北师大版七下数学几何部分期末练习
北师大版七年级下册数学期末考试试题及答案
北师大版七年级下册数学期末考试试卷一、单选题1.我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )A .B .C .D .2.下列计算中正确的是( ) A .235a b a +=B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-3.如图,直线a ,b 被直线c 所截,a∥b ,若∥2=45°,则∥1等于( )A .125°B .130°C .135°D .145°4.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cmD .11cm 、4cm 、6cm5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间t (分钟)之间关系的大致图象是( )A .B .C .D .6.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.在下列运算中,正确的是( )A .222()x y x y -=-B .2(2)(3)6a a a +-=-C .222()2a b a ab b +=++D .22(2)(2)2x y x y x y -+=-8.如图,下列条件中能判定//AB CD 的是( )A .35∠=∠B .24∠∠=C .15180∠+∠=︒D .34∠=∠ 9.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )A .两点之间线段最短B .矩形的对称性C .矩形的四个角都是直角D .三角形的稳定性10.如图,∥CAB =∥DBA ,再添加一个条件,不一定能判定∥ABC∥∥BAD 的是( )A .AC =BDB .∥1=∥2C .∥C =∥D D .AD =BC二、填空题11.一种花粉颗粒的直径约为0.0000058米,0.0000058用科学计数法表示为________. 12.计算:22(3)ab =_________.13.如图,DA∥CE 于点A ,CD∥AB ,∥1=30°,则∥D=_____.14.一个不透明的布袋中装有3个红球,5个黄球,2个白球,每个球除颜色外都相同,任意摸出一球,摸到黄球的概率为______.15.如果三角形底边上的高是6,底边长为x ,那么三角形的面积y 可以表示为________________;16.如图,四边形ABDC 的对称轴是AD 所在的直线,AC=5,DB=7,则四边形ABDC 的周长为_______17.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∥ABC=120°,∥BCD=80°,则∥CDE=__________度.三、解答题18.计算:022(3)2(1)π---+-;19.如图,已知∥1=∥2,∥D =60˚,求∥B 的度数.20.如图,已知线段AC ,BD 相交于点E ,A D ∠=∠,BE CE =,求证ABE DCE ∆≅∆.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,∥ABC 的顶点均在格点上,直线a 为对称轴,点A ,点C 在直线a 上. (1)作∥ABC 关于直线a 的轴对称图形∥ADC ; (2)若∥BAC =35°,则∥BDA = ; (3)∥ABD 的面积等于 .22.先化简,再求值:2(4)(2)---x x y x y ,其中x =﹣1,y =1.23.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、()()22a b a b a b -=+- B 、2222a ab b a b C 、()2a ab a a b +=+(2)若22164x y x y -=+=,,求x y -的值;(3)计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.24.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)表中的a=________;(2)“摸到白球”的概率的估计值是___________(精确到0.1); (3)试估算口袋中黑、白两种颜色的球各有多少个?25.如图所示,在一个边长为12cm 的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果小正方形的边长为xcm ,图中阴影部分的面积为ycm 2,请写出y 与x 的关系式; (3)当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积是怎样变化的?26.在∥ABC中,AB=AC,D是BC边的中点,E、F分别是AD、AC边上的点.(1)如图∥,连接BE、EF,若∥ABE=∥EFC,求证:BE=EF;(2)如图∥,若B、E、F在一条直线上,且∥ABE=∥BAC=45°,探究BD与AE的数量之间有何等量关系,并证明你的结论;(3)如图∥,若AB=13,BC=10,AD=12,连接EC、EF,直接写出EC+EF的最小值.参考答案1.B【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.D【解析】【分析】根据幂的运算法则即可依次判断.【详解】A.23+不能计算,故错误;a bB.34÷=,故错误;a a aC.246⋅=,故错误;a a aD.()326-=-,正确a a故选D.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.3.C【解析】【分析】根据两直线平行,同位角相等可得∥3=∥2,再根据邻补角的定义解答.【详解】如图,∥a∥b,∥2=45°,∥∥3=∥2=45°,∥∥1=180°−∥3=135°,故选:C.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.4.C【解析】【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∥2+2=4,∥ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∥2+3<6,∥2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∥3+6>8,∥8cm、6cm、3cm能组成三角形,故符合题意;D. ∥4+6<11,∥11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5.B【解析】【详解】∥y轴表示当天爷爷离家的距离,X轴表示时间又∥爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∥刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∥选项B中的图形满足条件.故选B.6.A【解析】【详解】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B 错误; 概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误; 故选A . 考点:随机事件. 7.C 【解析】 【分析】根据整式的运算法则即可判断. 【详解】A.222()2x y x xy y -=-+,故错误;B.2(2)(3)6a a a a +-=--,故错误;C.222()2a b a ab b +=++,正确D.22(2)(2)4x y x y x y -+=-,故错误; 故选C . 【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则. 8.D 【解析】 【分析】根据平行线的判定定理进行判断即可. 【详解】解:A 、根据同旁内角互补,两直线平行的判定定理可知35∠=∠不能判定//AB CD ; B 、2∠ 和4∠为对顶角,无法判定//AB CD ;C 、根据同位角相等,两直线平行的判定定理可知15180∠+∠=︒不能判定//AB CD ; D 、根据内错角相等,两直线平行的判定定理可知34∠=∠可得//AB CD . 故选:D . 【点睛】本题主要考查了平行线的判定定理,包括:∥同位角相等,两直线平行;∥内错角相等,两直线平行;∥同旁内角互补,两直线平行.9.D【解析】【分析】用木条EF固定矩形门框ABCD,即是组成∥AEF,故可用三角形的稳定性解释.【详解】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的∥EAF,故这种做法根据的是三角形的稳定性.故选:D.【点睛】本题考查三角形稳定性的实际应用,熟悉相关性质是解题的关键.10.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.∥AC=BD,∥CAB=∥DBA,AB=AB,∥根据SAS能推出∥ABC∥∥BAD,故本选项错误;B.∥∥CAB=∥DBA,AB=AB,∥1=∥2,∥根据ASA能推出∥ABC∥∥BAD,故本选项错误;C.∥∥C=∥D,∥CAB=∥DBA,AB=AB,∥根据AAS能推出∥ABC∥∥BAD,故本选项错误;D.根据AD=BC和已知不能推出∥ABC∥∥BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.5.8 ×10-6【解析】【详解】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=5.8,10的指数为﹣6.故答案为:5.8×10-6.考点:科学记数法.12.249a b【解析】【分析】根据积的乘方:()n n n ab a b =和幂的乘方()nm mn a a =计算即可. 【详解】解:()22222422933ab a b a b ⨯==故答案为:249a b .【点睛】此题考查的是幂的运算性质,掌握积的乘方和幂的乘方是解决此题的关键.13.60°【解析】【分析】先根据垂直的定义,得出∥BAD=60°,再根据平行线的性质,即可得出∥D 的度数.【详解】∥DA∥CE ,∥∥DAE=90°,∥∥1=30°,∥∥BAD=60°,又∥AB∥CD ,∥∥D=∥BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.14.1 2【解析】【分析】让黄球的个数除以球的总数即为摸到红球的概率.【详解】3个红球,5个黄球,2个白球,一共是10个搅拌均匀后从中任意摸出一个球,则摸出的球是黄球的概率是51 102=.故答案为:12.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.15.3y x=【解析】【分析】直接利用三角形面积求法得出答案即可.【详解】∥三角形的底边长为xcm,底边上的高为6cm,∥三角形的面积y(cm2)可以表示为:y=3x.故答案为y=3x.【点睛】此题主要考查了函数关系式以及三角形面积求法,正确记忆三角形面积公式是解题关键.16.24【解析】【详解】∥四边形ABDC的对称轴是AD所在的直线,AC=5,DB=7,∥AB=AC=5,CD=BD=7,∥四边形ABDC的周长=AC+CD+BD+AB=5+7+7+5=24.故答案为24.17.20【解析】由已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,得AB∥DE ,过点C 作CF∥AB ,则CF∥DE ,由平行线的性质可得,∥BCF+∥ABC=180°,所以能求出∥BCF ,继而求出∥DCF ,又由CF∥DE ,所以∥CDE=∥DCF .【详解】解:过点C 作CF∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∥AB∥DE ,∥CF∥DE ,∥∥BCF+∥ABC=180°,∥∥BCF=60°,∥∥DCF=20°,∥∥CDE=∥DCF=20°.故答案为:20.【点睛】此题考查的知识点是平行线的性质,关键是过C 点先作AB 的平行线,由平行线的性质求解.18.314【解析】【分析】根据实数的性质进行化简即可求解.【详解】解:022(3)2(1)π-----1114=-+ 314=.此题主要考查实数的运算,解题的关键是熟知负指数幂的运算法则.19.120B ∠=︒;【解析】【分析】首先证出∥1=∥3,从而得出AB∥CD ,然后推出∥D+∥B=180°,代入求出即可.【详解】解:如图:∥∥1=∥2,∥2=∥3,∥∥1=∥3,∥AB∥CD ,∥∥D+∥B=180°,∥∥D=60°,∥∥B=120°.【点睛】本题考查平行线的判定与性质,难度不大,掌握平行线的判定定理和性质定理是解题关键.20.见解析【解析】【分析】根据AAS 即可证明ABE DCE ∆≅∆.【详解】证明:在∥ABE 和∥DCE 中A D AEB DEC BE CE ∠∠⎧⎪∠=∠⎨⎪=⎩=∥∥ABE∥∥DCE(AAS).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.21.(1)如图见解析;(2)∥BDA=55°;(3)∥ABD的面积等于28.【解析】【分析】(1)根据网格结构找出点B关于直线a的对称点D的位置,然后与A、C顺次连接即可;(2)根据轴对称的性质解答即可;(3)根据三角形的面积公式列式计算即可得解.【详解】解:(1)∥ADC如图所示;(2)∥BAD=2∥BAC=2×35°=70°,∥AB=AD,∥∥BDA=1(180°-∥BAD)=55°;2故答案为55°;×8×7=28,(3)∥ABD的面积=12故答案为28.【点睛】本题考查了利用轴对称变换作图以及三角形面积的计算,熟练掌握网格结构准确找出对应点的位置.22.﹣4y 2,-4【解析】【分析】根据单项式乘多项式和完全平方公式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:x (x ﹣4y )﹣(x ﹣2y )2=x 2﹣4xy ﹣x 2+4xy ﹣4y 2=﹣4y 2,当y =1时,原式=﹣4×12=﹣4.【点睛】本题考查单项式乘多项式和完全平方公式的计算,掌握计算法则和公式结构正确计算是本题的解题关键.23.(1)A ;(2)4;(3)20214040 【解析】【分析】(1)观察图1与图2,根据图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-,得到验证平方差公式;(2)已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可; (3)先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)根据图形得:图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-, ∴上述操作能验证的等式是22()()a b a b a b -=+-,故答案为: A ;(2)22()()16x y x y x y -=+-=,4x y +=,4x y ∴-=;(3)22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111(1)(1)(1)(1)(1)(1)223320202020=-+-+⋯-+20213243201920212233402020=⨯⨯⨯⨯⨯⋯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】此题考查了平方差公式的几何背景以及因式分解法的运用,熟练掌握平方差公式的结构特征是解本题的关键,注意此类题目每一步都为后续解题提供了解题条件或方法.24.(1)0.58;(2)0.6;(3)白球的个数约为20×0.6=12个,黑球有20-12=8个【解析】【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率和球的总数求得两种球的数量即可.(1)a=290÷500=0.58,故答案为:0.58;(2)由表可知,当n 很大时,摸到白球的频率将会接近0.6,所以“摸到白球”的概率的估计值是0.6;故答案为:0.6;(3)因为当n 很大时,摸到白球的频率将会接近0.6;所以白球的个数约为20×0.6=12个,黑球有20-12=8个.【点睛】本题主要考查了如何利用频率估计概率,在解题时要注意频率和概率之间的关系,属于中考常考题型.25.(1)小正方形的边长是自变量,阴影部分的面积为因变量;(2)21444y x =-;(3)阴影部分的面积由140cm 2变到44cm 2【解析】【分析】(1)根据当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,则小正方形的边长是自变量,阴影部分的面积为因变量;(2)根据阴影部分的面积=大正方形的面积-4个小正方形的面积,即可解答;(3)根据当小正方形的边长由1cm 变化到5cm 时,x 增大,x 2也随之增大,-4x 2则随着x 的增大而减小,所以y 随着x 的增大而减小.(1)∥当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,∥小正方形的边长是自变量,阴影部分的面积为因变量;(2)由题意可得:2221241444y x x =-=-;(3)由(2)知:21444y x =-,当x=1cm 时,14441140y -⨯==(cm 2).当x=5cm 时,21444544y =-⨯=(cm 2).∥当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积由140cm 2变到44cm 2【点睛】本题考查了函数关系式,解决本题的关键是列出函数关系式.26.(1)证明见解析;(2)2AE BD =,证明见解析;(3)12013【解析】【分析】(1)连接CE ,根据等腰三角形的性质可得BE CE =、A ABC CB =∠∠,经过倒角及角的和差运算可得∥ABE =∥ACE ,利用等边对等角即可得证;(2)根据已知易得ABF 和CEF △都是等腰直角三角形,通过证明CBF EAF ≌即可得出结论;(3)由(1)可得EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,利用等面积法即可求解.【详解】解:(1)连接CE ,,∥AB =AC ,D 是BC 边的中点,∥AD 为线段BC 的垂直平分线,A ABC CB =∠∠,∥BE CE =,∥EBC ECB ∠=∠,∥ABC EBC ACB ECB ∠-∠=∠-∠,即∥ABE =∥ACE ,∥∥ABE =∥EFC ,∥∥ACE =∥EFC ,∥EF CE =,∥BE EF =;(2)连接CE ,由(1)可得∥ABE =∥ACE , ∥∥ABE =∥BAC =45°, ∥ABF 和CEF △都是等腰直角三角形, ∥AF BF =,CF EF =, ∥CBF EAF ≌, ∥BC AE =,∥2AE BD =;(3)由(1)可知BE CE =, ∥EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,1122ABC S BC AD AC BP =⋅=⋅, 解得12013BP =,∥EC+EF 的最小值为12013.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、线段最值等内容,掌握等腰三角形的性质是解题的关键.21。
【北师大版】七年级下册数学《期末考试题》(含答案解析)
2019-2020学年度第二学期期末测试七年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题:1.计算-12的结果为( )A. 2B. 12C. -2D. 1-22.2019年4月28日,北京世界园艺博览会正式开幕,在此之前,我国已举办过七次不同类别的世界园艺博览会.下面是北京、西安、锦州、沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A. B. C. D. 3.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面( )A. 一定是正面B. 是正面的可能性较大C. 一定是反面D. 是正面或反面的可能性一样大4.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A. 50︒B. 40︒C. 45︒D. 130︒5.下列运算正确的是( )A. 66x x x ÷=B. 358x x x ÷=C. 2242x x x •=D. ()3263x y x y -=- 6.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A. 20.210-⨯克B. 2210-⨯克C. 3210-⨯ 克D. 4210-⨯克7.如图,点A 在直线上,ABC △与''AB C V 关于直线l 对称,连接'BB 分别交,'AC AC 于点,',D D 连接'CC ,下列结论不一定正确的是( )A. ''BAC B AC ∠=∠B. '//'CC BBC. ''BD B D =D. 'AD DD =8.如图,一辆汽车在龙城大街上沿东向西方向正常行驶,从点M 处开始减速驶入路况良好的祥云桥北匝道桥,接着驶入滨河东路后沿北向南继续正常行驶.下列四个图像中能刻画该汽车这个过程中行驶速度v (千米/时)与行驶时间t (时)之间的关系是( )A. B. C. D. 9.如图,''A B C ABC ≅V V ,点'B 在边AB 上,线段''A B ,AC 交于点D ,若40,60A B ︒︒∠=∠=,则'A CB ∠的度数为( )A. 100︒B. 120︒C. 135︒D. 140︒10.有一种手持烟花,点然后每隔1.4秒发射一发花弹。
北师大版七年级数学下册第四章三角形几何模型练习(有答案)
三角形的高、中线、角平分线的七种常见应用三角形的高在线段长中的应用1.如图,在△ABC中,AC=8,BC=4,高BD=3,试作出BC边上的高AE,并求AE的长.三角形的高在求角的度数中的应用2.已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.三角形的高在求相关线段的比值中的应用3.老师给出了下面的题目:如图①,在△ABC中,AB=AC,P为BC上一点,作PE⊥AB,PF⊥AC,BG ⊥AC,垂足分别为E、F、G.求证:PE+PF=BG;三角形的中线在求面积中的应用4.如图,已知AD、AE分别是Rt△ABC的高和中线,∠BAC=90°,AB=6cm,AC=8cm,BC=10cm.求证:(1)AD的长;(2)△ACE的面积;(3)△ACE和△ABE的周长的差.三角形的中线在求线段中的应用5.如图,已知△ABC中,AB=AC,周长为24,AC边上的中线BD把△ABC分成周长差为6的两个三角形,则△ABC各边的长分别为多少?构造全等三角形的七种常用方法翻折法1.如图,在△ABC中,BE是∠ABC的角平分线,AD⊥BE,垂足为D,求证:∠2=∠1+∠C.补形法2.如图,在Rt△ABC中,∠ACB=90°,AC=BC,∠ABC=45°,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF.求证:∠ADC=∠BDF.旋转法3.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,求∠EAF的度数.倍长中线法4.如图,△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=5,AC=3,求AD的取值范围.截长(补短)法5.如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系并证明.(提示:延长CD到G,使得DG=BE)作垂线法6.如图,点P为OC上一点,PD=PE,∠ODP+∠OEP=180°,求证:OP平分∠AOB.作平行线法7.如图,在△ABC中,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,AP,BQ分别是∠BAC,∠ABC的角平分线.求证:BQ+AQ=AB+BP.构建全等三角形的四种基本模型平移型1.如图,点E、C在BF上,BE=CF,AB=DE,∠B=∠DEF.写出AC与DF的关系并证明.翻转型2.如图,AB=AC,BE⊥AC于E,CD⊥AB于D,BE、CD交于点O,求证:OB=OC.旋转型3.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.一线三等角型4.如图,已知AD⊥AB于点A,BE⊥AB于点B,CD⊥CE于点C,点C在AB上,且CD=CE,求证:AB =AD+BE.参考答案三角形的高、中线、角平分线的七种常见应用1.解:如图,过点A作BC边上的高线AE,交CB延长线于点E.∵BC•AE=AC•BD,AC=8,BC=4,高BD=3,∴×4AE=×8×3,则AE=6.2.解:①如图1,当高AD在△ABC的内部时,∠BAC=∠BAD+∠CAD=70°+20°=90°;②如图2,当高AD在△ABC的外部时,∠BAC=∠BAD﹣∠CAD=70°﹣20°=50°,综上所述,∠BAC的度数为90°或50°.3.(1)证明:如图1,∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AC•BG.又∵S△ABP+S△ACP=S△ABC,∴AB•PE+AC•PF=AC•BG.∵AB=AC,∴PE+PF=BG;4.解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC=BC•AD,∴AD===4.8(cm),即AD的长度为4.8cm;(2)如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC=AB•AC=×6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴BE•AD=EC•AD,即S△ABE=S△AEC,∴S△AEC=S△ABC=12(cm2).∴△AEC的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.5.解:根据题意结合图形,分成两部分的周长的差等于腰长与底边的差,(1)若AB>BC,则AB﹣BC=6,又因为2AB+BC=24,联立方程组并求解得:AB=10,BC=4,10、10、4三边能够组成三角形;(2)若AB<BC,则BC﹣AB=6,又因为2AB+BC=24,联立方程组并求解得:AB=6,BC=12,6、6、12三边不能够组成三角形;因此三角形的各边长为10、10、4.构造全等三角形的七种常用方法1.证明:∵BE是∠ABC的角平分线,AD⊥BE,∴AB=FB,∴∠2=∠AFB,∵∠AFB=∠1+∠C,∴∠2=∠1+∠C.2.证明:作BG⊥CB,交CF的延长线于点G,如图所示:∵∠CBG=90°,CF⊥AD,∴∠CAD+∠ADC=∠BCG+∠ADC=90°,∴∠CAD=∠BCG,在△ACD和△CBG中,,∴△ACD≌△CBG(ASA),∴CD=BG,∠CDA=∠CGB,∵CD=BD,∴BG=BD,∵∠ABC=45°,∴∠FBD=∠GBF=∠CBG,在△BFG和△BFD中,,∴△BFG≌△BFD(SAS),∴∠FGB=∠FDB,∴∠ADC=∠BDF.3.解:延长EB使得BG=DF,连接AG,在△ABG和△ADF中,,可得△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG,又∵EF=DF+BE=EB+BG=EG,AE=AE,在△AEG和△AEF中,,∴△AEG≌△AEF(SSS),∴∠EAG=∠EAF,∵∠DAF+∠EAF+∠BAE=90°∴∠EAG+∠EAF=90°,∴∠EAF=45°.4.(1)证明:由BD=CD,再延长AD至E,使DE=AD,∵D为BC的中点,∴DB=CD,在△ADC和△EDB中,∴△ADC≌△EDB(SAS),∴BE=AC,在△ABE中,∵AB+BE>AE,∴AB+AC>2AD;(2)∵AB=5,AC=3,∴5﹣3<2AD<5+3,∴1<AD<4.5.解:(1)EF=BE+DF;证明:如图1,延长FD到G,使DG=BE,连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;6.证明:作PF⊥OA于点F,PG⊥OB于G,如图所示:∵∠ODP+∠OEP=180°,∠ODP+∠FDP=180°,∴∠OEP=∠FDP,在△PDF和△PGE中,,∴△PDF≌△PGE(AAS),∴PF=PG,∴OP平分∠AOB.7.证明:延长AB到D,使BD=BP,连接PD,则∠D=∠5.∵AP,BQ分别是∠BAC,∠ABC的平分线,∠BAC=60°,∠ACB=40°,∴∠1=∠2=30°,∠ABC=180°﹣60°﹣40°=80°,∠3=∠4=40°=∠C,∴QB=QC,又∠D+∠5=∠3+∠4=80°,∴∠D=40°.在△APD与△APC中,∴△APD≌△APC(AAS),∴AD=AC.即AB+BD=AQ+QC,∴AB+BP=BQ+AQ.构建全等三角形的四种基本模型1.解:AC与DF的数量关系是相等,位置关系是平行,理由:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF,∠ACB=∠DFE,∴AC∥DF,∴AC与DF的数量关系是相等,位置关系式是平行.2.证明:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=90°,在△ABE和△ACD中∴△ABE≌△ACD(AAS),∴∠B=∠C,AD=AE,∵AB=AC,∴BD=CE,在△BDO和△CEO中∴△BDO≌△CEO(AAS),∴OB=OC.3.证明:(1)∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS).(2)BD=CE,BD⊥CE,理由如下:由(1)知,△BAD≌△CAE,∴BD=CE;∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE.4.证明:∵DA⊥AB,EB⊥AB,∴∠A=∠B=90°,∵∠DCE=90°,∴∠DCA+∠ECB=180°﹣90°=90°,∠ECB+∠BEC=180°﹣90°=90°,∴∠BEC=∠DCA,且CE=CD,∠A=∠B=90°∴Rt△ACD≌Rt△BEC(AAS),∴AD=BC,AC=BE,∴AB=AC+CB=AD+BE,即AB=AD+BE.。
北师大版七年级数学下册几何解答题综合训练(word版、无答案)
几何解答题综合训练北师大版七年级数学下册1、如图,已知∠ECF=70°,∠BCE=50°,∠A=70°,BC∥DE,求∠BDE的度数.2、如图,已知∠ABC=180°-∠A,BD⊥CD于点D,EF⊥CD于点F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.3、如图,∠1=∠2.∠GFA=55°,∠ACB=75°,AQ平分∠FAC,AH∥BD,求∠HAQ 的度数?4、如图,已知∠ABC+∠ECB=180°,∠P=∠Q.试说明:∠1=∠2.5、如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.6、如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,试求:(1)∠EDC的度数;(2)若∠BCD=n°,试求∠BED的度数.(用含n的式子表示)7、如图,AC∥FE,∠1+∠3=180°.(1)判定∠FAB与∠4的大小关系,并说明理由;(2)若AC平分∠FAB,EF⊥BE于点E,∠4=78°,求∠BCD的度数.8、如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,求∠DGB的度数.9、如图,△ABC中,AC>AB,D是BA延长线上一点,点E是∠CAD平分线上一点,EB=EC过点E作EF⊥AC于F,EG⊥AD于G.(1)求证△EFC≌△EGB;(2)若AB=3,AC=5,求AF的长。
10、如图,△ABC中 CD⊥AB,垂足为 D,BE⊥AC垂足为 E,且 AD=AE,BE与CD相交于点F.求证:①△ACD≌△ABE ;②FB=FC.11、在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.当∠EDF绕D点旋转到DE⊥AC于点E时(如图1),易证S△DEF +S△CEF=12S△ABC,(1)当∠EDF绕D点旋转到DE和AC不垂直时,在图2的情况下,求证:DE=DF;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2的情况下,S△DEF +S△CEF=12S△ABC 是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.12、如图,在等腰△ABC中,AB=AC=3cm,∠B=30°,点D在BC边上由C向B 匀速运动(D不与B、C重合),匀速运动速度为1cm/s,连接AD,作∠ADE=30°,DE交线段AC于点E.(1)在此运动过程中,∠BDA逐渐变(填“大”或“小”);D点运动到图1位置时,∠BDA=75°,则∠BAD=.(2)点D运动3s后到达图2位置,则CD=.此时△ABD和△DCE是否全等,请说明理由;(3)在点D运动过程中,△ADE的形状也在变化,判断当△ADE是等腰三角形时,∠BDA等于多少度(请直接写出结果)13、(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD.(2)若将△DEC绕点C旋转至图2、图3、图4情形时,其余条件不变,BE与AD有何数量关系?请直接写出结论。
北师大版七年级第二学期期末数学试卷及答案七
北师大版七年级第二学期期末数学试卷及答案一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上.1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)计算a4÷(﹣a2)的结果是()A.a2B.a C.﹣a2D.﹣a63.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣84.(3分)如图把一块含有30°角的直角三角板两个顶点放在一把直尺的对边上,如果∠1=25°,那么∠2的度数为()A.25°B.35°C.45°D.55°5.(3分)汽车开始行驶时,油箱内有油50升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为()A.B.C.D.6.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能使△ABC≌△DCB的是()A.AB=DC B.∠A=∠D C.AC=DB D.∠ACB=∠DBC7.(3分)一个小球在如图所示的方砖上自由滚动,并随机地停留在某块方砖上,则最终停在阴影部分上的概率是()A.B.C.D.不确定8.(3分)若9x2﹣kxy+49y2是一个完全平方式,那么k的值是()A.42B.﹣42C.±21D.±429.(3分)如图,已知AD是△ABC的角平分线,ED是线段AB的垂直平分线,∠ACB=90°,AC=6,则BE的长为()A.5B.6C.7D.1210.(3分)如图,在长方形ABCD中,AD=16,AB=8,点M、N分别在AD、BC上,将长方形ABCD沿MN折叠,使点A,B分别落在长方形ABCD外部的点A′,B′处,则阴影部分的图形的周长为()A.12B.24C.48D.56二、填空题(每小题3分,共15分)11.(3分)已知∠a=35°,则∠a的余角是.12.(3分)若m=20,按下列程序计算,最后得出的结果是.13.(3分)某镇要修建一条灌溉水渠,如图所示,水渠从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村,为了保持水渠CE与AB方向一致,则∠BCE为度.14.(3分)如图,三个大小相同的球恰好放在一个圆柱形盒子里(球的半径为R时,球的体积为V=),若圆柱的容积为300π,则三个球的体积之和为.(结果保留π)15.(3分)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x(x+4y),其中x=1,y=﹣1.17.(10分)计算(1)(x3y3+4x2y2﹣3xy)÷(﹣3xy);(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2.18.(9分)如图,在正方形网格中,每个小正方形的边长都是1,网格中有一条直线l,△ABC的三个顶点A、B、C均在格点处.(1)画出△ABC关于直线l的对称图形△A'B'C';(2)求△A'B'C'的面积.19.(9分)桌子上放有两张卡片,正面分别写有4cm,5cm;小明手里有四张卡片,正面分别写有1cm,3cm,4cm和5cm.将卡片正面向下,小亮随机从小明手里抽取一张,与桌子上的卡片放在一起,以卡片上的数量分别作为三条线段的长度,请回答下列问题:(1)求这三条线段能构成三角形的概率;(2)求这三条线段能构成等腰三角形的概率.20.(9分)如图,在△ABC和△BDE中,BA=BC,BE=BD,∠ABC=∠DBE=90°,连接AE、DC,试说明:△ABE≌△CBD.21.(9分)直线AB、CD交于点O,OE为∠BOD的平分线,OF⊥OE,CG∥OE,且∠C=30°.(1)求∠AOE为多少度;(2)判断∠FOA与∠FOD的大小关系,并说明理由.22.(10分)(1)如图①所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是.(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是.(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:.(4)应用公式计算:(1﹣)(1﹣)(1﹣).23.(11分)在一次劳动技能竞赛中,甲、乙两名工人同时生产相同数量的一种口罩,他们生产的口罩数y(个)与生产所用时间t(时)之间的关系如图所示.(1)在甲生产的过程中,自变量是,因变量是;(2)甲、乙两人中,先完成生产任务;(3)当甲、乙所生产的口罩个数相等时,求t的值.参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上.1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念的对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)计算a4÷(﹣a2)的结果是()A.a2B.a C.﹣a2D.﹣a6【分析】根据整式的运算法则即可求出答案.【解答】解:原式=﹣a2,故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000095=9.5×10﹣7,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)如图把一块含有30°角的直角三角板两个顶点放在一把直尺的对边上,如果∠1=25°,那么∠2的度数为()A.25°B.35°C.45°D.55°【分析】根据两直线平行,内错角相等可得∠3=∠1,然后根据∠2=60°﹣∠3计算即可得解.【解答】解:∵直尺的两边互相平行,∴∠3=∠1=25°,∴∠2=60°﹣∠3,=60°﹣25°,=35°.故选:B.【点评】本题考查了平行线的性质,直角三角板的知识,熟记性质并准确识图是解题的关键.5.(3分)汽车开始行驶时,油箱内有油50升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为()A.B.C.D.【分析】根据题意,可以写出Q与t的函数关系式,然后即可判断哪个选项中的函数图象符合题意,本题得以解决.【解答】解:由题意可得,Q=50﹣5t,当t=0时,Q=50,当Q=0时,t=10,故选:C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.6.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能使△ABC≌△DCB的是()A.AB=DC B.∠A=∠D C.AC=DB D.∠ACB=∠DBC【分析】根据全等三角形的判定解决问题即可.【解答】解:∵∠ABC=∠DCB,BC=CB,要使得△ABC≌△DCB,可以添加:∠A=∠D,AB=DC,∠ACB=∠DBC,故选:C.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.7.(3分)一个小球在如图所示的方砖上自由滚动,并随机地停留在某块方砖上,则最终停在阴影部分上的概率是()A.B.C.D.不确定【分析】根据几何概率的求法:最终停留在阴影区域的概率就是阴影区域的面积与总面积的比值.【解答】解:观察这个图可知:阴影区域(6块)的面积占总面积(15块)的=,则它最终停留在阴影部分的概率是,故选:A.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.8.(3分)若9x2﹣kxy+49y2是一个完全平方式,那么k的值是()A.42B.﹣42C.±21D.±42【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵9x2﹣kxy+49y2是一个完全平方式,∴k=±42,故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.9.(3分)如图,已知AD是△ABC的角平分线,ED是线段AB的垂直平分线,∠ACB=90°,AC=6,则BE的长为()A.5B.6C.7D.12【分析】依据角平分线的性质即可得到DC=DE,再判定Rt△ACD≌Rt△AED,即可得到AC=AE,进而得出BE的长与AC的长相等.【解答】解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AE,∴DC=DE,∠C=∠AED=90°,又∵AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵ED是线段AB的垂直平分线,∴AE=BE,∴AC=AE=BE=6,故选:B.【点评】本题主要考查了全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.10.(3分)如图,在长方形ABCD中,AD=16,AB=8,点M、N分别在AD、BC上,将长方形ABCD沿MN折叠,使点A,B分别落在长方形ABCD外部的点A′,B′处,则阴影部分的图形的周长为()A.12B.24C.48D.56【分析】根据折叠的性质,得A'M=AM,A'B'=AB,B'N=BN,即可得出阴影部分的周长等于矩形的周长.【解答】解:根据折叠的性质,得A'M=AM,A'B'=AB,B'N=BN,∴阴影部分图形的周长=A'B'+B'N+NC+A'M+MD+CD=AB+(BN+NC)+(AM+MD)+CD=AB+BC+AD+CD=2AD+2AB=2(16+8)=48.故选:C.【点评】此题主要考查了翻折变换以及矩形的性质,关键是要能够根据折叠的性质得到对应的线段相等,从而求得阴影部分的周长.二、填空题(每小题3分,共15分)11.(3分)已知∠a=35°,则∠a的余角是55°.【分析】根据余角的概念计算,得到答案.【解答】解:90°﹣∠a=90°﹣35°=55°,则∠a的余角是55°,故答案为:55°.【点评】本题考查的是余角的概念,如果两个角的和等于90°,就说这两个角互为余角.12.(3分)若m=20,按下列程序计算,最后得出的结果是21.【分析】根据数值转换机列代数式,再代入计算即可求解.【解答】解:由题意得,当m=20时,原式=.故答案为21.【点评】本题主要考查代数式求值,列代数式是解题的关键.13.(3分)某镇要修建一条灌溉水渠,如图所示,水渠从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村,为了保持水渠CE与AB方向一致,则∠BCE为90度.【分析】利用平行线的性质得出CE∥BD,可得∠NCE=25°+65°=90°,进而得出∠BCE的度数即可得出答案.【解答】解:如图所示:由题意可得:∠1=65°,当CE保持与AB的方向一致,则CE∥BD,可得∠NCE=25°+∠1=25°+65°=90°,故∠BCE=180°﹣∠NCE=90°,故答案为:90.【点评】此题主要考查了方向角以及平行线的性质,得出∠FCE的度数是解题关键.14.(3分)如图,三个大小相同的球恰好放在一个圆柱形盒子里(球的半径为R时,球的体积为V=),若圆柱的容积为300π,则三个球的体积之和为200π.(结果保留π)【分析】根据圆柱体的体积和球的体积的计算公式即可得到结果.【解答】解:设球的半径为r,根据题意得:三个球的体积之和=3×πr3=4πr3,圆柱体盒子容积=πr2•6r=6πr3,=,300π×=200π.答:三个球的体积之和是200π.故答案为:200π.【点评】本题考查了圆柱体的体积,球的体积的计算,整式的混合运算,熟记圆柱体的体积和球的体积的计算公式是解题的关键.15.(3分)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为18或70.【分析】设BE=3t,则BF=7t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.【点评】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x(x+4y),其中x=1,y=﹣1.【分析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2+2xy+y2+x2﹣y2﹣2x2﹣8xy=﹣6xy,当x=1,y=﹣1时,原式=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.17.(10分)计算(1)(x3y3+4x2y2﹣3xy)÷(﹣3xy);(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2.【分析】(1)直接利用整式的除法运算法则计算得出答案;(2)直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:(1))(x3y3+4x2y2﹣3xy)÷(﹣3xy)=x3y3÷(﹣3xy)+4x2y2÷(﹣3xy)﹣3xy÷(﹣3xy)=﹣x2y2﹣xy+1;(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2=﹣1+1﹣9=﹣9.【点评】此题主要考查了整式的除法运算以及实数运算,正确掌握相关运算法则是解题关键.18.(9分)如图,在正方形网格中,每个小正方形的边长都是1,网格中有一条直线l,△ABC的三个顶点A、B、C均在格点处.(1)画出△ABC关于直线l的对称图形△A'B'C';(2)求△A'B'C'的面积.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A'B'C'即为所求.(2)S△A′B′C′=3×4﹣×1×4﹣×2×2﹣×2×3=12﹣2﹣2﹣3=5.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(9分)桌子上放有两张卡片,正面分别写有4cm,5cm;小明手里有四张卡片,正面分别写有1cm,3cm,4cm 和5cm.将卡片正面向下,小亮随机从小明手里抽取一张,与桌子上的卡片放在一起,以卡片上的数量分别作为三条线段的长度,请回答下列问题:(1)求这三条线段能构成三角形的概率;(2)求这三条线段能构成等腰三角形的概率.【分析】先利用列举法展示所有5种可能的结果数,再分别根据三角形三边的关系、等腰三角形的判定找出两个事件的结果数,然后根据概率公式计算即可.【解答】解:(1)共有5种可能的结果数,它们是:1、4、5;3、4、5;4、4、5;5、4、5;其中这三条线段能构成三角形的有3、4、5;4、4、5;5、4、5这3种结果,∴这三条线段能构成三角形的概率为;(2)这三条线段能构成等腰三角形的有2种结果,所以这三条线段能构成等腰三角形的概率为=.【点评】本题考查概率公式、三角形的三边关系、等腰三角形的判定,解题的关键是明确题意,可以写出所有的可能性,求出相应的概率.20.(9分)如图,在△ABC和△BDE中,BA=BC,BE=BD,∠ABC=∠DBE=90°,连接AE、DC,试说明:△ABE≌△CBD.【分析】由“SAS”可证△ABE≌△CBD.【解答】证明:∵∠ABC=∠DBE=90°,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS).【点评】本题考查了全等三角形的判定,掌握全等三角形的判定是本题的关键.21.(9分)直线AB、CD交于点O,OE为∠BOD的平分线,OF⊥OE,CG∥OE,且∠C=30°.(1)求∠AOE为多少度;(2)判断∠FOA与∠FOD的大小关系,并说明理由.【分析】(1)利用平行线的性质可得∠DOE=∠C,再结合角平分线定义可得∠BOE=∠DOE=30°,根据邻补角互补可得答案;(2)利用垂线定义,邻补角的性质分别计算出∠FOA与∠FOD的度数即可.【解答】解:(1)∵CG∥OE,∴∠DOE=∠C=30°,∵OE为∠BOD的平分线,∴∠BOE=∠DOE=30°,∴∠AOE=180°﹣30°=150°;(2)∠AOF=∠DOF,理由:∵∠BOE=∠DOE=30°,∴∠AOD=120°,∵OF⊥OE,∴∠EOF=90°,∴∠DOF=60°,∴∠AOF=60°,∴∠AOF=∠DOF.【点评】此题主要考查了平行线的性质,以及角平分线的定义,关键是理清图中角之间的关系.22.(10分)(1)如图①所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是a2﹣b2.(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是(a+b)(a﹣b).(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:(a﹣b)(a+b)=a2﹣b2.(4)应用公式计算:(1﹣)(1﹣)(1﹣).【分析】(1)根据面积的和差,可得答案;(2)根据矩形的面积公式,可得答案;(3)根据图形割补法,面积不变,可得答案;(4)根据平方差公式计算即可.【解答】解:(1)如图①所示,阴影部分的面积是a2﹣b2,故答案为:a2﹣b2;(2)根据题意知该长方形的长为a+b、宽为a﹣b,则其面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由阴影部分面积相等知(a﹣b)(a+b)=a2﹣b2,故答案为:(a﹣b)(a+b)=a2﹣b2;(4)(1﹣)(1﹣)(1﹣)====.【点评】本题考查的是平方差公式的推导和运用,灵活运用平方差公式、掌握数形结合思想是解题的关键.23.(11分)在一次劳动技能竞赛中,甲、乙两名工人同时生产相同数量的一种口罩,他们生产的口罩数y(个)与生产所用时间t(时)之间的关系如图所示.(1)在甲生产的过程中,自变量是t,因变量是y;(2)甲、乙两人中,乙先完成生产任务;(3)当甲、乙所生产的口罩个数相等时,求t的值.【分析】(1)根据自变量与因变量的含义得到时间是自变量,口罩数是因变量;(2)观察图象可得甲、乙两人中,乙先完成生产任务;(3)观察图象可得,当甲、乙所生产的口罩个数相等时,t的值有两个,其中一个值是3,另一个值可列方程解答.【解答】解:(1)函数图象反映口罩数随时间变化的图象,则t是自变量,y为因变量;故答案为:t;y;(2)观察图象可知,乙先完成生产任务;故答案为:乙;(3)当甲、乙所生产的口罩个数相等时,t的值有两个,其中一个是3,甲后来的速度为:(4000﹣400)÷(8﹣2)=600(个/小时),乙后来的速度为:(4000﹣1000)÷(7﹣5)=1500(个/小时),则:400+600(t﹣2)=1500(t﹣5),解得t=,即当甲、乙所生产的口罩个数相等时,t=3或.【点评】本题主要考查了函数的图象,从图象中获取信息是学习函数的基本功,要结合题意熟练掌握.。
北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)
北师大版2019-2020学年第二学期七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a53.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.408.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm210.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.三、解答题(共55分)16.(6分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE∥BC(已知),所以∠3=∠EHC().因为∠3=∠B(已知),所以∠B=∠EHC().所以AB∥EH().所以∠2+=180°().因为∠1=∠4(),所以∠1+∠2=180°(等量代换).17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)早餐店到小颖家的距离是千米,她早餐花了分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.2018-2019学年河南省郑州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A、是轴对称图形,故选项正确;B、不是轴对称图形,是中心对称图形,故选项错误;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:A.【点评】本题主要考查了轴对称图形的定义,正确理解定义是解题关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a5【分析】根据单项式乘单项式的法则,合并同类项的法则,同底数幂的除法的法则,积的乘方和幂的乘方的法则计算即可.【解答】解:A、a2+a2=2a2,不符合题意;B、(2a)3=9a3,不符合题意;C、a9÷a3=a6,不符合题意;D、(﹣2a)2•a3=4a5,符合题意;故选:D.【点评】本题考查了单项式乘单项式,合并同类项,同底数幂的除法,积的乘方和幂的乘方,熟练掌握计算法则是解题的关键.3.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为xcm,则9﹣6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【分析】分别根据面积公式进行计算,根据图1的面积=图2的面积列式,即可得到平方差公式.【解答】解:图1阴影面积=a2﹣b2,图2拼剪后的阴影面积=(a+b)(a﹣b),∴得到的公式为:a2﹣b2=(a+b)(a﹣b),即(a+b)(a﹣b)=a2﹣b2,故选:B.【点评】本题考查了平方差公式的几何背景,利用图形的面积和作为相等关系列出等式即可验证平方差公式.5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°【分析】利用平行线的性质求出∠EDF,再利用三角形内角和定理求出∠DEF即可.【解答】解:∵∠CBD=90°,∴∠ABD=90°﹣∠ABC=70°,∵EF∥AB,∴∠DFE=∠ABD=70°,∴∠DEF=180°﹣∠D﹣∠DFE=50°,∴∠1=∠DEF=50°,故选:C.【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”【分析】利用折线统计图可得出试验的频率在0.5左右,进而得出答案.【解答】解:A、掷一枚质地均匀的硬币,硬币落下后朝上的是正面的概率为;符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任意抽出一张的花色是红桃的概率为,不符合题意;C、不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球的概率为,不符合题意;D、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;故选:A.【点评】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.40【分析】根据角平分线的性质得到GM=CG=4,根据三角形的面积公式计算即可.【解答】解:如图,作GM⊥AB于M,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GM⊥AB,∴GM=CG=4,∴△ABG的面积=×AB×GM=20,故选:B.【点评】本题考查的是三角形的面积,角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角三角形时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角三角形时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm2【分析】由七巧板的制作过程可知,这只小猫的头部是用正方形的四分之一拼成的,所以面积是正方形面积的四分之一.【解答】解:如图:小猫的头部的图形是abc,在右图中三角形h的一半与b全等,而由图中a+c+h的一半正好是正方形的四分之一,即阴影部分的面积是×12×12cm2=36cm2,故选:C.【点评】本题考查了正方形的性质,也考查了列代数式的内容,难度较大,还考查了学生的观察图形的能力.10.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.【分析】分别判断点P在各条线段上面积的变化情形即可判断.【解答】解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.【点评】本题考查动点问题函数图象,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为 5.19×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00519用科学记数法表示应为5.19×10﹣3.故答案为:5.19×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.【分析】直接利用轴对称图形的性质得出符合题意的位置,进而得出答案.【解答】解:如图所示:选取白色的小正方形中1,2,3的位置3个涂黑,能使整个黑色部分构成一个轴对称图形,故使整个黑色部分构成一个轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是②③④.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.【分析】先根据折叠的性质得到折痕都垂直于过点P的直线,根据根据平行线的判定方法求解.【解答】解:如图,由题图(2)的操作可知PE⊥CD,所以∠PEC=∠PED=90°.由题图(3)的操作可知AB⊥PE,所以∠APE=∠BPE=90°,所以∠PEC=∠PED=∠APE=∠BPE=90°,所以可依据结论②,③或④判定AB∥CD,故答案为②③④.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线同时垂直于同一条直线,那么这两条直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=153.【分析】根据数字的变化规律取符合条件的数按规律计算即可求出一个固定数字.【解答】解:例如:33=27,23+73=351,33+53+13=153.故答案为153.【点评】本题考查了数字的变化类、有理数的混合运算,解决本题的关键是理解题意进行计算.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是①②④.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.【分析】由“SAS ”可证△BDE ≌△ADF ,可得BE =AF ,DE =DF ,S △BDE =S △ADF ,即可求解.【解答】解:∵∠BAC =90°,AB =AC .点D 为BC 的中点,∴AD =BD =CD ,∠∠BAD =∠CAD =∠B =∠C =45°,AD ⊥BC ,∵∠MDN =90°=∠ADB ,∴∠BDE =∠ADF ,且BD =AD ,∠B =∠DAF =45°,∴△BDE ≌△ADF (SAS )∴BE =AF ,DE =DF ,S △BDE =S △ADF ,∴S △BDE +S △ADE =S △ADF +S △ADE ,∴四边形AEDF 的面积=S △ABD =S △ABC ,故①④符合题意,∵DE =DF ,∠EDF =90°,∴△DEF 是等腰直角三角形,故②符合题意,当点F 在AC 中点时,可得EF =BC =AD ,DF +CF =AC ,∵AD ≠AC ,故③不合题意,故答案为①②④.【点评】本题考查了全等三角形的判定和性质,证明△BDE ≌△ADF 是本题的关键.三、解答题(共55分)16.(6分)如图,已知DE ∥BC ,∠3=∠B ,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE ∥BC (已知),所以∠3=∠EHC ( 两直线平行,内错角相等 ).因为∠3=∠B(已知),所以∠B=∠EHC(等量代换).所以AB∥EH(同位角相等,两直线平行).所以∠2+∠4=180°(两直线平行,同旁内角互补).因为∠1=∠4(对顶角相等),所以∠1+∠2=180°(等量代换).【分析】根据平行线的性质得出∠3=∠EHC,求出∠B=∠EHC,根据平行线的判定得出AB∥EH,根据平行线的性质得出∠2+∠4=180°,即可得出答案.【解答】解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换),故答案为:两直线平行,内错角相等,等量代换,同位角相等,两直线平行,∠4,两直线平行,同旁内角互补,对顶角相等.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:原式=[x2+2xy+y2+x2﹣y2]÷2x=[2x2+2xy]÷2x=x+y,当x=﹣1,y=时,原式=﹣1+=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.【分析】由题意知AC=DC,BC=EC,根据∠ACB=∠DCE即可证明△ABC≌△DEC,即可得AB=DE,即可解题.【解答】解:如图,先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE 的长度就是A、B间的距离.证明:由题意知AC=DC,BC=EC,且∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴DE=AB.∴量出DE的长,就是A、B两点间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中求证△ABC≌△DEC是解题的关键.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:(1)360°﹣10°﹣30°﹣80°﹣120°=120°,答:不获奖的扇形区域圆心角度数是120°;=,(2)P(获得双肩背包)答:获得双肩背包的概率是;=,(3)P(获奖)答:他获奖的概率是.【点评】本题考查了概率,正确运用概率公式是解题的关键.20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是所用的时间,因变量是离家的距离;(2)早餐店到小颖家的距离是 1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?【分析】根据函数图象的横坐标,可得时间的变化,根据函数图象的纵坐标,可得距离的变化.【解答】解:(1)在上述变化过程中,自变量是小颖所用的时间x,因变量是离家的距离;故答案为:所用的时间;离家的距离;(2)早餐店到小颖家的距离是1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在选书和买书;(4)小颖从图书大厦回家的过程中,她的平均速度是2÷(80﹣55)=0.08(千米/分钟)=80米/分钟.【点评】此题主要考查了函数图象与实际问题,根据已知图象获取正确信息是解题关键.解题时注意:速度=距离÷时间.21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)=4×7﹣×2×7﹣×2×5﹣×4×2=28﹣7﹣5﹣4=12.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】解:(1)∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△ABD≌△ACE(SAS);(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②如图2,当D在线段BC上时,同理可证:△BAD≌△CAE,∴∠ADB=∠AEC,∵∠ABD+∠ADC=180°,∴∠ADC+∠AEC=180°,∴∠DCE+∠DAE=180°,∴α+β=180°;如图1或3,当点D在线段BC延长线或反向延长线上时,α=β.【点评】本题是三角形综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
北师大版七年级数学下册几何常见模型练习题(有答案)
全等三角形判定的三种类型已知一边一角型一次全等型1.已知,如图△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC.2.如图,在△ABC中,D是BC边上的一点,连接AD,过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F,且BE=CF.求证:AD是△ABC的中线.两次全等型3.如图,已知,在四边形ABCD中,E是AC上一点,∠DAC=∠BAC,∠DCA=∠BCA.求证:∠DEC =∠BEC.4.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD于F交BC于E.(1)求证:∠ABD=∠CAE.(2)求证:∠ADB=∠CDE.(3)直接写出BD、AE、ED之间满足的数量关系.已知两边型一次全等型5.如图,点B,F,C,E在直线l上(点F,点C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.两次全等型6.如图所示,AB=CB,AD=CD,E是BD上任意一点,求证:AE=CE.7.如图:已知AE交BD于点C,∠DAC=∠EBC=∠BAC,AB=AC.试说明:DC与BE有怎样的数量关系.已知两角型一次全等型8.如图,已知∠BDC=∠CEB=90°,BE、CD交于点O,且AO平分∠BAC,求证:OB=OC.三角形中的四种常见说理类型说明相等关系1.如图,△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF,求证:DE=DF.说明位置关系说明平行关系2.已知△ABC为等边三角形,点P在AB上,以CP为边长作等边三角形△PCE.求证:AE∥BC.说明垂直关系3.如图,△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,且BD=CF,BE=CD,G是EF的中点,求证:DG⊥EF.说明倍分关系说明角的倍分关系4.如图,△ABC中,AB=AC,BD⊥AC于D.猜想:∠DBC与∠BAC之间的数量关系,并予以证明.说明线段的倍分关系5.如图,△ABC中,AB=AC,AD和BE是高,它们相交于H,且AE=BE.(1)求∠C的度数.(2)求证:AH=2BD.说明和、差关系6.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC,求证:AB+BD=AC.线段垂直平分线与角平分线的应用类型典例例1.已知:如图,△ABC中,AC=6,BC=8,AB=10,∠BCA的平分线与AB边的垂直平分线相交于点D,DE⊥AC,DF⊥BC,垂足分别是E、F.(1)求证:AE=BF;(2)求线段DG的长.利用线段垂直平分线的性质求线段的长1.如图,已知AB比AC长3cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.利用线段垂直平分线的性质求角的度数2.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交BC于D,连接AD.(1)若△ADC的周长为16,AB=12,求△ABC的周长;(2)若AD将∠CAB分成两个角,且∠CAD:∠DAB=2:5,求∠ADC的度数.利用线段垂直平分线的性质解决实际问题3.某一个城市在一块空地新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等.请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?利用线段垂直平分线的性质说明线段的数量关系4.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P放在射线OM上,两直角边分别与OA,OB交于点C,D.(1)证明:PC=PD.(2)若OP=4,求OC+OD的长度.利用线段垂直平分线的性质说明线段的位置关系5.如图所示,AD为△ABC的角平分线,DE⊥AC于点E,DF⊥AB于点F,EF交AD于点M,求证:AM ⊥EF.全等三角形判定的三种类型1.证明:如右图所示,∵BD=DC,∴∠3=∠4,又∵∠1=∠2,∴∠1+∠3=∠2+∠4,即∠ABC=∠ACB,∴△ABC是等腰三角形,∴AB=AC,在△ABD和△ACD中,∴△ABD≌△ACD(SAS),∴∠BAD=∠CAD,∴AD平分∠BAC.2.证明:∵BE⊥AD,CF⊥AD,∴∠BED=∠F=90°,在△BED和△CFD中,,∴△BED≌△CFD,∴BD=CD,∴AD是△ABC的中线.3.证明:在△ACD和△ACB中,,∴△ACD≌△ACB,(ASA)∴BC=CD,在△DCE和△BCE中,,∴△DCE≌△BCE(ASA),∴∠DEC=∠BEC.4.(1)证明:∵AE⊥BD,∴∠AFB=∠BAC=90°,∴∠ABD+∠BAF=90°,∠BAF+∠CAE=90°,∴∠ABD=∠CAE.(2)证明:过C作CM⊥AC,交AE的延长线于M,则∠ACM=90°=∠BAC,∴CM∥AB,∴∠MCE=∠ABC=∠ACB,∵∠BAF=∠ADB,∠ADB+∠F AD=90°,∠ABD+∠BAF=90°,∴∠ABD=∠CAM,在△ABD和△CAM中,,∴△ABD≌△CAM(ASA),∴∠ADB=∠M,AD=CM,BD=AM,∵D为AC中点,∴AD=DC=CM,在△CDE和△CME中,,∴△CDE≌△CME(SAS),∴∠M=∠CDE,∴∠ADB=∠CDE.(3)解:结论:BD=AE+DE.理由:∵△CDE≌△CME,∴ME=DE,∵AM=AE+ME=AE+DE,∵BD=AM,∴BD=AE+DE.5.(1)证明:∵BF=CE,∴BF+FC=FC+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)解:结论:AB∥DE,AC∥DF.理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF.6.证明:在△ABD与△CBD中,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,在△ABE与△CBE中,△ABE≌△CBE(SAS),∴AE=CE.7.解:DC=BE,∵∠EBC=∠BAC,∠ACD=∠BAC+∠ABC,∠ABE=∠EBC+∠ABC,∴∠ACD=∠ABE,在△ACD和△ABE中,,∴△ACD≌△ABE(ASA),∴DC=BE.8.证明:∵∠BDC=∠CEB=90°,∴CD⊥AB,BE⊥AC,∵AO平分∠BAC,∴OD=OE,在△BDO和△CEO中∴△BDO≌△CEO(ASA),∴OB=OC.三角形中的四种常见说理类型1.证明:连接AD,∵AB=AC,D是BC的中点,∴∠EAD=∠F AD,在△AED和△AFD中,,∴△AED≌△AFD(SAS),∴DE=DF.2、证明:∵△ABC与△PCE为等边三角形,∴AC=BC,EC=PC,∠BCA=∠PCE=60°,∴∠BCP=∠ACE,在△BCP和△ACE中,,∴△CBP≌△CAE(SAS),∴∠CAE=∠B=60゜=∠ACB,∴AE∥BC.3.证明:连ED,DF,∵AB=AC,∴∠B=∠C,在△BED和△CDF中,,∴△BDE≌△CFD(SAS),∴DE=DF,∵G是EF的中点,∴DG⊥EF.4.解:∠DBC=∠BAC.设∠C=β,∵AB=AC,∴∠ABC=∠C=β,∴∠BAC=180°﹣2β,∠BAD=∠ABC+∠C=2β,∵BD⊥AC,∴∠ABD=90°﹣2β,∴∠DBC=90°﹣β,∴∠DBC=∠BAC.5.(1)解:∵AE=BE,BE⊥AC,∴∠BAE=45°,又∵AB=AC,∴∠C=(180°﹣∠BAE)=(180°﹣45°)=67.5°;(2)证明:∵AB=AC,AD⊥BC,∴BC=2BD,∠1+∠C=90°,∵BE⊥AC,∴∠2+∠C=90°,∴∠1=∠2,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC,∴AH=2BD.6.证明:如图,在AC上截取AE=AB,∵AD平分∠BAC,∴∠CAD=∠BAD,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴DE=BD,∠AED=∠ABC,∵∠AED=∠C+∠CDE,∠ABC=2∠C,∴∠CDE=∠C,∴CE=DE,∵AE+CE=AC,∴AB+BD=AC.线段垂直平分线与角平分线的应用类型例1.(1)证明:连接AD、BD,∵AD是∠BCA的平分线,DE⊥AC,DF⊥BC,∴DE=DF,∵DG是AB边的垂直平分线,∴AD=DB,在Rt△AED和Rt△DFB中,,∴Rt△AED≌Rt△BFD(HL),∴AE=BF;(2)由(1)得:CE=CF==7,∴AE=EC﹣AC=1,∵∠ECD=∠EDC=45°,∴DE=CE=7,由题意可得:AG=BG=5,∴AD2=AE2+DE2=50,∴DG2=AD2﹣AG2=25,∴DG=5.1.解:∵DE是BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+AD+CD=AC+BD+AD=AC+AB,由题意得,,解得.∴AB和AC的长分别为8.5cm,5.5cm.2.解:(1)∵DE是AB的垂直平分线,∴AD=BD,又∵△ADC的周长为16,∴AD+CD+AC=16,即BD+CD+AC=BC+AC=16,又AB=12,∴AB+BC+AC=16+12=28,则△ABC的周长为28;(2)∵AD=BD,∴∠BAD=∠ABD,∵∠CAD:∠DAB=2:5,设一份为x,即∠CAD=2x,∠DAB=∠ABD=5x,又∠C=90°,∴∠ABD+∠BAC=90°,即2x+5x+5x=90°,解得:x=7.5°,∵∠ADC为△ABD的外角,∴∠ADC=∠DAB+∠ABD=5x+5x=10x=75°.3.解:如图,这所中学建在P点位置(点P为△ABC的外心).连结AB、BC、AC,作AB和BC的垂直平分线,两垂直平分线相交于点P,则点P到点A、B、C的距离相等.4.证明:(1)如图,过点P作PE⊥OA于点E,PF⊥OB于点F,∴∠PEC=∠PFD=90°.∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°.而∠PDO+∠PDF=180°,∴∠PCE=∠PDF在△PCE和△PDF中∴△PCE≌△PDF(AAS)∴PC=PD;(2)∵∠AOB=90°,OM平分∠AOB,∴△POE与△POF为等腰直角三角形,∴OE=PE=PF=OF,∵OP=4,∴OE=2,由(1)知△PCE≌△PDF ∴CE=DF ∴OC+OD=OE+OF=2OE=4.5.证明:∵DE⊥AC于点E,DF⊥AB于点F,∴∠AED=∠AFD=90°,∵AD为三角形ABC的角平分线,∴∠EAD=∠F AD,而AD=AD,∴△AED≌△AFD∴ED=DF,AE=AF∴△AEF为等腰三角形,AM为∠BAC的平分线∴AM是△AEF的高,即AM⊥EF.。
2022-2023学年北师大版七年级下学期期末数学复习题1(含答案)
2022-2023学年北师大版七年级下学期期末数学复习题1一、选择题(本大题共10小题,每小题3分,共30分.每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)计算a6•a2的结果是( )A.a3B.a4C.a8D.a122.(3分)人体中红细胞的直径约为0.0000077米,将0.0000077用科学记数法表示为( )A.7.7×10﹣6B.7.7×10﹣5C.0.77×10﹣6D.0.77×10﹣5 3.(3分)下列几何图形不一定是轴对称图形的是( )A.等边三角形B.平行四边形C.角D.圆4.(3分)王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是( )A.14B.13C.512D.125.(3分)下列事件中,是不确定事件的是( )A.三条线段可以组成一个三角形B.内错角相等,两条直线平行C.对顶角相等D.平行于同一条直线的两条直线平行6.(3分)如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.(3分)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( )A.50°B.40°C.45°D.25°8.(3分)如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需( )A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 9.(3分)下列各式不能用平方差公式计算的是( )A.(a﹣1)(a+1)B.(3+a)(a﹣3)C.(﹣2a+b)(2a﹣b)D.(﹣2a+b)(﹣2a﹣b)10.(3分)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果P也是图中的格点,且使得△ABP为等腰三角形,则点P的个数是( )A.5B.6C.7D.8二、填空题(本大题共7小题,每小题4分,共28分.请把答案填写在答题卡的横线上)11.(4分)计算:3a•(2a﹣5)= .12.(4分)若∠A=67°,则∠A的余角= .13.(4分)在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为 .14.(4分)如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=15米,则AB= 米.15.(4分)图书馆现有4000本图书供学生借阅,如果每个学生一次借5本,则剩下的书y (本)和借书学生人数x(人)之间的函数关系式是 .16.(4分)如图在△ABC中,BC=8,AB、AC的垂直平分线与BC分别交于E、F两点,则△AEF的周长为 .17.(4分)如果定义一种新运算,规定|a b c d|=ad﹣bc,请化简:|x―1x+2x x+3| = .三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:(1)(12)﹣1+(π﹣2020)0﹣(﹣1)2020;(2)(3xy3)2•(﹣xy).19.(6分)如图,如果AD∥BC,∠B=∠C,那么AD是∠EAC的平分线吗?请说明你判别的理由.20.(6分)如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为13.四.解答题(本大题3小题,每小题8分,满分24分)21.(8分)先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)]÷2y,其中x=12,y=﹣2.22.(8分)如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上).(1)作△ABC关于直线MN的轴对称图形△A′B′C′;(2)在MN上画出点P,使得PA+PC最小;(3)求出△ABC的面积.23.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=60°,求∠EBC的度数.五.解答题(本大题2小题,每小题10分,满分20分)24.(10分)小王周末骑电动车从家里出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往商场,如图是他离家的距离(米)与时间(分钟)之间的关系示意图,请根据图中提供的信息回答下列问题:(1)在此变化过程中,自变量是 ,因变量是 .(2)小王在新华书店停留了多长时间?(3)买到书后,小王从新华书店到商场的骑车速度是多少?25.(10分)如图,在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过t分钟后,它们分别爬行到了D、E处,设DC与BE的交点为F.(1)BE与CD有何数量关系?为什么?(2)问蜗牛在爬行过程中,DC与BE所成的∠BFC的大小有无变化?若有变化,请说明理由;若没有变化,求出∠BFC的大小.2019-2020学年广东省清远市阳山县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)计算a6•a2的结果是( )A.a3B.a4C.a8D.a12【解答】解:a6•a2=a8,故选:C.2.(3分)人体中红细胞的直径约为0.0000077米,将0.0000077用科学记数法表示为( )A.7.7×10﹣6B.7.7×10﹣5C.0.77×10﹣6D.0.77×10﹣5【解答】解:0.0000077=7.7×10﹣6.故选:A.3.(3分)下列几何图形不一定是轴对称图形的是( )A.等边三角形B.平行四边形C.角D.圆【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.4.(3分)王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是( )A.14B.13C.512D.12【解答】解:∵王老师的讲义夹里放了大小相同的试卷共12页,数学4页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为412=13.故选:B.5.(3分)下列事件中,是不确定事件的是( )A.三条线段可以组成一个三角形B.内错角相等,两条直线平行C.对顶角相等D.平行于同一条直线的两条直线平行【解答】解:A、三条线段可以组成一个三角形,属于随机事件,符合题意;B、内错角相等,两条直线平行,是一定发生的事件,属于必然事件,不符合题意;C、对顶角相等,属于必然事件,不符合题意;D、在平面内,平行于同一条直线的两条直线平行,属于必然事件,不符合题意;故选:A.6.(3分)如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短【解答】解:要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是:垂线段最短,故选:D.7.(3分)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( )A.50°B.40°C.45°D.25°【解答】解:在△DEF中,∠1=50°,∠DEF=90°,∴∠D=180°﹣∠DEF﹣∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故选:B.8.(3分)如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需( )A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 【解答】解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中OA=OD∠AOB=∠COD,OB=OC∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选:B.9.(3分)下列各式不能用平方差公式计算的是( )A.(a﹣1)(a+1)B.(3+a)(a﹣3)C.(﹣2a+b)(2a﹣b)D.(﹣2a+b)(﹣2a﹣b)【解答】解:A、原式能用平方差公式计算,不合题意;B、原式能用平方差公式计算,不合题意;C、原式可化为﹣(2a﹣b)(2a﹣b),不能用平方差公式计算,符合题意;D、原式能用平方差公式计算,不合题意;故选:C.10.(3分)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果P也是图中的格点,且使得△ABP为等腰三角形,则点P的个数是( )A.5B.6C.7D.8【解答】解:如图,分情况讨论:①AB为等腰△ABP的底边时,符合条件的P点有4个;②AB为等腰△ABP其中的一条腰时,符合条件的P点有4个.故选:D.二、填空题(本大题共7小题,每小题4分,共28分.请把答案填写在答题卡的横线上)11.(4分)计算:3a•(2a﹣5)= 6a2﹣15a .【解答】解:3a•(2a﹣5)=6a2﹣15a.故答案为:6a2﹣15a.12.(4分)若∠A=67°,则∠A的余角= 23° .【解答】解:∵∠A=67°,∴∠A的余角=90°﹣67°=23°.故答案为:23°.13.(4分)在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为 30 .【解答】解:由题意可得,6a×100%=20%,解得,a=30.故答案为:30.14.(4分)如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=15米,则AB= 15 米.【解答】解:∵点C是AD的中点,也是BE的中点,∴AC=DC,BC=EC,在△ACB和△DCE中,AC=DC∠ACB=∠DCE,BC=EC∴△ACB≌△DCE(SAS),∴DE=AB,∵DE=15米,∴AB=15米,故答案为:15.15.(4分)图书馆现有4000本图书供学生借阅,如果每个学生一次借5本,则剩下的书y (本)和借书学生人数x(人)之间的函数关系式是 y=4000﹣5x .【解答】解:由题意可得:y=4000﹣5x,故答案为y=4000﹣5x.16.(4分)如图在△ABC中,BC=8,AB、AC的垂直平分线与BC分别交于E、F两点,则△AEF的周长为 8 .【解答】解:∵AB、AC的垂直平分线与BC分别交于E、F两点,∴AE=BE,AF=CF,∴△AEF的周长=AE+EF+AF=BE+EF+CF=BC=8,故答案为:8.17.(4分)如果定义一种新运算,规定|a b c d|=ad﹣bc,请化简:|x―1x+2x x+3|= ﹣3 .【解答】解:根据题意得:|x―1x+2x x+3|=(x﹣1)(x+3)﹣x(x+2)=x2+3x﹣x﹣3﹣x2﹣2x=﹣3,故答案为:﹣3.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:(1)(12)﹣1+(π﹣2020)0﹣(﹣1)2020;(2)(3xy3)2•(﹣xy).【解答】解:(1)(12)﹣1+(π﹣2020)0﹣(﹣1)2020=2+1﹣1=2.(2)(3xy3)2•(﹣xy)=9x2y6•(﹣xy)=﹣9x3y7.19.(6分)如图,如果AD∥BC,∠B=∠C,那么AD是∠EAC的平分线吗?请说明你判别的理由.【解答】解:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,又∵∠B=∠C,∴∠EAD=∠DAC,∴AD是∠EAC的平分线.20.(6分)如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为13.【解答】解:(1)P(指针指向偶数区域)=36=12;(2)方法一:如图,自由转动转盘,当转盘停止时,指针指向数字5或6所在的区域时则游戏者获胜.方法二:自由转动转盘,当它停止时,指针指向数字大于4的区域时,游戏者获胜.四.解答题(本大题3小题,每小题8分,满分24分)21.(8分)先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)]÷2y,其中x=12,y=﹣2.【解答】解:原式=(x2+4xy+4y2﹣x2+y2)÷2y =(5y2+4xy)÷2y=52y+2x,当x=12,y=﹣2时,原式=1﹣5=﹣4.22.(8分)如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上).(1)作△ABC关于直线MN的轴对称图形△A′B′C′;(2)在MN上画出点P,使得PA+PC最小;(3)求出△ABC的面积.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,点P为所作;(3)△ABC的面积=3×4―12×1×3―12×3×2―12×4×1=112.23.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=60°,求∠EBC的度数.【解答】解:(1)在△ABE和△DCE中,∠A=∠D∠AEB=∠DECAB=DC,∴△ABE≌△DCE(AAS);(2)∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=60°,∴∠EBC=30°.五.解答题(本大题2小题,每小题10分,满分20分)24.(10分)小王周末骑电动车从家里出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往商场,如图是他离家的距离(米)与时间(分钟)之间的关系示意图,请根据图中提供的信息回答下列问题:(1)在此变化过程中,自变量是 时间 ,因变量是 距离 .(2)小王在新华书店停留了多长时间?(3)买到书后,小王从新华书店到商场的骑车速度是多少?【解答】解:(1)在此变化过程中,自变量是时间,因变量是距离.故答案为:时间;距离;(2)30﹣20=10(分钟).所以小王在新华书店停留了10分钟;(3)小王从新华书店到商场的路程为6250﹣4000=2250米,所用时间为35﹣30=5分钟,小王从新华书店到商场的骑车速度是:2250÷5=450(米/分).25.(10分)如图,在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过t分钟后,它们分别爬行到了D、E处,设DC与BE的交点为F.(1)BE与CD有何数量关系?为什么?(2)问蜗牛在爬行过程中,DC与BE所成的∠BFC的大小有无变化?若有变化,请说明理由;若没有变化,求出∠BFC的大小.【解答】解:(1)BE=CD,理由如下:∵AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD;∠A=∠BCE=60°,在△ACD和△CBE中,AC=BC∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴BE=CD;(2)DC和BE所成的∠BFC的大小不变.理由如下:∵△ACD≌△CBE,∴∠FBC=∠ACD,∴∠BFC=180°﹣∠FBC﹣∠BCD=180°﹣∠ACD﹣∠BCD=180°﹣∠ACB=120°,∴∠BFC的大小不变,∠BFC=120°.。
北师大版七年级数学下册期末几何专题复习练习题(无答案)
北师大版七年级数学下册期末几何专题复习练习题1.如图,AB∥EF,CD⊥EF于点D.若∠ABC=40°,则∠BCD的度数为()A.140° B.130° C.120° D.110°2.如图,在△ABC中,BP平分∠ABC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为()A.3 B.4 C.5 D.63.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的度数为()A.20° B.30° C.40° D.70°4.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为()A.∠1+∠2-∠3 B.∠1+∠3-∠2C.180°+∠3-∠1-∠2 D.∠2+∠3-∠1-180°5.如图,某城市的两座高楼顶部各装有一个射灯,当光柱相交在同一个平面时,∠1+∠2+∠3=________°.6.将一副三角板和一张对边平行的纸条按如图所示方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________.7.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=2,则BC =________.8.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________°.9.如图,AB∥CD,试解决下列问题:(1)如图①,∠1+∠2=________;(2)如图②,∠1+∠2+∠3=________;(3)如图③,∠1+∠2+∠3+∠4=________;(4)如图④,试探究∠1+∠2+∠3+∠4+…+∠n=__________.10.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN上的一个动点,在点P移动的过程中,若NA=NB,则∠PAM与∠PBM是否相等?说明理由.11.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD.试说明:BD=2CE.12.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,试说明:EB⊥AB.13.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF.试说明:DE=DF.14.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F 分别在AC,BC上,且CE=BF,试说明:DE=DF.15.如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于D,试说明:BC=AB+CD.16.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为________;②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.17.如图,将Rt△ABC沿斜边翻折得到△ADC,E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,EF之间有何数量关系,并说明理由.18.(1)如图①,AB∥CD,则∠2+∠4与∠1+∠3+∠5有何关系?请说明理由;(2)如图②,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7还有类似的数量关系吗?若有,请直接写出,并将它们推广到一般情况,用一句话写出你的结论.19.已知等边三角形的三条边相等、三个角都等于60°.如图,△ABC与△CDE都是等边三角形,连接AD,BE.(1)如果点B,C,D在同一条直线上,如图①所示,试说明:AD=BE;(2)如果△ABC绕C点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.20.如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)试说明:PD=DQ;[提示:过点P作PF∥BC交AC于点F](2)若△ABC的边长为1,求DE的长.。
北师大数学练习册七下答案
北师大数学练习册七下答案北师大版数学练习册七年级下册答案【第一章:实数】1. 判断题(1) √,实数包括有理数和无理数。
(2) ×,无理数不能表示为两个整数的比。
2. 选择题(1) C,π是一个无理数。
(2) B,\( \sqrt{2} \) 是一个无理数。
3. 填空题(1) 无理数:\( \sqrt{3} \),\( \pi \)。
(2) 有理数:\( \frac{2}{3} \),\( -5 \)。
4. 计算题(1) \( \sqrt{16} = 4 \)。
(2) \( \sqrt{0.36} = 0.6 \)。
【第二章:代数式】1. 判断题(1) √,代数式可以包含字母和数字。
(2) ×,代数式中的字母可以代表任意数。
2. 选择题(1) A,\( x+2 \) 是一个一次代数式。
(2) D,\( x^2+3x+2 \) 是一个二次代数式。
3. 填空题(1) 同类项:\( 5x \) 和 \( -3x \)。
(2) 合并同类项:\( 5x - 3x = 2x \)。
4. 计算题(1) 展开并简化:\( (x+3)(x-2) = x^2 + x - 6 \)。
【第三章:方程与不等式】1. 判断题(1) √,方程是含有未知数的等式。
(2) ×,方程的解必须是实数。
2. 选择题(1) B,\( x = 2 \) 是方程 \( x+3 = 5 \) 的解。
(2) C,不等式 \( x > 3 \) 的解集是所有大于3的实数。
3. 填空题(1) 解一元一次方程:\( x = 1 \)。
(2) 解不等式:\( x > 2 \)。
4. 计算题(1) 解方程:\( 2x - 5 = 3 \),解得 \( x = 4 \)。
(2) 解不等式:\( 3x + 1 > 10 \),解得 \( x > 3 \)。
【第四章:几何初步】1. 判断题(1) √,线段是直线的一部分。
2019年北师大版七年级下册数学期末复习:几何压轴题训练
2019年北师大版七年级下册期末复习:几何压轴题训练1.(2017秋•石景山区期末)如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.2.(2018•九龙坡区校级模拟)如图所示,已知AB∥CD,AB∥EF,若CE平分∠BCD,且∠ABC=52°,求∠CEF的度数.3.(2018秋•九龙坡区校级期中)如图,AB∥CD,直线EF与AB,CD分别交于M、N两点,过点M作MG⊥MN交CD于G点,过点G作GH平分∠MGD,若∠EMB=40°,求∠MGH 的度数.4.(2018秋•沙坪坝区校级期中)如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A-∠B=8°,求∠BDE的度数.5.(2018春•庐阳区期末)如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.6.(2017秋•确山县期末)如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED 的位置关系,并说明理由.7.(2018春•泰山区期中)如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.8.(2018秋•上杭县期中)如图,点D在△ABC的边AB上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E.(要求:尺规作图,保留作图痕迹,但不必写出作法);(2)在(1)的条件下,求证:DE∥AC.9.(2018春•相城区期中)将一副直角三角尺BAC和ADE如图放置,其中∠BAC=∠ADE=90°,∠BCA=30°,∠AED=45°,若∠AFD=75°,试判断AE与BC的位置关系,并说明理由.10.(2018春•容县期中)如图,直线AB,CD相交于点O,OA平分∠EOC.已知∠DOE=2∠AOC,求证:OE⊥CD.11.(2018春•鱼台县期中)课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,所以∠B=∠EAB,∠C=.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.12.(2018秋•连城县期中)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=70°,求:∠D的度数.13.(2017秋•固始县期末)如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置,若∠DEF=75°,则∠AED′等于多少?14.(2018秋•沙坪坝区校级月考)如图,MN∥PQ,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C.过点B作BD平分∠ABC交AC于点D,若∠NAC=32°,求∠ADB的度数.15.(2017秋•洛宁县期末)观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有对对顶角.(2)如图b,图中共有对对顶角.(3)如图c,图中共有对对顶角(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2000条直线相交于一点,则可形成多少对对顶角?16.(2017秋•孟津县期末)如图,AB、CD相交于点O,OE是∠AOD的平分找,∠AOC=25°,求∠BOE的度数.17.(2018春•长白县期中)如图所示,已知直线DE∥BC,GF⊥AB于点F,∠1=∠2,判断CD与AB的位置关系.并说明理由.18.(2017秋•永安市期末)直线AB、CD被直线EF所截,AB∥CD,点P是平面内一动点.设∠PFD=∠1,∠PEB=∠2,∠FPE=∠α.(1)若点P在直线CD上,如图①,∠α=50°,则∠1+∠2=°;(2)若点P在直线AB、CD之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出证明;(3)若点P在直线CD的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请作出判断并说明理由.19.(2017秋•辉县市期末)如图,直线AB∥CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.20.(2018春•罗庄区期中)如图,已知AB∥CD,EF∥MN,∠1=115°.(1)求∠2和∠4的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来.(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的2倍多6°,求这两个角的大小.21.(2017秋•洛宁县期末)如图,直线AB∥CD,EF⊥CD,F为垂足,∠GEF=30°,求∠1的度数.22.(2018春•奉贤区期中)如图,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等吗?请说明理由.请完成填空并补充完整.解:因为∠1+∠2=180°(已知)又因为∠2+∠=180°(邻补角的意义)所以∠1=∠()#JB23.(2018春•兰陵县期中)(1)探究:如图1,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB 交BC于点F.若∠ABC=40°,求∠DEF的度数.(2)应用:如图2,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,求∠DEF的度数.24.(2018秋•綦江区校级月考)如图:已知EF∥AD,∠1=∠2,∠AGD=108°.求∠BAC 的度数.25.(2017秋•渝中区校级期末)如图1,已知A、O、B三点在同一直线上,射线OD、OE 分别平分∠AOC、∠BOC.(1)求∠DOE的度数;(2)如图2,在∠AOD内引一条射线OF⊥OC,其他不变,设∠DOF=a o(o o<a<90o).a.求∠AOF的度数(用含a的代数式表示);b.若∠BOD是∠AOF的2倍,求∠DOF的度数.26.(2018•九龙坡区校级模拟)如图,AB∥CD,点E在AB上,点F在CD上,连接EF,EH平分∠BEF,交CD于点H,过F作FG⊥EF,交EH于点G,若∠G=32°,求∠HFG的度数.27.(2018春•大田县期中)如图,如果∠1=∠2,那么图中哪两条线段平行?请说明理由.28.(2018春•大田县期中)如图,AB∥CD,直线EF交AB于点G,交CD于点H,HM⊥CD 于点H,如果∠1=48°,求∠2的度数.29.(2018春•杏花岭区校级期中)如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)∠CBD=(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.30.(2018秋•宁阳县期中)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.31.(2017秋•南召县期末)阅读理解如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC∴∠B=∠,∠C=∠.又∵∠EAB+∠BAC+∠DAC=180°(平角定义)∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为°.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为°(用含n的代数式表示)32.(2018春•西城区校级期中)如图,∠1=∠2,AB∥EF,求证:∠3=∠4.33.(2017秋•惠阳区期末)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.34.(2017秋•南召县期末)操作:如图,直线AB与CD交于点O,按要求完成下列问题.(1)用量角器量得∠AOC=度.AB与CD的关系可记作.(2)画出∠BOC的角平分线OM,∠BOM=∠=度.(3)在射线OM上取一点P,画出点P到直线AB的距离PE.(4)如图若按“上北下南左西右东”的方位标记,请画出表示“南偏西30°”的射线OF.35.(2018春•北海期末)如图,直线AB,CD,EF相交于点O,∠AOE:∠AOD=1:3,∠COB:∠DOF=3:4,求∠DOE的度数.36.(2017秋•淅川县期末)观察发现:已知AB∥CD,点P是平面上一个动点.当点P在直线AB、CD的异侧,且在BC(不与点B、C重合)上时,如图(1),容易发现:∠ABP+∠DCP=∠BPC.拓展探究:(1)当点P位于直线AB、CD的异侧,且在BC左侧时,如图(2),∠ABP、∠DCP、∠BPC之间有何关系?并说明理由.(2)当点P位于直线AB、CD的异侧,且在BC右侧时,如图(3),直接写出∠ABP、∠DCP、∠BPC之间关系.(3)当点P位于直线AB、CD的同侧,如图(4),直接写出∠ABP、∠DCP、∠BPC之间关系.37.(2018春•上饶县期末)(1)如图1,AM∥CN,求证:①∠MAB+∠ABC+∠BCN=360°;②∠MAE+∠AEF+∠EFC+∠FCN=540°;(2)如图2,若平行线AM与CN间有n个点,根据(1)中的结论写出你的猜想并证明.38.(2017秋•金牛区校级期末)如图,已知AB∥CD,若∠C=35°,AB是∠FAD的平分线.(1)求∠FAD的度数;(2)若∠ADB=110°,求∠BDE的度数.39.(2017秋•新野县期末)(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.40.(2018春•上饶县期末)如图,已知∠1=∠2,AB∥EF.求证:∠A=∠E.。
北师大版七年级下册数学几何解答题专题复习
2021-2022学年七年级下学期数学几何解答题专题复习1、如图,在ABC中,CD平分∠ACB,E为边AC上一点,连接DE,EC=ED,过点E作EF⊥AB,垂足为F.(1)判断DE与BC的位置关系,并说明理由;(2)若∠A=30°,∠ACB=80°,求∠DEF的度数.2、已知:如图,AB∥DE,AC∥DF,BF=EC.(1)求证:△ABC≌△DEF;(2)过点C作CG⊥AB于点G,若S△ABC=9,DE=6,求CG 的长.3、如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=120°,∠BDC=2∠1,求∠DBC的度数.4、如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.5、如图,点P,Q分别是等边△ABC边AB,BC上的动点(端点除外),点P从点A出发,沿AB向点B方向运动,同时,点Q从点B出发,以相同的速度沿BC向点C方向运动.连接AQ,CP,AQ,CP交于点M.(1)求证:AQ=CP;(2)求∠QMC的度数;(3)若点P,Q分别运动到AB,BC的延长线上,直线AQ,CP交于点M,请在备用图中补全图形,并求出∠QMC的度数.6、如图,ABC中,过点A,B分别作直线AM,BN,且AM//BN,过点C作直线DE交直线AM于D,交直线BN于E,设AD=a,BE=b.(1)如图1,若AC,BC分别平分∠DAB和∠EBA,求∠ACB的度数;(2)在(1)的条件下,若a=1,b=52,求AB的长;(3)如图2,若AC=AB,且∠DEB=∠BAC=60°,求DC的长.(用含a,b的式子表示)7、如图,点C线段AB上一点,以线段AC为腰作等腰直角△ACD,∠ACD=90°,点E 为CD延长线上一点,且CE=CB,连接AE,BD,点F为AE延长线上一点,连接BF,FD.(1)①求证:△ACE≌△DCB;②试判断BD与AF的位置关系,并证明;(2)若BD平分∠ABF,当CD=3DE,S△ADE32,求线段BF的长.8、如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.9、如图1,在Rt△ABC中,∠A=90°,∠B=30°,D,G分别是AB,BC上的点,连接GD,且GD=GB.以点D为顶点作等边△DEF,使点E,F分别在AC,GC上.(1)求∠DGF的大小;(2)求证:△FDG≌△EFC;(3)如图2,当DE//BC时,若△DEF的面积为2,请直接写出△ABC的面积.10、(1)如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.(2)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD.(3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.11、如图,在边长为8的正方形ABCD中,点E在边AB上移动(不与端点重合).连接CE,以CE为一边在其右侧作△CEF,其中∠CEF=90°,CE=EF,点G为FC的中点,过点F 作FH⊥AD,垂足为点H,连接GD,GH,F A.(1)求证:∠EAF=135°;(2)请判断线段GD和GH之间有何关系?写出你的结论并证明;(3)在点E移动过程中,△EAF面积有最大值吗?如果有,求出△EAF面积的最大值及此时BE的长;如果没有,说明理由.12、如图,已知四边形ABCD ,连接AC ,其中AD AC ⊥,BC AC ⊥,AC BC =,延长CA 到点E ,得AE AD =,点F 为AB 上一点,连接FE 、FD ,FD 交AC 于点G .(1)求证:EAF DAF ≌;(2)若ADF α∠=,DFE β∠=,试探究α、β的数量关系,并说明理由; (3)如图2,连接CF ,若DF CF ⊥,求DCF ∠的度数.13、如图1,在△ABC 中,CA =CB ,∠ACB =90°.点D 是AC 中点,连接BD ,过点A 作AE ⊥BD 交BD 的延长线于点E ,过点C 作CF ⊥BD 于点F . (1)求证:∠EAD =∠CBD ; (2)求证:BF =2AE ;(3)如图2,将△BCF 沿BC 翻折得到△BCG ,连接AG ,请猜想并证明线段AG 和AB 的数量关系.14、在△ABD中∠A=45°,BC⊥AD于点C,E为AB上一点,连接DE交BC于点F,且∠ADE=∠CBD.(1)如图1,求证:DE=BD.(2)如图2,作AM⊥BD于点M,交BC于点H,判断AH与BD的数量关系,并证明.(3)在(2)的条件下,当CH:BH=4:7,△ADE的面积为152时,①求线段AD的值;②设AH=a,用含a的代数式表示线段BM的值.15、如图,点P是∠MON内部一点,过点P分别作P A∥ON交OM于点A,PB∥OM交ON 于点B(P A≥PB),在线段OB上取一点C,连接AC,将△AOC沿直线AC翻折,得到△ADC,延长AD交PB于点E,延长CD交PB于点F.(1)如图1,当四边形AOBP是正方形时,求证:DF=PF;(2)如图2,当C为OB中点时,试探究线段AE,AO,BE之间满足数量关系,并说明理由;(3)如图3,在(2)的条件下,连接CE,∠ACE的平分线CH交AE于点H,设OA=a,BE=b,若∠CAO=∠CEB,求△CDH的面积(用含a,b的代数式表示).16、 以BC 为斜边在它的同侧作Rt DBC 和Rt ABC ,其中90A D ∠=∠=︒,AB AC =,AC 、BD 交于点P .(1)如图1,BP 平分ABC ∠,求证:BC AB AP =+;(2)如图2,过点A 作AE BP ⊥,分别交BP 、BC 于点E 、点F ,连接AD ,过A 作AG AD ⊥,交BD 于点G ,连接CG ,CG 交AF 于点H ,求证:GH CH =;(3)如图3,点M 为边AB 的中点,点Q 是边BC 上一动点,连接MQ ,将线段MQ 绕点M 逆时针旋转90︒得到线段MK ,连接PK 、CK ,当15DBC ∠=︒,4AP =时,求PK CK +的最小值.17、 已知△ABC ≌△EDC ,过点A 作直线l ∥BC ;(1)如图1,点D 在线段AC 上时,点E 恰好落在直线l 上点A 的右侧,求∠ACB 的度数; (2)如图2,在(1)的条件下,连接BE 交AC 于点F ,G 是线段CE 上一点,且满足CG=CF ,连接DG 交EF 于点H ,连接CH .求证:CHG CBE S GHS BE; (3)如图3,∠ACB 大小与(1)中相同,当点D 不在线段AC 上时,且点F 、点G 、点H 满足(2)中条件,点M ,N 分别为线段CE ,GD 的延长线与直线l 的交点.请直接写出△GMN 为等腰三角形时,∠EBC 与∠BCD 满足的数量关系.18、(1)问题引入:如图1,点F 是正方形ABCD 边CD 上一点,连接AF ,将ADF 绕点A 顺时针旋转90°与ABG 重合(D 与B 重合,F 与G 重合,此时点G ,B ,C 在一条直线上),∠GAF 的平分线交BC 于点E ,连接EF ,判断线段EF 与GE 之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD 中,∠ADC +∠B =180°,AB =AD ,E ,F 分别是边BC ,CD 延长线上的点,连接AE ,AF ,且∠BAD =2∠EAF ,试写出线段BE ,EF ,DF 之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD 中,∠ABC =90°,AC 平分∠DAB ,点E 在AB 上,连接DE ,CE ,且∠DAB =∠DCE =60°,若DE =a ,AD =b ,AE =c ,求BE 的长.(用含a ,b,c 的式子表示)。
最新北师大版七年级下册数学期末复习三角形全等证明练习试题以及答案
七年级下册数学期末复习试题1、已知:如图,∠A=∠B,∠3=∠4,求证:AC=BD.2、如图,D在AB上,E在AC上,BD、CE交于O,若AB=AC,∠B=∠C.求证:AD=AE.3、已知:如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。
求证:AE=CE。
5、已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。
6、将两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,求证:(1)DC=BE;(2)(2)DC⊥BE。
7、已知:如图,AD=AE,点D、E在BC上,BD=CE,∠1=∠2。
求证:△ABD≌△ACE.8、已知:如图,△ABC中,∠BAC=90°,AB=AC,直线DE经过点A,BD⊥DE,CE⊥DE,垂足为D、E.求证:BD=AE。
9、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:BE+DE=AD.10、已知:如图3,AB∥CD,AD∥BC.求证:AB=CD,AD=BC.11、如图,已知AB=CD,AC=BD,求证:∠A=∠D.12、已知:如图,在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任意一点.求证:PA=PD.13、14、15、16、如图所示,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)试说明:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.17、把两个含有45°角的直角三角板如图放置,点D在AC上连接AE、BD,试判断AE与BD的关系,并说明理由。
18、如图:E在线段CD上,EA、EB分别平分∠DAB和∠CBA, 点F在线段AB上运动,AD=4㎝,BC=3㎝, 且AD∥BC(1)你认为AE和BE有什么位置关系?并验证你的结论;(2)当点F运动到离点A多少㎝时,△ADE才能和△AFE全等?为什么?(3)在(2)的情况下,此时BF=BC吗?为什么?并求出AB的长。
北师大版七下数学几何部分期末练习
北师大版七年级下册数学几何及概率部分练习题精选1.已知AB∥CD,分别探讨下列四个图形中∠APC和∠PAB、∠PCD的关系,并说明理由.2.如图所示的四幅图形,都满足AB∥CD,请在每幅图形中写出∠A、∠C,与∠AEC的数量关系(都指图中小于180°的角),并任选一个完成它的证明过程.3.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.4.如图,AC∥BD,AB∥CD,∠1=∠E,∠2=∠F,AE交CF于点O,试说明:AE⊥CF5.如图所示,△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=30°,∠C=70°,求∠DAE的度数;(2)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由6.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.7.如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请你判断他的发现是否正确,并说明理由8.情境观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.拓展延伸:如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE.9. 如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.10.如图,在△ABC中,AB=AC,AD是BC边上的高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状,并证明你的结论11.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E,若∠AFD=158°,求∠EDF的度数12.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数13.已知:如图,在△ABC中,∠ABC=∠ACB,AD⊥BD,AE⊥CE,且AD=AE.求证:△AEC≌△ADB14.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由15.如图,在等边△ABC中,点D为AC上一点,CD=CE,∠ACE=60°.(1)求证:△BCD≌△ACE;(2)延长BD交AE于F,连接CF,若AF=CF,猜想线段BF、AF的数量关系,并证明你的猜想16.如图,AD是△ABC的中线,BE⊥AD于点E,CF⊥AD交AD的延长线于点F.求证:BE=CF17.如图,△ABC是等边三角形,D是AC上一点,BD=CE,∠1=∠2,试判断BC与AE的位置关系,并证明你的结论18.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC;②AD+AB=AC19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.21.已知:如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数22.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.23.已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB∥CD.24.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA25.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠BAE=25°,求∠ACF的度数.26.在△ABC中,AB=AC,AD⊥BC于D,BE⊥AC于E,AE=BE.求证:(1)∠DAB=∠EBC;(2)AF=2CD.27.如图,AB∥ED,已知AC=BE,且点B、C、D三点共线,若∠E=∠ACB.求证:BC=DE.28.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.29.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF30.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.31.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.32.已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC.求证:BC=DE.33.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.34.如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.35.阅读发现:(1)如图①,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD,AE.易证:△BCD≌△BAE.(不需要证明)提出问题:(2)在(1)的条件下,当BD∥AE时,延长CD交AE于点F,如图②,求AF的长.解决问题:(3)如图③,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD,AE.当∠BAE=45°时,点E到AB的距离EF的长为2,求线段CD的长为36.已知:如图,在△ABC中,∠ACB=90°,点D在BC上,且BD=AC,过点D作DE⊥AB于点E,过点B作CB的垂线,交DE的延长线于点F.求证:AB=DF.37.如图,已知∠ABC=90°,D是AB延长线上的点,AD=BC,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,求证:FD⊥CD.38.如图,请你在下列各图中,过点P画出射线AB或线段AB的垂线.39.如图(1),由三角形的内角和或外角和可知:∠ABC=∠A+∠C+∠O在图(2)中,直接利用上述的结论探究:①若AD、CD分别平分∠OAB,∠OCB,且∠O=80°∠B=120°,求∠ADC的度数②AD、CD分别平分∠OAB,∠OCB,猜想∠O,∠ABC,∠ADC之间的等量关系,并说明理由.40.已知:如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E41.如图,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,CE与BD相交于点M,BD交AC于点N.试猜想BD与CE 有何关系?并证明你的猜想42.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且OB=OC.求证:AO平分∠BAC43.已知:如图,在△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点E,F 分别在AB,AC边上,连接DE,DF,∠EDF=90°,求证:BE=AF44.如图:△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,点B,C,E在同一条直线上,连结DC.(1)请找出图中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.45.探究:(1)如图1,在ABC与ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连结BD、CE.请写出图1中所有全等的三角形:(不添加字母).(2)如图2,已知△ABC,AB=AC,∠BAC=90°,l是过A点的直线,CN⊥l,BM⊥l,垂足为N、M.求证:△ABM≌△CAN.解决问题:(3)如图3,已知△ABC,AB=AC,∠BAC=90°,D在边BC上,DA=DE,∠ADE=90°,求证:AC⊥CE.46.已知:如图,EF⊥BC于点F,ED⊥AB于点D交BC于点M,BD=EF.求证:BM=EM47.如图,在△ABC的外部,分别以AB、AC为直角边,点A为直角顶点,作等腰直角△ABD和等腰直角△ACE,CD与BE交于点P.试证:(1)CD=BE;(2)∠BPC=90°48.如图(1),△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN于点D,BE⊥MN于点E.(1)请说明:△ADC≌△CEB.(2)请你探索线段DE,AD,EB间的等量关系,并说明理由;(3)当直线MN绕点C旋转到图(2)的位置时,其它条件不变,线段DE,AD,EB又有怎样的等量关系?(不必说理由).49.(1)如图①∵∠B+∠D+∠1=180°又∵∠1=∠A+∠2∠2=∠C+∠E∴∠A+∠C+∠E+∠B+∠D=180°(2)将图①变形成图②,∠A+∠DBE+∠C+∠D+∠E仍然为180°,请证明这个结论.(3)将图①变形成图③,则∠A+∠B+∠C+∠D+∠E还为180°,请继续证明这个结论.50.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由51.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F(1)若△CMN的周长为20cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数52.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上53.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论54.已知△ABC,∠ACB=90°,AC=4,MN垂直平分AB,且BM=2CM,求CM的长.55.作图题:(不写作法,但必须保留作图痕迹)如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.56.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹57.△ABC中,DE,FG分别垂直平分边AB,AC,垂足分别为点D,G.(1)如图,①若∠B=30°,∠C=40°,求∠EAF的度数;②如果BC=10,求△EAF的周长;③若AE⊥AF,则∠BAC=°.(2)若∠BAC=n°,则∠EAF= °(用含n代数式表示)58.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E59.已知△ABC中∠BAC=120°,BC=26,AB、AC的垂直平分线分别交BC于E、F,与ABAC分别交于点D、G.求:(1)∠EAF的度数.(2)求△AEF的周长60.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B61.已知,如图,P是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别C、D,求证:OP是CD的垂直平分线.62如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.63已知:如图,在△ABC中,AB=AC,∠A=60°,BD是中线,延长BC至点E,使CE=CD.求证:DB=DE64如图,已知l1,l2分别是△ABC的边AB、BC的垂直平分线,l1与l2相交于点O,试判断线段0A与OC的数量关系65如图,在△ABC中,∠BAC的平分线与BC的垂直平分线相交于点P,连接BP、CP.试问:∠ABP+∠ACP的度数是定值吗?请证明你的结论66.图,已知在△ABC中,∠C=90°,AB的垂直平分线MN交BC于点D.(1)如果∠CAD=20°,求∠B的度数.(2)如果∠CAB=50°,求∠CAD的度数.(3)如果∠CAD:∠DAB=1:2,求∠CAB的度数67.如图,△ABC中,∠B=25°,∠C=40°,AB的垂直平分线DN交BC于D,AC的垂直平分线EF交BC于E,连接AD、AE.求△ADE各内角的度数68. 数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E 作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).69.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.70.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N,(1)若△CMN的周长为21cm,求AB的长;(2)若∠MCN=50°,求∠ACB的度数.71.已知:如图,AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.72.已知:如图,在△ABC中,∠BAC=120°,若PM、QN分别垂直平分AB、AC.(1)求∠PAQ的度数;(2)如果BC=10cm,求△APQ的周长.73.△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°.(1)如图①,当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)如图②,当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由.74.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PD=2,求PC的长.75.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.76.如图,AP,CP分别是△ABC外角∠MAC和∠NCA的平分线,它们交于点P.求证:BP为∠MBN的平分线77.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为49和40,求△EDF的面积为多少?78.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD=CD 、BE=CF .(1)求证:AD 平分∠BAC ;(2)直接写出AB+AC 与AE 之间的等量关系.79.如图所示,已知∠B=∠C=90°,DM 平分∠ADC ,AM 平分∠DAB ,求证:M 是BC 的中点.80.已知:∠AOB=90°,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D ,PC 和PD 有怎样的数量关系,请说明理由.81.如图,在△ABC 中,∠ACB=3∠B ,∠1=∠2,CD ⊥AD 于D ,求证:AB-AC=2CD82.如图,在△ABC 中,已知AD 平分∠BAC ,过AD 上一点P 作EF ⊥AD ,交AB 于E 、交AC 于F ,交BC 延长线于M ,则有正确结论:∠M=21(∠ACB-∠B ).请说明理由83.如图,AD ∥BC ,∠DAB 的平分线与∠CBA 的平分线交于点P ,过点P 的直线垂直于AD ,垂足为D ,交BC 于点C .试问:点P 是线段CD 的中点吗?为什么?84.如图,在△ABC中,D为BC中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC 交AC的延长线于G,求证:BF=CG85.观察、猜想、探究:在△ABC中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,求证:AB=AC+CD;(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.86.(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.(2)如图2,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.(3)如图3,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)87.一个不透明的口袋里装有2个红球、1个黄球和若干个绿球(除颜色不同外其余都相同),若从中任意1摸出1个球是绿球的概率是4(1)求口袋中绿球的个数;(2)若第一次从口袋中任意摸出1个球,放回搅匀,第二次再摸出1个球,用列表或画树状图方法写出所有可能性,并求出刚好摸到一个红球和一个绿球的概率88.在一个不透明的布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.(1)随机地从袋中取出1只球,求取出的球是黑球的概率;(2)若取出的第1只球是红球,将它放在桌上,然后从袋中余下的球中再随机地取出1只球,这时取出的球还是红球的概率是多少?89.在一个不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球21个,蓝球1个.若从中任意摸出一个球,它是蓝球的概率为4(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.90.将6个完全相同的小球分装在甲、乙两个不透明的口袋中,甲袋中有3个球,分别标有数字1、3、5;乙袋中有3个球,分别标有数字2、4、6,从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率;(2)摸出的两个球上数字之和为多少时的概率最大?。
2020年北师大版七年级下册数学《期末检测题》(附答案)
北师大版数学七年级下学期期 末 测 试 卷(时间:120 总分:120分) 学校________ 班级________ 姓名________ 座号________ 一、选择题(每小题3分,共30分)1.下列世界博览会会徽图案中是轴对称图形的是( )A. B. C. D.2.下列计算正确的是 ( ) A. a 5+a 5=a 10B. a 3·a 2=a 6C. a 7÷a=a 6D. (-a 3)2=-6a 63.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠44. 下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是( ) A. 5,1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 45.如图①所示,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“信”的概率是( )A.12B.13C.23D.166.利用基本作图,不能作出唯一三角形的是( ) A. 已知三边 B. 已知两边及其夹角C. 已知两角及其夹边D. 已知两边及其中一边对角7.下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;②垂线段最短;③在同一平面内平行于同一条直线的两条直线也互相平行;④同位角相等.其中正确的个数有( ) A 1个B. 2个C. 3个D. 4个8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A. 22()()a b a b a b +-=-B. 222()2a b a ab b +=++C. 22()22a a b a ab +=+D. 222()2a b a ab b -=-+9.如图,等腰△ABC 中,AB=AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( )A. 13B. 14C. 15D. 1610.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图像描述大致是( )A. B. C. D.二、填空题(每小题3分,共15分)11.0.000 000 087用科学记数法可表示为_____. 12.如图,已知AB∥CD,∠1=120°,则∠C=____.13.一棵树高h(m)与生长时间n(年)之间满足一定的关系,请你根据下表中的数写出 h(m)与n(年)之间的关系式:h =____.n(年) 2 4 6 8 10 …h(m) 2.6 3.2 3.8 4.4 5.0 …14.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是________个.15.如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的.若∠BAC=145°,则∠α=____.三、解答题(共75分)16.先化简,再求值:(a+2)2-(a+1)(a-1),其中a=-3217.校园一角的形状如图所示,其中AB,BC,CD表示围墙,小亮通过作角平分线在图示的区域中找到了一点P,使得点P到三面墙的距离都相等,请你用尺规作图法帮小亮画出P点.(保留作图痕迹)18.请将下列事件发生的概率标在图中.(1)抛出的篮球会下落;(2)从装有3个红球、7个白球的口袋中取一个球,恰好是红球(这些球除颜色外完全相同);(3)掷一枚质地均匀硬币,硬币落下后正面朝上.19.如图所示,已知AD∥BC,且DC⊥AD于D.(1)DC与BC有怎样的位置关系?说说你的理由;(2)你能说明∠1+∠2=180°吗?20.如图,已知P 点是∠AOB 平分线上一点,PC ⊥OA ,PD ⊥OB ,垂足为C 、D . (1)∠PCD=∠PDC 吗?为什么? (2)OP 是CD 的垂直平分线吗?为什么?21.如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD ∆≌BCE ∆; (2)若D ∠=50°,求B Ð的度数.22.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍. (1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?23.已知:CD 是经过∠BCA 顶点C 的一条直线,CA =CB ,E 、F 分别是直线CD 上两点,且∠BEC =∠CFA =∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.①如图1,若∠BCA=90°,∠α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想: .答案与解析一、选择题(每小题3分,共30分)1.下列世界博览会会徽图案中是轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称的定义即可解答. 【详解】解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图叫做轴对称图形,这条直线叫做对称轴,根据轴对称的定义可得只有B选项是轴对称图形.故选B.【点睛】本题考查轴对称的定义,熟悉掌握是解题关键.2.下列计算正确的是 ( )A. a5+a5=a10B. a3·a2=a6C. a7÷a=a6D. (-a3)2=-6a6【答案】C【解析】A. a5+a5=2a5,故A选项错误;B. a3·a2=a5,故B选项错误;C. a7÷a=a6,正确;D. (-a3)2=a6,故D选项错误,故选C.3.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠4【答案】B【解析】∵∠1=∠2,∴AB//CD(内错角相等,两直线平行),故选B.4. 下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是()A. 5, 1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 4【答案】D【解析】A、3+1<5,不能构成三角形,故本选项错误;B、2+2=4,不能构成三角形,故本选项错误;C、3+3<7,不能构成三角形,故本选项错误;D、2+3>4,能构成三角形,故本选项正确,故选D.5.如图①所示,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“信”的概率是( )A. 12B.13C.23D.16【答案】D 【解析】一共有6张卡片,只有一张上的汉字是“信”字,所以从中任意翻开一张是汉字“信”的概率是:16,故选D.6.利用基本作图,不能作出唯一三角形的是()A. 已知三边B. 已知两边及其夹角C. 已知两角及其夹边D. 已知两边及其中一边的对角【答案】D【解析】【分析】根据全等三角形判定定理一一判断即可.【详解】A.根据SSS定理可知能作出唯一三角形,故本选项错误;B.根据SAS定理可知能作出唯一三角形,故本选项错误;C.根据ASA定理可知能作出唯一三角形,故本选项错误;D.根据已知两边及其中一边的对角不能作出唯一三角形,故本选项正确. 故选D.【点睛】本题考查了全等三角形的判定定理,熟练掌握定理是解题的关键.7.下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;②垂线段最短;③在同一平面内平行于同一条直线的两条直线也互相平行;④同位角相等.其中正确的个数有( ) A. 1个 B. 2个C. 3个D. 4个【答案】C 【解析】 【分析】根据垂线的性质、平行线的性质、平行公理的推论逐个判断即可.【详解】解:在同一平面内过一点有且只有一条直线和已知直线垂直,正确,故①正确; 垂线段最短,故②正确;在同一平面内平行于同一条直线的两条直线也互相平行,故③正确; 只有两直线平行时,同位角才相等,错误,故④错误; 正确的个数是3个, 故选C .【点睛】本题考查了垂线的性质、平行线的性质、平行公理的推论等知识点,能熟记知识点的内容是解此题的关键.8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A. 22()()a b a b a b +-=- B. 222()2a b a ab b +=++C. 22()22a a b a ab +=+D. 222()2a b a ab b -=-+【答案】A 【解析】 【分析】根据阴影部分面积的两种表示方法,即可解答. 【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b+-,则22()()a b a b a b+-=-故选:A. 【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.9.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC 的周长为()A. 13B. 14C. 15D. 16【答案】A【解析】试题分析:∵DE是AB的垂直平分线,∴AE=BE,∴△BEC周长=BE+CE+BC=AE+CE+BC=AC+BC,∵腰长AB=8,∴AC=AB=8,∴△BEC周长=8+5=13.故选A.考点:线段垂直平分线的性质;等腰三角形的性质.10.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是()A. B. C. D.【答案】B【解析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为二段.根据题意和图示分析可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,当火车完全进入隧道,由于隧道长等于火车长,此时y最大,当火车开始出来时y逐渐变小,故选B.二、填空题(每小题3分,共15分)11.0.000 000 087用科学记数法可表示为_____.10-【答案】8.7×8【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,10-,所以:0.000 000 087=8.7×810-.故答案为8.7×812.如图,已知AB∥CD,∠1=120°,则∠C=____.【答案】60°【解析】∵∠1+∠FEB=180°,∠1=120°,∴∠FEB=180°-∠1=60°,∵AB//CD,∴∠C=∠FEB=60°,故答案为60°.13.一棵树高h(m)与生长时间n(年)之间满足一定的关系,请你根据下表中的数写出 h(m)与n(年)之间的关系式:h=____.n(年) 2 4 6 8 10 …h(m) 2.6 3.2 3.8 4.4 5.0 …【答案】2+0.3n.【解析】∵2.6=2+0.3×2;3.2=2+0.3×4;3.8=2+0.3×6;…∴h=2+0.3n,故答案为2+0.3n.14.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是________个.【答案】15【解析】试题分析:利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.考点:利用频率估计概率.15.如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的.若∠BAC=145°,则∠α=____.【答案】70°【解析】∵△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,∴∠BAE=∠BAC=145°,∠DAC=∠BAC=145°,∠E=∠ACD=∠ACB,∴∠DAE=∠BAC+∠BAE+∠DAC-360°=145°+145°+145°-360°=75°,∴∠EAC=∠DAC-∠DAE=145°-75°=70°,∵∠E+∠α+∠EMD=180°,∠EAC+∠AMC+∠ACD=180°,∠EMD=∠AMC,∴∠α=∠EAC=70°,故答案为70°.【点睛】本题考查了翻折的性质,三角形的内角和是180度等,掌握翻折前后的两个三角形是全等的,对应角是相等的是解题的关键.三、解答题(共75分)16.先化简,再求值:(a+2)2-(a+1)(a-1),其中a=-3 2【答案】-1.【解析】试题分析:先去括号,然后再合并同类项,最后代入数值进行计算即可. 试题解析:原式=a2+4a+4-a2+1=4a+5,当a=-32时,原式=4×(-32)+5=-1.17.校园一角的形状如图所示,其中AB,BC,CD表示围墙,小亮通过作角平分线在图示的区域中找到了一点P,使得点P到三面墙的距离都相等,请你用尺规作图法帮小亮画出P点.(保留作图痕迹)【答案】见解析【解析】试题分析:分别作∠ABC、∠BCD的角平分线BP、CP,BP与CP的交点即为满足条件的点.试题解析:如图所示,点P即为所求作的点.18.请将下列事件发生的概率标在图中.(1)抛出的篮球会下落;(2)从装有3个红球、7个白球的口袋中取一个球,恰好是红球(这些球除颜色外完全相同);(3)掷一枚质地均匀的硬币,硬币落下后正面朝上.【答案】(1)1处.(2)310处.(3)12处. 【解析】 试题分析:先分别计算所给事件的概率,然后根据概率在图中标记即可.根据随机事件概率大小的求法,找准两点:(1)符合条件的情况数目;(2)全部情况的总数;二者的比值就是其发生的概率的大小.试题解析:(1)抛出的篮球会落下,是必然事件,所以概率为1,因此应该标在1(100%)处;(2)袋子中一共有10个球,其中有3个红球,因此从中任意取一个球是红球的概率为310,因此应该标在310(30%)处; (3)掷一枚质地均匀的硬币,硬币落下后正面朝上的概率为12,因此应该标在12(50%)处. 【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 19.如图所示,已知AD∥BC,且DC⊥AD 于D.(1)DC 与BC 有怎样的位置关系?说说你的理由;(2)你能说明∠1+∠2=180°吗?【答案】(1)见解析;(2)见解析【解析】试题分析:(1)根据垂直的定义可得∠ADC=90°,然后根据两直线平行,同旁内角互补求出∠DCB=90°,即可得证;(2)先根据两直线平行,同旁内角互补得到∠2+∠3=180°,然后根据对顶角相等的性质得到∠1=∠3,进行等量代换即可得证.试题解析:(1)DC⊥BC.理由:∵AD//BC,∴∠ADC+∠DCB=180°,∵DC⊥AD,∴∠ADC=90°,∴∠DCB=90°,∴DC⊥BC;(2∵AD∥BC,∴∠2+∠3=180°,∵∠1=∠3,∴∠1+∠2=180°.20.如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.(1)∠PCD=∠PDC吗?为什么?(2)OP是CD的垂直平分线吗?为什么?【答案】(1)见解析;(2)见解析【解析】试题分析:(1)由角平分线的性质易得PC=PD,根据等边对等角即可得出∠PCD=∠PDC;(2)易证△POC≌△POD,则OC=OD,根据线段垂直平分线的性质逆定理可得OP垂直平分CD.试题解析:(1)∠PCD=∠PDC,理由如下:∵点P 是∠AOB 平分线上一点,PC ⊥OA ,PD ⊥OB ,∴PC =PD ,∴∠PCD =∠PDC ;(2)OP 垂直平分CD .理由:∵PC=PD,OP=OP ,∴Rt △POC ≌Rt △POD (HL ),∴OC=OD ,∴OP 垂直平分CD (线段垂直平分线的性质逆定理).21.如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD ∆≌BCE ∆;(2)若D ∠=50°,求B Ð的度数.【答案】(1)证明见解析;(2)70°.【解析】【详解】解:(1)∵点C 是线段AB 的中点,∴AC BC =,又∵CD 平分ACE ∠,CE 平分BCD ∠,∴∠1=∠2,∠2=∠3,∴∠1=∠3在ACD ∆和BCE ∆中,13CD CE AC BC =⎧⎪∠=∠⎨⎪=⎩∴ACD ∆≌BCE ∆(2)解:∴∠1+∠2+∠3=180°∴∠1=∠2=∠3=60°∵ACD ∆≌BCE ∆∴E D ∠=∠=50°∴180370B E ∠=︒-∠-∠=︒.22.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?【答案】(1)0.5 h.(2)1.75h,25km【解析】【详解】解:(1)小明骑车速度:1020(km/h)0.5=在甲地游玩的时间是:1﹣0.5=0.5(h)(2) 妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(43,0)代入得b2=﹣80∴y=60x﹣80∴20106080 y xy x=-⎧⎨=-⎩解得1.7525 xy=⎧⎨=⎩∴交点F(1.75,25)【点睛】中等难度题.此题有较强的综合性,要求考生正确认识函数的性质和函数的图像,此题是一题很好的实际应用题,考生可以通过训练此类型的题目以达到举一反三的效果.23.已知:CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.①如图1,若∠BCA=90°,∠α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想: .【答案】(1)BE=CF;(2)∠BCA=180°-∠α,(3)EF=BE+AF.【解析】试题分析:(1)①由∠BCA=90°,∠α=90°可得∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,可推得∠CBE=∠ACD,且已知CA=CB,∠BEC=∠CFA,所以△BEC≌△CDA,可得BE=CF;②只有满足△BEC≌△CDA,才有①中的结论,即∠BCE=∠CAF,∠CBE=∠FCA;由三角形内角和等于180°,可知∠α+∠BCE+∠CBE=180°,即∠α+∠BCE+∠FCA=180°,即可得到∠BCA=180°-∠α;(2)只要通过条件证明△BEC≌△CFA(可通过ASA证得),可得BE=CF,EC=AF,即可得到EF=EC+CF=BE+AF.试题解析:(1)①∵∠BCA=90°,∠α=90°,∴∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC与△CDA中,∵BEC CFACBE ACD CA CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△CFA(AAS),∴BE=CF故答案为=;②∠α与∠BCA应满足的关系是∠BCA=180°-∠α,理由为:∵∠α+∠BCA=180°,∴∠α+∠BCE+∠FCA=180°,∵∠α+∠BCE+∠CBE=180°(三角形内角和等于180°),∴∠CBE=∠ACD,又∵∠BEC=∠CFA,CA=CB,∴△BEC≌△CFA(AAS),∴BE=CF,则∠α与∠BCA应满足的关系是∠BCA=180°-∠α;(2)探究结论:EF=BE+AF,∵∠1+∠2+∠BCA=180°,∠2+∠3+∠CFA=180°,又∵∠BCA=∠α=∠CFA,∴∠1=∠3;又∵∠BEC=∠CFA=∠α,CB=CA,∴△BEC≌△CFA(AAS),∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.【点睛】本题主要考查三角形全等的判定,涉及到三角形内角和定理,线段比较长短等知识点,仔细阅读,弄清题意是解题的关键.。
七年级下学期期末数学测试题北师大版含答案共4套
七年级下学期期末数学测试题一.精心选一选 (以下每小题给出的四个选项中,只有一个选项是正确的,将正确选项前的字母填在题后的括号内.本题有10小题,每小题3分,共30分)1.下列各式计算结果正确的是( )A .2a a a =+B .()2263a a =C .()1122+=+a aD .2a a a =⋅2.2019年全年国内生产总值按可比价格计算,比上年增长9.5%,达到136515亿元,136515亿元用科学记数法表示(保留4个有效数字)为( )A .121.36510⨯元;B .131.365210⨯元;C .121.36510⨯元;D .121.36510⨯元3.下面有4个汽车标致图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个4.下列说法正确的是( )A .如果一件事不可能发生,那么它是必然事件,即发生的概率是1;B.概率很大的事情必然发生;C.若一件事情肯定发生,则其发生的概率1P;D.不太可能发生的事情的概率不为05.下列关于作图的语句中正确的是()A.画直线AB=10厘米;B.画射线OB=10厘米;C.已知A.B.C三点,过这三点画一条直线;D.过直线AB外一点画一条直线和直线AB平行6.如图,已知AB∥CD,直线l分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是()A.60° B.70° C.80°D.90°7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性 B.两点之间线段最短C.两点确定一条直线 D.垂线段最短8.下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x-a) B.(a+b)(-a-b) C.(-x-b)(x-b) D.(b+m)(m-b)9.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l.2l分别表示步行和1骑车的同学前往目的地所走的路程y(千米)及所用时间x(分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟; B.步行的速度是6千米/时;C.骑车的同学从出发到追上步行的同学用了20分钟;D.骑车的同学和步行的同学同时达到目的地10.如图,在△ABC及△DEF中,给出以下六个条件:(1)AB =DE,(2)BC=EF,(3)AC=DF ,(4)∠A=∠D,(5)∠B=∠E,(6)∠C=∠F,以其中三个作为已知条件,不能..判断△ABC及△DEF全等的是()A.(1)(5)(2) B.(1)(2)(3) C.(2)(3)(4)D.(4)(6)(1)二、耐心填一填(请直接将答案填写在题中的横线上,每题3分,共24分)11.等腰三角形的一个角为100°,则它的底角为 . 12.()32+-m (_________)=942-m ; ()232+-ab =_____________.13.某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为__________.14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字3)= ,P(摸到偶数)= .(第15题) (第17题) (第18题)15.如图,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 及l 2相交及点E ,若∠1=43°,则∠2= 度.16.有一个多项式为a 8-a 7b +a 6b 2-a 5b 3+…,按照此规律写下去,这个多项式的第八项是_____________.17.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.18.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是 分钟.三、细心算一算: 19.(4分)①)()(2322c ab c ab ÷ (4分)②2)())((y x y x y x ++---20.(5分)先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a .21.(4分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?22.(6分)如图所示:ΔABC 的周长为24cm ,AB=10cm ,边AB的垂直平分线DE 交BC 边于点E ,垂足为D ,求ΔAEC 的周长.四、用心想一想23.(6分)如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DF ⊥AC ,垂足为F ,你能找出一对全等的三角形吗?为什么它们是全等的?24.(5分)如图是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的等式.25.(5分)已知如图,要测量水池的宽AB ,可过点A 作直线AC ⊥AB ,再由点C 观测,在BA 延长线上找一点B ’,使∠ACB ’= ∠AC B ,这时只要量出AB ’的长,就知道AB 的长,对吗?为什么?26.(6分)请你设计一个摸球游戏:在袋子中装有若干个黄球、绿球和红球,使摸到球的概率:P (摸到红球)=41;P (摸到黄球)=32;P (摸到绿球)=121,那么袋子中黄球、绿球和红球至少各需要多少个?五、识图及计算:27.(12分)如图所示,A 、B 两地相距50千米,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车按同路从A 地出发驶往B 地,如图所示,图中的折线PQR和线段MN 分别表示甲、乙所行驶的路程S 及该日下午时间t 之间的关系.根据图象回答下列问题:(1)甲和乙哪一个出发的更早?早出发多长时间?(2)甲和乙哪一个更早到达B 城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.28.(9分)下图是小明作的一周的零用钱开支的统计图(单位:元)分析上图,试回答以下问题:(1)周几小明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?(2)哪几天他花的零用钱是一样的?分别为多少?(3)你能帮小明算一算他一周平均每天花的零用钱吗?(4)你能够画出小明一周的零用钱开支的折线统计图吗?试一试.答 案1~10:DACDD BABDC11.40°; 12.32--m ,912422+-ab b a ; 13.E6395;14.101,21; 15.133°; 16.7ab -; 17.AB=DC 或∠A=∠D ; 18.37.2;19.①)c ab ()c ab (2322÷=)c ab (c b a 23242÷=ab ②xy y 222+20.a a 332+,值为6.21.21 22.ΔAEC 的周长=AE+EC+AC=BE+EC+AC=BC+AC=24-10=14cm .23.△AED ≌△AFD .理由: 因为∠AED=∠AFD ,∠EAD=∠FAD ,AD 是公共边,所以它们全等(AAS ).(或理由:因为角的平分线上的点到这个角的两边距离相等,所以DE=DF ,AD 是公共的斜边,所以它们全等(HL ).)24.()()ab b a b a 422+==+等.25.对,用ASA 可以证明三角形全等.26.红球3个,黄球8个,绿球1个.27.(1)甲比乙出发更早,要早1小时(2)乙比甲早到B 城,早了2个小时(3)乙出发半小时后追上甲(4)甲开始以较快的速度骑自行车前进,2点后速度减慢,但仍保持这一速度于下午5时抵达B 城(5)乙的速度为50千米/时,甲的平均速度为12.5千米/时.28.(1)周三,1元,10元,(2)周一及周五都是6元,周六和周日都是10元,(3)()67101065146=÷++++++(元);(4)略.七年级数学试题(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C .∠4=∠5D .∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x +=4.下列各式中,及2(1)a -相等的是A.21-- D.21a aa+ a-B.221a a-+C.2215.有一个两位数,它的十位数数字及个位数字之和为5,则符合条件的数有A.4个B.5个C.6个D.无数个6.下列语句不正确...的是A.能够完全重合的两个图形全等 B.两边和一角对应相等的两个三角形全等 C.三角形的外角等于不相邻两个内角的和 D.全等三角形对应边相等7.下列事件属于不确定事件的是A.太阳从东方升起 B.2019年世博会在上海举行C.在标准大气压下,温度低于0摄氏度时冰会融化 D.某班级里有2人生日相同8.请仔细观察用直尺和圆规.....作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是A.SAS B.ASA C.AAS D.SSS二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm.这个数量用科学记数法可表示为 cm.10.将方程2x+y=25写成用含x的代数式表示y的形式,则y= .11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E的大小是°.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是°.13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者试验次数n正面朝上的次数m正面朝上的频率nm 布丰404020480.5069德·摩根409220480.5005(第16题那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出及△ABC 全等且有一个公共顶点的格点△C B A ''';在图②中画出及△ABC 全等且有一条公共边的格点△C B A ''''''.18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2019 (2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x x -3 (2)-2x+x 2+120.解方程组:(每小题5分,本题共10分)O B(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b +的值. 22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么? 23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级下册数学几何及概率部分练习题精选1、已知AB∥CD,分别探讨下列四个图形中∠APC与∠PAB、∠PCD的关系,并说明理由.2、如图所示的四幅图形,都满足AB∥CD,请在每幅图形中写出∠A、∠C,与∠AEC的数量关系(都指图中小于180°的角),并任选一个完成它的证明过程.3、已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE与∠BED之间的数量关系就是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD与∠BED的数量关系就是.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD与∠BED有怎样的数量关系?请说明理由.4、如图,AC∥BD,AB∥CD,∠1=∠E,∠2=∠F,AE交CF于点O,试说明:AE⊥CF5、如图所示,△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=30°,∠C=70°,求∠DAE的度数;(2)△ABC中,若∠B=α,∠C=β(α<β),请您根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由6、如图,已知直线l1∥l2,l3、l4与l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.7、如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都就是∠BOC度数的一半,请您判断她的发现就是否正确,并说明理由8、情境观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系就是.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.拓展延伸:如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE.9、如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.10、如图,在△ABC中,AB=AC,AD就是BC边上的高,AM就是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法与证明)(2)设DN与AM交于点F,判断△ADF的形状,并证明您的结论11、如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E,若∠AFD=158°,求∠EDF的度数12、 (1)探究:如图1,求证:∠BOC=∠A+∠B+∠C(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数13、已知:如图,在△ABC中,∠ABC=∠ACB,AD⊥BD,AE⊥CE,且AD=AE.求证:△AEC≌△ADB14、如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由15、如图,在等边△ABC中,点D为AC上一点,CD=CE,∠ACE=60°.(1)求证:△BCD≌△ACE;(2)延长BD交AE于F,连接CF,若AF=CF,猜想线段BF、AF的数量关系,并证明您的猜想16、如图,AD就是△ABC的中线,BE⊥AD于点E,CF⊥AD交AD的延长线于点F.求证:BE=CF17、如图,△ABC就是等边三角形,D就是AC上一点,BD=CE,∠1=∠2,试判断BC与AE的位置关系,并证明您的结论18、如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC; ②AD+AB=AC19、如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20、如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请您再添加个条件,使得AE=DF,并说明理.21、已知:如图,△ABC与△EFC都就是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数22、已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD与BE的数量关系就是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立不?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.23、已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB∥CD.24、如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA25、如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠BAE=25°,求∠ACF的度数.26、在△ABC中,AB=AC,AD⊥BC于D,BE⊥AC于E,AE=BE.求证:(1)∠DAB=∠EBC;(2)AF=2CD.27、如图,AB∥ED,已知AC=BE,且点B、C、D三点共线,若∠E=∠ACB.求证:BC=DE.28、如图,在△ABC与△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.29、如图,在△ABC中,AC=BC,∠C=90°,D就是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF30、如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.31、如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.32、已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC.求证:BC=DE.33、如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.34、如图,D就是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.35、阅读发现:(1)如图①,在Rt△ABC与Rt△DBE中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD,AE.易证:△BCD≌△BAE.(不需要证明)提出问题:(2)在(1)的条件下,当BD∥AE时,延长CD交AE于点F,如图②,求AF的长.解决问题:(3)如图③,在Rt△ABC与Rt△DBE中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD,AE.当∠BAE=45°时,点E到AB的距离EF的长为2,求线段CD的长为36、已知:如图,在△ABC中,∠ACB=90°,点D在BC上,且BD=AC,过点D作DE⊥AB于点E,过点B作CB的垂线,交DE的延长线于点F.求证:AB=DF.37、如图,已知∠ABC=90°,D就是AB延长线上的点,AD=BC,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,求证:FD⊥CD.38、如图,请您在下列各图中,过点P画出射线AB或线段AB的垂线.39、如图(1),由三角形的内角与或外角与可知:∠ABC=∠A+∠C+∠O在图(2)中,直接利用上述的结论探究:①若AD、CD分别平分∠OAB,∠OCB,且∠O=80°∠B=120°,求∠ADC的度数②AD、CD分别平分∠OAB,∠OCB,猜想∠O,∠ABC,∠ADC之间的等量关系,并说明理由.40、已知:如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E41、如图,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,CE与BD相交于点M,BD交AC于点N.试猜想BD与CE有何关系?并证明您的猜想42、如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且OB=OC.求证:AO平分∠BAC43、已知:如图,在△ABC中,AB=AC,∠BAC=90°,点D就是BC的中点,点E,F 分别在AB,AC边上,连接DE,DF,∠EDF=90°,求证:BE=AF44、如图:△ABC与△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,点B,C,E在同一条直线上,连结DC.(1)请找出图中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.45、探究:(1)如图1,在ABC与ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连结BD、CE.请写出图1中所有全等的三角形:(不添加字母).(2)如图2,已知△ABC,AB=AC,∠BAC=90°,l就是过A点的直线,CN⊥l,BM⊥l,垂足为N、M.求证:△ABM≌△CAN. 解决问题:(3)如图3,已知△ABC,AB=AC,∠BAC=90°,D在边BC上,DA=DE,∠ADE=90°,求证:AC⊥CE.46、已知:如图,EF⊥BC于点F,ED⊥AB于点D交BC于点M,BD=EF.求证:BM=EM47、如图,在△ABC的外部,分别以AB、AC为直角边,点A为直角顶点,作等腰直角△ABD与等腰直角△ACE,CD 与BE交于点P.试证:(1)CD=BE;(2)∠BPC=90°48、如图(1),△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN于点D,BE⊥MN于点E.(1)请说明:△ADC≌△CEB.(2)请您探索线段DE,AD,EB间的等量关系,并说明理由;(3)当直线MN绕点C旋转到图(2)的位置时,其它条件不变,线段DE,AD,EB又有怎样的等量关系?(不必说理由).49、(1)如图①∵∠B+∠D+∠1=180°又∵∠1=∠A+∠2∠2=∠C+∠E∴∠A+∠C+∠E+∠B+∠D=180°(2)将图①变形成图②,∠A+∠DBE+∠C+∠D+∠E仍然为180°,请证明这个结论.(3)将图①变形成图③,则∠A+∠B+∠C+∠D+∠E还为180°,请继续证明这个结论.50、如图,在Rt△ABC中,∠ACB=90°,∠A=22、5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E 在BC的延长线上,CE=CF,连接BF,DE.线段DE与BF在数量与位置上有什么关系?并说明理由51、如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F(1)若△CMN的周长为20cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数52、在△ABC中,AD就是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上53.如图,已知:E就是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D就是垂足,连接CD,且交OE于点F.(1)求证:OE就是CD的垂直平分线.(2)若∠AOB=60°,请您探究OE,EF之间有什么数量关系?并证明您的结论54.已知△ABC,∠ACB=90°,AC=4,MN垂直平分AB,且BM=2CM,求CM的长.55、作图题:(不写作法,但必须保留作图痕迹)如图:某地有两所大学与两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.您能确定仓库P应该建在什么位置不?在所给的图形中画出您的设计方案.56、a,b分别代表铁路与公路,点M、N分别代表蔬菜与杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹57、△ABC中,DE,FG分别垂直平分边AB,AC,垂足分别为点D,G.(1)如图,①若∠B=30°,∠C=40°,求∠EAF的度数;②如果BC=10,求△EAF的周长;③若AE⊥AF,则∠BAC=° .(2)若∠BAC=n°,则∠EAF= °(用含n代数式表示)58、已知:如图,AB=AE,BC=ED,AF⊥CD且F就是CD的中点,求证:∠B=∠E59、已知△ABC中∠BAC=120°,BC=26,AB、AC的垂直平分线分别交BC于E、F,与ABAC分别交于点D、G. 求:(1)∠EAF的度数.(2)求△AEF的周长60.如图,AD就是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B61、已知,如图,P就是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别C、D,求证:OP就是CD的垂直平分线.62如图,在△ABC中,E、F分别就是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.63已知:如图,在△ABC中,AB=AC,∠A=60°,BD就是中线,延长BC至点E,使CE=CD.求证:DB=DE64如图,已知l1,l2分别就是△ABC的边AB、BC的垂直平分线,l1与l2相交于点O,试判断线段0A与OC的数量关系65如图,在△ABC中,∠BAC的平分线与BC的垂直平分线相交于点P,连接BP、CP.试问:∠ABP+∠ACP的度数就是定值不?请证明您的结论66、图,已知在△ABC中,∠C=90°,AB的垂直平分线MN交BC于点D.(1)如果∠CAD=20°,求∠B的度数.(2)如果∠CAB=50°,求∠CAD的度数.(3)如果∠CAD:∠DAB=1:2,求∠CAB的度数67、如图,△ABC中,∠B=25°,∠C=40°,AB的垂直平分线DN交BC于D,AC的垂直平分线EF交BC于E,连接AD、AE.求△ADE各内角的度数68、数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请您直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系就是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请您完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请您直接写出结果).69、如图,在△ABC中,DM、EN分别垂直平分AC与BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.70、如图,在△ABC中,DM、EN分别垂直平分AC与BC,交AB于M、N,(1)若△CMN的周长为21cm,求AB的长;(2)若∠MCN=50°,求∠ACB的度数.71、已知:如图,AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长就是14cm,求AB 与AC的长.72、已知:如图,在△ABC中,∠BAC=120°,若PM、QN分别垂直平分AB、AC.(1)求∠PAQ的度数;(2)如果BC=10cm,求△APQ的周长.73、△ABC就是等边三角形,D就是三角形外一动点,满足∠ADB=60°.(1)如图①,当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)如图②,当D点不在AC的垂直平分线上时,(1)中的结论就是否仍然成立?请说明理由.74、如图,已知∠AOB=30°,P就是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PD=2,求PC的长.75、如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.76、如图,AP,CP分别就是△ABC外角∠MAC与∠NCA的平分线,它们交于点P.求证:BP为∠MBN的平分线77、如图,AD就是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG与△AED的面积分别为49与40,求△EDF的面积为多少?78、如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.79、如图所示,已知∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,求证:M就是BC的中点.80、已知:∠AOB=90°,OM就是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,PC与PD有怎样的数量关系,请说明理由.81、如图,在△ABC中,∠ACB=3∠B,∠1=∠2,CD⊥AD于D,求证:AB-AC=2CD82、如图,在△ABC中,已知AD平分∠BAC,过AD上一点P作EF⊥AD,交AB于E、交AC于F,交BC延长线于M,则有正确结论:∠M=(∠ACB-∠B).请说明理由83、如图,AD∥BC,∠DAB的平分线与∠CBA的平分线交于点P,过点P的直线垂直于AD,垂足为D,交BC于点C.试问:点P就是线段CD的中点不?为什么?84、如图,在△ABC中,D为BC中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC 的延长线于G,求证:BF=CG85、观察、猜想、探究:在△ABC中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,求证:AB=AC+CD;(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出您的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出您的猜想,并对您的猜想给予证明.86、(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.(2)如图2,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.(3)如图3,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出您的猜想.(不需证明)87、一个不透明的口袋里装有2个红球、1个黄球与若干个绿球(除颜色不同外其余都相同),若从中任意摸出1个球就是绿球的概率就是(1)求口袋中绿球的个数;(2)若第一次从口袋中任意摸出1个球,放回搅匀,第二次再摸出1个球,用列表或画树状图方法写出所有可能性,并求出刚好摸到一个红球与一个绿球的概率88、在一个不透明的布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.(1)随机地从袋中取出1只球,求取出的球就是黑球的概率;(2)若取出的第1只球就是红球,将它放在桌上,然后从袋中余下的球中再随机地取出1只球,这时取出的球还就是红球的概率就是多少?89、在一个不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个,蓝球1个.若从中任意摸出一个球,它就是蓝球的概率为(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色就是红色与黄色这种组合(不考虑红、黄球顺序)的概率.90、将6个完全相同的小球分装在甲、乙两个不透明的口袋中,甲袋中有3个球,分别标有数字1、3、5;乙袋中有3个球,分别标有数字2、4、6,从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之与为5的概率;(2)摸出的两个球上数字之与为多少时的概率最大?。