE∆的面积是1,则k的值是()A.4 B.3 C.25D.2【答案】A【解析】【分析】设E的坐标是(m,n),k=mn,则C的坐标是(m,2n),求得D的坐标,然后根据三角形的面积公式求得mn的值,即k的值.【详解】解:设E的坐标是(m,n),k=mn,则C的坐标是(m,2n),在y=mnx中,令y=2n,解得:x=2m,∵S△CDE=1,∴12|n|•|m-2m|=1,即12n×2m=1,∴mn=4.∴k=4.故选:A.【点睛】本题考查了待定系数法求函数的解析式,利用mn表示出三角形的面积是关键.。
人教中考数学专题《反比例函数》综合检测试卷及答案
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【答案】(1)解:k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y= x,得到点B的坐标为(4,1),把点B(4,1)代入y= ,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15;(2)解:过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y= ,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,联立,解得直线PB的方程为y=﹣ x+ +1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)解:∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y= x+ ﹣1.当y=0时, x+ ﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.3.如图,已知直线y=ax+b与双曲线y= (x>0)交于A(x1, y1),B(x2, y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).【答案】(1)解:∵直线y=ax+b与双曲线y= (x>0)交于A(1,3),∴k=1×3=3,∴y= ,∵B(3,y2)在反比例函数的图象上,∴y2= =1,∴B(3,1),∵直线y=ax+b经过A、B两点,∴解得,∴直线为y=﹣x+4,令y=0,则x=4,∴P(4,O)(2)解:如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG 交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴= ,= = ,∵b=y1+1,AB=BP,∴= ,= = ,∴B(,y1)∵A,B两点都是反比例函数图象上的点,∴x1•y1= • y1,解得x1=2,代入= ,解得y1=2,∴A(2,2),B(4,1)(3)解:根据(1),(2)中的结果,猜想:x1, x2, x0之间的关系为x1+x2=x0【解析】【分析】(1)先把A(1,3)),B(3,y2)代入y= 求得反比例函数的解析式,进而求得B的坐标,然后把A、B代入y=ax+b利用待定系数法即可求得直线的解析式,继而即可求得P的坐标;(2)作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,得出 = , = = ,根据题意得出 = , = = ,从而求得B(, y1),然后根据k=xy得出x1•y1= • y1,求得x1=2,代入 = ,解得y1=2,即可求得A、B的坐标;(3)合(1),(2)中的结果,猜想x1+x2=x0.4.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C (﹣2,3)和射线OA之间的距离为________;(2)如果直线y=x+1和双曲线y= 之间的距离为,那么k=________;(可在图1中进行研究)(3)点E的坐标为(1,),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.【答案】(1)3;(2)﹣4(3)解:①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF 垂直),;②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),即图形W与图形N之间的距离为d,d===∴当x=﹣时,d的最小值为 = ,即图形W和图形N之间的距离.【解析】【解答】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为 = ,故答案分别为:3,;(2)直线y=x+1和双曲线y= k x 之间的距离为,∴k<0(否则直线y=x+1和双曲线y= 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= 交于点E、F,过点E作EG⊥x轴,如图1,由得,即点F(﹣,),则OF= = ,∴OE=OF+EF=2 ,在Rt△OEG中,∠EOG=∠OEG=45°,OE=2 ,则有OG=EG= OE=2,∴点E的坐标为(﹣2,2),∴k=﹣2×2=﹣4,故答案为:﹣4;【分析】(1)由题意可得出点B(2,3)到射线OA之间的距离为B点纵坐标,根据新定义得点C(﹣2,3)和射线OA之间的距离;(2)根据题意即可得k<0(否则直线y=x+1和双曲线y= k x 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= k x 交于点E、F,过点E作EG⊥x 轴,如图1,将其联立即可得点F坐标,根据两点间距离公式可得OF长,再由OE=OF+EF 求出OE长,在Rt△OEG中,根据等腰直角三角形的性质可得点E的坐标为(﹣2,2),将E点代入反比例函数解析式即可得出k值.(3)①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直);②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,分别联立即可得出点M、N坐标,从而得出x取值范围,根据题意图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),从而求出图形W与图形N之间的距离为d,由二次函数性质知d 最小值.5.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.6.如图,过原点O的直线与双曲线交于上A(m,n)、B,过点A的直线交x轴正半轴于点D,交y轴负半轴于点E,交双曲线于点P.(1)当m=2时,求n的值;(2)当OD:OE=1:2,且m=3时,求点P的坐标;(3)若AD=DE,连接BE,BP,求△PBE的面积.【答案】(1)解:∵点A(m,n)在双曲线y=上,∴mn=6,∵m=2,∴n=3;(2)解:由(1)知,mn=6,∵m=3,∴n=2,∴A(3,2),∵OD:OE=1:2,设OD=a,则OE=2a,∵点D在x轴坐标轴上,点E在y轴负半轴上,∴D(a,0),E(0,﹣2a),∴直线DE的解析式为y=2x﹣2a,∵点A(3,2)在直线y=2x﹣2a上,∴6﹣2a=2,∴a=2,∴直线DE的解析式为y=2x﹣4①,∵双曲线的解析式为y=②,联立①②解得,(点A的横纵坐标,所以舍去)或,∴P(﹣2,﹣3);(3)解:∵AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,A(m,n),∴E(0,﹣n),D( m,0),∴直线DE的解析式为y= x﹣n,∵mn=6,∴m=,∴y= x﹣n③,∵双曲线的解析式为y=④,联立③④解得,∴(点A的横纵坐标,所以舍去)或,∴P(﹣2m,﹣2n),∵A(m,n),∴直线AB的解析式为y=x⑤.联立④⑤解得,(点A的横纵坐标,所以舍去)或∴B(﹣m,﹣n),∵E(0,﹣n),∴BE∥x轴,∴S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|= mn=3.【解析】【分析】(1)把A(2,n)代入解析式即可求出n;(2)先求出A点坐标,设OD=a,则OE=2a,得D(a,0),E(0,﹣2a),直线DE的解析式为y=2x﹣2a,把点A(3,2)代入求出a,再联立两函数即可求出交点P;(3)由AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,故A(m,n),E(0,﹣n),D( m,0),求得直线DE 的解析式为y= x﹣n,又mn=6,得y= x﹣n,与y=联立得,即为P点坐标,由直线AB的解析式为y= x与双曲线联立解得B (﹣m,﹣n),再根据S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|求出等于3.7.如图,直线y=2x+6与反比例函数y= (k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时不等式2x+6﹣<0的解集;(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?【答案】(1)解:∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y= .(2)解:不等式2x+6﹣<0的解集为0<x<1.(3)解:由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴﹣>0∴S△BMN= |MN|×|y M|= ×(﹣)×n=﹣(n﹣3)2+ ,∴n=3时,△BMN的面积最大,最大值为.【解析】【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)由图象直接求得;(3)构建二次函数,利用二次函数的最值即可解决问题.8.理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tanD=tan15°= = = .思路二利用科普书上的和(差)角正切公式:tan(α±β)= .假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)= == .思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.【答案】(1)解:方法一:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tan∠DAC=tan75°= = = = ;方法二:tan75°=tan(45°+30°)= = = =(2)解:如图2,在Rt△ABC中,AB= = = ,sin∠BAC= ,即∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt△ABD中,tan∠DAB= ,∴DB=AB•tan∠DAB= •()= ,∴DC=DB﹣BC= = .答:这座电视塔CD的高度为()米(3)解:①若直线AB绕点C逆时针旋转45°后,与双曲线相交于点P,如图3.过点C 作CD∥x轴,过点P作PE⊥CD于E,过点A作AF⊥CD于F.解方程组:,得:或,∴点A(4,1),点B(﹣2,﹣2).对于,当x=0时,y=﹣1,则C(0,﹣1),OC=1,∴CF=4,AF=1﹣(﹣1)=2,∴tan∠ACF= ,∴tan∠PCE=tan(∠ACP+∠ACF)=tan(45°+∠ACF)= = =3,即 =3.设点P的坐标为(a,b),则有:,解得:或,∴点P的坐标为(﹣1,﹣4)或(,3);②若直线AB绕点C顺时针旋转45°后,与x轴相交于点G,如图4.由①可知∠ACP=45°,P(,3),则CP⊥CG.过点P作PH⊥y轴于H,则∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH,∴△GOC∽△CHP,∴.∵CH=3﹣(﹣1)=4,PH= ,OC=1,∴,∴GO=3,G(﹣3,0).设直线CG的解析式为,则有:,解得:,∴直线CG的解析式为.联立:,消去y,得:,整理得:,∵△= ,∴方程没有实数根,∴点P 不存在.综上所述:直线AB绕点C旋转45°后,能与双曲线相交,交点P的坐标为(﹣1,﹣4)或(,3).【解析】【分析】tan∠DAC=tan75°,tan∠DAC用边的比值表示.在Rt△ABC中,由勾股定理求出AB,由三角函数得出∠BAC=30°,从而得到∠DAB=75°,在Rt△ABD中,可求出DB,DC=DB﹣BC.分两种情况讨论,设点P的坐标为(a,b),根据tan∠PCE和P在图像上列出含有a,b的方程组,求出a,b.利用已知证明△GOC∽△CHP,根据相似三角形的性质可求出G的坐标,设出直线CG的解析式,与反比例函数组成方程组消元,△<0 点P不存在.9.如图,正方形AOCB的边长为4,反比例函数y= (k≠0,且k为常数)的图象过点E,且S△AOE=3S△OBE.(1)求k的值;(2)反比例函数图象与线段BC交于点D,直线y= x+b过点D与线段AB交于点F,延长OF交反比例函数y= (x<0)的图象于点N,求N点坐标.【答案】(1)解:∵S△AOE=3S△OBE,∴AE=3BE,∴AE=3,∴E(﹣3,4)反比例函数y= (k≠0,且k为常数)的图象过点E,∴4= ,即k=﹣12(2)解:∵正方形AOCB的边长为4,∴点D的横坐标为﹣4,点F的纵坐标为4.∵点D在反比例函数的图象上,∴点D的纵坐标为3,即D(﹣4,3).∵点D在直线y= x+b上,∴3= ×(﹣4)+b,解得b=5.∴直线DF为y= x+5,将y=4代入y= x+5,得4= x+5,解得x=﹣2.∴点F的坐标为(﹣2,4),设直线OF的解析式为y=mx,代入F的坐标得,4=﹣2m,解得m=﹣2,∴直线OF的解析式为y=﹣2x,解,得.∴N(﹣,2 )【解析】【分析】(1)根据题意求得E的坐标,把点E(﹣3,4)代入利用待定系数法即可求出k的值;(2)由正方形AOCB的边长为4,故可知点D的横坐标为﹣4,点F的纵坐标为4.由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(﹣4,3),由点D在直线y= x+b上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标,然后根据待定系数法求得直线OF的解析式,然后联立方程解方程组即可求得.10.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.11.已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(3)若点Q为线段OC上的一动点,问:AQ+ QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.【答案】(1)解:函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)解:将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S△PBC=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),∵﹣<0,故S△PBC有最大值,此时x=,故点P(,﹣);(3)解:存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,Q+ QC最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+ …②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+ QC的最小值为 .【解析】【分析】(1)将坐标(1,0),B(3,0)代入计算即可得出抛物线的解析式,即可计算出D的坐标.(2)将点B、C的坐标代入一次函数表达式计算,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),求出x的值即可.(3)存在,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,Q+ QC最小值=AQ+HQ=AH,求出k值,再将A的坐标代入计算即可解答.12.如图,直线y=mx+n与双曲线y= 相交于A(﹣1,2)、B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)在坐标轴上是否存在异于D点的点P,使得S△PAB=S△DAB?若存在,直接写出P点坐标;若不存在,说明理由.【答案】(1)解:∵点A(﹣1,2)在双曲线y= 上,∴2= ,解得,k=﹣2,∴反比例函数解析式为:y=﹣,∴b= =﹣1,则点B的坐标为(2,﹣1),∴,解得,m=﹣1,n=1(2)解:对于y=﹣x+1,当x=0时,y=1,∴点C的坐标为(0,1),∵点D与点C关于x轴对称,∴点D的坐标为(0,﹣1),∴△ABD的面积= ×2×3=3(3)解:对于y=﹣x+1,当y=0时,x=1,∴直线y=﹣x+1与x轴的交点坐标为(0,1),当点P在x轴上时,设点P的坐标为(a,0),S△PAB= ×|1﹣a|×2+ ×|1﹣a|×1=3,解得,a=﹣1或3,当点P在y轴上时,设点P的坐标为(0,b),S△PAB= ×|1﹣b|×2+ ×|1﹣b|×1=3,解得,b=﹣1或3,∴P点坐标为(﹣1,0)或(3,0)或(0,﹣1)或(0,3)【解析】【分析】(1)由点A(﹣1,2)在双曲线上,得到k=﹣2,得到反比例函数解析式为,从而求出b的值和点B的坐标,把A、B坐标代入直线y=mx+n,求出m、n的值;(2)由一次函数的解析式求出点C的坐标,由点D与点C关于x轴对称,得到点D的坐标,从而求出△ABD的面积;(3)由一次函数的解析式得到直线y=﹣x+1与x轴的交点坐标为(0,1),当点P在x轴上时,设点P的坐标为(a,0),求出S△PAB=3,求出a的值,当点P在y轴上时,设点P的坐标为(0,b),求出S△PAB=3,求出b的值,从而得到P点坐标.13.在平面直角坐标系xOy中,反比例函数的图象经过点A(1,4),B(m,n).(1)求反比例函数的解析式;(2)若二次函数的图象经过点B,求代数式的值;(3)若反比例函数的图象与二次函数的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.【答案】(1)解:将A(1,4)代入函数y=得:k=4反比例函数y=的解析式是(2)解:∵B(m,n)在反比例函数y=上,∴mn=4,又二次函数y=(x-1)2的图象经过点 B(m,n),∴即n-1=m2-2m∴(3)解:由反比例函数的解析式为,令y=x,可得x2=4,解得x=±2.∴反比例函数的图象与直线y=x交于点(2,2),(-2,-2).如图,当二次函数y=a(x-1)2的图象经过点(2,2)时,可得a=2;当二次函数y=a(x-1)2的图象经过点(-2,-2)时,可得a=- .∵二次函数y=a(x-1)2图象的顶点为(1,0),∴由图象可知,符合题意的a的取值范围是0<a<2或a<- .【解析】【分析】(1)只需将点A的坐标代入反比例函数的解析式就可得出答案。
初二数学人教版(下册)反比例函数综合练习(附答案)
反比例函数综合练习一、选择题1.反比例函数y= -2/x的图象位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限2.已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为()、. 若双曲线y=6/x 经过点A(m,3),则m的值为()A.2 B.-2 C.3 D.-33. 如图,过原点的一条直线与反比例函数y=k/x(k<0)的图像分别交于A、B两点,若A、、点的坐标为(a,b),则B点的坐标为()A.(a,b) B.(b,a) C.(-b,-a) D.(-a,-b)4、下列关系中,两个量之间为反比例函数关系的是()A 、 正方形的面积S 与边长a 的关系B 、 正方形的周长L 与边长a 的关系C 、 长方形的长为a ,宽为20,其面积S 与a 的关系D 、 长方形的面积为40,长为a ,宽为b ,a 与b 之间的关系 5、在同一直角坐标系中,函数x y 3=与xy 1-=的图象大致是( )6、设()()2211,,,y x B y x A 是反比例函数xy 2-=图象上和两点,若1x <2x <0则1y 与2y 之间的关系是( )A 、2y <1y <0B 、1y <2y <0C 、2y >1y >0D 、1y >2y >0 7、函数k kx y +=与xky =在同一坐标系中的图象如图所示,则k 的取值范围为( ) A 、k >0 B 、k <0 C 、-1<k <0 D 、k <-18、(2006年兰州市)如图1所示,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形△P 1A 1O 、△P 2A 2O 、△P 3A 2O ,设它们的面积分别是S 1、S 2、S 3,则( ) A 、S 1<S 2<S 3 B 、S 2<S 1<S 3 C 、S 1<S 3<S 2 D 、S 1=S 2=S 3yOxyOxyOxO xyx二、填空题9.在函数xky =中,当2=x 时,3-=y 。
人教中考数学反比例函数综合练习题及答案
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标是4,点P(1,m)在反比例函数y1= 的图象上.(1)求反比例函数的表达式;(2)观察图象回答:当x为何范围时,y1>y2;(3)求△PAB的面积.【答案】(1)解:把x=4代入y2= x,得到点B的坐标为(4,1),把点B(4,1)代入y1= ,得k=4.反比例函数的表达式为y1=(2)解:∵点A与点B关于原点对称,∴A的坐标为(﹣4,﹣1),观察图象得,当x<﹣4或0<x<4时,y1>y2(3)解:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图,∵点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.y1= 中,当x=1时,y=4,∴P(1,4).设直线AP的函数关系式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,则,解得.故直线AP的函数关系式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15.【解析】【分析】(1)把x=4代入y2= x,得到点B的坐标,再把点B的坐标代入y1=,求出k的值,即可得到反比例函数的表达式;(2)观察图象可知,反比例函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解集;(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,那么S△AOP=S△BOP,S△PAB=2S△AOP.求出P点坐标,利用待定系数法求出直线AP的函数关系式,得到点C的坐标,根据S△AOP=S△AOC+S△POC求出S△AOP= ,则S△PAB=2S△AOP=15.2.如图,已知直线y=x+k和双曲线y= (k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n= ,求n的值.【答案】(1)解:当k=1时,直线y=x+k和双曲线y= 化为:y=x+1和y= ,解得,,∴A(1,2),B(﹣2,﹣1)(2)解:当k=2时,直线y=x+k和双曲线y= 化为:y=x+2和y= ,解得,,∴A(1,3),B(﹣3,﹣1)设直线AB的解析式为:y=mx+n,∴∴,∴直线AB的解析式为:y=x+2∴直线AB与y轴的交点(0,2),∴S△AOB= ×2×1+ ×2×3=4;(3)解:当k=1时,S1= ×1×(1+2)= ,当k=2时,S2= ×2×(1+3)=4,…当k=n时,S n= n(1+n+1)= n2+n,∵S1+S2+…+S n= ,∴ ×(…+n2)+(1+2+3+…n)= ,整理得:,解得:n=6.【解析】【分析】(1)两图像的交点就是求联立的方程组的解;(2)斜三角形△AOB的面积可转化为两水平(或竖直)三角形(有一条边为水平边或竖直边的三角形称为水平或竖直三角形)的面积和或差;(3)利用n个数的平方和公式和等差数列的和公式可求出.3.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a= ,解得a= ,此时正方形的边长为.∴所求“伴侣正方形”的边长为或(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;b、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,c、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣ x2+ ;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D 的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;故二次函数的解析式分别为:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.4.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,反比例函数y= (k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(3,).(1)求反比例函数的表达式和m的值;(2)将矩形OABC的进行折叠,使点O于点D重合,折痕分别与x轴、y轴正半轴交于点F,G,求折痕FG所在直线的函数关系式.【答案】(1)解:∵反比例函数y= (k≠0)在第一象限内的图象经过点E(3,),∴k=3× =2,∴反比例函数的表达式为y= .又∵点D(m,2)在反比例函数y= 的图象上,∴2m=2,解得:m=1(2)解:设OG=x,则CG=OC﹣OG=2﹣x,∵点D(1,2),∴CD=1.在Rt△CDG中,∠DCG=90°,CG=2﹣x,CD=1,DG=OG=x,∴CD2+CG2=DG2,即1+(2﹣x)2=x2,解得:x= ,∴点G(0,).过点F作FH⊥CB于点H,如图所示.由折叠的特性可知:∠GDF=∠GOF=90°,OG=DG,OF=DF.∵∠CGD+∠CDG=90°,∠CDG+∠HDF=90°,∴∠CGD=∠HDF,∵∠DCG=∠FHD=90°,∴△GCD∽△DHF,∴=2,∴DF=2GD= ,∴点F的坐标为(,0).设折痕FG所在直线的函数关系式为y=ax+b,∴有,解得:.∴折痕FG所在直线的函数关系式为y=﹣x+【解析】【分析】(1)由点E的坐标利用反比例函数图象上点的坐标特征即可求出k值,再由点B在反比例函数图象上,代入即可求出m值;(2)设OG=x,利用勾股定理即可得出关于x的一元二次方程,解方程即可求出x值,从而得出点G的坐标.再过点F作FH⊥CB于点H,由此可得出△GCD∽△DHF,根据相似三角形的性质即可求出线段DF的长度,从而得出点F的坐标,结合点G、F的坐标利用待定系数法即可求出结论.5.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.6.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【答案】(1)①当x=4时,∴点B的坐标是(4,1)当y=2时,由得得x=2∴点A的坐标是(2,2)设直线AB的函数表达式为∴解得∴直线AB的函数表达式为②四边形ABCD为菱形,理由如下:如图,由①得点B(4,1),点D(4,5)∵点P为线段BD的中点∴点P的坐标为(4,3)当y=3时,由得,由得,∴PA= ,PC=∴PA=PC而PB=PD∴四边形ABCD为平行四边形又∵BD⊥AC∴四边形ABCD是菱形(2)四边形ABCD能成为正方形当四边形ABCD时正方形时,PA=PB=PC=PD(设为t,t≠0),当x=4时,∴点B的坐标是(4,)则点A的坐标是(4-t,)∴,化简得t=∴点D的纵坐标为则点D的坐标为(4,)所以,整理得m+n=32【解析】【分析】(1)①分别求出点A,B的坐标,运用待定系数法即可求出直线AB的表达示;②由特殊的四边形可知,对角线互相垂直的是菱形和正方形,则可猜测这个四边形是菱形或是正方形,先证明其为菱形先,则需要证明四边形ABCD是平行四边形,运用“对角线互相平分的四边形是平行四边形”的判定定理证明会更好些;再判断对角线是否相等,若不相等则不是正方形;(2)要使m,n有具体联系,根据A,B,C,D分别在两个函数图象,且由正方形的性质,可用只含m的代数式表示出点D或点C的坐标代入y= ,即可得到只关于m和n的等式.7.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为________.【答案】(1)解:函数y=x-1没有不变值;∵函数有-1和1两个不变值,∴其不变长度为2;∵函数有0和1两个不变值,∴其不变长度为1;(2)解:① 函数y=2x2-bx的不变长度为0,方程2x2-bx=x有两个相等的实数根,∴△=(b+1)2=0,b=-1,②∵2x2-bx=x,∴,1≤b≤3,1≤ ≤2,函数y=2x2-bx的不变长度的取值范围为1≤q≤2.(3)1≤m≤3或m<-【解析】【解答】解(3)依题可得:函数G的图像关于x=m对称,∴函数G:y=,当x2-2x=x时,即x(x-3)=0,∴x3=0,x4=3,当(2m-x)2-2(2m-x)=x时,即x2+(1-4m)x+(4m2-4m)=0,∴△=(1-4m)2-4×(4m2-4m)=1+8m,当△=1+8m0时,即m-,此方程无解,∴q=x4-x3=3-0=3;当△=1+8m 0时,即m -,此方程有解,∴x5=, x6=,①当-m0时,∵x3=0,x4=3,∴x60,∴x4-x63(不符合题意,舍去),②∵当x5=x4时,∴m=1,当x6=x3时,∴m=3,当0m1时,x3=0(舍去),x4=3,此时0x5x4, x60,∴q=x4-x63(舍去);当1m3时,x3=0(舍去),x4=3,此时0x5x4, x60,∴q=x4-x63(舍去);当m3时,x3=0(舍去),x4=3(舍去),此时x53,x60,∴q=x5-x63(舍去);综上所述:m的取值范围为:1m3或m < -,【分析】(1)根据题目定义即可得出函数y=x-1没有不变值;再分别求出函数、函数的不变值,从而求出其不变长度.(2)① 由已知条件得方程2x2-bx=x有两个相等的实数根,即根的判别式△=(b+1)2=0,从而求出 b=-1;②由题意得2x2-bx=x,求出方程的根,再根据1≤b≤3,即可求出函数y=2x2-bx的不变长度的取值范围.(3)依题可得:函数G的图像关于x=m对称,分情况讨论写出函数G的解析式,根据定义和一元二次方程求出值,再分情况讨论即可得出答案.8.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.9.在平面直角坐标系中,我们定义点P(a,b)的“变换点”为Q.且规定:当a≥b时,Q 为(b,﹣a);当a<b时,Q为(a,﹣b).(1)点(2,1)的变换点坐标为________;(2)若点A(a,﹣2)的变换点在函数y= 的图象上,求a的值;(3)已知直线l与坐标轴交于(6,0),(0,3)两点.将直线l上所有点的变换点组成一个新的图形记作M.判断抛物线y=x2+c与图形M的交点个数,以及相应的c的取值范围,请直接写出结论.【答案】(1)(1,﹣2)(2)解:当a≥﹣2时,则A(a,﹣2)的变换点坐标为(﹣2,﹣a),代入y= 可得﹣a= ,解得a= ;当a<﹣2时,则A(a,﹣2)的变换点坐标为(a,2),代入y= 可得2= ,解得a= ,不符合题意;综上可知a的值为;(3)解:设直线l的解析式为y=kx+b (k≠0 ),将点(6,0)、(0,3)代入y=kx+b 得:,解得,∴直线l的解析式为y=﹣ x+3.当x=y时,x=﹣ x+3,解得x=2.点C的坐标为(2,﹣2),点C的变换点的坐标为C′( 2,﹣2 ),点(6,0)的变换点的坐标为(0,﹣6),点(0,3)的变换点的坐标为(0,﹣3),当x≥2时,所有变换点组成的图形是以C′( 2,﹣2)为端点,过(0,﹣6 )的一条射线;即:y=2x﹣6,其中x≥2,当x<2时,所有变换点组成的图形是以C′(2,﹣2)为端点,过(0,﹣3)的一条射线,即y= x﹣3,其中,x<2.所以新的图形M是以C′(2,﹣2)为端点的两条射线组成的图形.如图所示:由和得:x2﹣x+c+3=0①和x2﹣2x+c+6=0②讨论一元二次方程根的判别式及抛物线与点C′的位置关系可得:①当方程①无实数根时,即:当c>﹣时,抛物线y=x2+c与图形M没有交点;②当方程①有两个相等实数根时,即:当c=﹣时,抛物线y=x2+c与图形M有一个交点;③当方程②无实数根,且方程①有两个不相等的实数根时,即:当﹣5<c<﹣时,抛物线y=x2+c与图形M有两个交点;④当方程②有两个相等实数根或y=x2+c恰好经过经过点C′时,即:当c=﹣5或c=﹣6时,抛物线y=x2+c与图形M有三个交点;⑤当方程②方程①均有两个不相等的实数根时,且两根均小于2,即:当﹣6<c<﹣5时,抛物线y=x2+c与图形M有四个交点;⑥当c<﹣6时,抛物线y=x2+c与图形M有两个交点.【解析】【解答】解:(1)∵2≥﹣1,∴点(2,1)的变换点坐标为(1,﹣2),故答案为:(1,﹣2);【分析】(1)由变换点的定义可求得答案;(2)由变换点的定义可求得A的变换点,代入函数解析式可求得a的值;(3)先求得直线y=x与直线l的交点坐标,然后分为当x≥2和x<2两种情况,求得M的关系式,然后在画出M的大致图象,然后将抛物线y=x2+c与M的函数关系式组成方程组,然后依据一元二次方程根的判别式进行判断即可.10.在平面直角坐标系xOy中,对于双曲线y= (m>0)和双曲线y= (n>0),如果m=2n,则称双曲线y= (m>0)和双曲线y= (n>0)为“倍半双曲线”,双曲线y=(m>0)是双曲线y= (n>0)的“倍双曲线”,双曲线y= (n>0)是双曲线y= (m>0)的“半双曲线”,(1)请你写出双曲线y= 的“倍双曲线”是________;双曲线y= 的“半双曲线”是________;(2)如图1,在平面直角坐标系xOy中,已知点A是双曲线y= 在第一象限内任意一点,过点A与y轴平行的直线交双曲线y= 的“半双曲线”于点B,求△AOB的面积;(3)如图2,已知点M是双曲线y= (k>0)在第一象限内任意一点,过点M与y轴平行的直线交双曲线y= 的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y= 的“半双曲线”于点P,若△MNP的面积记为S△MNP,且1≤S△MNP≤2,求k的取值范围.【答案】(1)y=;y=(2)解:如图1,∵双曲线y= 的“半双曲线”是y= ,∴△AOD的面积为2,△BOD的面积为1,∴△AOB的面积为1(3)解:解法一:如图2,依题意可知双曲线的“半双曲线”为,设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴CM= ,CN= .∴MN= ﹣ = .同理PM=m﹣ = .∴S△PMN= MN•PM=∵1≤S△PMN≤2,∴1≤ ≤2.∴4≤k≤8,解法二:如图3,依题意可知双曲线的“半双曲线”为,设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴点N为MC的中点,同理点P为MD的中点.连接OM,∵,∴△PMN∽△OCM.∴.∵S△OCM=k,∴S△PMN= .∵1≤S△PMN≤2,∴1≤ ≤2.∴4≤k≤8.【解析】【解答】解:(1)由“倍双曲线”的定义∴双曲线y= ,的“倍双曲线”是y= ;双曲线y= 的“半双曲线”是y= .故答案为y= ,y= ;【分析】(1)直接利用“倍双曲线”的定义即可;(2)利用双曲线的性质即可;(3)先利用双曲线上的点设出M的横坐标,进而表示出M,N的坐标;方法一、用三角形的面积公式建立不等式即可得出结论;方法二、利用相似三角形的性质得出△PMN的面积,进而建立不等式即可得出结论.11.如图,在平面直角坐标系中,抛物线交轴于点,交轴于点和点,过点作轴交抛物线于点.(1)求此抛物线的表达式;(2)点是抛物线上一点,且点关于轴的对称点在直线上,求的面积;(3)若点是直线下方的抛物线上一动点,当点运动到某一位置时,的面积最大,求出此时点的坐标和的最大面积.【答案】(1)解:抛物线交轴于点,交轴于点和点,,得,此抛物线的表达式是(2)解:抛物线交轴于点,点的坐标为,轴,点是抛物线上一点,且点关于轴的对称点在直线上,点的纵坐标是5,点到的距离是10,当时,,得或,点的坐标为,,的面积是:(3)解:设点的坐标为,如图所示,设过点,点的直线的函数解析式为,,得,即直线的函数解析式为,当时,,,的面积是:,点是直线下方的抛物线上一动点,,当时,取得最大值,此时,点的坐标是,,即点的坐标是,时,的面积最大,此时的面积是.【解析】【分析】(1)根据题意可以求得、的值,从而可以求得抛物线的表达式;(2)根据题意可以求得的长和点到的距离,从而可以求得的面积;(3)根据题意可以求得直线的函数解析式,再根据题意可以求得的面积,然后根据二次函数的性质即可解答本题12.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D 在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.(1)【探究发现】如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;(2)【数学思考】如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;(3)【拓展引申】如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.【答案】(1)解:∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DB=DP(2)解:∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,∴△CDP≌△GDB(ASA)∴DB=DP(3)解:如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,∵MH⊥MN,∴∠AMH+∠NMB=90°∵CD∥AB,∠CDB=90°∴∠DBM=90°∴∠NMB+∠MNB=90°∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°∴△AMH≌△BNQ(ASA)∴AH=BQ∵∠ACB=90°,AC=BC=4,∴AB=4 ,AC-AH=BC-BQ∴CH=CQ∴∠CHQ=∠CQH=45°=∠CAB∴HQ∥AB∴∠HQM=∠QMB∵∠ACB=∠HMQ=90°∴点H,点M,点Q,点C四点共圆,∴∠HCM=∠HQM∴∠HCM=∠QMB,且∠A=∠CBA=45°∴△ACM∽△BMQ∴∴∴BQ= +2∴AM=2 时,BQ有最大值为2.【解析】【分析】(1)DB=DP,理由如下:根据等腰直角三角形的性质得出∠CAB=∠CBA=45°,根据二直线平行,内错角相等得出∠CBA=∠DCB=45°,根据三角形的内角和得出∠DCB=∠DBC=45°,最后根据等角对等边得出 DB=DC ,即DB=DP;(2)利用ASA判断出△CDP≌△GDB ,再根据全等三角形的对应边相等得出DB=DP;(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,利用ASA判断出△AMH≌△BNQ 根据全等三角形的对应边相等得出AH=BQ,进而判断出点H,点M,点Q,点C四点共圆,根据圆周角定理得出∠HCM=∠HQM ,然后判断出△ACM∽△BMQ ,根据相似三角形的对应边成比例得出,根据比例式及偶数次幂的非负性即可得出求出答案.13.如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=________时,PQ∥AB(2)当t为何值时,△PCQ的面积等于5cm2?(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB 能否垂直?若能,求出相应的t值;若不能,请说明理由.能垂直,理由如下:延长QE交AC于点D,∵将△PQC翻折,得到△EPQ,∴△QCP≌△QEP,∴∠C=∠QEP=90°,若PE⊥AB,则QD∥AB,∴△CQD∽△CBA,∴,∴,∴QD=2.5t,∵QC=QE=2t∴DE=0.5t∵∠A=∠EDP,∠C=∠DEP=90°,∴△ABC∽△DPE,∴∴,解得:,综上可知:当t= 时,PE⊥AB【答案】(1)2.4(2)解:∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB 向B点以2厘米/秒的速度匀速移动,∴PC=AC-AP=6-t,CQ=2t,∴S△CPQ= CP•CQ= =5,∴t2-6t+5=0解得t1=1,t2=5(不合题意,舍去)∴当t=1秒时,△PCQ的面积等于5cm2(3)解:【解析】【解答】解:(1) ∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q 从C出发沿CB向B点以2厘米/秒的速度匀速移动,∴PC=AC-AP=6-t,CQ=2t,当PQ∥AB时,∴△PQC∽△ABC,∴PC:AC=CQ:BC,∴(6-t):6=2t:8∴t=2.4∴当t=2.4时,PQ∥AB【分析】(1)根据题意可得PC=AC-AP=6-t,CQ=2t,根据平行线可得△PQC∽△ABC,利用相似三角形对应边成比例可得PC:AC=CQ:BC,即得(6-t):6=2t:8,求出t值即可;(2)由S△CPQ=CP•CQ =5,据此建立方程,求出t值即可;(3)延长QE交AC于点D,根据折叠可得△QCP≌△QEP,若PE⊥AB,则QD∥AB,可得△CQD∽△CBA,利用相似三角形的对应边成比例,求出DE=0.5t,根据两角分别相等可证△ABC∽△DPE,利用相似三角形对应边成比例,据此求出t 值即可.14.小明利用函数与不等式的关系,对形如 ( 为正整数)的不等式的解法进行了探究.(1)下面是小明的探究过程,请补充完整:①对于不等式,观察函数的图象可以得到如表格:的范围的符号+﹣由表格可知不等式的解集为.②对于不等式,观察函数的图象可以得到如表表格:的范围的符号+﹣+由表格可知不等式的解集为________.③对于不等式,请根据已描出的点画出函数(x+1)的图象;观察函数的图象补全下面的表格:的范围的符号+﹣________________由表格可知不等式的解集为________.……小明将上述探究过程总结如下:对于解形如 ( 为正整数)的不等式,先将按从大到小的顺序排列,再划分的范围,然后通过列表格的办法,可以发现表格中的符号呈现一定的规律,利用这个规律可以求这样的不等式的解集.(2)请你参考小明的方法,解决下列问题:①不等式的解集为________.②不等式的解集为________.【答案】(1)或;+;-;或(2)或或;或且【解析】【解答】(1)②由表格可知不等式的解集为或,故答案为:或;③当时,,当时,,由表格可知不等式的解集为或,故答案为:+,﹣,或;(2)①不等式的解集为或或,故答案为:或或;②不等式的解集为或且,故答案为:或且【分析】根据题意可知在表格中写出相应的函数值的正负性,借此来判断相应的不等式的解集.(1)②根据表格中的数据可以直接写出不等式的解集;③根据表格中的数据可以直接写出不等式的解集;(2)①根据小明的方法,可以直接写出该不等式的解集;②根据小明的方法,可以直接写出该不等式的解集.15.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.【答案】(1)解:把点A(2,6)代入y= ,得m=12,则y= .把点B(n,1)代入y= ,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得,则所求一次函数的表达式为y=﹣x+7(2)解:如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=10,∴×|m﹣7|×(12﹣2)=10.∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).【解析】【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;(2)设点E 的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.。
(最新)人教版九年级数学下册 《反比例函数》 综合测试卷(含答案)【精编】
人教版九年级数学下册反比例函数综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.下面的函数是反比例函数的是()A.y=3x-1 B.y=x 2C.y=13x D.y=2x-1 32.反比例函数y=n+5x的图象经过点(2,3),则n的值是()A.-2 B.-1C.0 D.13.为了更好保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h的函数图象大致是()4.如果反比例函数y=kx的图象经过点(1,n2+1),那么这个函数的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限5.正比例函数y=2x与反比例函数y=kx的图象有一个交点为(2,4),则另一个交点的坐标为()A.(2,-4) B.(-2,-4)C.(-2,4) D.(-2,-2)6.如图,在矩形ABCD中,AB=4,BC=3,点F在DC边上运动,连接AF,过点B作BE⊥AF 于E.设BE=y,AF=x,则能反映y与x之间函数关系的大致图象是()7.在反比例函数y =4x的图象上,阴影部分的面积不等于4的是( )8.已知一次函数y 1=kx +b(k <0)与反比例函数y 2=m x(m≠0)的图象相交于A ,B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( )A .x <-1或0<x <3B .-1<x <0或0<x <3C .-1<x <0或x >3D .0<x <39.点A(1,y 1),B(3,y 2)是反比例函数y =9x图象上的两点,则y 1、y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .不能确定10.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图所示,点M 在y =a x的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD ⊥y 轴于点D ,交y =2x 的图象于点B.当点M 在y =a x(x >0)的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,点B 是MD 的中点.其中正确结论的个数是( )A .0个B .1个C .2个D .3个二.填空题(共8小题,3*8=24)11.反比例函数y =k x的图象经过点(1,-2),则k 的值为____. 12.若反比例函数y =k x(k≠0)的图象经过点(1,-3),则一次函数y =kx -k(k≠0)的图象经过第________象限.13.已知反比例函数y =k x(k 为常数,k≠0)的图象位于第一、三象限,写出一个符合条件的k 的值为______.14.若反比例函数y =k x的图象与一次函数y =mx 的图象的一个交点的坐标为(1,2),则它们另一个交点的坐标为________.15.已知反比例函数y=4x,当函数值y≥-2时,自变量x的取值范围是________.16.已知A(x1,y1),B(x2,y2)都在反比例函数y=6x的图象上.若x1x2=-3,则y1y2=________.17.函数y=1x与y=x-2的图象的交点的横坐标分别为a、b,则1a+1b的值为________.18.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴,y轴上,反比例函数的图象与正方形的两边AB,BC分别交于点M,N,ND⊥x轴,垂足为D,连接OM,ON,MN.下列结论:①△OCN≌△OAM;②ON=MN; ③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,2+1).其中正确结论的序号是________.三.解答题(共7小题,66分)19.(8分) 已知函数y=kx的图象经过点(-3,4).(1)求k的值,并在如图所示的坐标系中画出这个函数的图象(每个小正方形的边长为1个单位长度);(2)当x取什么值时,函数的值小于0?20.(8分)已知y与x-1成反比例,且当x=-5时,y=2.(1)求y与x的函数关系式;(2)当x=5时,求y的值.21.(8分)已知反比例函数的图象过点A(-2,3).(1)求这个反比例函数的表达式;(2)这个函数的图象分布在哪些象限?y随x的增大如何变化?(3)点B(1,-6),C(2,4)和D(2,-3)是否在这个函数的图象上?22.(10分)已知反比例函数y=kx,当x=-13时,y=-6.(1)这个函数的图象位于哪些象限?y随x的增大如何变化?(2)当12<x<4时,求y的取值范围.23.(10分)如图是药品研究所测得的某种新药在成人用药后,血液中的药物浓度y(微克/毫升)随用药后的时间x(小时)变化的图象(图象由线段OA与部分双曲线AB组成).并测得当y=a时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓度至少需要多长时间达到最大?24.(10分)已知一次函数y=x+6和反比例函数y=kx(k≠0).(1)k满足什么条件时,这两个函数在同一坐标系中的图象有两个公共点?(2)设(1)中的公共点为A和B,则∠AOB是锐角还是钝角?25.(12分)在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其图象如图所示.(1)求p与S之间的函数关系式;(2)求当受力面积为0.5 m2时物体承受的压强;(3)若要获得2 500 Pa的压强,受力面积应为多少?参考答案1-5 CDCAB 6-10 DBAAD11. -212.一、二、四13.114.(-1,-2)15.x≤-2或x>016.-1217.-218. ①③④19. 解:(1)把(-3,4)代入y =k x,得k =-3×4=-12, ∴y =-12x.图象如图所示.(2)由图象可以看出,当x >0时,函数的值小于0.20. 解:(1)设y 与x 的函数关系式为y =k x -1, 由题意得2=k -5-1,解得k =-12. ∴y 与x 的函数关系式为y =-12x -1. (2)当x =5时,y =-12x -1=-125-1=-3. 21. 解:(1)y =-6x(2)分布在第二、四象限,在每个象限内y 随x 的增大而增大(3)∵函数的表达式是y =-6x, ∴x =1时,y =-6,x =2时,y =-3,∴点B 和点D 在这个函数图象上,点C 不在这个函数图象上22. 解:(1)把x =-13,y =-6代入y =k x 中,得-6=k -13, 则k =2,即反比例函数的表达式为y =2x. 因为k >0,所以这个函数的图象位于第一、第三象限,在每个象限内,y 随x 的增大而减小.(2)将x =12代入表达式中得y =4,将x =4代入表达式中得y =12, 所以y 的取值范围为12<y <4.[来源 23. 解:设直线OA 对应的函数解析式为y =kx ,把(4,a)代入,得a =4k ,解得k =a 4, 即直线OA 对应的函数解析式为y =a 4x. 根据题意,(9,a)在反比例函数的图象上,则反比例函数的解析式为y =9a x. 当a 4x =9a x时,解得x =±6(负值舍去), 故成人用药后,血液中药物浓度至少需要6小时达到最大.24. 解:(1)由⎩⎪⎨⎪⎧y =x +6,y =k x ,得x +6=k x , ∴x 2+6x -k =0,∴b 2-4ac =62-4×1×(-k)=36+4k.当36+4k>0时,即k>-9(k≠0)时,这两个函数在同一坐标系中的图象有两个公共点(2)∵y =x +6的图象过第一、二、三象限,当-9<k<0时,函数y =k x的图象在第二、四象限,则此时两函数图象的公共点A ,B 均在第二象限,∠AOB 显然为锐角;当k>0时,函数y =k x的图象位于第一、三象限,此时公共点A ,B 分别位于第一、三象限内,显然∠AOB 为钝角25. 解:(1)设p =k S(k≠0), ∵点(0.25,1 000)在这个函数的图象上,∴1 000=k 0.25,∴k =250, ∴p 与S 之间的函数关系式为p =250S(S >0). (2)当S =0.5时,p =2500.5=500. 故当受力面积为0.5 m 2时,物体承受的压强为500 Pa.(3)令p =2 500,则S =2502 500=0.1, 要获得2 500 Pa 的压强,受力面积应为0.1 m 2.。
(完整版)反比例函数综合测试题(含答案)
反比例函数综合测试题一、选择题(每小题3分,共24分)1.已知点M (- 2,3 )在反比例函数xky=的图象上,下列各点也在该函数图象上的是( ).AA. (3,- 2)B. (- 2,- 3)C. (2,3)D. (3,2)2. 反比例函数(0)ky kx=≠的图象经过点(- 4,5),则该反比例函数的图象位于( ).BA. 第一、三象限B. 第二、四象限C. 第二、三象限D. 第一、二象限3. 在同一平面直角坐标系中,函数xy2-=与xy2=的图象的交点个数为( ). DA. 3个B. 2个C. 1个D. 0个4. 如图1,点A是y轴正半轴上的一个定点,点B是反比例函数y = 2 x(x> 0)图象上的一个动点,当点B的纵坐标逐渐减小时,△OAB的面积将( ). AA.逐渐增大B.逐渐减小C.不变D.先增大后减小5. (2009年恩施市)如图2,一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,设小矩形的长和宽分别为x,y,剪去部分的面积为20,若2 ≤x≤ 10,则y与x的函数图象是( ). A6. 已知点A(x1,y1),B(x2,y2)是反比例函数xky=(k > 0)的图象上的两点,若x1 < 0 < x2,则( ).AA. y1 < 0 < y2B. y2 < 0 < y1C. y1 < y2 < 0D. y2 < y1 < 07. 如图3,反比例函数3yx=的图象与一次函数y = x + 2的图象交于A,B两点,那么△AOB 的面积是( ).CA. 2B. 3C. 4D. 68. 如图4,等腰直角三角形ABC位于第一象限,AB= AC = 2,直角顶点A在直线y = x上,1212图2图4A B C Dy xOP 1P 2P 3P 4 P 5A 1 A 2 A 3 A 4 A 5 图7其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与△ABC 有交点,则k 的取值范围是( ). C A.1 < k < 2B.1 ≤ k ≤ 3C.1 ≤ k ≤ 4D.1≤ k < 4二、填空题(每小题4分,共24分) 9. 已知反比例函数k y x =的图象经过点(23),,则此函数的关系式是 .6y x= 10. 在对物体做功一定的情况下,力F (N)与此物体在 力的方向上移动的距离s (m)成反比例函数关系,其图 象如图5所示,点P (5,1)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是 m. 0. 511. 反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A ,B 两点,若点A 坐标为(-2,1),则点B 的坐标为 . (2,-1).12.一次函数y = x + 1与反比例函数ky x=的图象都经过点(1,m ),则使这两个函数值都小于0时x 的取值范围是___________. x < - 113. (2009年兰州市)如图6,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 反比例函数1y x=(x > 0)的图象上,则点E 的坐标是_________. (215+,215-)14. (2009年莆田市)如图7,在x 轴的正半轴上依次截取OA 1 = A 1A 2 = A 2A 3 = A 3A 4 = A 4A 5,过点A 1,A 2,A 3,A 4,A 5,分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点P 1,P 2,P 3,P 4,P 5,得直角三角形OP 1A 1,A 1P 2A 2,A 1P 2A 2,A 2P 3A 3,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S 1,S 2,S 3,S 4,S 5,则S 5的值为 . 三、解答题(共30分)15.(6分) 已知点P (2,2)在反比例函数xky =(k ≠ 0)的图象上. (1)当x = - 3时,求y 的值; (2)当1 < x < 3时,求y 的取值范围.F / N图5s / mO图616.(8分)已知图8中的曲线是反比例函数5myx-=(m为常数)图象的一支. 若该函数的图象与正比例函数y = 2x的图象在第一象内限的交于点A,过点A作x轴的垂线,垂足为点B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.17.(8分)如图9,点P的坐标为322⎛⎫⎪⎝⎭,,过点P作x轴的平行线交y轴于点A,交反比例函数kyx=(x > 0)于点点N,作PM ⊥AN交反比例函数kyx=(x > 0)的图象于点M,连接AM.若PN = 4,求:(1)k的值.(2)△APM的面积.18.(8分)为预防“手足口病”,某校对教室进行“药熏消毒”. 已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y与x成反比例(如图10所示). 现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg. 根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用. 那么从消毒开始,经多长时间学生才可以返回教室?四、探究题(共22分)19.(10分) 我们学习了利用函数图象求方程的近似解,例如,把方程2x – 1 = 3 - x 的解看成函数y = 2 x - 1的图象与函数y = 3 - x 的图象交点的横坐标. 如图11,已画出反比例函数1y x=在第一象限内的图象,请你按照上述方法,利用此图象求方程x 2 – x – 1 = 0的正数解(要求画出相应函数的图象,求出的解精确到0.1).20.(12分)一次函数y = ax + b 的图象分别与x 轴、y 轴交于点M ,N ,与反比例函数k y x=的图象相交于点A ,B .过点A 分别作AC ⊥x 轴,AE ⊥y 轴,垂足分别为点C ,E ;过点B 分别作BF ⊥x 轴,BD ⊥y 轴,垂足分别为点F ,D ,AC 与BC 相交于点K ,连接CD . (1)如图12,若点A ,B 在反比例函数ky x=的图象的同一分支上,试证明: ①A E D K C F B K S S =四边形四边形;②A N B M =. (2)若点AB ,分别在反比例函数ky x=的图象的不同分支上,如图13,则AN 与BM 还相等吗?试证明你的结论.反比例函数综合测试题参考答案一、选择题 1. A. 2. B. 3. D.4. A.5. A.6. A.7. C.8. C.二、填空题 9. 6y x=. 10. 0. 5. 11. (2,-1).12. x < - 1. 13. (215+,215-). 14.15. 三、解答题 15.(1)34-=y ;(2)y 的取值范围为434<<y . 16.∵第一象限内的点A 在正比例函数y = 2x 的图象上,∴设点A 的坐标为(m ,2m )(m > 0),则点B 的坐标为(m ,0). ∵S △OAB = 4,∴12m • 2m = 4. 解得m 1 = 2,m 2 = - 2(不符合题意,舍去).∴点A 的坐标为(2,4).又∵点A 在反比例函数5m y x -=的图象上,∴542m -=,即m – 5 = 8. ∴反比例函数的解析式为8y x=.17.(1)∵点P 的坐标为322⎛⎫ ⎪⎝⎭,,∴AP = 2,OA =32. ∵PN = 4,∴AN = 6. ∴点N 的坐标为362⎛⎫ ⎪⎝⎭,. 把点362N ⎛⎫ ⎪⎝⎭,代入ky x=中,得k = 9. (2)由(1)知k = 9,∴9y x =. 当x = 2时,92y =. ∴93322M P =-=. ∴12332A P MS =⨯⨯=△. 18.(1)设药物燃烧阶段函数关系式为y = k 1x (k 1 ≠ 0).根据题意,得8 = 10k 1,k 1 = 45. ∴此阶段函数关系式为45y x =(0 ≤ x < 10).(2)设药物燃烧结束后函数关系式为22(0)ky k x=≠.根据题意,得2810k=,280k =. ∴此阶段函数关系式为80y x=(x ≥ 10).(3)当y < 1.6时,801.6x<. ∵0x >,∴1.680x >,50x >. ∴从消毒开始经过50 min 学生才返可回教室. 四、探究题19. 方程x 2 – x – 1 = 0的正数解约为1.6.提示:∵x ≠ 0,将x 2 – x – 1 = 0两边同除以x ,得110x x --=.即11x x=-. 把x 2 – x – 1 = 0的正根视为由函数1y x=与函数y = x - 1的图象在第一象限交点的横坐标. 20.(1)①A C x ⊥轴,A E y ⊥轴,∴四边形AE O C 为矩形. BF x ⊥轴,B D y ⊥轴,∴四边形BD O F 为矩形.A C x ⊥轴,B D y ⊥轴,∴四边形A E D K D OC K C F B K ,,均为矩形.1111O C x A C y x y k ===,,,∴11A E O CS O C A C x y k ===矩形2222O F x F B y x yk ===,,,∴22B D O F S O F F B x y k ===矩形.∴A E O C B D O F S S =矩形矩形.A E D K A E O C D O C K S S S =-矩形矩形矩形,C FB K B D O F D OC K S S S =-矩形矩形矩形,∴A ED K C F B K S S =矩形矩形. ②由(1)知,AE D K CF B KS S =矩形矩形.∴A K D K B K C K =.∴AK BKCK DK=. 90A K B C K D ∠=∠=°,∴A K B C K D △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AC D N 是平行四边形.∴A N C D =.同理可得B M C D =.A N B M∴=. (2)AN 与BM 仍然相等.A E D K A E O C O D K C S S S =+矩形矩形矩形,B KC F BD O F O D K CS S S =+矩形矩形矩形, 又A E O CB D O F S S k ==矩形矩形,∴A E D K B KC FS S =矩形矩形. ∴A K D K B K C K=.∴CK DKAK BK=. K K ∠=∠,∴C D K A B K △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AN D C 是平行四边形.∴A N C D =.同理B M C D =.∴A N B M =【教学标题】反比例函数 【教学目标】1、 提高学生对反比例函数的学习兴趣2、 使学生掌握反比例函数基础知识3、让学生熟练地运用反比例知识【重点难点】图像及性质 【教学内容】反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
人教版初中数学九年级数学下册第一单元《反比例函数》测试卷(答案解析)
一、选择题1.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数()0ky x x=>的图象经过菱形对角线的交点,A 且与边BC 交于点F ,点C 的坐标为()8,4,则OBF ∆的面积为( )A .104B .83C .103D .1142.将函数 6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是( ) A .61y x =+ B .61y x =- C .61y x=+ D .61y x=- 3.如图,ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为( )A .3B .4C .5D .64.如图,已知在平面直角坐标系中,Rt ABC 的顶点()0,3A ,()3,0B ,90ABC ∠=︒,函数()40y x x=>的图象经过点C ,则AC 的长为( )A .32B .25C .26D .265.如图,反比例函数ky x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .126.已知一个正比例函数与一个反比例函数的图像交于(-3,4),则这两个函数的表达式分别是( ) A .412,3y x y x == B .412,3y x y x=-=- C .412,3y x y x=-= D .412,3y x y x==- 7.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .8.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =-B .2y x =+C .2y x=D .22y x x =-9.如图,在平面直角坐标系中,直线y x =-与双曲线ky x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .12-B .32-C .2-D .14-10.如图,函数ky x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( )A .B .C .D .11.如图,点A 是反比例函数y =kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣412.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数ky x=(k <0)的图象上的两点,若x 1<0<x 2,则下列结论正确的是( ) A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0二、填空题13.如图,点 A 的坐标是(﹣2,0),点 B 的坐标是(0,6),C 为 OB 的中点,将△ABC 绕点 B 逆时针旋转 90°后得到△A′B′C′.若反比例函数 y =kx的图象恰好经过 A′B 的中点 D ,则k _________.14.反比例函数()0ky x x=<的图象如图所示,下列关于该函数图象的四个结论:①0k >;②当0x <时,y 随x 的增大而增大;③该函数图象关于直线y x =-对称;④若点()2,3-在该反比例函数图象上,则点()1,6-也在该函数的图象上.其中正确结论的有_________(填番号).15.在平面直角坐标系中,若直线2y x =-+与反比例函数ky x=的图象有2个公共点,则k 的取值范围是_________.16.如图,在平面直角坐标系中,函数y kx =与2y x=-的图像交于A 、B 两点,过点A 作y 轴的垂线,交函数1y x=的图像于点C ,连接BC ,则ABC ∆的面积为 _________.17.如果反比例函数y 2mx-=的图象在第一、三象限,那么m 的取值范围是____. 18.如图,一次函数1y kx b =+的图象与反比例函数24y x=的图象交于A (1,m ),B (4,n )两点.则不等式40kx b x+-≥的解集为______.19.如图,反比例函数(0)ky x x=>经过,A B 两点,过点A 作AC y ⊥轴于点C ,过点B 作BD y ⊥轴于点D ,过点B 作轴BE x ⊥于点E ,连接AD ,已知 =2,=2AC BE ,=16BEOD S 矩形,则 ACD S =_____.20.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y kx=(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴,若菱形ABCD 的面积为9.则k 的值为____.三、解答题21.如图,直线y kx b =+y kx b =+与反比例函数12y x=相交于A(2,)-m 、B(n,3).(1)连接OA 、OB ,求AOB 的面积; (2)根据(1)中的图象信息,请直接写出不等式12kx b x>+的解集. 22.小明根据学习函数的经验,对函数y =x+1x的图象与性质进行了探究.下面是小明的探究过程,请补充完整: (1)函数y =x+1x的自变量x 的取值范围是 . (2)如表列出了y 与x 的几组对应值,请写出m ,n 的值:m = ,n = . (3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象. (4)结合函数的图象,请完成: ①当y =52时,x = ; ②写出该函数的一条性质 ; ③若方程x+1x=t 有两个相等的实数根,则t 的值是 . x … ﹣3﹣2﹣112- 13-13121 2 3 4 …y …103-52- ﹣252-103- m52 2 52 n 174…23.如图,一次函数1522y x =-+的图象与反比例函数()0ky k x=>的图象交于,A B 两点,过点A 作x 轴的垂线,垂足为M ,AOM ∆面积为1.(1)求反比例函数的解析式.(2)求出A 、B 两点坐标,并直接写出不等式1522k x x <-+的解集. (3)在x 轴上找一点P ,并求出PA PB -取最大值时点P 的坐标. 24.如图,直线y=2x-6与反比例函数ky x=的图象交于点A (4,2),与x 轴交于点B . (1)求k 的值及点B 的坐标; (2)求△OAB 的面积.25.在平面直角坐标系xOy 中,函数()20=>y x x 的图象与直线11:(0)2l y x k k =+>交于点A ,与直线2:l x k =交于点B ,直线1l 与2l 交于点C .说明:直线x k =是指经过点(),0k 且平行于y 轴的直线,如直线2x =是指经过点()2,0且平行于y 轴的直线.(1)当点A 的横坐标为1时,求此时k 的值; (2)横、纵坐标都是整数的点叫做整点.记函数()20=>y x x的图象在点A 、B 之间的部分与线段AC ,线段BC 围成的区域(不含边界)为W . ①当3k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内只有2个整点,直接写出k 的取值范围.26.如图,已知一次函数1332y x =-与反比例函数2ky x =的图象相交于点A (4,n )和M(m ,﹣6),与x 轴相交于点B . (1)求m ,n 的值;(2)观察图象,当y 2≥﹣6且y 2≠0时,自变量x 的取值范围为 ,若y 1﹣y 2<0时自变量x 的取值范围为 ;(3)若P 点为x 轴上一点, Q 点为平面直角坐标系中的一点,以点A 、B 、P 、Q 为顶点的四边形为菱形,求Q 点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据菱形的性质可求出点A 坐标,将点A 的坐标代入到反比例函数解析式可求得k 值,即可确定函数的解析式,过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N ,如图,首先在Rt △CNB 中,根据勾股定理建立方程求出OB 的长,进而可求得点B 的坐标,然后利用待定系数法可求得直线BC 的解析式,再联立直线和双曲线的解析式求出交点F 坐标,然后根据三角形的面积公式求解可. 【详解】解:∵四边形OBCD 是菱形, ∴OA =AC ,∵C (8,4),∴A (4,2), 把点A (4,2)代入反比例函数()0ky x x=>,得到k =8,∴反比例函数的解析式为y =8x; 过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N ,如图, 设OB =x ,则BC =x ,BN =8﹣x ,在Rt △CNB 中,x 2﹣(8﹣x )2=42,解得:x =5, ∴点B 的坐标为(5,0),设直线BC 的函数表达式为y =ax +b ,把点B (5,0),C (8,4)代入得:∴5084a b a b +=⎧⎨+=⎩,解得:43203a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BC 的解析式为42033y x =-, 解方程组420338y x y x⎧=-⎪⎪⎨⎪=⎪⎩,得:18x y =-⎧⎨=-⎩或643x y =⎧⎪⎨=⎪⎩,∴点F 的坐标为F (6,43), 作FH ⊥x 轴于H ,连接OF ,∴S △OBF =12OB •FH =14105233⨯⨯=, 故选:C .【点睛】本题考查了菱形的性质、利用待定系数法求函数的解析式、两个函数的交点问题以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.2.B解析:B【分析】由于把双曲线平移,k值不变,利用“左加右减,上加下减”的规律即可求解.【详解】解:将函数6yx=的图象沿x轴向右平移1个单位长度,得到的图象所相应的函数表达式是61 yx=-,故选:B.【点睛】本题考查了反比例函数的图象,注意:平移后解析式有这样一个规律“左加右减,上加下减”.3.D解析:D【分析】直接利用等腰直角三角形的性质结合勾股定理以及反比例函数图象上点的坐标特点得出答案.【详解】解:如图所示:过点A作AD⊥OB于点D,∵∠ABO=45°,∠ADB=90°,∴∠DAB=45°,∴设AD=x,则BD=x,∵顶点A在反比例函数y=3x(x>0)的图象上,∴DO•AD=3,则DO=3x,故BO=x+ 3x,OB 2﹣OA 2=(OD+BO )2﹣(OD 2+AD 2)=(x+3x )2﹣x 2﹣ 29x =6.故答案为:D.【点睛】本题考查了反比例函数的性质以及勾股定理,正确应用勾股定理是解题的关键. 4.B解析:B【分析】如图(见解析),先根据点A 、B 的坐标可得3,45OA OB OBA ==∠=︒,从而可得45CBD ∠=︒,再根据等腰直角三角形的判定与性质可得BD CD =,设BD CD a ==,从而可得点C 的坐标为(3,)C a a +,然后利用反比例函数的解析式可求出a 的值,最后利用两点之间的距离公式即可得.【详解】如图,过点C 作CD x ⊥轴于点D ,()()0,3,3,0A B ,3OA OB ∴==,Rt AOB ∴是等腰直角三角形,45OBA ∠=︒,90ABC ∠=︒,18045CBD OBA ABC ∠=︒-∠-∠=∴︒,Rt BCD ∴是等腰直角三角形,BD CD ∴=,设BD CD a ==,则3OD OB BD a =+=+,(3,)C a a ∴+,将(3,)C a a +代入()40y x x =>得:43a a=+, 解得1a =或40a =-<(不符题意,舍去), (4,1)C ∴,由两点之间的距离公式得:AC ==故选:B .【点睛】本题考查了反比例函数的几何应用、等腰直角三角形的判定与性质、两点之间的距离公式等知识点,熟练掌握等腰直角三角形的判定与性质是解题关键.5.B解析:B【分析】根据平移和平行四边形的性质将点D 也用a 、b 表示,再根据反比例函数图象上的点的横纵坐标的乘积相等列式算出a 、b ,再由点坐标求出k 的值.【详解】解:∵()3,0A ,()0,4B ,∴A 可以看作由B 向右平移3个单位,向下平移4个单位得到的,根据平行四边形的性质,D 也可以看作由C 向右平移3个单位,向下平移4个单位得到的,∵(),C a b ,∴()3,4D a b +-,∵7.5a b +=,∴(),7.5C a a -,()3,3.5D a a +-,∵C 、D 都在反比例函数图象上,∴它们横纵坐标的乘积相等,即()()()7.53 3.5a a a a -=+-,解得 1.5a =, ∴()1.57.5 1.59k =⨯-=.故选:B .【点睛】本题考查反比例函数与几何图形的结合,解题的关键是根据题目条件,用同一个未知数设出反比例函数图象上的点,然后用反比例函数图象上点的性质列式求解.6.B解析:B【分析】用待定系数法分别求出两个函数表达式即可.【详解】解:设正比例函数为y =kx ,将(-3,4)代入,得4=-3k , 解得43k =-, ∴正比例函数为43y x =-, 设反比例函数为k y x=, 将(-3,4)代入,得43k =- 解得k =-12,∴反比例函数为12y x=-, 故选:B .【点睛】本题考查了用待定系数法求正比例函数表达式和反比例函数表达式,熟练掌握待定系数法是解决本题的关键.7.D解析:D【分析】先由反比例函数的图象得到k ,b 同号,然后分析各选项一次函数的图象即可.【详解】∵y=kb x的图象经过第一、三象限, ∴kb >0,∴k ,b 同号, 选项A 图象过二、四象限,则k <0,图象经过y 轴正半轴,则b >0,此时,k ,b 异号,故此选项不合题意;选项B 图象过二、四象限,则k <0,图象经过原点,则b=0,此时,k ,b 不同号,故此选项不合题意;选项C 图象过一、三象限,则k >0,图象经过y 轴负半轴,则b <0,此时,k ,b 异号,故此选项不合题意;选项D 图象过一、三象限,则k >0,图象经过y 轴正半轴,则b >0,此时,k ,b 同号,故此选项符合题意; 故选D .考点:反比例函数的图象;一次函数的图象.8.B解析:B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”.【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x ,A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合;B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.9.A解析:A【分析】连接BP ,证得OQ 是△ABP 的中位线,当P 、C 、B 三点共线时PB 长度最大,PB=2OQ=4,设 B 点的坐标为(x ,-x ),根据点(2,2)C ,可利用勾股定理求出B 点坐标,代入反比例函数关系式即可求出k 的值.【详解】解:连接BP ,∵直线y x =-与双曲线k y x =的图形均关于直线y=x 对称, ∴OA=OB ,∵点Q 是AP 的中点,点O 是AB 的中点∴OQ 是△ABP 的中位线,当OQ 的长度最大时,即PB 的长度最大,∵PB≤PC+BC ,当三点共线时PB 长度最大,∴当P 、C 、B 三点共线时PB=2OQ=4,∵PC=1,∴BC=3,设B 点的坐标为(x ,-x ),则3=,解得12x x ==故B 点坐标为22,⎛⎫- ⎪⎪⎝⎭, 代入k y x=中可得:12k =-, 故答案为:A .【点睛】本题考查三角形中位线的应用和正比例函数、反比例函数的性质,结合题意作出辅助线是解题的关键.10.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当0k <时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x =-的图象分布在一、三象限,B 选项正确,故选:B.【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 11.B解析:B【分析】作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|.【详解】解:作AE ⊥BC 于E ,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|k|,∴|k|=8,而k<0∴k=-8.故选:B.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.12.B解析:B【分析】首先根据系数判定函数的图象在二、四象限,再根据x1<0<x2,可比较出y1、y2的大小,进而得到答案.【详解】解:由反比例函数kyx(k<0),可知函数的图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限,y1>0,B(x2,y2)在第四象限,y2<0,∴y2<0<y1,故选:B.【点睛】此题主要考查了反比例函数图象上的点的坐标特征,熟练掌握是解题的关键.二、填空题13.15【分析】作A′H⊥y轴于H证明△AOB≌△BHA′(AAS)推出OA=BHOB =A′H求出点A′坐标再利用中点坐标公式求出点D坐标即可解决问题【详解】作A′H⊥y轴于H∵∠AOB=∠A′HB=∠解析:15【分析】作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.【详解】作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(−2,0),点B的坐标是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函数y=kx的图象经过点D,∴k=15.故答案为:15.【点睛】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化−旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.14.②③④【分析】观察反比例函数y=(x<0)的图象可得图象过第二象限可得k<0然后根据反比例函数的图象和性质即可进行判断【详解】解:①由题图可得:当时则该函数的应满足:则①错误②由题图象可知随的增大而解析:②③④.【分析】观察反比例函数y=kx(x<0)的图象可得,图象过第二象限,可得k<0,然后根据反比例函数的图象和性质即可进行判断.【详解】解:①由题图可得:当0x <时,0y >, 则该函数()0k y x x=<的k 应满足:0k <, 则①错误,②由题图象可知, y 随x 的增大而增大,(反比例函数具有单调性),则②正确,③由于该图象为()0k y x x=<的图象(注意x 的范围),在第二象限。
人教版初中数学反比例函数基础测试题含答案
人教版初中数学反比例函数基础测试题含答案一、选择题1.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23 BFOA=,∴OA=3OC,BF=2OC ∴若设F(m,n)则OA=3m,BF=2m ∵S△BEF=4∴BE=4 m则E (3m ,n-4m ) ∵E 在双曲线y=k x 上 ∴mn=3m (n-4m) ∴mn=6即k=6.故选A . 【点睛】 此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E 点坐标是解题关键.2.ABC ∆的面积为2,边BC 的长为x ,边BC 上的高为y ,则y 与x 的变化规律用图象表示大致是( )A .B .C .D .【答案】A【解析】【分析】根据三角形面积公式得出y 与x 的函数解析式,根据解析式作出图象进行判断即可.【详解】根据题意得122xy = ∴4y x=∵00x y >>,∴y 与x 的变化规律用图象表示大致是故答案为:A .【点睛】本题考查了反比例函数的图象问题,掌握反比例函数图象的性质是解题的关键.3.如图,点A 在双曲线4y x=上,点B 在双曲线(0)k y k x =≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.4.如图,点P 是反比例函数(0)k y k x=≠的图象上任意一点,过点P 作PM x ⊥轴,垂足为M . 连接OP . 若POM ∆的面积等于2. 5,则k 的值等于 ( )A .5-B .5C . 2.5-D .2. 5【答案】A【解析】【分析】 利用反比例函数k 的几何意义得到12|k|=2,然后根据反比例函数的性质和绝对值的意义确定k 的值.【详解】解:∵△POM 的面积等于2.5,∴12|k|=2.5, 而k <0,∴k=-5,故选:A .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.5.在同一平面直角坐标系中,反比例函数ybx=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即b<0.所以反比例函数ybx=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.6.已知点()11,A y -、()22,B y -都在双曲线32m y x +=上,且12y y >,则m 的取值范围是( )A .0m <B .0m >C .32m >-D .32m <- 【答案】D【解析】【分析】根据已知得3+2m <0,从而得出m 的取值范围.【详解】∵点()11,A y -、()22,B y -两点在双曲线32m y x+=上,且y 1>y 2, ∴3+2m <0, ∴32m <-, 故选:D .【点睛】 本题考查了反比例函数图象上点的坐标特征,当k >0时,该函数图象位于第一、三象限,当k <0时,函数图象位于第二、四象限.7.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个 D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】 ∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W内没有整点,∴4233b-≤≤-时图形W增大过程中,图形内没有整点,故选:D.【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.8.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180lπ⋅⋅,所以l=43r(r>0),即l与r为正比例函数关系,其图象在第一象限.故选A.【点睛】本题考查圆锥的计算;函数的图象.9.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx=(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.32【答案】D【解析】【分析】【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC 是菱形,∴点B 的坐标为(8,4).∵点B 在反比例函数(x>0)的图象上, ∴. 故选D.10.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.11.已知点11(,)x y ,22(,)x y 均在双曲线1y x =-上,下列说法中错误的是( ) A .若12x x =,则12y y =B .若12x x =-,则12y y =-C .若120x x <<,则12y y <D .若120x x <<,则12y y > 【答案】D【解析】【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x =-,用y 1、y 2表示出x 1,x 2,据此进行判断.【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x=-上,∴111y x =-,221y x =-. A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确; B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确; D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误;故选:D .【点睛】 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.如图,过点()1,2C 分别作x 轴、y 轴的平行线,交直线5y x =-+于A 、B 两点,若反比例函数(0)k y x x=>的图象与ABC V 有公共点,则k 的取值范围是( )A .2524k ≤≤B .26k ≤≤C .24k ≤≤D .46k ≤≤【答案】A【解析】【分析】 由点C 的坐标结合直线AB 的解析式可得出点A 、B 的坐标,求出反比例函数图象过点C 时的k 值,将直线AB 的解析式代入反比例函数解析式中,令其根的判别式△≥0可求出k 的取值范围,取其最大值,找出此时交点的横坐标,进而可得出此点在线段AB 上,综上即可得出结论.【详解】解:令y =−x +5中x =1,则y =4,∴B (1,4);令y =−x +5中y =2,则x =3, ∴A (3,2), 当反比例函数k y x=(x >0)的图象过点C 时,有2=1k ,解得:k =2,将y =−x +5代入ky x=中,整理得:x 2−5x +k =0, ∵△=(−5)2−4k≥0,∴k ≤254,当k =254时,解得:x =52,∵1<52<3, ∴若反比例函数k y x=(x >0)的图象与△ABC 有公共点,则k 的取值范围是2≤k≤254,故选:A . 【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数图象过点A 、C 时的k 值以及直线与双曲线有一个交点时k 的值.13.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x=>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【分析】过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO=52,S△AOC=12,根据相似三角形的性质得到=5OBOA=,根据三角函数的定义即可得到结论.【详解】解:过A作AC⊥x轴,过B作BD⊥x轴于D,则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数()1y xx=>与()5y xx=-<的图象上,∴S△BDO=52,S△AOC=12,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴251522BODOACS OBS OA⎛⎫==÷=⎪⎝⎭△△,∴5OBOA=,∴tan∠BAO=5OBOA=.故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.14.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数1(0)ky xx=>和2(0)ky xx=>的图象于点P和Q,连接OP和OQ.则下列结论正确的是A .∠POQ 不可能等于90°B .12PM QM k k = C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是()1212k k + 【答案】D 【解析】 【分析】 【详解】解:根据反比例函数的性质逐一作出判断:A .∵当PM=MO=MQ 时,∠POQ=90°,故此选项错误;B .根据反比例函数的性质,由图形可得:1k >0,2k <0,而PM ,QM 为线段一定为正值,故12PM QM k k =,故此选项错误; C .根据1k ,2k 的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误;D .∵|1k |=PM•MO ,|2k |=MQ•MO , ∴△POQ 的面积=12MO•PQ=12MO (PM+MQ )=12MO•PM+12MO•MQ=()1212k k +. 故此选项正确. 故选D .15.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=kx(k >0)的图象上,则y 1、y 2、y 3的大小关系是( ) A . y 1>y 2>y 3 B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3【答案】B 【解析】 【分析】 反比例函数y=kx(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断. 【详解】 ∵反比例函数y=kx(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上, ∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上, ∴y 3>0, ∴y 3>y 1>y 2, 故选:B . 【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.16.反比例函数ky x=的图象在第二、第四象限,点()()()1232,,4,,5,A y B y C y -是图象上的三点,则123,,y y y 的大小关系是( )A .123y y y >>B .132y y y >>C .312y y y >>D .231y y y >>【答案】B 【解析】 【分析】根据反比例函数图像在第二、四象限,反比例函数图像在第二、四象限,y 随x 的增大而增大,再根据三点横坐标的特点即可得出结论. 【详解】解:∵反比例函数ky x=图象在第二、四象限, ∴反比例函数图象在每个象限内y 随x 的增大而增大, ∵-2<4<5,∴点B 、C 在第四象限,点A 在第二象限, ∴23y y <<0,10y > , ∴132y y y >>. 故选B. 【点睛】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答本题的关键.17.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSS=VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13BCOAODSS=VV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S △AOD =2是解题关键.18.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大 C .在第三象限,y 随x 的增大而减小 D .在第四象限,y 随x 的增大而减小【答案】B 【解析】 【分析】 反比例函数2y x=-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B . 【点睛】本题主要考查的是反比例函数的性质,对于反比例函数()0ky k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.19.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A .22B .12C .14D .3 【答案】A 【解析】 【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA =【详解】∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°, ∠CAO =∠BOD , ∴△ACO ∽△BDO , ∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴2OB OA =, 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解20.在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,则有()A.m>﹣13B.m<﹣13C.m≥﹣13D.m≤﹣13【答案】B【解析】【分析】先根据y1<0<y2,有x1>x2,判断出反比例函数的比例系数的正负,求出m的取值范围即可.【详解】∵在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,∴反比例函数的图象在二、四象限,∴9m+3<0,解得m<﹣13.故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握反比例函数的性质。
人教版九年级数学下册数学反比例函数综合检测题(含答案)
人教版九年级数学下册数学反比例函数综合检测题(含答案)一﹨选择题〖每小题3分,共30分〗 1﹨反比例函数y =xn 5图象经过点〖2,3〗,则n 的值是〖 〗. A ﹨-2 B ﹨-1 C ﹨0 D ﹨1 2﹨若反比例函数y =xk〖k ≠0〗的图象经过点〖-1,2〗,则这个函数的图象一定经过点〖 〗.A ﹨〖2,-1〗B ﹨〖-21,2〗 C ﹨〖-2,-1〗 D ﹨〖21,2〗 3﹨(08双柏县)已知甲﹨乙两地相距s 〖km 〗,汽车从甲地匀速行驶到乙地,则汽车行驶的时间t 〖h 〗与行驶速度v 〖km/h 〗的函数关系图象大致是〖 〗4﹨若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是〖 〗.A ﹨成正比例B ﹨成反比例C ﹨不成正比例也不成反比例D ﹨无法确定 5﹨一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足〖 〗. A ﹨当x >0时,y >0 B ﹨在每个象限内,y 随x 的增大而减小 C ﹨图象分布在第一﹨三象限 D ﹨图象分布在第二﹨四象限6﹨如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积〖 〗. A ﹨逐渐增大 B ﹨逐渐减小 C ﹨保持不变 D ﹨无法确定7﹨在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该气体的质量m为〖 〗.A ﹨1.4kgB ﹨5kgC ﹨6.4kgD ﹨7kg8﹨若A 〖-3,y 1〗,B 〖-2,y 2〗,C 〖-1,y 3〗三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是〖 〗.A ﹨y 1>y 2>y 3B ﹨y 1<y 2<y 3C ﹨y 1=y 2=y 3D ﹨y 1<y 3<y 2Q pxyot /h Ot /h O t /hO t /h v /(km/h) O A . B . C . .9﹨已知反比例函数y =xm21-的图象上有A 〖x 1,y 1〗﹨B 〖x 2,y 2〗两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是〖 〗. A ﹨m <0 B ﹨m >0 C ﹨m <21 D ﹨m >21 10﹨如图,一次函数与反比例函数的图象相交于A ﹨B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是〖 〗. A ﹨x <-1 B ﹨x >2C ﹨-1<x <0或x >2D ﹨x <-1或0<x <2 二﹨填空题〖每小题3分,共30分〗11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12﹨已知反比例函数xky =的图象分布在第二﹨四象限,则在一次函数b kx y +=中,y 随x 的增大而 〖填“增大”或“减小”或“不变”〗.13﹨若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .14﹨反比例函数y =〖m +2〗x m2-10的图象分布在第二﹨四象限内,则m 的值为 .15﹨有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 . 16﹨如图,点M 是反比例函数y =xa〖a ≠0〗的图象上一点,过M 点作x 轴﹨y 轴的 平行线,若S 阴影=5,则此反比例函数解析式为 . 17﹨使函数y =〖2m 2-7m -9〗x m2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程〖不等式组〗为 .18﹨过双曲线y =xk〖k ≠0〗上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______. 19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A 〖x 1,y 1〗, B 〖x 2,y 2〗两点,则2x 1y 2-7x 2y 1=___________.20﹨如图,长方形AOCB 的两边OC ﹨OA 分别位于x 轴﹨y 轴上,点B 的坐标为 B 〖-320,5〗,D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落 在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三﹨解答题〖共60分〗21﹨〖8分〗如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3, 到y 轴的距离为2,求这个反比例函数的解析式.22﹨〖9分〗请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式, 并画出函数图象.举例: 函数表达式:23﹨〖10分〗如图,已知A 〖x 1,y 1〗,B 〖x 2,y 2〗是双曲线y =xk在第一象限内的分支上的两点,连结OA ﹨OB . 〖1〗试说明y 1<OA <y 1+1y k ; 〖2〗过B 作BC ⊥x 轴于C ,当m =4时,求△BOC 的面积.24﹨〖10分〗如图,已知反比例函数y =-x8与一次函数y =kx +b 的图象交于A ﹨B 两点, 且点A 的横坐标和点B 的纵坐标都是-2.求:〖1〗一次函数的解析式; 〖2〗△AOB 的面积.25﹨〖11分〗如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M ﹨N 两点. 〖1〗求反比例函数与一次函数的解析式;〖2〗根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26﹨〖12分〗如图, 已知反比例函数y =xk的图象与一次函数y =a x +b 的图象交于 M 〖2,m 〗和N 〖-1,-4〗两点. 〖1〗求这两个函数的解析式; 〖2〗求△MON 的面积;〖3〗请判断点P 〖4,1〗是否在这个反比例函数的图象上,并说明理由.参考答案:一﹨选择题1﹨D ; 2﹨A ; 3﹨C ; 4﹨B ; 5﹨D ; 6﹨C 7﹨D ; 8﹨B ; 9﹨D ; 10﹨D . 二﹨填空题11﹨y =x 1000; 12﹨减小; 13﹨5 ; 14﹨-3 ;15﹨y =xs23 ; 16﹨y =-x 5; 17﹨⎩⎨⎧---=+-0972119922>m m m m ; 18﹨|k|; 19﹨ 20; 20﹨y =-x 12. 三﹨解答题 21﹨y =-x6. 22﹨举例:要编织一块面积为2米2的矩形地毯,地毯的长x 〖米〗与宽y 〖米〗间函数关系式为y =x2〖x >0〗. x (2)1 1 232 …y…4234 1…〖只要是生活中符合反比例函数关系的实例均可〗画函数图象如右图所示.23﹨〖1〗过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A 〖x 1,y 1〗在双曲线y =xk上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k ;〖2〗△BOC 的面积为2.24﹨〖1〗由已知易得A 〖-2,4〗,B 〖4,-2〗,代入y =kx +b 中,求得y =-x +2; 〖2〗当y =0时,x =2,则y =-x +2与x 轴的交点M 〖2,0〗,即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25﹨〖1〗将N 〖-1,-4〗代入y =xk ,得k =4.∴反比例函数的解析式为y =x 4.将M〖2,m 〗代入y =x 4,得m =2.将M 〖2,2〗,N 〖-1,-4〗代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2. 〖2〗由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值. 26﹨解〖1〗由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M 〖2,m 〗点,∴m =24=2,∵y =a x +b 图象经过M ﹨N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.〖2〗如图,对于y =2x -2,y =0时,x =1,∴A 〖1,0〗,OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. 〖3〗将点P 〖4,1〗的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。
新人教版反比例函数单元测试题及答案
新人教版反比例函数单元测试题及答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--新人教版反比例函数单元测试题一、选择题(每小题3分,共30分)1、反比例函数y =xn 5图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1)B 、(-21,2)C 、(-2,-1)D 、(21,2)3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该气体的质量m 为( ).A 、B 、5kgC 、D 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2Qp xy o t /h O t /h O t /h O t /h v /(km/O A . B . C . .9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21D 、m >2110、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 .12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .14、反比例函数y =(m +2)x m 2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y与x 的函数关系是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)xm2-9m +19是反比例函数,且图象在每个象限内y随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =x k在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k;(2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式;(2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题11、y =x1000; 12、减小; 13、5 ; 14、-3 ;15、y =x s 23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x12.三、解答题21、y =-x6.22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y(米)之间的函数关系式为y =x2(x >0).23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =x k 上,故x 1=1y k,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2;(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =xk,得k =4.∴反比例函数的解析式为y=x 4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2. (2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S△MOA +S △NOA=21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《反比例函数》综合测试题
(时间:90分钟 满分:100分)
□ 山东 赵连杰
一、精挑细选,一锤定音(每小题3分,共30分) 1.下列函数:①y=3x ;②y=
3x
;③y=x -1
;④y=1x +1,是反比例函数的个数有( ).
A .0个
B .1个
C .2个
D .3个 2.下列各点在函数y=-
2
x
图象上的是( ). A .(-
43,-32) B .(-43,32) C .(34,-43) D .(34,8
3
) 3.函数y=1
x
-
(x>0)的图象大致是( ) .
4.反比例函数x
k y 1
-=
的图象在每个象限内,y 的值随x 的增大而增大,则k 的值可为( ). A .0 B .1 C .2 D .3 5.若a <0,则反比例函数y =-
x
a
的图象在( ). A .第一、第三象限 B .第二、第四象限 C .第一、第二象限 D .第三、第四象限 6.如图所示,某个反比例函数的图象经过点P,则它的解析式为( ) .
A.y=
1x (x>0) B.y=-1x (x>0) C.y=1x (x<0) D.y=-1
x
(x<0) 7.受甲型H1N1流感的影响,板蓝根等预防感冒药一度畅销,某药店新购进一批板蓝根,平均每天卖出的袋数y (袋)与卖完所用的时间x (天)的函数关系图象如图所示,为周转资金,药店决定这批板蓝根必须在10天内卖完,那么每天卖出的药量应( ).
1
-1
y O
x
P
A .不多于60袋
B .不少于60袋
C .不多于30袋
D .不少于30袋 8.函数y=kx+b (k ≠0)与y=
k
x
(k ≠0)在同一坐标系中的图象可能是( ).
9.在反比例函数x
m
2y -=
的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,有12y y <,则m 的取值范围是( ). A .0m < B .0m > C .12m < D .12
m > ★10.在y=
1
x
的图象中,阴影部分面积为1的有( ).
A .1个
B .2个
C .3个
D .4个 备选题
1.反比例函数k
y x
=的图象经过点(-6,7),那么k 的值是( ). A .67- B .7
6
- C .-42 D .42
答案:C .
2.如图所示,A ,C 是函数y=
1
x
的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D ,记Rt △AOB 的面积为S 1,Rt △COD 的面积为S 2,则( ) A .S 1>S 2 B .S 1<S 2
C .S 1=S 2
D .S 1和S 2的大小关系不能确定
答案:C .
二、慎思妙解,画龙点睛(每小题3分,共18分)
11.如果反比例函数图象过点A (3,4),那么这个反比例函数的图象还经过点_______. 12.2010年黄桃罐头新包装上市,其包装盒为一个容积为2000立方厘米的底面为正方形的长方体桶,若为了摆放稳定,要求底面边长不能小于10厘米,则该罐头盒最高为______. 13.点⎪⎭
⎫ ⎝⎛
+211m A ,在反比例函数1
y x
=
的图象上,则m = . 14.若直线3y x m =+经过第二、第三、第四象限,则双曲线x
m
y =
必在第________象限. 15.如图所示,△OPQ 是面积为2的等边三角形,若反比例函数的图象过点P ,则它的解析式是_________.
y Q
O x
P
★16.已知双曲线y=
k
x
经过点(-2009,2010),如果A (a 1,b 1),B (a 2,b 1)•两点在该双曲线上,且a 1<a 2<0,那么b 1______b 2. 备选题 1.已知函数(0)k y k x
=≠,当1
2x =-时,6y =,则当x=3时,y= .
答案:-1.
2.已知y 是x 的反比例函数,当x=9时,y=-1,那么当y=3时,x=_______. 答案:-3. 3.反比例函数y=
x
1
m 2-(m 为常数)的图象如图所示,则m 的取值范围是_______.
答案:m >
2
1. 三、过关斩将,胜利在望(共52分) 17.(6分)已知函数7
m x )9m 2(y --=.当m 为何值时,此函数为反比例函数,且它的图
象在第一、第三象限?
18.(6分)瑞瑞一家星期天开车去外公家,以80千米/时的平均速度用6小时到达目的地. (1)当按原路返回时,求汽车平均速度v (千米/小时)与时间t (小时)之间的函数关系式; (2)如果他们返回时,用了8小时,求返回时的速度.
19.(8分)关于x 的一次函数2y mx n =-与反比例函数2m
y x
=的图象的一个交点A (1,-4),求一次函数和反比例函数的解析式.
20.(10分) 已知212y y y +=,1y 与2-x 成正比例,2y 与x 5成反比例,且当2=x 时
109=
y ,当1=x 时5
1
=y ,求y 与x 之间的函数关系式.
21.(10分)它的直径只有70纳米,1000个重叠在一起,才能被人看到;它没有双腿,但一个喷嚏就可以使它以约每小时飞行120000米的速度传播,它令世界感到恐慌,它就是2009年新流行的甲型H1N1流感病毒.为预防甲型H1N1流感,我校制定了详细的预案,其中打算在卫生室内修建一个30m 2的矩形疑似病人隔离房ABCD .隔离房的长为x 米,宽为y 米.
(1)写出y 与x 的函数关系式;
(2)根据摆放病床的需要,隔离房的宽不能少于5米,则隔离房的长最长为多少米?
★22.(12分) 如图所示,是一个反比例函数图象的一部分,点A (2,12)、B (8,3)是它的两个端点.
(1)求此函数的解析式,并写出自变量x 的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例.
备选题
1.已知反比例函数k
y x
=
(0k ≠)的图象经过点(-2,5),试求该函数的关系式. 解:把x=-2,y=5代入k y x =中,得5=2
-k ,解得k=-10,所以函数关系式为y=-x 10
.
2.如图所示,已知一次函数1y x m =+(m 为常数)的图象与反比例函数 2k
y x
=(k 为常数,
0k ≠)的图象相交于点 A (1,3).
(1)求这两个函数的解析式;
(2)若B 点的坐标为(―3,―1),观察图象,写出使函数值12y y ≥的自变量x 的取值范围.
解:(1)由题意,得31m =+,
解得2m =,所以一次函数的解析式为12y x =+. 由题意,得31
k
=
, 解得3k =,所以反比例函数的解析式为23y x
=
; (2)由图象可知,当30x -<≤或1x ≥时, 函数值12y y ≥.
(标★题为拔高题)(参考答案见下期)
第17章综合测试题一参考答案
一、精挑细选,一锤定音 1.C . 2.B . 3.D. 4.A . 5.A . 6.D . 7.B . 8.A . 9.A . 10.C .
二、慎思妙解,画龙点睛 11.答案不唯一,如(2,6). 12.20厘米.
13.1.
14.第二、第四. 15.y=
x
2. 16.<.
三、过关斩将,胜利在望 17.解:根据题意,得
⎩
⎨
⎧--=-09m 21
7m >, 解得m=6
所以当m=6时,此函数为反比例函数,且它的图象在第一、第三象限. 18.解:⑴瑞瑞家到外公家的距离是80×6=480(千米),
∴汽车平均速度v (千米/小时)与时间t (小时)之间的函数关系式为:480
v t
=
; ⑵当t=8时,8
480v
=
=60(千米/小时),所以返回时的速度为60千米/小时.
19.解:把A (1,-4)代入
2m
y x
=
,得1m 24
=
-,解得m=-2,所以反比例函数的解析式为x
4
y -=;因为点A 在一次函数图象上,且
m=-2,所以n 2124-⨯-=-,解得n=1,所以一次函数的解析式为
2x 2y --=.
20.解:设
)2(11-=x k y ,x
k y 52
2=
,则 x
5k )2x (k 2y 2
1+
-=
∵当2=x
时,109=
y ;当1=x 时,5
1=y , 代入,得⎪⎪⎩
⎪⎪⎨⎧
=⨯+-=⨯+-5115k 21k 210
925k 22k 22121)()(.
解得:⎪⎩
⎪⎨⎧==549
12k k
∴y 与x 之间的函数关系式为
x
x y 59
51658+-=
.
21.解:(1)根据题意,得y=x
30; (2)把y=5代入y=x 30中,得5=x
30
,解得x=6,根据反比例函数的性质可知隔离房的长最长为6米.
22.解:设解析式为k y x =,因为A (2,12)在图象上,所以2k 12=,即k=12×2=24,所以解析式为y=
x
24
,
其中2≤x ≤8; (2)答案不唯一.
KCDB 试题质量审读细则(作者部分)。